at v3.0 1555 lines 45 kB view raw
1/* 2 * Copyright (C) 2005-2006 by Texas Instruments 3 * 4 * This file implements a DMA interface using TI's CPPI DMA. 5 * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB. 6 * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci. 7 */ 8 9#include <linux/platform_device.h> 10#include <linux/slab.h> 11#include <linux/usb.h> 12 13#include "musb_core.h" 14#include "musb_debug.h" 15#include "cppi_dma.h" 16 17 18/* CPPI DMA status 7-mar-2006: 19 * 20 * - See musb_{host,gadget}.c for more info 21 * 22 * - Correct RX DMA generally forces the engine into irq-per-packet mode, 23 * which can easily saturate the CPU under non-mass-storage loads. 24 * 25 * NOTES 24-aug-2006 (2.6.18-rc4): 26 * 27 * - peripheral RXDMA wedged in a test with packets of length 512/512/1. 28 * evidently after the 1 byte packet was received and acked, the queue 29 * of BDs got garbaged so it wouldn't empty the fifo. (rxcsr 0x2003, 30 * and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401 31 * 004001ff 00000001 .. 8feff860) Host was just getting NAKed on tx 32 * of its next (512 byte) packet. IRQ issues? 33 * 34 * REVISIT: the "transfer DMA" glue between CPPI and USB fifos will 35 * evidently also directly update the RX and TX CSRs ... so audit all 36 * host and peripheral side DMA code to avoid CSR access after DMA has 37 * been started. 38 */ 39 40/* REVISIT now we can avoid preallocating these descriptors; or 41 * more simply, switch to a global freelist not per-channel ones. 42 * Note: at full speed, 64 descriptors == 4K bulk data. 43 */ 44#define NUM_TXCHAN_BD 64 45#define NUM_RXCHAN_BD 64 46 47static inline void cpu_drain_writebuffer(void) 48{ 49 wmb(); 50#ifdef CONFIG_CPU_ARM926T 51 /* REVISIT this "should not be needed", 52 * but lack of it sure seemed to hurt ... 53 */ 54 asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n"); 55#endif 56} 57 58static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c) 59{ 60 struct cppi_descriptor *bd = c->freelist; 61 62 if (bd) 63 c->freelist = bd->next; 64 return bd; 65} 66 67static inline void 68cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd) 69{ 70 if (!bd) 71 return; 72 bd->next = c->freelist; 73 c->freelist = bd; 74} 75 76/* 77 * Start DMA controller 78 * 79 * Initialize the DMA controller as necessary. 80 */ 81 82/* zero out entire rx state RAM entry for the channel */ 83static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx) 84{ 85 musb_writel(&rx->rx_skipbytes, 0, 0); 86 musb_writel(&rx->rx_head, 0, 0); 87 musb_writel(&rx->rx_sop, 0, 0); 88 musb_writel(&rx->rx_current, 0, 0); 89 musb_writel(&rx->rx_buf_current, 0, 0); 90 musb_writel(&rx->rx_len_len, 0, 0); 91 musb_writel(&rx->rx_cnt_cnt, 0, 0); 92} 93 94/* zero out entire tx state RAM entry for the channel */ 95static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr) 96{ 97 musb_writel(&tx->tx_head, 0, 0); 98 musb_writel(&tx->tx_buf, 0, 0); 99 musb_writel(&tx->tx_current, 0, 0); 100 musb_writel(&tx->tx_buf_current, 0, 0); 101 musb_writel(&tx->tx_info, 0, 0); 102 musb_writel(&tx->tx_rem_len, 0, 0); 103 /* musb_writel(&tx->tx_dummy, 0, 0); */ 104 musb_writel(&tx->tx_complete, 0, ptr); 105} 106 107static void __init cppi_pool_init(struct cppi *cppi, struct cppi_channel *c) 108{ 109 int j; 110 111 /* initialize channel fields */ 112 c->head = NULL; 113 c->tail = NULL; 114 c->last_processed = NULL; 115 c->channel.status = MUSB_DMA_STATUS_UNKNOWN; 116 c->controller = cppi; 117 c->is_rndis = 0; 118 c->freelist = NULL; 119 120 /* build the BD Free list for the channel */ 121 for (j = 0; j < NUM_TXCHAN_BD + 1; j++) { 122 struct cppi_descriptor *bd; 123 dma_addr_t dma; 124 125 bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma); 126 bd->dma = dma; 127 cppi_bd_free(c, bd); 128 } 129} 130 131static int cppi_channel_abort(struct dma_channel *); 132 133static void cppi_pool_free(struct cppi_channel *c) 134{ 135 struct cppi *cppi = c->controller; 136 struct cppi_descriptor *bd; 137 138 (void) cppi_channel_abort(&c->channel); 139 c->channel.status = MUSB_DMA_STATUS_UNKNOWN; 140 c->controller = NULL; 141 142 /* free all its bds */ 143 bd = c->last_processed; 144 do { 145 if (bd) 146 dma_pool_free(cppi->pool, bd, bd->dma); 147 bd = cppi_bd_alloc(c); 148 } while (bd); 149 c->last_processed = NULL; 150} 151 152static int __init cppi_controller_start(struct dma_controller *c) 153{ 154 struct cppi *controller; 155 void __iomem *tibase; 156 int i; 157 158 controller = container_of(c, struct cppi, controller); 159 160 /* do whatever is necessary to start controller */ 161 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { 162 controller->tx[i].transmit = true; 163 controller->tx[i].index = i; 164 } 165 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) { 166 controller->rx[i].transmit = false; 167 controller->rx[i].index = i; 168 } 169 170 /* setup BD list on a per channel basis */ 171 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) 172 cppi_pool_init(controller, controller->tx + i); 173 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) 174 cppi_pool_init(controller, controller->rx + i); 175 176 tibase = controller->tibase; 177 INIT_LIST_HEAD(&controller->tx_complete); 178 179 /* initialise tx/rx channel head pointers to zero */ 180 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { 181 struct cppi_channel *tx_ch = controller->tx + i; 182 struct cppi_tx_stateram __iomem *tx; 183 184 INIT_LIST_HEAD(&tx_ch->tx_complete); 185 186 tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i); 187 tx_ch->state_ram = tx; 188 cppi_reset_tx(tx, 0); 189 } 190 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) { 191 struct cppi_channel *rx_ch = controller->rx + i; 192 struct cppi_rx_stateram __iomem *rx; 193 194 INIT_LIST_HEAD(&rx_ch->tx_complete); 195 196 rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i); 197 rx_ch->state_ram = rx; 198 cppi_reset_rx(rx); 199 } 200 201 /* enable individual cppi channels */ 202 musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG, 203 DAVINCI_DMA_ALL_CHANNELS_ENABLE); 204 musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG, 205 DAVINCI_DMA_ALL_CHANNELS_ENABLE); 206 207 /* enable tx/rx CPPI control */ 208 musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE); 209 musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE); 210 211 /* disable RNDIS mode, also host rx RNDIS autorequest */ 212 musb_writel(tibase, DAVINCI_RNDIS_REG, 0); 213 musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0); 214 215 return 0; 216} 217 218/* 219 * Stop DMA controller 220 * 221 * De-Init the DMA controller as necessary. 222 */ 223 224static int cppi_controller_stop(struct dma_controller *c) 225{ 226 struct cppi *controller; 227 void __iomem *tibase; 228 int i; 229 230 controller = container_of(c, struct cppi, controller); 231 232 tibase = controller->tibase; 233 /* DISABLE INDIVIDUAL CHANNEL Interrupts */ 234 musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG, 235 DAVINCI_DMA_ALL_CHANNELS_ENABLE); 236 musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG, 237 DAVINCI_DMA_ALL_CHANNELS_ENABLE); 238 239 dev_dbg(musb->controller, "Tearing down RX and TX Channels\n"); 240 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { 241 /* FIXME restructure of txdma to use bds like rxdma */ 242 controller->tx[i].last_processed = NULL; 243 cppi_pool_free(controller->tx + i); 244 } 245 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) 246 cppi_pool_free(controller->rx + i); 247 248 /* in Tx Case proper teardown is supported. We resort to disabling 249 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is 250 * complete TX CPPI cannot be disabled. 251 */ 252 /*disable tx/rx cppi */ 253 musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE); 254 musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE); 255 256 return 0; 257} 258 259/* While dma channel is allocated, we only want the core irqs active 260 * for fault reports, otherwise we'd get irqs that we don't care about. 261 * Except for TX irqs, where dma done != fifo empty and reusable ... 262 * 263 * NOTE: docs don't say either way, but irq masking **enables** irqs. 264 * 265 * REVISIT same issue applies to pure PIO usage too, and non-cppi dma... 266 */ 267static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum) 268{ 269 musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8)); 270} 271 272static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum) 273{ 274 musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8)); 275} 276 277 278/* 279 * Allocate a CPPI Channel for DMA. With CPPI, channels are bound to 280 * each transfer direction of a non-control endpoint, so allocating 281 * (and deallocating) is mostly a way to notice bad housekeeping on 282 * the software side. We assume the irqs are always active. 283 */ 284static struct dma_channel * 285cppi_channel_allocate(struct dma_controller *c, 286 struct musb_hw_ep *ep, u8 transmit) 287{ 288 struct cppi *controller; 289 u8 index; 290 struct cppi_channel *cppi_ch; 291 void __iomem *tibase; 292 293 controller = container_of(c, struct cppi, controller); 294 tibase = controller->tibase; 295 296 /* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */ 297 index = ep->epnum - 1; 298 299 /* return the corresponding CPPI Channel Handle, and 300 * probably disable the non-CPPI irq until we need it. 301 */ 302 if (transmit) { 303 if (index >= ARRAY_SIZE(controller->tx)) { 304 dev_dbg(musb->controller, "no %cX%d CPPI channel\n", 'T', index); 305 return NULL; 306 } 307 cppi_ch = controller->tx + index; 308 } else { 309 if (index >= ARRAY_SIZE(controller->rx)) { 310 dev_dbg(musb->controller, "no %cX%d CPPI channel\n", 'R', index); 311 return NULL; 312 } 313 cppi_ch = controller->rx + index; 314 core_rxirq_disable(tibase, ep->epnum); 315 } 316 317 /* REVISIT make this an error later once the same driver code works 318 * with the other DMA engine too 319 */ 320 if (cppi_ch->hw_ep) 321 dev_dbg(musb->controller, "re-allocating DMA%d %cX channel %p\n", 322 index, transmit ? 'T' : 'R', cppi_ch); 323 cppi_ch->hw_ep = ep; 324 cppi_ch->channel.status = MUSB_DMA_STATUS_FREE; 325 cppi_ch->channel.max_len = 0x7fffffff; 326 327 dev_dbg(musb->controller, "Allocate CPPI%d %cX\n", index, transmit ? 'T' : 'R'); 328 return &cppi_ch->channel; 329} 330 331/* Release a CPPI Channel. */ 332static void cppi_channel_release(struct dma_channel *channel) 333{ 334 struct cppi_channel *c; 335 void __iomem *tibase; 336 337 /* REVISIT: for paranoia, check state and abort if needed... */ 338 339 c = container_of(channel, struct cppi_channel, channel); 340 tibase = c->controller->tibase; 341 if (!c->hw_ep) 342 dev_dbg(musb->controller, "releasing idle DMA channel %p\n", c); 343 else if (!c->transmit) 344 core_rxirq_enable(tibase, c->index + 1); 345 346 /* for now, leave its cppi IRQ enabled (we won't trigger it) */ 347 c->hw_ep = NULL; 348 channel->status = MUSB_DMA_STATUS_UNKNOWN; 349} 350 351/* Context: controller irqlocked */ 352static void 353cppi_dump_rx(int level, struct cppi_channel *c, const char *tag) 354{ 355 void __iomem *base = c->controller->mregs; 356 struct cppi_rx_stateram __iomem *rx = c->state_ram; 357 358 musb_ep_select(base, c->index + 1); 359 360 DBG(level, "RX DMA%d%s: %d left, csr %04x, " 361 "%08x H%08x S%08x C%08x, " 362 "B%08x L%08x %08x .. %08x" 363 "\n", 364 c->index, tag, 365 musb_readl(c->controller->tibase, 366 DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index), 367 musb_readw(c->hw_ep->regs, MUSB_RXCSR), 368 369 musb_readl(&rx->rx_skipbytes, 0), 370 musb_readl(&rx->rx_head, 0), 371 musb_readl(&rx->rx_sop, 0), 372 musb_readl(&rx->rx_current, 0), 373 374 musb_readl(&rx->rx_buf_current, 0), 375 musb_readl(&rx->rx_len_len, 0), 376 musb_readl(&rx->rx_cnt_cnt, 0), 377 musb_readl(&rx->rx_complete, 0) 378 ); 379} 380 381/* Context: controller irqlocked */ 382static void 383cppi_dump_tx(int level, struct cppi_channel *c, const char *tag) 384{ 385 void __iomem *base = c->controller->mregs; 386 struct cppi_tx_stateram __iomem *tx = c->state_ram; 387 388 musb_ep_select(base, c->index + 1); 389 390 DBG(level, "TX DMA%d%s: csr %04x, " 391 "H%08x S%08x C%08x %08x, " 392 "F%08x L%08x .. %08x" 393 "\n", 394 c->index, tag, 395 musb_readw(c->hw_ep->regs, MUSB_TXCSR), 396 397 musb_readl(&tx->tx_head, 0), 398 musb_readl(&tx->tx_buf, 0), 399 musb_readl(&tx->tx_current, 0), 400 musb_readl(&tx->tx_buf_current, 0), 401 402 musb_readl(&tx->tx_info, 0), 403 musb_readl(&tx->tx_rem_len, 0), 404 /* dummy/unused word 6 */ 405 musb_readl(&tx->tx_complete, 0) 406 ); 407} 408 409/* Context: controller irqlocked */ 410static inline void 411cppi_rndis_update(struct cppi_channel *c, int is_rx, 412 void __iomem *tibase, int is_rndis) 413{ 414 /* we may need to change the rndis flag for this cppi channel */ 415 if (c->is_rndis != is_rndis) { 416 u32 value = musb_readl(tibase, DAVINCI_RNDIS_REG); 417 u32 temp = 1 << (c->index); 418 419 if (is_rx) 420 temp <<= 16; 421 if (is_rndis) 422 value |= temp; 423 else 424 value &= ~temp; 425 musb_writel(tibase, DAVINCI_RNDIS_REG, value); 426 c->is_rndis = is_rndis; 427 } 428} 429 430#ifdef CONFIG_USB_MUSB_DEBUG 431static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd) 432{ 433 pr_debug("RXBD/%s %08x: " 434 "nxt %08x buf %08x off.blen %08x opt.plen %08x\n", 435 tag, bd->dma, 436 bd->hw_next, bd->hw_bufp, bd->hw_off_len, 437 bd->hw_options); 438} 439#endif 440 441static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx) 442{ 443#ifdef CONFIG_USB_MUSB_DEBUG 444 struct cppi_descriptor *bd; 445 446 if (!_dbg_level(level)) 447 return; 448 cppi_dump_rx(level, rx, tag); 449 if (rx->last_processed) 450 cppi_dump_rxbd("last", rx->last_processed); 451 for (bd = rx->head; bd; bd = bd->next) 452 cppi_dump_rxbd("active", bd); 453#endif 454} 455 456 457/* NOTE: DaVinci autoreq is ignored except for host side "RNDIS" mode RX; 458 * so we won't ever use it (see "CPPI RX Woes" below). 459 */ 460static inline int cppi_autoreq_update(struct cppi_channel *rx, 461 void __iomem *tibase, int onepacket, unsigned n_bds) 462{ 463 u32 val; 464 465#ifdef RNDIS_RX_IS_USABLE 466 u32 tmp; 467 /* assert(is_host_active(musb)) */ 468 469 /* start from "AutoReq never" */ 470 tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG); 471 val = tmp & ~((0x3) << (rx->index * 2)); 472 473 /* HCD arranged reqpkt for packet #1. we arrange int 474 * for all but the last one, maybe in two segments. 475 */ 476 if (!onepacket) { 477#if 0 478 /* use two segments, autoreq "all" then the last "never" */ 479 val |= ((0x3) << (rx->index * 2)); 480 n_bds--; 481#else 482 /* one segment, autoreq "all-but-last" */ 483 val |= ((0x1) << (rx->index * 2)); 484#endif 485 } 486 487 if (val != tmp) { 488 int n = 100; 489 490 /* make sure that autoreq is updated before continuing */ 491 musb_writel(tibase, DAVINCI_AUTOREQ_REG, val); 492 do { 493 tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG); 494 if (tmp == val) 495 break; 496 cpu_relax(); 497 } while (n-- > 0); 498 } 499#endif 500 501 /* REQPKT is turned off after each segment */ 502 if (n_bds && rx->channel.actual_len) { 503 void __iomem *regs = rx->hw_ep->regs; 504 505 val = musb_readw(regs, MUSB_RXCSR); 506 if (!(val & MUSB_RXCSR_H_REQPKT)) { 507 val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS; 508 musb_writew(regs, MUSB_RXCSR, val); 509 /* flush writebufer */ 510 val = musb_readw(regs, MUSB_RXCSR); 511 } 512 } 513 return n_bds; 514} 515 516 517/* Buffer enqueuing Logic: 518 * 519 * - RX builds new queues each time, to help handle routine "early 520 * termination" cases (faults, including errors and short reads) 521 * more correctly. 522 * 523 * - for now, TX reuses the same queue of BDs every time 524 * 525 * REVISIT long term, we want a normal dynamic model. 526 * ... the goal will be to append to the 527 * existing queue, processing completed "dma buffers" (segments) on the fly. 528 * 529 * Otherwise we force an IRQ latency between requests, which slows us a lot 530 * (especially in "transparent" dma). Unfortunately that model seems to be 531 * inherent in the DMA model from the Mentor code, except in the rare case 532 * of transfers big enough (~128+ KB) that we could append "middle" segments 533 * in the TX paths. (RX can't do this, see below.) 534 * 535 * That's true even in the CPPI- friendly iso case, where most urbs have 536 * several small segments provided in a group and where the "packet at a time" 537 * "transparent" DMA model is always correct, even on the RX side. 538 */ 539 540/* 541 * CPPI TX: 542 * ======== 543 * TX is a lot more reasonable than RX; it doesn't need to run in 544 * irq-per-packet mode very often. RNDIS mode seems to behave too 545 * (except how it handles the exactly-N-packets case). Building a 546 * txdma queue with multiple requests (urb or usb_request) looks 547 * like it would work ... but fault handling would need much testing. 548 * 549 * The main issue with TX mode RNDIS relates to transfer lengths that 550 * are an exact multiple of the packet length. It appears that there's 551 * a hiccup in that case (maybe the DMA completes before the ZLP gets 552 * written?) boiling down to not being able to rely on CPPI writing any 553 * terminating zero length packet before the next transfer is written. 554 * So that's punted to PIO; better yet, gadget drivers can avoid it. 555 * 556 * Plus, there's allegedly an undocumented constraint that rndis transfer 557 * length be a multiple of 64 bytes ... but the chip doesn't act that 558 * way, and we really don't _want_ that behavior anyway. 559 * 560 * On TX, "transparent" mode works ... although experiments have shown 561 * problems trying to use the SOP/EOP bits in different USB packets. 562 * 563 * REVISIT try to handle terminating zero length packets using CPPI 564 * instead of doing it by PIO after an IRQ. (Meanwhile, make Ethernet 565 * links avoid that issue by forcing them to avoid zlps.) 566 */ 567static void 568cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx) 569{ 570 unsigned maxpacket = tx->maxpacket; 571 dma_addr_t addr = tx->buf_dma + tx->offset; 572 size_t length = tx->buf_len - tx->offset; 573 struct cppi_descriptor *bd; 574 unsigned n_bds; 575 unsigned i; 576 struct cppi_tx_stateram __iomem *tx_ram = tx->state_ram; 577 int rndis; 578 579 /* TX can use the CPPI "rndis" mode, where we can probably fit this 580 * transfer in one BD and one IRQ. The only time we would NOT want 581 * to use it is when hardware constraints prevent it, or if we'd 582 * trigger the "send a ZLP?" confusion. 583 */ 584 rndis = (maxpacket & 0x3f) == 0 585 && length > maxpacket 586 && length < 0xffff 587 && (length % maxpacket) != 0; 588 589 if (rndis) { 590 maxpacket = length; 591 n_bds = 1; 592 } else { 593 n_bds = length / maxpacket; 594 if (!length || (length % maxpacket)) 595 n_bds++; 596 n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD); 597 length = min(n_bds * maxpacket, length); 598 } 599 600 dev_dbg(musb->controller, "TX DMA%d, pktSz %d %s bds %d dma 0x%llx len %u\n", 601 tx->index, 602 maxpacket, 603 rndis ? "rndis" : "transparent", 604 n_bds, 605 (unsigned long long)addr, length); 606 607 cppi_rndis_update(tx, 0, musb->ctrl_base, rndis); 608 609 /* assuming here that channel_program is called during 610 * transfer initiation ... current code maintains state 611 * for one outstanding request only (no queues, not even 612 * the implicit ones of an iso urb). 613 */ 614 615 bd = tx->freelist; 616 tx->head = bd; 617 tx->last_processed = NULL; 618 619 /* FIXME use BD pool like RX side does, and just queue 620 * the minimum number for this request. 621 */ 622 623 /* Prepare queue of BDs first, then hand it to hardware. 624 * All BDs except maybe the last should be of full packet 625 * size; for RNDIS there _is_ only that last packet. 626 */ 627 for (i = 0; i < n_bds; ) { 628 if (++i < n_bds && bd->next) 629 bd->hw_next = bd->next->dma; 630 else 631 bd->hw_next = 0; 632 633 bd->hw_bufp = tx->buf_dma + tx->offset; 634 635 /* FIXME set EOP only on the last packet, 636 * SOP only on the first ... avoid IRQs 637 */ 638 if ((tx->offset + maxpacket) <= tx->buf_len) { 639 tx->offset += maxpacket; 640 bd->hw_off_len = maxpacket; 641 bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET 642 | CPPI_OWN_SET | maxpacket; 643 } else { 644 /* only this one may be a partial USB Packet */ 645 u32 partial_len; 646 647 partial_len = tx->buf_len - tx->offset; 648 tx->offset = tx->buf_len; 649 bd->hw_off_len = partial_len; 650 651 bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET 652 | CPPI_OWN_SET | partial_len; 653 if (partial_len == 0) 654 bd->hw_options |= CPPI_ZERO_SET; 655 } 656 657 dev_dbg(musb->controller, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n", 658 bd, bd->hw_next, bd->hw_bufp, 659 bd->hw_off_len, bd->hw_options); 660 661 /* update the last BD enqueued to the list */ 662 tx->tail = bd; 663 bd = bd->next; 664 } 665 666 /* BDs live in DMA-coherent memory, but writes might be pending */ 667 cpu_drain_writebuffer(); 668 669 /* Write to the HeadPtr in state RAM to trigger */ 670 musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma); 671 672 cppi_dump_tx(5, tx, "/S"); 673} 674 675/* 676 * CPPI RX Woes: 677 * ============= 678 * Consider a 1KB bulk RX buffer in two scenarios: (a) it's fed two 300 byte 679 * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back. 680 * (Full speed transfers have similar scenarios.) 681 * 682 * The correct behavior for Linux is that (a) fills the buffer with 300 bytes, 683 * and the next packet goes into a buffer that's queued later; while (b) fills 684 * the buffer with 1024 bytes. How to do that with CPPI? 685 * 686 * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but 687 * (b) loses **BADLY** because nothing (!) happens when that second packet 688 * fills the buffer, much less when a third one arrives. (Which makes this 689 * not a "true" RNDIS mode. In the RNDIS protocol short-packet termination 690 * is optional, and it's fine if peripherals -- not hosts! -- pad messages 691 * out to end-of-buffer. Standard PCI host controller DMA descriptors 692 * implement that mode by default ... which is no accident.) 693 * 694 * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have 695 * converse problems: (b) is handled right, but (a) loses badly. CPPI RX 696 * ignores SOP/EOP markings and processes both of those BDs; so both packets 697 * are loaded into the buffer (with a 212 byte gap between them), and the next 698 * buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP 699 * are intended as outputs for RX queues, not inputs...) 700 * 701 * - A variant of "transparent" mode -- one BD at a time -- is the only way to 702 * reliably make both cases work, with software handling both cases correctly 703 * and at the significant penalty of needing an IRQ per packet. (The lack of 704 * I/O overlap can be slightly ameliorated by enabling double buffering.) 705 * 706 * So how to get rid of IRQ-per-packet? The transparent multi-BD case could 707 * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK 708 * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors 709 * with guaranteed driver level fault recovery and scrubbing out what's left 710 * of that garbaged datastream. 711 * 712 * But there seems to be no way to identify the cases where CPPI RNDIS mode 713 * is appropriate -- which do NOT include RNDIS host drivers, but do include 714 * the CDC Ethernet driver! -- and the documentation is incomplete/wrong. 715 * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic 716 * that applies best on the peripheral side (and which could fail rudely). 717 * 718 * Leaving only "transparent" mode; we avoid multi-bd modes in almost all 719 * cases other than mass storage class. Otherwise we're correct but slow, 720 * since CPPI penalizes our need for a "true RNDIS" default mode. 721 */ 722 723 724/* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY 725 * 726 * IFF 727 * (a) peripheral mode ... since rndis peripherals could pad their 728 * writes to hosts, causing i/o failure; or we'd have to cope with 729 * a largely unknowable variety of host side protocol variants 730 * (b) and short reads are NOT errors ... since full reads would 731 * cause those same i/o failures 732 * (c) and read length is 733 * - less than 64KB (max per cppi descriptor) 734 * - not a multiple of 4096 (g_zero default, full reads typical) 735 * - N (>1) packets long, ditto (full reads not EXPECTED) 736 * THEN 737 * try rx rndis mode 738 * 739 * Cost of heuristic failing: RXDMA wedges at the end of transfers that 740 * fill out the whole buffer. Buggy host side usb network drivers could 741 * trigger that, but "in the field" such bugs seem to be all but unknown. 742 * 743 * So this module parameter lets the heuristic be disabled. When using 744 * gadgetfs, the heuristic will probably need to be disabled. 745 */ 746static int cppi_rx_rndis = 1; 747 748module_param(cppi_rx_rndis, bool, 0); 749MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic"); 750 751 752/** 753 * cppi_next_rx_segment - dma read for the next chunk of a buffer 754 * @musb: the controller 755 * @rx: dma channel 756 * @onepacket: true unless caller treats short reads as errors, and 757 * performs fault recovery above usbcore. 758 * Context: controller irqlocked 759 * 760 * See above notes about why we can't use multi-BD RX queues except in 761 * rare cases (mass storage class), and can never use the hardware "rndis" 762 * mode (since it's not a "true" RNDIS mode) with complete safety.. 763 * 764 * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in 765 * code to recover from corrupted datastreams after each short transfer. 766 */ 767static void 768cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket) 769{ 770 unsigned maxpacket = rx->maxpacket; 771 dma_addr_t addr = rx->buf_dma + rx->offset; 772 size_t length = rx->buf_len - rx->offset; 773 struct cppi_descriptor *bd, *tail; 774 unsigned n_bds; 775 unsigned i; 776 void __iomem *tibase = musb->ctrl_base; 777 int is_rndis = 0; 778 struct cppi_rx_stateram __iomem *rx_ram = rx->state_ram; 779 780 if (onepacket) { 781 /* almost every USB driver, host or peripheral side */ 782 n_bds = 1; 783 784 /* maybe apply the heuristic above */ 785 if (cppi_rx_rndis 786 && is_peripheral_active(musb) 787 && length > maxpacket 788 && (length & ~0xffff) == 0 789 && (length & 0x0fff) != 0 790 && (length & (maxpacket - 1)) == 0) { 791 maxpacket = length; 792 is_rndis = 1; 793 } 794 } else { 795 /* virtually nothing except mass storage class */ 796 if (length > 0xffff) { 797 n_bds = 0xffff / maxpacket; 798 length = n_bds * maxpacket; 799 } else { 800 n_bds = length / maxpacket; 801 if (length % maxpacket) 802 n_bds++; 803 } 804 if (n_bds == 1) 805 onepacket = 1; 806 else 807 n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD); 808 } 809 810 /* In host mode, autorequest logic can generate some IN tokens; it's 811 * tricky since we can't leave REQPKT set in RXCSR after the transfer 812 * finishes. So: multipacket transfers involve two or more segments. 813 * And always at least two IRQs ... RNDIS mode is not an option. 814 */ 815 if (is_host_active(musb)) 816 n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds); 817 818 cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis); 819 820 length = min(n_bds * maxpacket, length); 821 822 dev_dbg(musb->controller, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) " 823 "dma 0x%llx len %u %u/%u\n", 824 rx->index, maxpacket, 825 onepacket 826 ? (is_rndis ? "rndis" : "onepacket") 827 : "multipacket", 828 n_bds, 829 musb_readl(tibase, 830 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) 831 & 0xffff, 832 (unsigned long long)addr, length, 833 rx->channel.actual_len, rx->buf_len); 834 835 /* only queue one segment at a time, since the hardware prevents 836 * correct queue shutdown after unexpected short packets 837 */ 838 bd = cppi_bd_alloc(rx); 839 rx->head = bd; 840 841 /* Build BDs for all packets in this segment */ 842 for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) { 843 u32 bd_len; 844 845 if (i) { 846 bd = cppi_bd_alloc(rx); 847 if (!bd) 848 break; 849 tail->next = bd; 850 tail->hw_next = bd->dma; 851 } 852 bd->hw_next = 0; 853 854 /* all but the last packet will be maxpacket size */ 855 if (maxpacket < length) 856 bd_len = maxpacket; 857 else 858 bd_len = length; 859 860 bd->hw_bufp = addr; 861 addr += bd_len; 862 rx->offset += bd_len; 863 864 bd->hw_off_len = (0 /*offset*/ << 16) + bd_len; 865 bd->buflen = bd_len; 866 867 bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0); 868 length -= bd_len; 869 } 870 871 /* we always expect at least one reusable BD! */ 872 if (!tail) { 873 WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds); 874 return; 875 } else if (i < n_bds) 876 WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds); 877 878 tail->next = NULL; 879 tail->hw_next = 0; 880 881 bd = rx->head; 882 rx->tail = tail; 883 884 /* short reads and other faults should terminate this entire 885 * dma segment. we want one "dma packet" per dma segment, not 886 * one per USB packet, terminating the whole queue at once... 887 * NOTE that current hardware seems to ignore SOP and EOP. 888 */ 889 bd->hw_options |= CPPI_SOP_SET; 890 tail->hw_options |= CPPI_EOP_SET; 891 892#ifdef CONFIG_USB_MUSB_DEBUG 893 if (_dbg_level(5)) { 894 struct cppi_descriptor *d; 895 896 for (d = rx->head; d; d = d->next) 897 cppi_dump_rxbd("S", d); 898 } 899#endif 900 901 /* in case the preceding transfer left some state... */ 902 tail = rx->last_processed; 903 if (tail) { 904 tail->next = bd; 905 tail->hw_next = bd->dma; 906 } 907 908 core_rxirq_enable(tibase, rx->index + 1); 909 910 /* BDs live in DMA-coherent memory, but writes might be pending */ 911 cpu_drain_writebuffer(); 912 913 /* REVISIT specs say to write this AFTER the BUFCNT register 914 * below ... but that loses badly. 915 */ 916 musb_writel(&rx_ram->rx_head, 0, bd->dma); 917 918 /* bufferCount must be at least 3, and zeroes on completion 919 * unless it underflows below zero, or stops at two, or keeps 920 * growing ... grr. 921 */ 922 i = musb_readl(tibase, 923 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) 924 & 0xffff; 925 926 if (!i) 927 musb_writel(tibase, 928 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), 929 n_bds + 2); 930 else if (n_bds > (i - 3)) 931 musb_writel(tibase, 932 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), 933 n_bds - (i - 3)); 934 935 i = musb_readl(tibase, 936 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) 937 & 0xffff; 938 if (i < (2 + n_bds)) { 939 dev_dbg(musb->controller, "bufcnt%d underrun - %d (for %d)\n", 940 rx->index, i, n_bds); 941 musb_writel(tibase, 942 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), 943 n_bds + 2); 944 } 945 946 cppi_dump_rx(4, rx, "/S"); 947} 948 949/** 950 * cppi_channel_program - program channel for data transfer 951 * @ch: the channel 952 * @maxpacket: max packet size 953 * @mode: For RX, 1 unless the usb protocol driver promised to treat 954 * all short reads as errors and kick in high level fault recovery. 955 * For TX, ignored because of RNDIS mode races/glitches. 956 * @dma_addr: dma address of buffer 957 * @len: length of buffer 958 * Context: controller irqlocked 959 */ 960static int cppi_channel_program(struct dma_channel *ch, 961 u16 maxpacket, u8 mode, 962 dma_addr_t dma_addr, u32 len) 963{ 964 struct cppi_channel *cppi_ch; 965 struct cppi *controller; 966 struct musb *musb; 967 968 cppi_ch = container_of(ch, struct cppi_channel, channel); 969 controller = cppi_ch->controller; 970 musb = controller->musb; 971 972 switch (ch->status) { 973 case MUSB_DMA_STATUS_BUS_ABORT: 974 case MUSB_DMA_STATUS_CORE_ABORT: 975 /* fault irq handler should have handled cleanup */ 976 WARNING("%cX DMA%d not cleaned up after abort!\n", 977 cppi_ch->transmit ? 'T' : 'R', 978 cppi_ch->index); 979 /* WARN_ON(1); */ 980 break; 981 case MUSB_DMA_STATUS_BUSY: 982 WARNING("program active channel? %cX DMA%d\n", 983 cppi_ch->transmit ? 'T' : 'R', 984 cppi_ch->index); 985 /* WARN_ON(1); */ 986 break; 987 case MUSB_DMA_STATUS_UNKNOWN: 988 dev_dbg(musb->controller, "%cX DMA%d not allocated!\n", 989 cppi_ch->transmit ? 'T' : 'R', 990 cppi_ch->index); 991 /* FALLTHROUGH */ 992 case MUSB_DMA_STATUS_FREE: 993 break; 994 } 995 996 ch->status = MUSB_DMA_STATUS_BUSY; 997 998 /* set transfer parameters, then queue up its first segment */ 999 cppi_ch->buf_dma = dma_addr; 1000 cppi_ch->offset = 0; 1001 cppi_ch->maxpacket = maxpacket; 1002 cppi_ch->buf_len = len; 1003 cppi_ch->channel.actual_len = 0; 1004 1005 /* TX channel? or RX? */ 1006 if (cppi_ch->transmit) 1007 cppi_next_tx_segment(musb, cppi_ch); 1008 else 1009 cppi_next_rx_segment(musb, cppi_ch, mode); 1010 1011 return true; 1012} 1013 1014static bool cppi_rx_scan(struct cppi *cppi, unsigned ch) 1015{ 1016 struct cppi_channel *rx = &cppi->rx[ch]; 1017 struct cppi_rx_stateram __iomem *state = rx->state_ram; 1018 struct cppi_descriptor *bd; 1019 struct cppi_descriptor *last = rx->last_processed; 1020 bool completed = false; 1021 bool acked = false; 1022 int i; 1023 dma_addr_t safe2ack; 1024 void __iomem *regs = rx->hw_ep->regs; 1025 1026 cppi_dump_rx(6, rx, "/K"); 1027 1028 bd = last ? last->next : rx->head; 1029 if (!bd) 1030 return false; 1031 1032 /* run through all completed BDs */ 1033 for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0); 1034 (safe2ack || completed) && bd && i < NUM_RXCHAN_BD; 1035 i++, bd = bd->next) { 1036 u16 len; 1037 1038 /* catch latest BD writes from CPPI */ 1039 rmb(); 1040 if (!completed && (bd->hw_options & CPPI_OWN_SET)) 1041 break; 1042 1043 dev_dbg(musb->controller, "C/RXBD %llx: nxt %08x buf %08x " 1044 "off.len %08x opt.len %08x (%d)\n", 1045 (unsigned long long)bd->dma, bd->hw_next, bd->hw_bufp, 1046 bd->hw_off_len, bd->hw_options, 1047 rx->channel.actual_len); 1048 1049 /* actual packet received length */ 1050 if ((bd->hw_options & CPPI_SOP_SET) && !completed) 1051 len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK; 1052 else 1053 len = 0; 1054 1055 if (bd->hw_options & CPPI_EOQ_MASK) 1056 completed = true; 1057 1058 if (!completed && len < bd->buflen) { 1059 /* NOTE: when we get a short packet, RXCSR_H_REQPKT 1060 * must have been cleared, and no more DMA packets may 1061 * active be in the queue... TI docs didn't say, but 1062 * CPPI ignores those BDs even though OWN is still set. 1063 */ 1064 completed = true; 1065 dev_dbg(musb->controller, "rx short %d/%d (%d)\n", 1066 len, bd->buflen, 1067 rx->channel.actual_len); 1068 } 1069 1070 /* If we got here, we expect to ack at least one BD; meanwhile 1071 * CPPI may completing other BDs while we scan this list... 1072 * 1073 * RACE: we can notice OWN cleared before CPPI raises the 1074 * matching irq by writing that BD as the completion pointer. 1075 * In such cases, stop scanning and wait for the irq, avoiding 1076 * lost acks and states where BD ownership is unclear. 1077 */ 1078 if (bd->dma == safe2ack) { 1079 musb_writel(&state->rx_complete, 0, safe2ack); 1080 safe2ack = musb_readl(&state->rx_complete, 0); 1081 acked = true; 1082 if (bd->dma == safe2ack) 1083 safe2ack = 0; 1084 } 1085 1086 rx->channel.actual_len += len; 1087 1088 cppi_bd_free(rx, last); 1089 last = bd; 1090 1091 /* stop scanning on end-of-segment */ 1092 if (bd->hw_next == 0) 1093 completed = true; 1094 } 1095 rx->last_processed = last; 1096 1097 /* dma abort, lost ack, or ... */ 1098 if (!acked && last) { 1099 int csr; 1100 1101 if (safe2ack == 0 || safe2ack == rx->last_processed->dma) 1102 musb_writel(&state->rx_complete, 0, safe2ack); 1103 if (safe2ack == 0) { 1104 cppi_bd_free(rx, last); 1105 rx->last_processed = NULL; 1106 1107 /* if we land here on the host side, H_REQPKT will 1108 * be clear and we need to restart the queue... 1109 */ 1110 WARN_ON(rx->head); 1111 } 1112 musb_ep_select(cppi->mregs, rx->index + 1); 1113 csr = musb_readw(regs, MUSB_RXCSR); 1114 if (csr & MUSB_RXCSR_DMAENAB) { 1115 dev_dbg(musb->controller, "list%d %p/%p, last %llx%s, csr %04x\n", 1116 rx->index, 1117 rx->head, rx->tail, 1118 rx->last_processed 1119 ? (unsigned long long) 1120 rx->last_processed->dma 1121 : 0, 1122 completed ? ", completed" : "", 1123 csr); 1124 cppi_dump_rxq(4, "/what?", rx); 1125 } 1126 } 1127 if (!completed) { 1128 int csr; 1129 1130 rx->head = bd; 1131 1132 /* REVISIT seems like "autoreq all but EOP" doesn't... 1133 * setting it here "should" be racey, but seems to work 1134 */ 1135 csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR); 1136 if (is_host_active(cppi->musb) 1137 && bd 1138 && !(csr & MUSB_RXCSR_H_REQPKT)) { 1139 csr |= MUSB_RXCSR_H_REQPKT; 1140 musb_writew(regs, MUSB_RXCSR, 1141 MUSB_RXCSR_H_WZC_BITS | csr); 1142 csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR); 1143 } 1144 } else { 1145 rx->head = NULL; 1146 rx->tail = NULL; 1147 } 1148 1149 cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned"); 1150 return completed; 1151} 1152 1153irqreturn_t cppi_interrupt(int irq, void *dev_id) 1154{ 1155 struct musb *musb = dev_id; 1156 struct cppi *cppi; 1157 void __iomem *tibase; 1158 struct musb_hw_ep *hw_ep = NULL; 1159 u32 rx, tx; 1160 int i, index; 1161 unsigned long uninitialized_var(flags); 1162 1163 cppi = container_of(musb->dma_controller, struct cppi, controller); 1164 if (cppi->irq) 1165 spin_lock_irqsave(&musb->lock, flags); 1166 1167 tibase = musb->ctrl_base; 1168 1169 tx = musb_readl(tibase, DAVINCI_TXCPPI_MASKED_REG); 1170 rx = musb_readl(tibase, DAVINCI_RXCPPI_MASKED_REG); 1171 1172 if (!tx && !rx) { 1173 if (cppi->irq) 1174 spin_unlock_irqrestore(&musb->lock, flags); 1175 return IRQ_NONE; 1176 } 1177 1178 dev_dbg(musb->controller, "CPPI IRQ Tx%x Rx%x\n", tx, rx); 1179 1180 /* process TX channels */ 1181 for (index = 0; tx; tx = tx >> 1, index++) { 1182 struct cppi_channel *tx_ch; 1183 struct cppi_tx_stateram __iomem *tx_ram; 1184 bool completed = false; 1185 struct cppi_descriptor *bd; 1186 1187 if (!(tx & 1)) 1188 continue; 1189 1190 tx_ch = cppi->tx + index; 1191 tx_ram = tx_ch->state_ram; 1192 1193 /* FIXME need a cppi_tx_scan() routine, which 1194 * can also be called from abort code 1195 */ 1196 1197 cppi_dump_tx(5, tx_ch, "/E"); 1198 1199 bd = tx_ch->head; 1200 1201 /* 1202 * If Head is null then this could mean that a abort interrupt 1203 * that needs to be acknowledged. 1204 */ 1205 if (NULL == bd) { 1206 dev_dbg(musb->controller, "null BD\n"); 1207 musb_writel(&tx_ram->tx_complete, 0, 0); 1208 continue; 1209 } 1210 1211 /* run through all completed BDs */ 1212 for (i = 0; !completed && bd && i < NUM_TXCHAN_BD; 1213 i++, bd = bd->next) { 1214 u16 len; 1215 1216 /* catch latest BD writes from CPPI */ 1217 rmb(); 1218 if (bd->hw_options & CPPI_OWN_SET) 1219 break; 1220 1221 dev_dbg(musb->controller, "C/TXBD %p n %x b %x off %x opt %x\n", 1222 bd, bd->hw_next, bd->hw_bufp, 1223 bd->hw_off_len, bd->hw_options); 1224 1225 len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK; 1226 tx_ch->channel.actual_len += len; 1227 1228 tx_ch->last_processed = bd; 1229 1230 /* write completion register to acknowledge 1231 * processing of completed BDs, and possibly 1232 * release the IRQ; EOQ might not be set ... 1233 * 1234 * REVISIT use the same ack strategy as rx 1235 * 1236 * REVISIT have observed bit 18 set; huh?? 1237 */ 1238 /* if ((bd->hw_options & CPPI_EOQ_MASK)) */ 1239 musb_writel(&tx_ram->tx_complete, 0, bd->dma); 1240 1241 /* stop scanning on end-of-segment */ 1242 if (bd->hw_next == 0) 1243 completed = true; 1244 } 1245 1246 /* on end of segment, maybe go to next one */ 1247 if (completed) { 1248 /* cppi_dump_tx(4, tx_ch, "/complete"); */ 1249 1250 /* transfer more, or report completion */ 1251 if (tx_ch->offset >= tx_ch->buf_len) { 1252 tx_ch->head = NULL; 1253 tx_ch->tail = NULL; 1254 tx_ch->channel.status = MUSB_DMA_STATUS_FREE; 1255 1256 hw_ep = tx_ch->hw_ep; 1257 1258 musb_dma_completion(musb, index + 1, 1); 1259 1260 } else { 1261 /* Bigger transfer than we could fit in 1262 * that first batch of descriptors... 1263 */ 1264 cppi_next_tx_segment(musb, tx_ch); 1265 } 1266 } else 1267 tx_ch->head = bd; 1268 } 1269 1270 /* Start processing the RX block */ 1271 for (index = 0; rx; rx = rx >> 1, index++) { 1272 1273 if (rx & 1) { 1274 struct cppi_channel *rx_ch; 1275 1276 rx_ch = cppi->rx + index; 1277 1278 /* let incomplete dma segments finish */ 1279 if (!cppi_rx_scan(cppi, index)) 1280 continue; 1281 1282 /* start another dma segment if needed */ 1283 if (rx_ch->channel.actual_len != rx_ch->buf_len 1284 && rx_ch->channel.actual_len 1285 == rx_ch->offset) { 1286 cppi_next_rx_segment(musb, rx_ch, 1); 1287 continue; 1288 } 1289 1290 /* all segments completed! */ 1291 rx_ch->channel.status = MUSB_DMA_STATUS_FREE; 1292 1293 hw_ep = rx_ch->hw_ep; 1294 1295 core_rxirq_disable(tibase, index + 1); 1296 musb_dma_completion(musb, index + 1, 0); 1297 } 1298 } 1299 1300 /* write to CPPI EOI register to re-enable interrupts */ 1301 musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0); 1302 1303 if (cppi->irq) 1304 spin_unlock_irqrestore(&musb->lock, flags); 1305 1306 return IRQ_HANDLED; 1307} 1308 1309/* Instantiate a software object representing a DMA controller. */ 1310struct dma_controller *__init 1311dma_controller_create(struct musb *musb, void __iomem *mregs) 1312{ 1313 struct cppi *controller; 1314 struct device *dev = musb->controller; 1315 struct platform_device *pdev = to_platform_device(dev); 1316 int irq = platform_get_irq_byname(pdev, "dma"); 1317 1318 controller = kzalloc(sizeof *controller, GFP_KERNEL); 1319 if (!controller) 1320 return NULL; 1321 1322 controller->mregs = mregs; 1323 controller->tibase = mregs - DAVINCI_BASE_OFFSET; 1324 1325 controller->musb = musb; 1326 controller->controller.start = cppi_controller_start; 1327 controller->controller.stop = cppi_controller_stop; 1328 controller->controller.channel_alloc = cppi_channel_allocate; 1329 controller->controller.channel_release = cppi_channel_release; 1330 controller->controller.channel_program = cppi_channel_program; 1331 controller->controller.channel_abort = cppi_channel_abort; 1332 1333 /* NOTE: allocating from on-chip SRAM would give the least 1334 * contention for memory access, if that ever matters here. 1335 */ 1336 1337 /* setup BufferPool */ 1338 controller->pool = dma_pool_create("cppi", 1339 controller->musb->controller, 1340 sizeof(struct cppi_descriptor), 1341 CPPI_DESCRIPTOR_ALIGN, 0); 1342 if (!controller->pool) { 1343 kfree(controller); 1344 return NULL; 1345 } 1346 1347 if (irq > 0) { 1348 if (request_irq(irq, cppi_interrupt, 0, "cppi-dma", musb)) { 1349 dev_err(dev, "request_irq %d failed!\n", irq); 1350 dma_controller_destroy(&controller->controller); 1351 return NULL; 1352 } 1353 controller->irq = irq; 1354 } 1355 1356 return &controller->controller; 1357} 1358 1359/* 1360 * Destroy a previously-instantiated DMA controller. 1361 */ 1362void dma_controller_destroy(struct dma_controller *c) 1363{ 1364 struct cppi *cppi; 1365 1366 cppi = container_of(c, struct cppi, controller); 1367 1368 if (cppi->irq) 1369 free_irq(cppi->irq, cppi->musb); 1370 1371 /* assert: caller stopped the controller first */ 1372 dma_pool_destroy(cppi->pool); 1373 1374 kfree(cppi); 1375} 1376 1377/* 1378 * Context: controller irqlocked, endpoint selected 1379 */ 1380static int cppi_channel_abort(struct dma_channel *channel) 1381{ 1382 struct cppi_channel *cppi_ch; 1383 struct cppi *controller; 1384 void __iomem *mbase; 1385 void __iomem *tibase; 1386 void __iomem *regs; 1387 u32 value; 1388 struct cppi_descriptor *queue; 1389 1390 cppi_ch = container_of(channel, struct cppi_channel, channel); 1391 1392 controller = cppi_ch->controller; 1393 1394 switch (channel->status) { 1395 case MUSB_DMA_STATUS_BUS_ABORT: 1396 case MUSB_DMA_STATUS_CORE_ABORT: 1397 /* from RX or TX fault irq handler */ 1398 case MUSB_DMA_STATUS_BUSY: 1399 /* the hardware needs shutting down */ 1400 regs = cppi_ch->hw_ep->regs; 1401 break; 1402 case MUSB_DMA_STATUS_UNKNOWN: 1403 case MUSB_DMA_STATUS_FREE: 1404 return 0; 1405 default: 1406 return -EINVAL; 1407 } 1408 1409 if (!cppi_ch->transmit && cppi_ch->head) 1410 cppi_dump_rxq(3, "/abort", cppi_ch); 1411 1412 mbase = controller->mregs; 1413 tibase = controller->tibase; 1414 1415 queue = cppi_ch->head; 1416 cppi_ch->head = NULL; 1417 cppi_ch->tail = NULL; 1418 1419 /* REVISIT should rely on caller having done this, 1420 * and caller should rely on us not changing it. 1421 * peripheral code is safe ... check host too. 1422 */ 1423 musb_ep_select(mbase, cppi_ch->index + 1); 1424 1425 if (cppi_ch->transmit) { 1426 struct cppi_tx_stateram __iomem *tx_ram; 1427 /* REVISIT put timeouts on these controller handshakes */ 1428 1429 cppi_dump_tx(6, cppi_ch, " (teardown)"); 1430 1431 /* teardown DMA engine then usb core */ 1432 do { 1433 value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG); 1434 } while (!(value & CPPI_TEAR_READY)); 1435 musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index); 1436 1437 tx_ram = cppi_ch->state_ram; 1438 do { 1439 value = musb_readl(&tx_ram->tx_complete, 0); 1440 } while (0xFFFFFFFC != value); 1441 1442 /* FIXME clean up the transfer state ... here? 1443 * the completion routine should get called with 1444 * an appropriate status code. 1445 */ 1446 1447 value = musb_readw(regs, MUSB_TXCSR); 1448 value &= ~MUSB_TXCSR_DMAENAB; 1449 value |= MUSB_TXCSR_FLUSHFIFO; 1450 musb_writew(regs, MUSB_TXCSR, value); 1451 musb_writew(regs, MUSB_TXCSR, value); 1452 1453 /* 1454 * 1. Write to completion Ptr value 0x1(bit 0 set) 1455 * (write back mode) 1456 * 2. Wait for abort interrupt and then put the channel in 1457 * compare mode by writing 1 to the tx_complete register. 1458 */ 1459 cppi_reset_tx(tx_ram, 1); 1460 cppi_ch->head = NULL; 1461 musb_writel(&tx_ram->tx_complete, 0, 1); 1462 cppi_dump_tx(5, cppi_ch, " (done teardown)"); 1463 1464 /* REVISIT tx side _should_ clean up the same way 1465 * as the RX side ... this does no cleanup at all! 1466 */ 1467 1468 } else /* RX */ { 1469 u16 csr; 1470 1471 /* NOTE: docs don't guarantee any of this works ... we 1472 * expect that if the usb core stops telling the cppi core 1473 * to pull more data from it, then it'll be safe to flush 1474 * current RX DMA state iff any pending fifo transfer is done. 1475 */ 1476 1477 core_rxirq_disable(tibase, cppi_ch->index + 1); 1478 1479 /* for host, ensure ReqPkt is never set again */ 1480 if (is_host_active(cppi_ch->controller->musb)) { 1481 value = musb_readl(tibase, DAVINCI_AUTOREQ_REG); 1482 value &= ~((0x3) << (cppi_ch->index * 2)); 1483 musb_writel(tibase, DAVINCI_AUTOREQ_REG, value); 1484 } 1485 1486 csr = musb_readw(regs, MUSB_RXCSR); 1487 1488 /* for host, clear (just) ReqPkt at end of current packet(s) */ 1489 if (is_host_active(cppi_ch->controller->musb)) { 1490 csr |= MUSB_RXCSR_H_WZC_BITS; 1491 csr &= ~MUSB_RXCSR_H_REQPKT; 1492 } else 1493 csr |= MUSB_RXCSR_P_WZC_BITS; 1494 1495 /* clear dma enable */ 1496 csr &= ~(MUSB_RXCSR_DMAENAB); 1497 musb_writew(regs, MUSB_RXCSR, csr); 1498 csr = musb_readw(regs, MUSB_RXCSR); 1499 1500 /* Quiesce: wait for current dma to finish (if not cleanup). 1501 * We can't use bit zero of stateram->rx_sop, since that 1502 * refers to an entire "DMA packet" not just emptying the 1503 * current fifo. Most segments need multiple usb packets. 1504 */ 1505 if (channel->status == MUSB_DMA_STATUS_BUSY) 1506 udelay(50); 1507 1508 /* scan the current list, reporting any data that was 1509 * transferred and acking any IRQ 1510 */ 1511 cppi_rx_scan(controller, cppi_ch->index); 1512 1513 /* clobber the existing state once it's idle 1514 * 1515 * NOTE: arguably, we should also wait for all the other 1516 * RX channels to quiesce (how??) and then temporarily 1517 * disable RXCPPI_CTRL_REG ... but it seems that we can 1518 * rely on the controller restarting from state ram, with 1519 * only RXCPPI_BUFCNT state being bogus. BUFCNT will 1520 * correct itself after the next DMA transfer though. 1521 * 1522 * REVISIT does using rndis mode change that? 1523 */ 1524 cppi_reset_rx(cppi_ch->state_ram); 1525 1526 /* next DMA request _should_ load cppi head ptr */ 1527 1528 /* ... we don't "free" that list, only mutate it in place. */ 1529 cppi_dump_rx(5, cppi_ch, " (done abort)"); 1530 1531 /* clean up previously pending bds */ 1532 cppi_bd_free(cppi_ch, cppi_ch->last_processed); 1533 cppi_ch->last_processed = NULL; 1534 1535 while (queue) { 1536 struct cppi_descriptor *tmp = queue->next; 1537 1538 cppi_bd_free(cppi_ch, queue); 1539 queue = tmp; 1540 } 1541 } 1542 1543 channel->status = MUSB_DMA_STATUS_FREE; 1544 cppi_ch->buf_dma = 0; 1545 cppi_ch->offset = 0; 1546 cppi_ch->buf_len = 0; 1547 cppi_ch->maxpacket = 0; 1548 return 0; 1549} 1550 1551/* TBD Queries: 1552 * 1553 * Power Management ... probably turn off cppi during suspend, restart; 1554 * check state ram? Clocking is presumably shared with usb core. 1555 */