at v3.0 78 kB view raw
1/******************************************************************************* 2 3 Intel(R) 82576 Virtual Function Linux driver 4 Copyright(c) 2009 - 2010 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26*******************************************************************************/ 27 28#include <linux/module.h> 29#include <linux/types.h> 30#include <linux/init.h> 31#include <linux/pci.h> 32#include <linux/vmalloc.h> 33#include <linux/pagemap.h> 34#include <linux/delay.h> 35#include <linux/netdevice.h> 36#include <linux/tcp.h> 37#include <linux/ipv6.h> 38#include <linux/slab.h> 39#include <net/checksum.h> 40#include <net/ip6_checksum.h> 41#include <linux/mii.h> 42#include <linux/ethtool.h> 43#include <linux/if_vlan.h> 44#include <linux/prefetch.h> 45 46#include "igbvf.h" 47 48#define DRV_VERSION "1.0.8-k0" 49char igbvf_driver_name[] = "igbvf"; 50const char igbvf_driver_version[] = DRV_VERSION; 51static const char igbvf_driver_string[] = 52 "Intel(R) Virtual Function Network Driver"; 53static const char igbvf_copyright[] = 54 "Copyright (c) 2009 - 2010 Intel Corporation."; 55 56static int igbvf_poll(struct napi_struct *napi, int budget); 57static void igbvf_reset(struct igbvf_adapter *); 58static void igbvf_set_interrupt_capability(struct igbvf_adapter *); 59static void igbvf_reset_interrupt_capability(struct igbvf_adapter *); 60 61static struct igbvf_info igbvf_vf_info = { 62 .mac = e1000_vfadapt, 63 .flags = 0, 64 .pba = 10, 65 .init_ops = e1000_init_function_pointers_vf, 66}; 67 68static struct igbvf_info igbvf_i350_vf_info = { 69 .mac = e1000_vfadapt_i350, 70 .flags = 0, 71 .pba = 10, 72 .init_ops = e1000_init_function_pointers_vf, 73}; 74 75static const struct igbvf_info *igbvf_info_tbl[] = { 76 [board_vf] = &igbvf_vf_info, 77 [board_i350_vf] = &igbvf_i350_vf_info, 78}; 79 80/** 81 * igbvf_desc_unused - calculate if we have unused descriptors 82 **/ 83static int igbvf_desc_unused(struct igbvf_ring *ring) 84{ 85 if (ring->next_to_clean > ring->next_to_use) 86 return ring->next_to_clean - ring->next_to_use - 1; 87 88 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 89} 90 91/** 92 * igbvf_receive_skb - helper function to handle Rx indications 93 * @adapter: board private structure 94 * @status: descriptor status field as written by hardware 95 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 96 * @skb: pointer to sk_buff to be indicated to stack 97 **/ 98static void igbvf_receive_skb(struct igbvf_adapter *adapter, 99 struct net_device *netdev, 100 struct sk_buff *skb, 101 u32 status, u16 vlan) 102{ 103 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) 104 vlan_hwaccel_receive_skb(skb, adapter->vlgrp, 105 le16_to_cpu(vlan) & 106 E1000_RXD_SPC_VLAN_MASK); 107 else 108 netif_receive_skb(skb); 109} 110 111static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter, 112 u32 status_err, struct sk_buff *skb) 113{ 114 skb_checksum_none_assert(skb); 115 116 /* Ignore Checksum bit is set or checksum is disabled through ethtool */ 117 if ((status_err & E1000_RXD_STAT_IXSM) || 118 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED)) 119 return; 120 121 /* TCP/UDP checksum error bit is set */ 122 if (status_err & 123 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { 124 /* let the stack verify checksum errors */ 125 adapter->hw_csum_err++; 126 return; 127 } 128 129 /* It must be a TCP or UDP packet with a valid checksum */ 130 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) 131 skb->ip_summed = CHECKSUM_UNNECESSARY; 132 133 adapter->hw_csum_good++; 134} 135 136/** 137 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split 138 * @rx_ring: address of ring structure to repopulate 139 * @cleaned_count: number of buffers to repopulate 140 **/ 141static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring, 142 int cleaned_count) 143{ 144 struct igbvf_adapter *adapter = rx_ring->adapter; 145 struct net_device *netdev = adapter->netdev; 146 struct pci_dev *pdev = adapter->pdev; 147 union e1000_adv_rx_desc *rx_desc; 148 struct igbvf_buffer *buffer_info; 149 struct sk_buff *skb; 150 unsigned int i; 151 int bufsz; 152 153 i = rx_ring->next_to_use; 154 buffer_info = &rx_ring->buffer_info[i]; 155 156 if (adapter->rx_ps_hdr_size) 157 bufsz = adapter->rx_ps_hdr_size; 158 else 159 bufsz = adapter->rx_buffer_len; 160 161 while (cleaned_count--) { 162 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); 163 164 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) { 165 if (!buffer_info->page) { 166 buffer_info->page = alloc_page(GFP_ATOMIC); 167 if (!buffer_info->page) { 168 adapter->alloc_rx_buff_failed++; 169 goto no_buffers; 170 } 171 buffer_info->page_offset = 0; 172 } else { 173 buffer_info->page_offset ^= PAGE_SIZE / 2; 174 } 175 buffer_info->page_dma = 176 dma_map_page(&pdev->dev, buffer_info->page, 177 buffer_info->page_offset, 178 PAGE_SIZE / 2, 179 DMA_FROM_DEVICE); 180 } 181 182 if (!buffer_info->skb) { 183 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 184 if (!skb) { 185 adapter->alloc_rx_buff_failed++; 186 goto no_buffers; 187 } 188 189 buffer_info->skb = skb; 190 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 191 bufsz, 192 DMA_FROM_DEVICE); 193 } 194 /* Refresh the desc even if buffer_addrs didn't change because 195 * each write-back erases this info. */ 196 if (adapter->rx_ps_hdr_size) { 197 rx_desc->read.pkt_addr = 198 cpu_to_le64(buffer_info->page_dma); 199 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); 200 } else { 201 rx_desc->read.pkt_addr = 202 cpu_to_le64(buffer_info->dma); 203 rx_desc->read.hdr_addr = 0; 204 } 205 206 i++; 207 if (i == rx_ring->count) 208 i = 0; 209 buffer_info = &rx_ring->buffer_info[i]; 210 } 211 212no_buffers: 213 if (rx_ring->next_to_use != i) { 214 rx_ring->next_to_use = i; 215 if (i == 0) 216 i = (rx_ring->count - 1); 217 else 218 i--; 219 220 /* Force memory writes to complete before letting h/w 221 * know there are new descriptors to fetch. (Only 222 * applicable for weak-ordered memory model archs, 223 * such as IA-64). */ 224 wmb(); 225 writel(i, adapter->hw.hw_addr + rx_ring->tail); 226 } 227} 228 229/** 230 * igbvf_clean_rx_irq - Send received data up the network stack; legacy 231 * @adapter: board private structure 232 * 233 * the return value indicates whether actual cleaning was done, there 234 * is no guarantee that everything was cleaned 235 **/ 236static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter, 237 int *work_done, int work_to_do) 238{ 239 struct igbvf_ring *rx_ring = adapter->rx_ring; 240 struct net_device *netdev = adapter->netdev; 241 struct pci_dev *pdev = adapter->pdev; 242 union e1000_adv_rx_desc *rx_desc, *next_rxd; 243 struct igbvf_buffer *buffer_info, *next_buffer; 244 struct sk_buff *skb; 245 bool cleaned = false; 246 int cleaned_count = 0; 247 unsigned int total_bytes = 0, total_packets = 0; 248 unsigned int i; 249 u32 length, hlen, staterr; 250 251 i = rx_ring->next_to_clean; 252 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); 253 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 254 255 while (staterr & E1000_RXD_STAT_DD) { 256 if (*work_done >= work_to_do) 257 break; 258 (*work_done)++; 259 rmb(); /* read descriptor and rx_buffer_info after status DD */ 260 261 buffer_info = &rx_ring->buffer_info[i]; 262 263 /* HW will not DMA in data larger than the given buffer, even 264 * if it parses the (NFS, of course) header to be larger. In 265 * that case, it fills the header buffer and spills the rest 266 * into the page. 267 */ 268 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) & 269 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT; 270 if (hlen > adapter->rx_ps_hdr_size) 271 hlen = adapter->rx_ps_hdr_size; 272 273 length = le16_to_cpu(rx_desc->wb.upper.length); 274 cleaned = true; 275 cleaned_count++; 276 277 skb = buffer_info->skb; 278 prefetch(skb->data - NET_IP_ALIGN); 279 buffer_info->skb = NULL; 280 if (!adapter->rx_ps_hdr_size) { 281 dma_unmap_single(&pdev->dev, buffer_info->dma, 282 adapter->rx_buffer_len, 283 DMA_FROM_DEVICE); 284 buffer_info->dma = 0; 285 skb_put(skb, length); 286 goto send_up; 287 } 288 289 if (!skb_shinfo(skb)->nr_frags) { 290 dma_unmap_single(&pdev->dev, buffer_info->dma, 291 adapter->rx_ps_hdr_size, 292 DMA_FROM_DEVICE); 293 skb_put(skb, hlen); 294 } 295 296 if (length) { 297 dma_unmap_page(&pdev->dev, buffer_info->page_dma, 298 PAGE_SIZE / 2, 299 DMA_FROM_DEVICE); 300 buffer_info->page_dma = 0; 301 302 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 303 buffer_info->page, 304 buffer_info->page_offset, 305 length); 306 307 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) || 308 (page_count(buffer_info->page) != 1)) 309 buffer_info->page = NULL; 310 else 311 get_page(buffer_info->page); 312 313 skb->len += length; 314 skb->data_len += length; 315 skb->truesize += length; 316 } 317send_up: 318 i++; 319 if (i == rx_ring->count) 320 i = 0; 321 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i); 322 prefetch(next_rxd); 323 next_buffer = &rx_ring->buffer_info[i]; 324 325 if (!(staterr & E1000_RXD_STAT_EOP)) { 326 buffer_info->skb = next_buffer->skb; 327 buffer_info->dma = next_buffer->dma; 328 next_buffer->skb = skb; 329 next_buffer->dma = 0; 330 goto next_desc; 331 } 332 333 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { 334 dev_kfree_skb_irq(skb); 335 goto next_desc; 336 } 337 338 total_bytes += skb->len; 339 total_packets++; 340 341 igbvf_rx_checksum_adv(adapter, staterr, skb); 342 343 skb->protocol = eth_type_trans(skb, netdev); 344 345 igbvf_receive_skb(adapter, netdev, skb, staterr, 346 rx_desc->wb.upper.vlan); 347 348next_desc: 349 rx_desc->wb.upper.status_error = 0; 350 351 /* return some buffers to hardware, one at a time is too slow */ 352 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) { 353 igbvf_alloc_rx_buffers(rx_ring, cleaned_count); 354 cleaned_count = 0; 355 } 356 357 /* use prefetched values */ 358 rx_desc = next_rxd; 359 buffer_info = next_buffer; 360 361 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 362 } 363 364 rx_ring->next_to_clean = i; 365 cleaned_count = igbvf_desc_unused(rx_ring); 366 367 if (cleaned_count) 368 igbvf_alloc_rx_buffers(rx_ring, cleaned_count); 369 370 adapter->total_rx_packets += total_packets; 371 adapter->total_rx_bytes += total_bytes; 372 adapter->net_stats.rx_bytes += total_bytes; 373 adapter->net_stats.rx_packets += total_packets; 374 return cleaned; 375} 376 377static void igbvf_put_txbuf(struct igbvf_adapter *adapter, 378 struct igbvf_buffer *buffer_info) 379{ 380 if (buffer_info->dma) { 381 if (buffer_info->mapped_as_page) 382 dma_unmap_page(&adapter->pdev->dev, 383 buffer_info->dma, 384 buffer_info->length, 385 DMA_TO_DEVICE); 386 else 387 dma_unmap_single(&adapter->pdev->dev, 388 buffer_info->dma, 389 buffer_info->length, 390 DMA_TO_DEVICE); 391 buffer_info->dma = 0; 392 } 393 if (buffer_info->skb) { 394 dev_kfree_skb_any(buffer_info->skb); 395 buffer_info->skb = NULL; 396 } 397 buffer_info->time_stamp = 0; 398} 399 400/** 401 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors) 402 * @adapter: board private structure 403 * 404 * Return 0 on success, negative on failure 405 **/ 406int igbvf_setup_tx_resources(struct igbvf_adapter *adapter, 407 struct igbvf_ring *tx_ring) 408{ 409 struct pci_dev *pdev = adapter->pdev; 410 int size; 411 412 size = sizeof(struct igbvf_buffer) * tx_ring->count; 413 tx_ring->buffer_info = vzalloc(size); 414 if (!tx_ring->buffer_info) 415 goto err; 416 417 /* round up to nearest 4K */ 418 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 419 tx_ring->size = ALIGN(tx_ring->size, 4096); 420 421 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 422 &tx_ring->dma, GFP_KERNEL); 423 424 if (!tx_ring->desc) 425 goto err; 426 427 tx_ring->adapter = adapter; 428 tx_ring->next_to_use = 0; 429 tx_ring->next_to_clean = 0; 430 431 return 0; 432err: 433 vfree(tx_ring->buffer_info); 434 dev_err(&adapter->pdev->dev, 435 "Unable to allocate memory for the transmit descriptor ring\n"); 436 return -ENOMEM; 437} 438 439/** 440 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors) 441 * @adapter: board private structure 442 * 443 * Returns 0 on success, negative on failure 444 **/ 445int igbvf_setup_rx_resources(struct igbvf_adapter *adapter, 446 struct igbvf_ring *rx_ring) 447{ 448 struct pci_dev *pdev = adapter->pdev; 449 int size, desc_len; 450 451 size = sizeof(struct igbvf_buffer) * rx_ring->count; 452 rx_ring->buffer_info = vzalloc(size); 453 if (!rx_ring->buffer_info) 454 goto err; 455 456 desc_len = sizeof(union e1000_adv_rx_desc); 457 458 /* Round up to nearest 4K */ 459 rx_ring->size = rx_ring->count * desc_len; 460 rx_ring->size = ALIGN(rx_ring->size, 4096); 461 462 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 463 &rx_ring->dma, GFP_KERNEL); 464 465 if (!rx_ring->desc) 466 goto err; 467 468 rx_ring->next_to_clean = 0; 469 rx_ring->next_to_use = 0; 470 471 rx_ring->adapter = adapter; 472 473 return 0; 474 475err: 476 vfree(rx_ring->buffer_info); 477 rx_ring->buffer_info = NULL; 478 dev_err(&adapter->pdev->dev, 479 "Unable to allocate memory for the receive descriptor ring\n"); 480 return -ENOMEM; 481} 482 483/** 484 * igbvf_clean_tx_ring - Free Tx Buffers 485 * @tx_ring: ring to be cleaned 486 **/ 487static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring) 488{ 489 struct igbvf_adapter *adapter = tx_ring->adapter; 490 struct igbvf_buffer *buffer_info; 491 unsigned long size; 492 unsigned int i; 493 494 if (!tx_ring->buffer_info) 495 return; 496 497 /* Free all the Tx ring sk_buffs */ 498 for (i = 0; i < tx_ring->count; i++) { 499 buffer_info = &tx_ring->buffer_info[i]; 500 igbvf_put_txbuf(adapter, buffer_info); 501 } 502 503 size = sizeof(struct igbvf_buffer) * tx_ring->count; 504 memset(tx_ring->buffer_info, 0, size); 505 506 /* Zero out the descriptor ring */ 507 memset(tx_ring->desc, 0, tx_ring->size); 508 509 tx_ring->next_to_use = 0; 510 tx_ring->next_to_clean = 0; 511 512 writel(0, adapter->hw.hw_addr + tx_ring->head); 513 writel(0, adapter->hw.hw_addr + tx_ring->tail); 514} 515 516/** 517 * igbvf_free_tx_resources - Free Tx Resources per Queue 518 * @tx_ring: ring to free resources from 519 * 520 * Free all transmit software resources 521 **/ 522void igbvf_free_tx_resources(struct igbvf_ring *tx_ring) 523{ 524 struct pci_dev *pdev = tx_ring->adapter->pdev; 525 526 igbvf_clean_tx_ring(tx_ring); 527 528 vfree(tx_ring->buffer_info); 529 tx_ring->buffer_info = NULL; 530 531 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 532 tx_ring->dma); 533 534 tx_ring->desc = NULL; 535} 536 537/** 538 * igbvf_clean_rx_ring - Free Rx Buffers per Queue 539 * @adapter: board private structure 540 **/ 541static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring) 542{ 543 struct igbvf_adapter *adapter = rx_ring->adapter; 544 struct igbvf_buffer *buffer_info; 545 struct pci_dev *pdev = adapter->pdev; 546 unsigned long size; 547 unsigned int i; 548 549 if (!rx_ring->buffer_info) 550 return; 551 552 /* Free all the Rx ring sk_buffs */ 553 for (i = 0; i < rx_ring->count; i++) { 554 buffer_info = &rx_ring->buffer_info[i]; 555 if (buffer_info->dma) { 556 if (adapter->rx_ps_hdr_size){ 557 dma_unmap_single(&pdev->dev, buffer_info->dma, 558 adapter->rx_ps_hdr_size, 559 DMA_FROM_DEVICE); 560 } else { 561 dma_unmap_single(&pdev->dev, buffer_info->dma, 562 adapter->rx_buffer_len, 563 DMA_FROM_DEVICE); 564 } 565 buffer_info->dma = 0; 566 } 567 568 if (buffer_info->skb) { 569 dev_kfree_skb(buffer_info->skb); 570 buffer_info->skb = NULL; 571 } 572 573 if (buffer_info->page) { 574 if (buffer_info->page_dma) 575 dma_unmap_page(&pdev->dev, 576 buffer_info->page_dma, 577 PAGE_SIZE / 2, 578 DMA_FROM_DEVICE); 579 put_page(buffer_info->page); 580 buffer_info->page = NULL; 581 buffer_info->page_dma = 0; 582 buffer_info->page_offset = 0; 583 } 584 } 585 586 size = sizeof(struct igbvf_buffer) * rx_ring->count; 587 memset(rx_ring->buffer_info, 0, size); 588 589 /* Zero out the descriptor ring */ 590 memset(rx_ring->desc, 0, rx_ring->size); 591 592 rx_ring->next_to_clean = 0; 593 rx_ring->next_to_use = 0; 594 595 writel(0, adapter->hw.hw_addr + rx_ring->head); 596 writel(0, adapter->hw.hw_addr + rx_ring->tail); 597} 598 599/** 600 * igbvf_free_rx_resources - Free Rx Resources 601 * @rx_ring: ring to clean the resources from 602 * 603 * Free all receive software resources 604 **/ 605 606void igbvf_free_rx_resources(struct igbvf_ring *rx_ring) 607{ 608 struct pci_dev *pdev = rx_ring->adapter->pdev; 609 610 igbvf_clean_rx_ring(rx_ring); 611 612 vfree(rx_ring->buffer_info); 613 rx_ring->buffer_info = NULL; 614 615 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 616 rx_ring->dma); 617 rx_ring->desc = NULL; 618} 619 620/** 621 * igbvf_update_itr - update the dynamic ITR value based on statistics 622 * @adapter: pointer to adapter 623 * @itr_setting: current adapter->itr 624 * @packets: the number of packets during this measurement interval 625 * @bytes: the number of bytes during this measurement interval 626 * 627 * Stores a new ITR value based on packets and byte 628 * counts during the last interrupt. The advantage of per interrupt 629 * computation is faster updates and more accurate ITR for the current 630 * traffic pattern. Constants in this function were computed 631 * based on theoretical maximum wire speed and thresholds were set based 632 * on testing data as well as attempting to minimize response time 633 * while increasing bulk throughput. This functionality is controlled 634 * by the InterruptThrottleRate module parameter. 635 **/ 636static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter, 637 u16 itr_setting, int packets, 638 int bytes) 639{ 640 unsigned int retval = itr_setting; 641 642 if (packets == 0) 643 goto update_itr_done; 644 645 switch (itr_setting) { 646 case lowest_latency: 647 /* handle TSO and jumbo frames */ 648 if (bytes/packets > 8000) 649 retval = bulk_latency; 650 else if ((packets < 5) && (bytes > 512)) 651 retval = low_latency; 652 break; 653 case low_latency: /* 50 usec aka 20000 ints/s */ 654 if (bytes > 10000) { 655 /* this if handles the TSO accounting */ 656 if (bytes/packets > 8000) 657 retval = bulk_latency; 658 else if ((packets < 10) || ((bytes/packets) > 1200)) 659 retval = bulk_latency; 660 else if ((packets > 35)) 661 retval = lowest_latency; 662 } else if (bytes/packets > 2000) { 663 retval = bulk_latency; 664 } else if (packets <= 2 && bytes < 512) { 665 retval = lowest_latency; 666 } 667 break; 668 case bulk_latency: /* 250 usec aka 4000 ints/s */ 669 if (bytes > 25000) { 670 if (packets > 35) 671 retval = low_latency; 672 } else if (bytes < 6000) { 673 retval = low_latency; 674 } 675 break; 676 } 677 678update_itr_done: 679 return retval; 680} 681 682static void igbvf_set_itr(struct igbvf_adapter *adapter) 683{ 684 struct e1000_hw *hw = &adapter->hw; 685 u16 current_itr; 686 u32 new_itr = adapter->itr; 687 688 adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr, 689 adapter->total_tx_packets, 690 adapter->total_tx_bytes); 691 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 692 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 693 adapter->tx_itr = low_latency; 694 695 adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr, 696 adapter->total_rx_packets, 697 adapter->total_rx_bytes); 698 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 699 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 700 adapter->rx_itr = low_latency; 701 702 current_itr = max(adapter->rx_itr, adapter->tx_itr); 703 704 switch (current_itr) { 705 /* counts and packets in update_itr are dependent on these numbers */ 706 case lowest_latency: 707 new_itr = 70000; 708 break; 709 case low_latency: 710 new_itr = 20000; /* aka hwitr = ~200 */ 711 break; 712 case bulk_latency: 713 new_itr = 4000; 714 break; 715 default: 716 break; 717 } 718 719 if (new_itr != adapter->itr) { 720 /* 721 * this attempts to bias the interrupt rate towards Bulk 722 * by adding intermediate steps when interrupt rate is 723 * increasing 724 */ 725 new_itr = new_itr > adapter->itr ? 726 min(adapter->itr + (new_itr >> 2), new_itr) : 727 new_itr; 728 adapter->itr = new_itr; 729 adapter->rx_ring->itr_val = 1952; 730 731 if (adapter->msix_entries) 732 adapter->rx_ring->set_itr = 1; 733 else 734 ew32(ITR, 1952); 735 } 736} 737 738/** 739 * igbvf_clean_tx_irq - Reclaim resources after transmit completes 740 * @adapter: board private structure 741 * returns true if ring is completely cleaned 742 **/ 743static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring) 744{ 745 struct igbvf_adapter *adapter = tx_ring->adapter; 746 struct net_device *netdev = adapter->netdev; 747 struct igbvf_buffer *buffer_info; 748 struct sk_buff *skb; 749 union e1000_adv_tx_desc *tx_desc, *eop_desc; 750 unsigned int total_bytes = 0, total_packets = 0; 751 unsigned int i, eop, count = 0; 752 bool cleaned = false; 753 754 i = tx_ring->next_to_clean; 755 eop = tx_ring->buffer_info[i].next_to_watch; 756 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop); 757 758 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) && 759 (count < tx_ring->count)) { 760 rmb(); /* read buffer_info after eop_desc status */ 761 for (cleaned = false; !cleaned; count++) { 762 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); 763 buffer_info = &tx_ring->buffer_info[i]; 764 cleaned = (i == eop); 765 skb = buffer_info->skb; 766 767 if (skb) { 768 unsigned int segs, bytecount; 769 770 /* gso_segs is currently only valid for tcp */ 771 segs = skb_shinfo(skb)->gso_segs ?: 1; 772 /* multiply data chunks by size of headers */ 773 bytecount = ((segs - 1) * skb_headlen(skb)) + 774 skb->len; 775 total_packets += segs; 776 total_bytes += bytecount; 777 } 778 779 igbvf_put_txbuf(adapter, buffer_info); 780 tx_desc->wb.status = 0; 781 782 i++; 783 if (i == tx_ring->count) 784 i = 0; 785 } 786 eop = tx_ring->buffer_info[i].next_to_watch; 787 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop); 788 } 789 790 tx_ring->next_to_clean = i; 791 792 if (unlikely(count && 793 netif_carrier_ok(netdev) && 794 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) { 795 /* Make sure that anybody stopping the queue after this 796 * sees the new next_to_clean. 797 */ 798 smp_mb(); 799 if (netif_queue_stopped(netdev) && 800 !(test_bit(__IGBVF_DOWN, &adapter->state))) { 801 netif_wake_queue(netdev); 802 ++adapter->restart_queue; 803 } 804 } 805 806 adapter->net_stats.tx_bytes += total_bytes; 807 adapter->net_stats.tx_packets += total_packets; 808 return count < tx_ring->count; 809} 810 811static irqreturn_t igbvf_msix_other(int irq, void *data) 812{ 813 struct net_device *netdev = data; 814 struct igbvf_adapter *adapter = netdev_priv(netdev); 815 struct e1000_hw *hw = &adapter->hw; 816 817 adapter->int_counter1++; 818 819 netif_carrier_off(netdev); 820 hw->mac.get_link_status = 1; 821 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 822 mod_timer(&adapter->watchdog_timer, jiffies + 1); 823 824 ew32(EIMS, adapter->eims_other); 825 826 return IRQ_HANDLED; 827} 828 829static irqreturn_t igbvf_intr_msix_tx(int irq, void *data) 830{ 831 struct net_device *netdev = data; 832 struct igbvf_adapter *adapter = netdev_priv(netdev); 833 struct e1000_hw *hw = &adapter->hw; 834 struct igbvf_ring *tx_ring = adapter->tx_ring; 835 836 837 adapter->total_tx_bytes = 0; 838 adapter->total_tx_packets = 0; 839 840 /* auto mask will automatically reenable the interrupt when we write 841 * EICS */ 842 if (!igbvf_clean_tx_irq(tx_ring)) 843 /* Ring was not completely cleaned, so fire another interrupt */ 844 ew32(EICS, tx_ring->eims_value); 845 else 846 ew32(EIMS, tx_ring->eims_value); 847 848 return IRQ_HANDLED; 849} 850 851static irqreturn_t igbvf_intr_msix_rx(int irq, void *data) 852{ 853 struct net_device *netdev = data; 854 struct igbvf_adapter *adapter = netdev_priv(netdev); 855 856 adapter->int_counter0++; 857 858 /* Write the ITR value calculated at the end of the 859 * previous interrupt. 860 */ 861 if (adapter->rx_ring->set_itr) { 862 writel(adapter->rx_ring->itr_val, 863 adapter->hw.hw_addr + adapter->rx_ring->itr_register); 864 adapter->rx_ring->set_itr = 0; 865 } 866 867 if (napi_schedule_prep(&adapter->rx_ring->napi)) { 868 adapter->total_rx_bytes = 0; 869 adapter->total_rx_packets = 0; 870 __napi_schedule(&adapter->rx_ring->napi); 871 } 872 873 return IRQ_HANDLED; 874} 875 876#define IGBVF_NO_QUEUE -1 877 878static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue, 879 int tx_queue, int msix_vector) 880{ 881 struct e1000_hw *hw = &adapter->hw; 882 u32 ivar, index; 883 884 /* 82576 uses a table-based method for assigning vectors. 885 Each queue has a single entry in the table to which we write 886 a vector number along with a "valid" bit. Sadly, the layout 887 of the table is somewhat counterintuitive. */ 888 if (rx_queue > IGBVF_NO_QUEUE) { 889 index = (rx_queue >> 1); 890 ivar = array_er32(IVAR0, index); 891 if (rx_queue & 0x1) { 892 /* vector goes into third byte of register */ 893 ivar = ivar & 0xFF00FFFF; 894 ivar |= (msix_vector | E1000_IVAR_VALID) << 16; 895 } else { 896 /* vector goes into low byte of register */ 897 ivar = ivar & 0xFFFFFF00; 898 ivar |= msix_vector | E1000_IVAR_VALID; 899 } 900 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector; 901 array_ew32(IVAR0, index, ivar); 902 } 903 if (tx_queue > IGBVF_NO_QUEUE) { 904 index = (tx_queue >> 1); 905 ivar = array_er32(IVAR0, index); 906 if (tx_queue & 0x1) { 907 /* vector goes into high byte of register */ 908 ivar = ivar & 0x00FFFFFF; 909 ivar |= (msix_vector | E1000_IVAR_VALID) << 24; 910 } else { 911 /* vector goes into second byte of register */ 912 ivar = ivar & 0xFFFF00FF; 913 ivar |= (msix_vector | E1000_IVAR_VALID) << 8; 914 } 915 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector; 916 array_ew32(IVAR0, index, ivar); 917 } 918} 919 920/** 921 * igbvf_configure_msix - Configure MSI-X hardware 922 * 923 * igbvf_configure_msix sets up the hardware to properly 924 * generate MSI-X interrupts. 925 **/ 926static void igbvf_configure_msix(struct igbvf_adapter *adapter) 927{ 928 u32 tmp; 929 struct e1000_hw *hw = &adapter->hw; 930 struct igbvf_ring *tx_ring = adapter->tx_ring; 931 struct igbvf_ring *rx_ring = adapter->rx_ring; 932 int vector = 0; 933 934 adapter->eims_enable_mask = 0; 935 936 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++); 937 adapter->eims_enable_mask |= tx_ring->eims_value; 938 if (tx_ring->itr_val) 939 writel(tx_ring->itr_val, 940 hw->hw_addr + tx_ring->itr_register); 941 else 942 writel(1952, hw->hw_addr + tx_ring->itr_register); 943 944 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++); 945 adapter->eims_enable_mask |= rx_ring->eims_value; 946 if (rx_ring->itr_val) 947 writel(rx_ring->itr_val, 948 hw->hw_addr + rx_ring->itr_register); 949 else 950 writel(1952, hw->hw_addr + rx_ring->itr_register); 951 952 /* set vector for other causes, i.e. link changes */ 953 954 tmp = (vector++ | E1000_IVAR_VALID); 955 956 ew32(IVAR_MISC, tmp); 957 958 adapter->eims_enable_mask = (1 << (vector)) - 1; 959 adapter->eims_other = 1 << (vector - 1); 960 e1e_flush(); 961} 962 963static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter) 964{ 965 if (adapter->msix_entries) { 966 pci_disable_msix(adapter->pdev); 967 kfree(adapter->msix_entries); 968 adapter->msix_entries = NULL; 969 } 970} 971 972/** 973 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported 974 * 975 * Attempt to configure interrupts using the best available 976 * capabilities of the hardware and kernel. 977 **/ 978static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter) 979{ 980 int err = -ENOMEM; 981 int i; 982 983 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */ 984 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry), 985 GFP_KERNEL); 986 if (adapter->msix_entries) { 987 for (i = 0; i < 3; i++) 988 adapter->msix_entries[i].entry = i; 989 990 err = pci_enable_msix(adapter->pdev, 991 adapter->msix_entries, 3); 992 } 993 994 if (err) { 995 /* MSI-X failed */ 996 dev_err(&adapter->pdev->dev, 997 "Failed to initialize MSI-X interrupts.\n"); 998 igbvf_reset_interrupt_capability(adapter); 999 } 1000} 1001 1002/** 1003 * igbvf_request_msix - Initialize MSI-X interrupts 1004 * 1005 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the 1006 * kernel. 1007 **/ 1008static int igbvf_request_msix(struct igbvf_adapter *adapter) 1009{ 1010 struct net_device *netdev = adapter->netdev; 1011 int err = 0, vector = 0; 1012 1013 if (strlen(netdev->name) < (IFNAMSIZ - 5)) { 1014 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); 1015 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); 1016 } else { 1017 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); 1018 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); 1019 } 1020 1021 err = request_irq(adapter->msix_entries[vector].vector, 1022 igbvf_intr_msix_tx, 0, adapter->tx_ring->name, 1023 netdev); 1024 if (err) 1025 goto out; 1026 1027 adapter->tx_ring->itr_register = E1000_EITR(vector); 1028 adapter->tx_ring->itr_val = 1952; 1029 vector++; 1030 1031 err = request_irq(adapter->msix_entries[vector].vector, 1032 igbvf_intr_msix_rx, 0, adapter->rx_ring->name, 1033 netdev); 1034 if (err) 1035 goto out; 1036 1037 adapter->rx_ring->itr_register = E1000_EITR(vector); 1038 adapter->rx_ring->itr_val = 1952; 1039 vector++; 1040 1041 err = request_irq(adapter->msix_entries[vector].vector, 1042 igbvf_msix_other, 0, netdev->name, netdev); 1043 if (err) 1044 goto out; 1045 1046 igbvf_configure_msix(adapter); 1047 return 0; 1048out: 1049 return err; 1050} 1051 1052/** 1053 * igbvf_alloc_queues - Allocate memory for all rings 1054 * @adapter: board private structure to initialize 1055 **/ 1056static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter) 1057{ 1058 struct net_device *netdev = adapter->netdev; 1059 1060 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); 1061 if (!adapter->tx_ring) 1062 return -ENOMEM; 1063 1064 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); 1065 if (!adapter->rx_ring) { 1066 kfree(adapter->tx_ring); 1067 return -ENOMEM; 1068 } 1069 1070 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64); 1071 1072 return 0; 1073} 1074 1075/** 1076 * igbvf_request_irq - initialize interrupts 1077 * 1078 * Attempts to configure interrupts using the best available 1079 * capabilities of the hardware and kernel. 1080 **/ 1081static int igbvf_request_irq(struct igbvf_adapter *adapter) 1082{ 1083 int err = -1; 1084 1085 /* igbvf supports msi-x only */ 1086 if (adapter->msix_entries) 1087 err = igbvf_request_msix(adapter); 1088 1089 if (!err) 1090 return err; 1091 1092 dev_err(&adapter->pdev->dev, 1093 "Unable to allocate interrupt, Error: %d\n", err); 1094 1095 return err; 1096} 1097 1098static void igbvf_free_irq(struct igbvf_adapter *adapter) 1099{ 1100 struct net_device *netdev = adapter->netdev; 1101 int vector; 1102 1103 if (adapter->msix_entries) { 1104 for (vector = 0; vector < 3; vector++) 1105 free_irq(adapter->msix_entries[vector].vector, netdev); 1106 } 1107} 1108 1109/** 1110 * igbvf_irq_disable - Mask off interrupt generation on the NIC 1111 **/ 1112static void igbvf_irq_disable(struct igbvf_adapter *adapter) 1113{ 1114 struct e1000_hw *hw = &adapter->hw; 1115 1116 ew32(EIMC, ~0); 1117 1118 if (adapter->msix_entries) 1119 ew32(EIAC, 0); 1120} 1121 1122/** 1123 * igbvf_irq_enable - Enable default interrupt generation settings 1124 **/ 1125static void igbvf_irq_enable(struct igbvf_adapter *adapter) 1126{ 1127 struct e1000_hw *hw = &adapter->hw; 1128 1129 ew32(EIAC, adapter->eims_enable_mask); 1130 ew32(EIAM, adapter->eims_enable_mask); 1131 ew32(EIMS, adapter->eims_enable_mask); 1132} 1133 1134/** 1135 * igbvf_poll - NAPI Rx polling callback 1136 * @napi: struct associated with this polling callback 1137 * @budget: amount of packets driver is allowed to process this poll 1138 **/ 1139static int igbvf_poll(struct napi_struct *napi, int budget) 1140{ 1141 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi); 1142 struct igbvf_adapter *adapter = rx_ring->adapter; 1143 struct e1000_hw *hw = &adapter->hw; 1144 int work_done = 0; 1145 1146 igbvf_clean_rx_irq(adapter, &work_done, budget); 1147 1148 /* If not enough Rx work done, exit the polling mode */ 1149 if (work_done < budget) { 1150 napi_complete(napi); 1151 1152 if (adapter->itr_setting & 3) 1153 igbvf_set_itr(adapter); 1154 1155 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1156 ew32(EIMS, adapter->rx_ring->eims_value); 1157 } 1158 1159 return work_done; 1160} 1161 1162/** 1163 * igbvf_set_rlpml - set receive large packet maximum length 1164 * @adapter: board private structure 1165 * 1166 * Configure the maximum size of packets that will be received 1167 */ 1168static void igbvf_set_rlpml(struct igbvf_adapter *adapter) 1169{ 1170 int max_frame_size = adapter->max_frame_size; 1171 struct e1000_hw *hw = &adapter->hw; 1172 1173 if (adapter->vlgrp) 1174 max_frame_size += VLAN_TAG_SIZE; 1175 1176 e1000_rlpml_set_vf(hw, max_frame_size); 1177} 1178 1179static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid) 1180{ 1181 struct igbvf_adapter *adapter = netdev_priv(netdev); 1182 struct e1000_hw *hw = &adapter->hw; 1183 1184 if (hw->mac.ops.set_vfta(hw, vid, true)) 1185 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid); 1186} 1187 1188static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) 1189{ 1190 struct igbvf_adapter *adapter = netdev_priv(netdev); 1191 struct e1000_hw *hw = &adapter->hw; 1192 1193 igbvf_irq_disable(adapter); 1194 vlan_group_set_device(adapter->vlgrp, vid, NULL); 1195 1196 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1197 igbvf_irq_enable(adapter); 1198 1199 if (hw->mac.ops.set_vfta(hw, vid, false)) 1200 dev_err(&adapter->pdev->dev, 1201 "Failed to remove vlan id %d\n", vid); 1202} 1203 1204static void igbvf_vlan_rx_register(struct net_device *netdev, 1205 struct vlan_group *grp) 1206{ 1207 struct igbvf_adapter *adapter = netdev_priv(netdev); 1208 1209 adapter->vlgrp = grp; 1210} 1211 1212static void igbvf_restore_vlan(struct igbvf_adapter *adapter) 1213{ 1214 u16 vid; 1215 1216 if (!adapter->vlgrp) 1217 return; 1218 1219 for (vid = 0; vid < VLAN_N_VID; vid++) { 1220 if (!vlan_group_get_device(adapter->vlgrp, vid)) 1221 continue; 1222 igbvf_vlan_rx_add_vid(adapter->netdev, vid); 1223 } 1224 1225 igbvf_set_rlpml(adapter); 1226} 1227 1228/** 1229 * igbvf_configure_tx - Configure Transmit Unit after Reset 1230 * @adapter: board private structure 1231 * 1232 * Configure the Tx unit of the MAC after a reset. 1233 **/ 1234static void igbvf_configure_tx(struct igbvf_adapter *adapter) 1235{ 1236 struct e1000_hw *hw = &adapter->hw; 1237 struct igbvf_ring *tx_ring = adapter->tx_ring; 1238 u64 tdba; 1239 u32 txdctl, dca_txctrl; 1240 1241 /* disable transmits */ 1242 txdctl = er32(TXDCTL(0)); 1243 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); 1244 msleep(10); 1245 1246 /* Setup the HW Tx Head and Tail descriptor pointers */ 1247 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc)); 1248 tdba = tx_ring->dma; 1249 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); 1250 ew32(TDBAH(0), (tdba >> 32)); 1251 ew32(TDH(0), 0); 1252 ew32(TDT(0), 0); 1253 tx_ring->head = E1000_TDH(0); 1254 tx_ring->tail = E1000_TDT(0); 1255 1256 /* Turn off Relaxed Ordering on head write-backs. The writebacks 1257 * MUST be delivered in order or it will completely screw up 1258 * our bookeeping. 1259 */ 1260 dca_txctrl = er32(DCA_TXCTRL(0)); 1261 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN; 1262 ew32(DCA_TXCTRL(0), dca_txctrl); 1263 1264 /* enable transmits */ 1265 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 1266 ew32(TXDCTL(0), txdctl); 1267 1268 /* Setup Transmit Descriptor Settings for eop descriptor */ 1269 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS; 1270 1271 /* enable Report Status bit */ 1272 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS; 1273} 1274 1275/** 1276 * igbvf_setup_srrctl - configure the receive control registers 1277 * @adapter: Board private structure 1278 **/ 1279static void igbvf_setup_srrctl(struct igbvf_adapter *adapter) 1280{ 1281 struct e1000_hw *hw = &adapter->hw; 1282 u32 srrctl = 0; 1283 1284 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK | 1285 E1000_SRRCTL_BSIZEHDR_MASK | 1286 E1000_SRRCTL_BSIZEPKT_MASK); 1287 1288 /* Enable queue drop to avoid head of line blocking */ 1289 srrctl |= E1000_SRRCTL_DROP_EN; 1290 1291 /* Setup buffer sizes */ 1292 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >> 1293 E1000_SRRCTL_BSIZEPKT_SHIFT; 1294 1295 if (adapter->rx_buffer_len < 2048) { 1296 adapter->rx_ps_hdr_size = 0; 1297 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 1298 } else { 1299 adapter->rx_ps_hdr_size = 128; 1300 srrctl |= adapter->rx_ps_hdr_size << 1301 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 1302 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; 1303 } 1304 1305 ew32(SRRCTL(0), srrctl); 1306} 1307 1308/** 1309 * igbvf_configure_rx - Configure Receive Unit after Reset 1310 * @adapter: board private structure 1311 * 1312 * Configure the Rx unit of the MAC after a reset. 1313 **/ 1314static void igbvf_configure_rx(struct igbvf_adapter *adapter) 1315{ 1316 struct e1000_hw *hw = &adapter->hw; 1317 struct igbvf_ring *rx_ring = adapter->rx_ring; 1318 u64 rdba; 1319 u32 rdlen, rxdctl; 1320 1321 /* disable receives */ 1322 rxdctl = er32(RXDCTL(0)); 1323 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); 1324 msleep(10); 1325 1326 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc); 1327 1328 /* 1329 * Setup the HW Rx Head and Tail Descriptor Pointers and 1330 * the Base and Length of the Rx Descriptor Ring 1331 */ 1332 rdba = rx_ring->dma; 1333 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); 1334 ew32(RDBAH(0), (rdba >> 32)); 1335 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc)); 1336 rx_ring->head = E1000_RDH(0); 1337 rx_ring->tail = E1000_RDT(0); 1338 ew32(RDH(0), 0); 1339 ew32(RDT(0), 0); 1340 1341 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 1342 rxdctl &= 0xFFF00000; 1343 rxdctl |= IGBVF_RX_PTHRESH; 1344 rxdctl |= IGBVF_RX_HTHRESH << 8; 1345 rxdctl |= IGBVF_RX_WTHRESH << 16; 1346 1347 igbvf_set_rlpml(adapter); 1348 1349 /* enable receives */ 1350 ew32(RXDCTL(0), rxdctl); 1351} 1352 1353/** 1354 * igbvf_set_multi - Multicast and Promiscuous mode set 1355 * @netdev: network interface device structure 1356 * 1357 * The set_multi entry point is called whenever the multicast address 1358 * list or the network interface flags are updated. This routine is 1359 * responsible for configuring the hardware for proper multicast, 1360 * promiscuous mode, and all-multi behavior. 1361 **/ 1362static void igbvf_set_multi(struct net_device *netdev) 1363{ 1364 struct igbvf_adapter *adapter = netdev_priv(netdev); 1365 struct e1000_hw *hw = &adapter->hw; 1366 struct netdev_hw_addr *ha; 1367 u8 *mta_list = NULL; 1368 int i; 1369 1370 if (!netdev_mc_empty(netdev)) { 1371 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); 1372 if (!mta_list) { 1373 dev_err(&adapter->pdev->dev, 1374 "failed to allocate multicast filter list\n"); 1375 return; 1376 } 1377 } 1378 1379 /* prepare a packed array of only addresses. */ 1380 i = 0; 1381 netdev_for_each_mc_addr(ha, netdev) 1382 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 1383 1384 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0); 1385 kfree(mta_list); 1386} 1387 1388/** 1389 * igbvf_configure - configure the hardware for Rx and Tx 1390 * @adapter: private board structure 1391 **/ 1392static void igbvf_configure(struct igbvf_adapter *adapter) 1393{ 1394 igbvf_set_multi(adapter->netdev); 1395 1396 igbvf_restore_vlan(adapter); 1397 1398 igbvf_configure_tx(adapter); 1399 igbvf_setup_srrctl(adapter); 1400 igbvf_configure_rx(adapter); 1401 igbvf_alloc_rx_buffers(adapter->rx_ring, 1402 igbvf_desc_unused(adapter->rx_ring)); 1403} 1404 1405/* igbvf_reset - bring the hardware into a known good state 1406 * 1407 * This function boots the hardware and enables some settings that 1408 * require a configuration cycle of the hardware - those cannot be 1409 * set/changed during runtime. After reset the device needs to be 1410 * properly configured for Rx, Tx etc. 1411 */ 1412static void igbvf_reset(struct igbvf_adapter *adapter) 1413{ 1414 struct e1000_mac_info *mac = &adapter->hw.mac; 1415 struct net_device *netdev = adapter->netdev; 1416 struct e1000_hw *hw = &adapter->hw; 1417 1418 /* Allow time for pending master requests to run */ 1419 if (mac->ops.reset_hw(hw)) 1420 dev_err(&adapter->pdev->dev, "PF still resetting\n"); 1421 1422 mac->ops.init_hw(hw); 1423 1424 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 1425 memcpy(netdev->dev_addr, adapter->hw.mac.addr, 1426 netdev->addr_len); 1427 memcpy(netdev->perm_addr, adapter->hw.mac.addr, 1428 netdev->addr_len); 1429 } 1430 1431 adapter->last_reset = jiffies; 1432} 1433 1434int igbvf_up(struct igbvf_adapter *adapter) 1435{ 1436 struct e1000_hw *hw = &adapter->hw; 1437 1438 /* hardware has been reset, we need to reload some things */ 1439 igbvf_configure(adapter); 1440 1441 clear_bit(__IGBVF_DOWN, &adapter->state); 1442 1443 napi_enable(&adapter->rx_ring->napi); 1444 if (adapter->msix_entries) 1445 igbvf_configure_msix(adapter); 1446 1447 /* Clear any pending interrupts. */ 1448 er32(EICR); 1449 igbvf_irq_enable(adapter); 1450 1451 /* start the watchdog */ 1452 hw->mac.get_link_status = 1; 1453 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1454 1455 1456 return 0; 1457} 1458 1459void igbvf_down(struct igbvf_adapter *adapter) 1460{ 1461 struct net_device *netdev = adapter->netdev; 1462 struct e1000_hw *hw = &adapter->hw; 1463 u32 rxdctl, txdctl; 1464 1465 /* 1466 * signal that we're down so the interrupt handler does not 1467 * reschedule our watchdog timer 1468 */ 1469 set_bit(__IGBVF_DOWN, &adapter->state); 1470 1471 /* disable receives in the hardware */ 1472 rxdctl = er32(RXDCTL(0)); 1473 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); 1474 1475 netif_stop_queue(netdev); 1476 1477 /* disable transmits in the hardware */ 1478 txdctl = er32(TXDCTL(0)); 1479 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); 1480 1481 /* flush both disables and wait for them to finish */ 1482 e1e_flush(); 1483 msleep(10); 1484 1485 napi_disable(&adapter->rx_ring->napi); 1486 1487 igbvf_irq_disable(adapter); 1488 1489 del_timer_sync(&adapter->watchdog_timer); 1490 1491 netif_carrier_off(netdev); 1492 1493 /* record the stats before reset*/ 1494 igbvf_update_stats(adapter); 1495 1496 adapter->link_speed = 0; 1497 adapter->link_duplex = 0; 1498 1499 igbvf_reset(adapter); 1500 igbvf_clean_tx_ring(adapter->tx_ring); 1501 igbvf_clean_rx_ring(adapter->rx_ring); 1502} 1503 1504void igbvf_reinit_locked(struct igbvf_adapter *adapter) 1505{ 1506 might_sleep(); 1507 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 1508 msleep(1); 1509 igbvf_down(adapter); 1510 igbvf_up(adapter); 1511 clear_bit(__IGBVF_RESETTING, &adapter->state); 1512} 1513 1514/** 1515 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter) 1516 * @adapter: board private structure to initialize 1517 * 1518 * igbvf_sw_init initializes the Adapter private data structure. 1519 * Fields are initialized based on PCI device information and 1520 * OS network device settings (MTU size). 1521 **/ 1522static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter) 1523{ 1524 struct net_device *netdev = adapter->netdev; 1525 s32 rc; 1526 1527 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; 1528 adapter->rx_ps_hdr_size = 0; 1529 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1530 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 1531 1532 adapter->tx_int_delay = 8; 1533 adapter->tx_abs_int_delay = 32; 1534 adapter->rx_int_delay = 0; 1535 adapter->rx_abs_int_delay = 8; 1536 adapter->itr_setting = 3; 1537 adapter->itr = 20000; 1538 1539 /* Set various function pointers */ 1540 adapter->ei->init_ops(&adapter->hw); 1541 1542 rc = adapter->hw.mac.ops.init_params(&adapter->hw); 1543 if (rc) 1544 return rc; 1545 1546 rc = adapter->hw.mbx.ops.init_params(&adapter->hw); 1547 if (rc) 1548 return rc; 1549 1550 igbvf_set_interrupt_capability(adapter); 1551 1552 if (igbvf_alloc_queues(adapter)) 1553 return -ENOMEM; 1554 1555 spin_lock_init(&adapter->tx_queue_lock); 1556 1557 /* Explicitly disable IRQ since the NIC can be in any state. */ 1558 igbvf_irq_disable(adapter); 1559 1560 spin_lock_init(&adapter->stats_lock); 1561 1562 set_bit(__IGBVF_DOWN, &adapter->state); 1563 return 0; 1564} 1565 1566static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter) 1567{ 1568 struct e1000_hw *hw = &adapter->hw; 1569 1570 adapter->stats.last_gprc = er32(VFGPRC); 1571 adapter->stats.last_gorc = er32(VFGORC); 1572 adapter->stats.last_gptc = er32(VFGPTC); 1573 adapter->stats.last_gotc = er32(VFGOTC); 1574 adapter->stats.last_mprc = er32(VFMPRC); 1575 adapter->stats.last_gotlbc = er32(VFGOTLBC); 1576 adapter->stats.last_gptlbc = er32(VFGPTLBC); 1577 adapter->stats.last_gorlbc = er32(VFGORLBC); 1578 adapter->stats.last_gprlbc = er32(VFGPRLBC); 1579 1580 adapter->stats.base_gprc = er32(VFGPRC); 1581 adapter->stats.base_gorc = er32(VFGORC); 1582 adapter->stats.base_gptc = er32(VFGPTC); 1583 adapter->stats.base_gotc = er32(VFGOTC); 1584 adapter->stats.base_mprc = er32(VFMPRC); 1585 adapter->stats.base_gotlbc = er32(VFGOTLBC); 1586 adapter->stats.base_gptlbc = er32(VFGPTLBC); 1587 adapter->stats.base_gorlbc = er32(VFGORLBC); 1588 adapter->stats.base_gprlbc = er32(VFGPRLBC); 1589} 1590 1591/** 1592 * igbvf_open - Called when a network interface is made active 1593 * @netdev: network interface device structure 1594 * 1595 * Returns 0 on success, negative value on failure 1596 * 1597 * The open entry point is called when a network interface is made 1598 * active by the system (IFF_UP). At this point all resources needed 1599 * for transmit and receive operations are allocated, the interrupt 1600 * handler is registered with the OS, the watchdog timer is started, 1601 * and the stack is notified that the interface is ready. 1602 **/ 1603static int igbvf_open(struct net_device *netdev) 1604{ 1605 struct igbvf_adapter *adapter = netdev_priv(netdev); 1606 struct e1000_hw *hw = &adapter->hw; 1607 int err; 1608 1609 /* disallow open during test */ 1610 if (test_bit(__IGBVF_TESTING, &adapter->state)) 1611 return -EBUSY; 1612 1613 /* allocate transmit descriptors */ 1614 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring); 1615 if (err) 1616 goto err_setup_tx; 1617 1618 /* allocate receive descriptors */ 1619 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring); 1620 if (err) 1621 goto err_setup_rx; 1622 1623 /* 1624 * before we allocate an interrupt, we must be ready to handle it. 1625 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1626 * as soon as we call pci_request_irq, so we have to setup our 1627 * clean_rx handler before we do so. 1628 */ 1629 igbvf_configure(adapter); 1630 1631 err = igbvf_request_irq(adapter); 1632 if (err) 1633 goto err_req_irq; 1634 1635 /* From here on the code is the same as igbvf_up() */ 1636 clear_bit(__IGBVF_DOWN, &adapter->state); 1637 1638 napi_enable(&adapter->rx_ring->napi); 1639 1640 /* clear any pending interrupts */ 1641 er32(EICR); 1642 1643 igbvf_irq_enable(adapter); 1644 1645 /* start the watchdog */ 1646 hw->mac.get_link_status = 1; 1647 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1648 1649 return 0; 1650 1651err_req_irq: 1652 igbvf_free_rx_resources(adapter->rx_ring); 1653err_setup_rx: 1654 igbvf_free_tx_resources(adapter->tx_ring); 1655err_setup_tx: 1656 igbvf_reset(adapter); 1657 1658 return err; 1659} 1660 1661/** 1662 * igbvf_close - Disables a network interface 1663 * @netdev: network interface device structure 1664 * 1665 * Returns 0, this is not allowed to fail 1666 * 1667 * The close entry point is called when an interface is de-activated 1668 * by the OS. The hardware is still under the drivers control, but 1669 * needs to be disabled. A global MAC reset is issued to stop the 1670 * hardware, and all transmit and receive resources are freed. 1671 **/ 1672static int igbvf_close(struct net_device *netdev) 1673{ 1674 struct igbvf_adapter *adapter = netdev_priv(netdev); 1675 1676 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); 1677 igbvf_down(adapter); 1678 1679 igbvf_free_irq(adapter); 1680 1681 igbvf_free_tx_resources(adapter->tx_ring); 1682 igbvf_free_rx_resources(adapter->rx_ring); 1683 1684 return 0; 1685} 1686/** 1687 * igbvf_set_mac - Change the Ethernet Address of the NIC 1688 * @netdev: network interface device structure 1689 * @p: pointer to an address structure 1690 * 1691 * Returns 0 on success, negative on failure 1692 **/ 1693static int igbvf_set_mac(struct net_device *netdev, void *p) 1694{ 1695 struct igbvf_adapter *adapter = netdev_priv(netdev); 1696 struct e1000_hw *hw = &adapter->hw; 1697 struct sockaddr *addr = p; 1698 1699 if (!is_valid_ether_addr(addr->sa_data)) 1700 return -EADDRNOTAVAIL; 1701 1702 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 1703 1704 hw->mac.ops.rar_set(hw, hw->mac.addr, 0); 1705 1706 if (memcmp(addr->sa_data, hw->mac.addr, 6)) 1707 return -EADDRNOTAVAIL; 1708 1709 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 1710 1711 return 0; 1712} 1713 1714#define UPDATE_VF_COUNTER(reg, name) \ 1715 { \ 1716 u32 current_counter = er32(reg); \ 1717 if (current_counter < adapter->stats.last_##name) \ 1718 adapter->stats.name += 0x100000000LL; \ 1719 adapter->stats.last_##name = current_counter; \ 1720 adapter->stats.name &= 0xFFFFFFFF00000000LL; \ 1721 adapter->stats.name |= current_counter; \ 1722 } 1723 1724/** 1725 * igbvf_update_stats - Update the board statistics counters 1726 * @adapter: board private structure 1727**/ 1728void igbvf_update_stats(struct igbvf_adapter *adapter) 1729{ 1730 struct e1000_hw *hw = &adapter->hw; 1731 struct pci_dev *pdev = adapter->pdev; 1732 1733 /* 1734 * Prevent stats update while adapter is being reset, link is down 1735 * or if the pci connection is down. 1736 */ 1737 if (adapter->link_speed == 0) 1738 return; 1739 1740 if (test_bit(__IGBVF_RESETTING, &adapter->state)) 1741 return; 1742 1743 if (pci_channel_offline(pdev)) 1744 return; 1745 1746 UPDATE_VF_COUNTER(VFGPRC, gprc); 1747 UPDATE_VF_COUNTER(VFGORC, gorc); 1748 UPDATE_VF_COUNTER(VFGPTC, gptc); 1749 UPDATE_VF_COUNTER(VFGOTC, gotc); 1750 UPDATE_VF_COUNTER(VFMPRC, mprc); 1751 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc); 1752 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc); 1753 UPDATE_VF_COUNTER(VFGORLBC, gorlbc); 1754 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc); 1755 1756 /* Fill out the OS statistics structure */ 1757 adapter->net_stats.multicast = adapter->stats.mprc; 1758} 1759 1760static void igbvf_print_link_info(struct igbvf_adapter *adapter) 1761{ 1762 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n", 1763 adapter->link_speed, 1764 ((adapter->link_duplex == FULL_DUPLEX) ? 1765 "Full Duplex" : "Half Duplex")); 1766} 1767 1768static bool igbvf_has_link(struct igbvf_adapter *adapter) 1769{ 1770 struct e1000_hw *hw = &adapter->hw; 1771 s32 ret_val = E1000_SUCCESS; 1772 bool link_active; 1773 1774 /* If interface is down, stay link down */ 1775 if (test_bit(__IGBVF_DOWN, &adapter->state)) 1776 return false; 1777 1778 ret_val = hw->mac.ops.check_for_link(hw); 1779 link_active = !hw->mac.get_link_status; 1780 1781 /* if check for link returns error we will need to reset */ 1782 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ))) 1783 schedule_work(&adapter->reset_task); 1784 1785 return link_active; 1786} 1787 1788/** 1789 * igbvf_watchdog - Timer Call-back 1790 * @data: pointer to adapter cast into an unsigned long 1791 **/ 1792static void igbvf_watchdog(unsigned long data) 1793{ 1794 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data; 1795 1796 /* Do the rest outside of interrupt context */ 1797 schedule_work(&adapter->watchdog_task); 1798} 1799 1800static void igbvf_watchdog_task(struct work_struct *work) 1801{ 1802 struct igbvf_adapter *adapter = container_of(work, 1803 struct igbvf_adapter, 1804 watchdog_task); 1805 struct net_device *netdev = adapter->netdev; 1806 struct e1000_mac_info *mac = &adapter->hw.mac; 1807 struct igbvf_ring *tx_ring = adapter->tx_ring; 1808 struct e1000_hw *hw = &adapter->hw; 1809 u32 link; 1810 int tx_pending = 0; 1811 1812 link = igbvf_has_link(adapter); 1813 1814 if (link) { 1815 if (!netif_carrier_ok(netdev)) { 1816 mac->ops.get_link_up_info(&adapter->hw, 1817 &adapter->link_speed, 1818 &adapter->link_duplex); 1819 igbvf_print_link_info(adapter); 1820 1821 netif_carrier_on(netdev); 1822 netif_wake_queue(netdev); 1823 } 1824 } else { 1825 if (netif_carrier_ok(netdev)) { 1826 adapter->link_speed = 0; 1827 adapter->link_duplex = 0; 1828 dev_info(&adapter->pdev->dev, "Link is Down\n"); 1829 netif_carrier_off(netdev); 1830 netif_stop_queue(netdev); 1831 } 1832 } 1833 1834 if (netif_carrier_ok(netdev)) { 1835 igbvf_update_stats(adapter); 1836 } else { 1837 tx_pending = (igbvf_desc_unused(tx_ring) + 1 < 1838 tx_ring->count); 1839 if (tx_pending) { 1840 /* 1841 * We've lost link, so the controller stops DMA, 1842 * but we've got queued Tx work that's never going 1843 * to get done, so reset controller to flush Tx. 1844 * (Do the reset outside of interrupt context). 1845 */ 1846 adapter->tx_timeout_count++; 1847 schedule_work(&adapter->reset_task); 1848 } 1849 } 1850 1851 /* Cause software interrupt to ensure Rx ring is cleaned */ 1852 ew32(EICS, adapter->rx_ring->eims_value); 1853 1854 /* Reset the timer */ 1855 if (!test_bit(__IGBVF_DOWN, &adapter->state)) 1856 mod_timer(&adapter->watchdog_timer, 1857 round_jiffies(jiffies + (2 * HZ))); 1858} 1859 1860#define IGBVF_TX_FLAGS_CSUM 0x00000001 1861#define IGBVF_TX_FLAGS_VLAN 0x00000002 1862#define IGBVF_TX_FLAGS_TSO 0x00000004 1863#define IGBVF_TX_FLAGS_IPV4 0x00000008 1864#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000 1865#define IGBVF_TX_FLAGS_VLAN_SHIFT 16 1866 1867static int igbvf_tso(struct igbvf_adapter *adapter, 1868 struct igbvf_ring *tx_ring, 1869 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) 1870{ 1871 struct e1000_adv_tx_context_desc *context_desc; 1872 unsigned int i; 1873 int err; 1874 struct igbvf_buffer *buffer_info; 1875 u32 info = 0, tu_cmd = 0; 1876 u32 mss_l4len_idx, l4len; 1877 *hdr_len = 0; 1878 1879 if (skb_header_cloned(skb)) { 1880 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1881 if (err) { 1882 dev_err(&adapter->pdev->dev, 1883 "igbvf_tso returning an error\n"); 1884 return err; 1885 } 1886 } 1887 1888 l4len = tcp_hdrlen(skb); 1889 *hdr_len += l4len; 1890 1891 if (skb->protocol == htons(ETH_P_IP)) { 1892 struct iphdr *iph = ip_hdr(skb); 1893 iph->tot_len = 0; 1894 iph->check = 0; 1895 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 1896 iph->daddr, 0, 1897 IPPROTO_TCP, 1898 0); 1899 } else if (skb_is_gso_v6(skb)) { 1900 ipv6_hdr(skb)->payload_len = 0; 1901 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 1902 &ipv6_hdr(skb)->daddr, 1903 0, IPPROTO_TCP, 0); 1904 } 1905 1906 i = tx_ring->next_to_use; 1907 1908 buffer_info = &tx_ring->buffer_info[i]; 1909 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); 1910 /* VLAN MACLEN IPLEN */ 1911 if (tx_flags & IGBVF_TX_FLAGS_VLAN) 1912 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK); 1913 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); 1914 *hdr_len += skb_network_offset(skb); 1915 info |= (skb_transport_header(skb) - skb_network_header(skb)); 1916 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb)); 1917 context_desc->vlan_macip_lens = cpu_to_le32(info); 1918 1919 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 1920 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); 1921 1922 if (skb->protocol == htons(ETH_P_IP)) 1923 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; 1924 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 1925 1926 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); 1927 1928 /* MSS L4LEN IDX */ 1929 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT); 1930 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT); 1931 1932 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 1933 context_desc->seqnum_seed = 0; 1934 1935 buffer_info->time_stamp = jiffies; 1936 buffer_info->next_to_watch = i; 1937 buffer_info->dma = 0; 1938 i++; 1939 if (i == tx_ring->count) 1940 i = 0; 1941 1942 tx_ring->next_to_use = i; 1943 1944 return true; 1945} 1946 1947static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter, 1948 struct igbvf_ring *tx_ring, 1949 struct sk_buff *skb, u32 tx_flags) 1950{ 1951 struct e1000_adv_tx_context_desc *context_desc; 1952 unsigned int i; 1953 struct igbvf_buffer *buffer_info; 1954 u32 info = 0, tu_cmd = 0; 1955 1956 if ((skb->ip_summed == CHECKSUM_PARTIAL) || 1957 (tx_flags & IGBVF_TX_FLAGS_VLAN)) { 1958 i = tx_ring->next_to_use; 1959 buffer_info = &tx_ring->buffer_info[i]; 1960 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); 1961 1962 if (tx_flags & IGBVF_TX_FLAGS_VLAN) 1963 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK); 1964 1965 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); 1966 if (skb->ip_summed == CHECKSUM_PARTIAL) 1967 info |= (skb_transport_header(skb) - 1968 skb_network_header(skb)); 1969 1970 1971 context_desc->vlan_macip_lens = cpu_to_le32(info); 1972 1973 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); 1974 1975 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1976 switch (skb->protocol) { 1977 case __constant_htons(ETH_P_IP): 1978 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; 1979 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 1980 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 1981 break; 1982 case __constant_htons(ETH_P_IPV6): 1983 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 1984 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 1985 break; 1986 default: 1987 break; 1988 } 1989 } 1990 1991 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); 1992 context_desc->seqnum_seed = 0; 1993 context_desc->mss_l4len_idx = 0; 1994 1995 buffer_info->time_stamp = jiffies; 1996 buffer_info->next_to_watch = i; 1997 buffer_info->dma = 0; 1998 i++; 1999 if (i == tx_ring->count) 2000 i = 0; 2001 tx_ring->next_to_use = i; 2002 2003 return true; 2004 } 2005 2006 return false; 2007} 2008 2009static int igbvf_maybe_stop_tx(struct net_device *netdev, int size) 2010{ 2011 struct igbvf_adapter *adapter = netdev_priv(netdev); 2012 2013 /* there is enough descriptors then we don't need to worry */ 2014 if (igbvf_desc_unused(adapter->tx_ring) >= size) 2015 return 0; 2016 2017 netif_stop_queue(netdev); 2018 2019 smp_mb(); 2020 2021 /* We need to check again just in case room has been made available */ 2022 if (igbvf_desc_unused(adapter->tx_ring) < size) 2023 return -EBUSY; 2024 2025 netif_wake_queue(netdev); 2026 2027 ++adapter->restart_queue; 2028 return 0; 2029} 2030 2031#define IGBVF_MAX_TXD_PWR 16 2032#define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR) 2033 2034static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter, 2035 struct igbvf_ring *tx_ring, 2036 struct sk_buff *skb, 2037 unsigned int first) 2038{ 2039 struct igbvf_buffer *buffer_info; 2040 struct pci_dev *pdev = adapter->pdev; 2041 unsigned int len = skb_headlen(skb); 2042 unsigned int count = 0, i; 2043 unsigned int f; 2044 2045 i = tx_ring->next_to_use; 2046 2047 buffer_info = &tx_ring->buffer_info[i]; 2048 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); 2049 buffer_info->length = len; 2050 /* set time_stamp *before* dma to help avoid a possible race */ 2051 buffer_info->time_stamp = jiffies; 2052 buffer_info->next_to_watch = i; 2053 buffer_info->mapped_as_page = false; 2054 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len, 2055 DMA_TO_DEVICE); 2056 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2057 goto dma_error; 2058 2059 2060 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 2061 struct skb_frag_struct *frag; 2062 2063 count++; 2064 i++; 2065 if (i == tx_ring->count) 2066 i = 0; 2067 2068 frag = &skb_shinfo(skb)->frags[f]; 2069 len = frag->size; 2070 2071 buffer_info = &tx_ring->buffer_info[i]; 2072 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); 2073 buffer_info->length = len; 2074 buffer_info->time_stamp = jiffies; 2075 buffer_info->next_to_watch = i; 2076 buffer_info->mapped_as_page = true; 2077 buffer_info->dma = dma_map_page(&pdev->dev, 2078 frag->page, 2079 frag->page_offset, 2080 len, 2081 DMA_TO_DEVICE); 2082 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2083 goto dma_error; 2084 } 2085 2086 tx_ring->buffer_info[i].skb = skb; 2087 tx_ring->buffer_info[first].next_to_watch = i; 2088 2089 return ++count; 2090 2091dma_error: 2092 dev_err(&pdev->dev, "TX DMA map failed\n"); 2093 2094 /* clear timestamp and dma mappings for failed buffer_info mapping */ 2095 buffer_info->dma = 0; 2096 buffer_info->time_stamp = 0; 2097 buffer_info->length = 0; 2098 buffer_info->next_to_watch = 0; 2099 buffer_info->mapped_as_page = false; 2100 if (count) 2101 count--; 2102 2103 /* clear timestamp and dma mappings for remaining portion of packet */ 2104 while (count--) { 2105 if (i==0) 2106 i += tx_ring->count; 2107 i--; 2108 buffer_info = &tx_ring->buffer_info[i]; 2109 igbvf_put_txbuf(adapter, buffer_info); 2110 } 2111 2112 return 0; 2113} 2114 2115static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter, 2116 struct igbvf_ring *tx_ring, 2117 int tx_flags, int count, u32 paylen, 2118 u8 hdr_len) 2119{ 2120 union e1000_adv_tx_desc *tx_desc = NULL; 2121 struct igbvf_buffer *buffer_info; 2122 u32 olinfo_status = 0, cmd_type_len; 2123 unsigned int i; 2124 2125 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | 2126 E1000_ADVTXD_DCMD_DEXT); 2127 2128 if (tx_flags & IGBVF_TX_FLAGS_VLAN) 2129 cmd_type_len |= E1000_ADVTXD_DCMD_VLE; 2130 2131 if (tx_flags & IGBVF_TX_FLAGS_TSO) { 2132 cmd_type_len |= E1000_ADVTXD_DCMD_TSE; 2133 2134 /* insert tcp checksum */ 2135 olinfo_status |= E1000_TXD_POPTS_TXSM << 8; 2136 2137 /* insert ip checksum */ 2138 if (tx_flags & IGBVF_TX_FLAGS_IPV4) 2139 olinfo_status |= E1000_TXD_POPTS_IXSM << 8; 2140 2141 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) { 2142 olinfo_status |= E1000_TXD_POPTS_TXSM << 8; 2143 } 2144 2145 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); 2146 2147 i = tx_ring->next_to_use; 2148 while (count--) { 2149 buffer_info = &tx_ring->buffer_info[i]; 2150 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); 2151 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 2152 tx_desc->read.cmd_type_len = 2153 cpu_to_le32(cmd_type_len | buffer_info->length); 2154 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 2155 i++; 2156 if (i == tx_ring->count) 2157 i = 0; 2158 } 2159 2160 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd); 2161 /* Force memory writes to complete before letting h/w 2162 * know there are new descriptors to fetch. (Only 2163 * applicable for weak-ordered memory model archs, 2164 * such as IA-64). */ 2165 wmb(); 2166 2167 tx_ring->next_to_use = i; 2168 writel(i, adapter->hw.hw_addr + tx_ring->tail); 2169 /* we need this if more than one processor can write to our tail 2170 * at a time, it syncronizes IO on IA64/Altix systems */ 2171 mmiowb(); 2172} 2173 2174static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb, 2175 struct net_device *netdev, 2176 struct igbvf_ring *tx_ring) 2177{ 2178 struct igbvf_adapter *adapter = netdev_priv(netdev); 2179 unsigned int first, tx_flags = 0; 2180 u8 hdr_len = 0; 2181 int count = 0; 2182 int tso = 0; 2183 2184 if (test_bit(__IGBVF_DOWN, &adapter->state)) { 2185 dev_kfree_skb_any(skb); 2186 return NETDEV_TX_OK; 2187 } 2188 2189 if (skb->len <= 0) { 2190 dev_kfree_skb_any(skb); 2191 return NETDEV_TX_OK; 2192 } 2193 2194 /* 2195 * need: count + 4 desc gap to keep tail from touching 2196 * + 2 desc gap to keep tail from touching head, 2197 * + 1 desc for skb->data, 2198 * + 1 desc for context descriptor, 2199 * head, otherwise try next time 2200 */ 2201 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) { 2202 /* this is a hard error */ 2203 return NETDEV_TX_BUSY; 2204 } 2205 2206 if (adapter->vlgrp && vlan_tx_tag_present(skb)) { 2207 tx_flags |= IGBVF_TX_FLAGS_VLAN; 2208 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT); 2209 } 2210 2211 if (skb->protocol == htons(ETH_P_IP)) 2212 tx_flags |= IGBVF_TX_FLAGS_IPV4; 2213 2214 first = tx_ring->next_to_use; 2215 2216 tso = skb_is_gso(skb) ? 2217 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0; 2218 if (unlikely(tso < 0)) { 2219 dev_kfree_skb_any(skb); 2220 return NETDEV_TX_OK; 2221 } 2222 2223 if (tso) 2224 tx_flags |= IGBVF_TX_FLAGS_TSO; 2225 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) && 2226 (skb->ip_summed == CHECKSUM_PARTIAL)) 2227 tx_flags |= IGBVF_TX_FLAGS_CSUM; 2228 2229 /* 2230 * count reflects descriptors mapped, if 0 then mapping error 2231 * has occurred and we need to rewind the descriptor queue 2232 */ 2233 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first); 2234 2235 if (count) { 2236 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count, 2237 skb->len, hdr_len); 2238 /* Make sure there is space in the ring for the next send. */ 2239 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4); 2240 } else { 2241 dev_kfree_skb_any(skb); 2242 tx_ring->buffer_info[first].time_stamp = 0; 2243 tx_ring->next_to_use = first; 2244 } 2245 2246 return NETDEV_TX_OK; 2247} 2248 2249static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb, 2250 struct net_device *netdev) 2251{ 2252 struct igbvf_adapter *adapter = netdev_priv(netdev); 2253 struct igbvf_ring *tx_ring; 2254 2255 if (test_bit(__IGBVF_DOWN, &adapter->state)) { 2256 dev_kfree_skb_any(skb); 2257 return NETDEV_TX_OK; 2258 } 2259 2260 tx_ring = &adapter->tx_ring[0]; 2261 2262 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring); 2263} 2264 2265/** 2266 * igbvf_tx_timeout - Respond to a Tx Hang 2267 * @netdev: network interface device structure 2268 **/ 2269static void igbvf_tx_timeout(struct net_device *netdev) 2270{ 2271 struct igbvf_adapter *adapter = netdev_priv(netdev); 2272 2273 /* Do the reset outside of interrupt context */ 2274 adapter->tx_timeout_count++; 2275 schedule_work(&adapter->reset_task); 2276} 2277 2278static void igbvf_reset_task(struct work_struct *work) 2279{ 2280 struct igbvf_adapter *adapter; 2281 adapter = container_of(work, struct igbvf_adapter, reset_task); 2282 2283 igbvf_reinit_locked(adapter); 2284} 2285 2286/** 2287 * igbvf_get_stats - Get System Network Statistics 2288 * @netdev: network interface device structure 2289 * 2290 * Returns the address of the device statistics structure. 2291 * The statistics are actually updated from the timer callback. 2292 **/ 2293static struct net_device_stats *igbvf_get_stats(struct net_device *netdev) 2294{ 2295 struct igbvf_adapter *adapter = netdev_priv(netdev); 2296 2297 /* only return the current stats */ 2298 return &adapter->net_stats; 2299} 2300 2301/** 2302 * igbvf_change_mtu - Change the Maximum Transfer Unit 2303 * @netdev: network interface device structure 2304 * @new_mtu: new value for maximum frame size 2305 * 2306 * Returns 0 on success, negative on failure 2307 **/ 2308static int igbvf_change_mtu(struct net_device *netdev, int new_mtu) 2309{ 2310 struct igbvf_adapter *adapter = netdev_priv(netdev); 2311 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 2312 2313 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { 2314 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n"); 2315 return -EINVAL; 2316 } 2317 2318#define MAX_STD_JUMBO_FRAME_SIZE 9234 2319 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { 2320 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n"); 2321 return -EINVAL; 2322 } 2323 2324 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) 2325 msleep(1); 2326 /* igbvf_down has a dependency on max_frame_size */ 2327 adapter->max_frame_size = max_frame; 2328 if (netif_running(netdev)) 2329 igbvf_down(adapter); 2330 2331 /* 2332 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 2333 * means we reserve 2 more, this pushes us to allocate from the next 2334 * larger slab size. 2335 * i.e. RXBUFFER_2048 --> size-4096 slab 2336 * However with the new *_jumbo_rx* routines, jumbo receives will use 2337 * fragmented skbs 2338 */ 2339 2340 if (max_frame <= 1024) 2341 adapter->rx_buffer_len = 1024; 2342 else if (max_frame <= 2048) 2343 adapter->rx_buffer_len = 2048; 2344 else 2345#if (PAGE_SIZE / 2) > 16384 2346 adapter->rx_buffer_len = 16384; 2347#else 2348 adapter->rx_buffer_len = PAGE_SIZE / 2; 2349#endif 2350 2351 2352 /* adjust allocation if LPE protects us, and we aren't using SBP */ 2353 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || 2354 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) 2355 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + 2356 ETH_FCS_LEN; 2357 2358 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n", 2359 netdev->mtu, new_mtu); 2360 netdev->mtu = new_mtu; 2361 2362 if (netif_running(netdev)) 2363 igbvf_up(adapter); 2364 else 2365 igbvf_reset(adapter); 2366 2367 clear_bit(__IGBVF_RESETTING, &adapter->state); 2368 2369 return 0; 2370} 2371 2372static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2373{ 2374 switch (cmd) { 2375 default: 2376 return -EOPNOTSUPP; 2377 } 2378} 2379 2380static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state) 2381{ 2382 struct net_device *netdev = pci_get_drvdata(pdev); 2383 struct igbvf_adapter *adapter = netdev_priv(netdev); 2384#ifdef CONFIG_PM 2385 int retval = 0; 2386#endif 2387 2388 netif_device_detach(netdev); 2389 2390 if (netif_running(netdev)) { 2391 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); 2392 igbvf_down(adapter); 2393 igbvf_free_irq(adapter); 2394 } 2395 2396#ifdef CONFIG_PM 2397 retval = pci_save_state(pdev); 2398 if (retval) 2399 return retval; 2400#endif 2401 2402 pci_disable_device(pdev); 2403 2404 return 0; 2405} 2406 2407#ifdef CONFIG_PM 2408static int igbvf_resume(struct pci_dev *pdev) 2409{ 2410 struct net_device *netdev = pci_get_drvdata(pdev); 2411 struct igbvf_adapter *adapter = netdev_priv(netdev); 2412 u32 err; 2413 2414 pci_restore_state(pdev); 2415 err = pci_enable_device_mem(pdev); 2416 if (err) { 2417 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 2418 return err; 2419 } 2420 2421 pci_set_master(pdev); 2422 2423 if (netif_running(netdev)) { 2424 err = igbvf_request_irq(adapter); 2425 if (err) 2426 return err; 2427 } 2428 2429 igbvf_reset(adapter); 2430 2431 if (netif_running(netdev)) 2432 igbvf_up(adapter); 2433 2434 netif_device_attach(netdev); 2435 2436 return 0; 2437} 2438#endif 2439 2440static void igbvf_shutdown(struct pci_dev *pdev) 2441{ 2442 igbvf_suspend(pdev, PMSG_SUSPEND); 2443} 2444 2445#ifdef CONFIG_NET_POLL_CONTROLLER 2446/* 2447 * Polling 'interrupt' - used by things like netconsole to send skbs 2448 * without having to re-enable interrupts. It's not called while 2449 * the interrupt routine is executing. 2450 */ 2451static void igbvf_netpoll(struct net_device *netdev) 2452{ 2453 struct igbvf_adapter *adapter = netdev_priv(netdev); 2454 2455 disable_irq(adapter->pdev->irq); 2456 2457 igbvf_clean_tx_irq(adapter->tx_ring); 2458 2459 enable_irq(adapter->pdev->irq); 2460} 2461#endif 2462 2463/** 2464 * igbvf_io_error_detected - called when PCI error is detected 2465 * @pdev: Pointer to PCI device 2466 * @state: The current pci connection state 2467 * 2468 * This function is called after a PCI bus error affecting 2469 * this device has been detected. 2470 */ 2471static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev, 2472 pci_channel_state_t state) 2473{ 2474 struct net_device *netdev = pci_get_drvdata(pdev); 2475 struct igbvf_adapter *adapter = netdev_priv(netdev); 2476 2477 netif_device_detach(netdev); 2478 2479 if (state == pci_channel_io_perm_failure) 2480 return PCI_ERS_RESULT_DISCONNECT; 2481 2482 if (netif_running(netdev)) 2483 igbvf_down(adapter); 2484 pci_disable_device(pdev); 2485 2486 /* Request a slot slot reset. */ 2487 return PCI_ERS_RESULT_NEED_RESET; 2488} 2489 2490/** 2491 * igbvf_io_slot_reset - called after the pci bus has been reset. 2492 * @pdev: Pointer to PCI device 2493 * 2494 * Restart the card from scratch, as if from a cold-boot. Implementation 2495 * resembles the first-half of the igbvf_resume routine. 2496 */ 2497static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev) 2498{ 2499 struct net_device *netdev = pci_get_drvdata(pdev); 2500 struct igbvf_adapter *adapter = netdev_priv(netdev); 2501 2502 if (pci_enable_device_mem(pdev)) { 2503 dev_err(&pdev->dev, 2504 "Cannot re-enable PCI device after reset.\n"); 2505 return PCI_ERS_RESULT_DISCONNECT; 2506 } 2507 pci_set_master(pdev); 2508 2509 igbvf_reset(adapter); 2510 2511 return PCI_ERS_RESULT_RECOVERED; 2512} 2513 2514/** 2515 * igbvf_io_resume - called when traffic can start flowing again. 2516 * @pdev: Pointer to PCI device 2517 * 2518 * This callback is called when the error recovery driver tells us that 2519 * its OK to resume normal operation. Implementation resembles the 2520 * second-half of the igbvf_resume routine. 2521 */ 2522static void igbvf_io_resume(struct pci_dev *pdev) 2523{ 2524 struct net_device *netdev = pci_get_drvdata(pdev); 2525 struct igbvf_adapter *adapter = netdev_priv(netdev); 2526 2527 if (netif_running(netdev)) { 2528 if (igbvf_up(adapter)) { 2529 dev_err(&pdev->dev, 2530 "can't bring device back up after reset\n"); 2531 return; 2532 } 2533 } 2534 2535 netif_device_attach(netdev); 2536} 2537 2538static void igbvf_print_device_info(struct igbvf_adapter *adapter) 2539{ 2540 struct e1000_hw *hw = &adapter->hw; 2541 struct net_device *netdev = adapter->netdev; 2542 struct pci_dev *pdev = adapter->pdev; 2543 2544 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n"); 2545 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr); 2546 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 2547} 2548 2549static const struct net_device_ops igbvf_netdev_ops = { 2550 .ndo_open = igbvf_open, 2551 .ndo_stop = igbvf_close, 2552 .ndo_start_xmit = igbvf_xmit_frame, 2553 .ndo_get_stats = igbvf_get_stats, 2554 .ndo_set_multicast_list = igbvf_set_multi, 2555 .ndo_set_mac_address = igbvf_set_mac, 2556 .ndo_change_mtu = igbvf_change_mtu, 2557 .ndo_do_ioctl = igbvf_ioctl, 2558 .ndo_tx_timeout = igbvf_tx_timeout, 2559 .ndo_vlan_rx_register = igbvf_vlan_rx_register, 2560 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid, 2561 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid, 2562#ifdef CONFIG_NET_POLL_CONTROLLER 2563 .ndo_poll_controller = igbvf_netpoll, 2564#endif 2565}; 2566 2567/** 2568 * igbvf_probe - Device Initialization Routine 2569 * @pdev: PCI device information struct 2570 * @ent: entry in igbvf_pci_tbl 2571 * 2572 * Returns 0 on success, negative on failure 2573 * 2574 * igbvf_probe initializes an adapter identified by a pci_dev structure. 2575 * The OS initialization, configuring of the adapter private structure, 2576 * and a hardware reset occur. 2577 **/ 2578static int __devinit igbvf_probe(struct pci_dev *pdev, 2579 const struct pci_device_id *ent) 2580{ 2581 struct net_device *netdev; 2582 struct igbvf_adapter *adapter; 2583 struct e1000_hw *hw; 2584 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data]; 2585 2586 static int cards_found; 2587 int err, pci_using_dac; 2588 2589 err = pci_enable_device_mem(pdev); 2590 if (err) 2591 return err; 2592 2593 pci_using_dac = 0; 2594 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 2595 if (!err) { 2596 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); 2597 if (!err) 2598 pci_using_dac = 1; 2599 } else { 2600 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 2601 if (err) { 2602 err = dma_set_coherent_mask(&pdev->dev, 2603 DMA_BIT_MASK(32)); 2604 if (err) { 2605 dev_err(&pdev->dev, "No usable DMA " 2606 "configuration, aborting\n"); 2607 goto err_dma; 2608 } 2609 } 2610 } 2611 2612 err = pci_request_regions(pdev, igbvf_driver_name); 2613 if (err) 2614 goto err_pci_reg; 2615 2616 pci_set_master(pdev); 2617 2618 err = -ENOMEM; 2619 netdev = alloc_etherdev(sizeof(struct igbvf_adapter)); 2620 if (!netdev) 2621 goto err_alloc_etherdev; 2622 2623 SET_NETDEV_DEV(netdev, &pdev->dev); 2624 2625 pci_set_drvdata(pdev, netdev); 2626 adapter = netdev_priv(netdev); 2627 hw = &adapter->hw; 2628 adapter->netdev = netdev; 2629 adapter->pdev = pdev; 2630 adapter->ei = ei; 2631 adapter->pba = ei->pba; 2632 adapter->flags = ei->flags; 2633 adapter->hw.back = adapter; 2634 adapter->hw.mac.type = ei->mac; 2635 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; 2636 2637 /* PCI config space info */ 2638 2639 hw->vendor_id = pdev->vendor; 2640 hw->device_id = pdev->device; 2641 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2642 hw->subsystem_device_id = pdev->subsystem_device; 2643 hw->revision_id = pdev->revision; 2644 2645 err = -EIO; 2646 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0), 2647 pci_resource_len(pdev, 0)); 2648 2649 if (!adapter->hw.hw_addr) 2650 goto err_ioremap; 2651 2652 if (ei->get_variants) { 2653 err = ei->get_variants(adapter); 2654 if (err) 2655 goto err_ioremap; 2656 } 2657 2658 /* setup adapter struct */ 2659 err = igbvf_sw_init(adapter); 2660 if (err) 2661 goto err_sw_init; 2662 2663 /* construct the net_device struct */ 2664 netdev->netdev_ops = &igbvf_netdev_ops; 2665 2666 igbvf_set_ethtool_ops(netdev); 2667 netdev->watchdog_timeo = 5 * HZ; 2668 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2669 2670 adapter->bd_number = cards_found++; 2671 2672 netdev->features = NETIF_F_SG | 2673 NETIF_F_IP_CSUM | 2674 NETIF_F_HW_VLAN_TX | 2675 NETIF_F_HW_VLAN_RX | 2676 NETIF_F_HW_VLAN_FILTER; 2677 2678 netdev->features |= NETIF_F_IPV6_CSUM; 2679 netdev->features |= NETIF_F_TSO; 2680 netdev->features |= NETIF_F_TSO6; 2681 2682 if (pci_using_dac) 2683 netdev->features |= NETIF_F_HIGHDMA; 2684 2685 netdev->vlan_features |= NETIF_F_TSO; 2686 netdev->vlan_features |= NETIF_F_TSO6; 2687 netdev->vlan_features |= NETIF_F_IP_CSUM; 2688 netdev->vlan_features |= NETIF_F_IPV6_CSUM; 2689 netdev->vlan_features |= NETIF_F_SG; 2690 2691 /*reset the controller to put the device in a known good state */ 2692 err = hw->mac.ops.reset_hw(hw); 2693 if (err) { 2694 dev_info(&pdev->dev, 2695 "PF still in reset state, assigning new address." 2696 " Is the PF interface up?\n"); 2697 dev_hw_addr_random(adapter->netdev, hw->mac.addr); 2698 } else { 2699 err = hw->mac.ops.read_mac_addr(hw); 2700 if (err) { 2701 dev_err(&pdev->dev, "Error reading MAC address\n"); 2702 goto err_hw_init; 2703 } 2704 } 2705 2706 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); 2707 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); 2708 2709 if (!is_valid_ether_addr(netdev->perm_addr)) { 2710 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n", 2711 netdev->dev_addr); 2712 err = -EIO; 2713 goto err_hw_init; 2714 } 2715 2716 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog, 2717 (unsigned long) adapter); 2718 2719 INIT_WORK(&adapter->reset_task, igbvf_reset_task); 2720 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task); 2721 2722 /* ring size defaults */ 2723 adapter->rx_ring->count = 1024; 2724 adapter->tx_ring->count = 1024; 2725 2726 /* reset the hardware with the new settings */ 2727 igbvf_reset(adapter); 2728 2729 strcpy(netdev->name, "eth%d"); 2730 err = register_netdev(netdev); 2731 if (err) 2732 goto err_hw_init; 2733 2734 /* tell the stack to leave us alone until igbvf_open() is called */ 2735 netif_carrier_off(netdev); 2736 netif_stop_queue(netdev); 2737 2738 igbvf_print_device_info(adapter); 2739 2740 igbvf_initialize_last_counter_stats(adapter); 2741 2742 return 0; 2743 2744err_hw_init: 2745 kfree(adapter->tx_ring); 2746 kfree(adapter->rx_ring); 2747err_sw_init: 2748 igbvf_reset_interrupt_capability(adapter); 2749 iounmap(adapter->hw.hw_addr); 2750err_ioremap: 2751 free_netdev(netdev); 2752err_alloc_etherdev: 2753 pci_release_regions(pdev); 2754err_pci_reg: 2755err_dma: 2756 pci_disable_device(pdev); 2757 return err; 2758} 2759 2760/** 2761 * igbvf_remove - Device Removal Routine 2762 * @pdev: PCI device information struct 2763 * 2764 * igbvf_remove is called by the PCI subsystem to alert the driver 2765 * that it should release a PCI device. The could be caused by a 2766 * Hot-Plug event, or because the driver is going to be removed from 2767 * memory. 2768 **/ 2769static void __devexit igbvf_remove(struct pci_dev *pdev) 2770{ 2771 struct net_device *netdev = pci_get_drvdata(pdev); 2772 struct igbvf_adapter *adapter = netdev_priv(netdev); 2773 struct e1000_hw *hw = &adapter->hw; 2774 2775 /* 2776 * The watchdog timer may be rescheduled, so explicitly 2777 * disable it from being rescheduled. 2778 */ 2779 set_bit(__IGBVF_DOWN, &adapter->state); 2780 del_timer_sync(&adapter->watchdog_timer); 2781 2782 cancel_work_sync(&adapter->reset_task); 2783 cancel_work_sync(&adapter->watchdog_task); 2784 2785 unregister_netdev(netdev); 2786 2787 igbvf_reset_interrupt_capability(adapter); 2788 2789 /* 2790 * it is important to delete the napi struct prior to freeing the 2791 * rx ring so that you do not end up with null pointer refs 2792 */ 2793 netif_napi_del(&adapter->rx_ring->napi); 2794 kfree(adapter->tx_ring); 2795 kfree(adapter->rx_ring); 2796 2797 iounmap(hw->hw_addr); 2798 if (hw->flash_address) 2799 iounmap(hw->flash_address); 2800 pci_release_regions(pdev); 2801 2802 free_netdev(netdev); 2803 2804 pci_disable_device(pdev); 2805} 2806 2807/* PCI Error Recovery (ERS) */ 2808static struct pci_error_handlers igbvf_err_handler = { 2809 .error_detected = igbvf_io_error_detected, 2810 .slot_reset = igbvf_io_slot_reset, 2811 .resume = igbvf_io_resume, 2812}; 2813 2814static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = { 2815 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf }, 2816 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf }, 2817 { } /* terminate list */ 2818}; 2819MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl); 2820 2821/* PCI Device API Driver */ 2822static struct pci_driver igbvf_driver = { 2823 .name = igbvf_driver_name, 2824 .id_table = igbvf_pci_tbl, 2825 .probe = igbvf_probe, 2826 .remove = __devexit_p(igbvf_remove), 2827#ifdef CONFIG_PM 2828 /* Power Management Hooks */ 2829 .suspend = igbvf_suspend, 2830 .resume = igbvf_resume, 2831#endif 2832 .shutdown = igbvf_shutdown, 2833 .err_handler = &igbvf_err_handler 2834}; 2835 2836/** 2837 * igbvf_init_module - Driver Registration Routine 2838 * 2839 * igbvf_init_module is the first routine called when the driver is 2840 * loaded. All it does is register with the PCI subsystem. 2841 **/ 2842static int __init igbvf_init_module(void) 2843{ 2844 int ret; 2845 printk(KERN_INFO "%s - version %s\n", 2846 igbvf_driver_string, igbvf_driver_version); 2847 printk(KERN_INFO "%s\n", igbvf_copyright); 2848 2849 ret = pci_register_driver(&igbvf_driver); 2850 2851 return ret; 2852} 2853module_init(igbvf_init_module); 2854 2855/** 2856 * igbvf_exit_module - Driver Exit Cleanup Routine 2857 * 2858 * igbvf_exit_module is called just before the driver is removed 2859 * from memory. 2860 **/ 2861static void __exit igbvf_exit_module(void) 2862{ 2863 pci_unregister_driver(&igbvf_driver); 2864} 2865module_exit(igbvf_exit_module); 2866 2867 2868MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 2869MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver"); 2870MODULE_LICENSE("GPL"); 2871MODULE_VERSION(DRV_VERSION); 2872 2873/* netdev.c */