at v3.0 1557 lines 40 kB view raw
1/* 2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 4 * 5 * Right now, I am very wasteful with the buffers. I allocate memory 6 * pages and then divide them into 2K frame buffers. This way I know I 7 * have buffers large enough to hold one frame within one buffer descriptor. 8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 9 * will be much more memory efficient and will easily handle lots of 10 * small packets. 11 * 12 * Much better multiple PHY support by Magnus Damm. 13 * Copyright (c) 2000 Ericsson Radio Systems AB. 14 * 15 * Support for FEC controller of ColdFire processors. 16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 17 * 18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 19 * Copyright (c) 2004-2006 Macq Electronique SA. 20 * 21 * Copyright (C) 2010 Freescale Semiconductor, Inc. 22 */ 23 24#include <linux/module.h> 25#include <linux/kernel.h> 26#include <linux/string.h> 27#include <linux/ptrace.h> 28#include <linux/errno.h> 29#include <linux/ioport.h> 30#include <linux/slab.h> 31#include <linux/interrupt.h> 32#include <linux/pci.h> 33#include <linux/init.h> 34#include <linux/delay.h> 35#include <linux/netdevice.h> 36#include <linux/etherdevice.h> 37#include <linux/skbuff.h> 38#include <linux/spinlock.h> 39#include <linux/workqueue.h> 40#include <linux/bitops.h> 41#include <linux/io.h> 42#include <linux/irq.h> 43#include <linux/clk.h> 44#include <linux/platform_device.h> 45#include <linux/phy.h> 46#include <linux/fec.h> 47 48#include <asm/cacheflush.h> 49 50#ifndef CONFIG_ARM 51#include <asm/coldfire.h> 52#include <asm/mcfsim.h> 53#endif 54 55#include "fec.h" 56 57#if defined(CONFIG_ARM) 58#define FEC_ALIGNMENT 0xf 59#else 60#define FEC_ALIGNMENT 0x3 61#endif 62 63#define DRIVER_NAME "fec" 64 65/* Controller is ENET-MAC */ 66#define FEC_QUIRK_ENET_MAC (1 << 0) 67/* Controller needs driver to swap frame */ 68#define FEC_QUIRK_SWAP_FRAME (1 << 1) 69 70static struct platform_device_id fec_devtype[] = { 71 { 72 .name = DRIVER_NAME, 73 .driver_data = 0, 74 }, { 75 .name = "imx28-fec", 76 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME, 77 }, 78 { } 79}; 80 81static unsigned char macaddr[ETH_ALEN]; 82module_param_array(macaddr, byte, NULL, 0); 83MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 84 85#if defined(CONFIG_M5272) 86/* 87 * Some hardware gets it MAC address out of local flash memory. 88 * if this is non-zero then assume it is the address to get MAC from. 89 */ 90#if defined(CONFIG_NETtel) 91#define FEC_FLASHMAC 0xf0006006 92#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 93#define FEC_FLASHMAC 0xf0006000 94#elif defined(CONFIG_CANCam) 95#define FEC_FLASHMAC 0xf0020000 96#elif defined (CONFIG_M5272C3) 97#define FEC_FLASHMAC (0xffe04000 + 4) 98#elif defined(CONFIG_MOD5272) 99#define FEC_FLASHMAC 0xffc0406b 100#else 101#define FEC_FLASHMAC 0 102#endif 103#endif /* CONFIG_M5272 */ 104 105/* The number of Tx and Rx buffers. These are allocated from the page 106 * pool. The code may assume these are power of two, so it it best 107 * to keep them that size. 108 * We don't need to allocate pages for the transmitter. We just use 109 * the skbuffer directly. 110 */ 111#define FEC_ENET_RX_PAGES 8 112#define FEC_ENET_RX_FRSIZE 2048 113#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE) 114#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) 115#define FEC_ENET_TX_FRSIZE 2048 116#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE) 117#define TX_RING_SIZE 16 /* Must be power of two */ 118#define TX_RING_MOD_MASK 15 /* for this to work */ 119 120#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE) 121#error "FEC: descriptor ring size constants too large" 122#endif 123 124/* Interrupt events/masks. */ 125#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */ 126#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */ 127#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */ 128#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */ 129#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */ 130#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */ 131#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */ 132#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */ 133#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */ 134#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */ 135 136#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII) 137 138/* The FEC stores dest/src/type, data, and checksum for receive packets. 139 */ 140#define PKT_MAXBUF_SIZE 1518 141#define PKT_MINBUF_SIZE 64 142#define PKT_MAXBLR_SIZE 1520 143 144 145/* 146 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 147 * size bits. Other FEC hardware does not, so we need to take that into 148 * account when setting it. 149 */ 150#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 151 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) 152#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 153#else 154#define OPT_FRAME_SIZE 0 155#endif 156 157/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and 158 * tx_bd_base always point to the base of the buffer descriptors. The 159 * cur_rx and cur_tx point to the currently available buffer. 160 * The dirty_tx tracks the current buffer that is being sent by the 161 * controller. The cur_tx and dirty_tx are equal under both completely 162 * empty and completely full conditions. The empty/ready indicator in 163 * the buffer descriptor determines the actual condition. 164 */ 165struct fec_enet_private { 166 /* Hardware registers of the FEC device */ 167 void __iomem *hwp; 168 169 struct net_device *netdev; 170 171 struct clk *clk; 172 173 /* The saved address of a sent-in-place packet/buffer, for skfree(). */ 174 unsigned char *tx_bounce[TX_RING_SIZE]; 175 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 176 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 177 ushort skb_cur; 178 ushort skb_dirty; 179 180 /* CPM dual port RAM relative addresses */ 181 dma_addr_t bd_dma; 182 /* Address of Rx and Tx buffers */ 183 struct bufdesc *rx_bd_base; 184 struct bufdesc *tx_bd_base; 185 /* The next free ring entry */ 186 struct bufdesc *cur_rx, *cur_tx; 187 /* The ring entries to be free()ed */ 188 struct bufdesc *dirty_tx; 189 190 uint tx_full; 191 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */ 192 spinlock_t hw_lock; 193 194 struct platform_device *pdev; 195 196 int opened; 197 198 /* Phylib and MDIO interface */ 199 struct mii_bus *mii_bus; 200 struct phy_device *phy_dev; 201 int mii_timeout; 202 uint phy_speed; 203 phy_interface_t phy_interface; 204 int link; 205 int full_duplex; 206 struct completion mdio_done; 207}; 208 209/* FEC MII MMFR bits definition */ 210#define FEC_MMFR_ST (1 << 30) 211#define FEC_MMFR_OP_READ (2 << 28) 212#define FEC_MMFR_OP_WRITE (1 << 28) 213#define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 214#define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 215#define FEC_MMFR_TA (2 << 16) 216#define FEC_MMFR_DATA(v) (v & 0xffff) 217 218#define FEC_MII_TIMEOUT 1000 /* us */ 219 220/* Transmitter timeout */ 221#define TX_TIMEOUT (2 * HZ) 222 223static void *swap_buffer(void *bufaddr, int len) 224{ 225 int i; 226 unsigned int *buf = bufaddr; 227 228 for (i = 0; i < (len + 3) / 4; i++, buf++) 229 *buf = cpu_to_be32(*buf); 230 231 return bufaddr; 232} 233 234static netdev_tx_t 235fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 236{ 237 struct fec_enet_private *fep = netdev_priv(ndev); 238 const struct platform_device_id *id_entry = 239 platform_get_device_id(fep->pdev); 240 struct bufdesc *bdp; 241 void *bufaddr; 242 unsigned short status; 243 unsigned long flags; 244 245 if (!fep->link) { 246 /* Link is down or autonegotiation is in progress. */ 247 return NETDEV_TX_BUSY; 248 } 249 250 spin_lock_irqsave(&fep->hw_lock, flags); 251 /* Fill in a Tx ring entry */ 252 bdp = fep->cur_tx; 253 254 status = bdp->cbd_sc; 255 256 if (status & BD_ENET_TX_READY) { 257 /* Ooops. All transmit buffers are full. Bail out. 258 * This should not happen, since ndev->tbusy should be set. 259 */ 260 printk("%s: tx queue full!.\n", ndev->name); 261 spin_unlock_irqrestore(&fep->hw_lock, flags); 262 return NETDEV_TX_BUSY; 263 } 264 265 /* Clear all of the status flags */ 266 status &= ~BD_ENET_TX_STATS; 267 268 /* Set buffer length and buffer pointer */ 269 bufaddr = skb->data; 270 bdp->cbd_datlen = skb->len; 271 272 /* 273 * On some FEC implementations data must be aligned on 274 * 4-byte boundaries. Use bounce buffers to copy data 275 * and get it aligned. Ugh. 276 */ 277 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) { 278 unsigned int index; 279 index = bdp - fep->tx_bd_base; 280 memcpy(fep->tx_bounce[index], skb->data, skb->len); 281 bufaddr = fep->tx_bounce[index]; 282 } 283 284 /* 285 * Some design made an incorrect assumption on endian mode of 286 * the system that it's running on. As the result, driver has to 287 * swap every frame going to and coming from the controller. 288 */ 289 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) 290 swap_buffer(bufaddr, skb->len); 291 292 /* Save skb pointer */ 293 fep->tx_skbuff[fep->skb_cur] = skb; 294 295 ndev->stats.tx_bytes += skb->len; 296 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK; 297 298 /* Push the data cache so the CPM does not get stale memory 299 * data. 300 */ 301 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr, 302 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE); 303 304 /* Send it on its way. Tell FEC it's ready, interrupt when done, 305 * it's the last BD of the frame, and to put the CRC on the end. 306 */ 307 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR 308 | BD_ENET_TX_LAST | BD_ENET_TX_TC); 309 bdp->cbd_sc = status; 310 311 /* Trigger transmission start */ 312 writel(0, fep->hwp + FEC_X_DES_ACTIVE); 313 314 /* If this was the last BD in the ring, start at the beginning again. */ 315 if (status & BD_ENET_TX_WRAP) 316 bdp = fep->tx_bd_base; 317 else 318 bdp++; 319 320 if (bdp == fep->dirty_tx) { 321 fep->tx_full = 1; 322 netif_stop_queue(ndev); 323 } 324 325 fep->cur_tx = bdp; 326 327 spin_unlock_irqrestore(&fep->hw_lock, flags); 328 329 return NETDEV_TX_OK; 330} 331 332/* This function is called to start or restart the FEC during a link 333 * change. This only happens when switching between half and full 334 * duplex. 335 */ 336static void 337fec_restart(struct net_device *ndev, int duplex) 338{ 339 struct fec_enet_private *fep = netdev_priv(ndev); 340 const struct platform_device_id *id_entry = 341 platform_get_device_id(fep->pdev); 342 int i; 343 u32 temp_mac[2]; 344 u32 rcntl = OPT_FRAME_SIZE | 0x04; 345 346 /* Whack a reset. We should wait for this. */ 347 writel(1, fep->hwp + FEC_ECNTRL); 348 udelay(10); 349 350 /* 351 * enet-mac reset will reset mac address registers too, 352 * so need to reconfigure it. 353 */ 354 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) { 355 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 356 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW); 357 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH); 358 } 359 360 /* Clear any outstanding interrupt. */ 361 writel(0xffc00000, fep->hwp + FEC_IEVENT); 362 363 /* Reset all multicast. */ 364 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 365 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 366#ifndef CONFIG_M5272 367 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 368 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 369#endif 370 371 /* Set maximum receive buffer size. */ 372 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE); 373 374 /* Set receive and transmit descriptor base. */ 375 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START); 376 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE, 377 fep->hwp + FEC_X_DES_START); 378 379 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; 380 fep->cur_rx = fep->rx_bd_base; 381 382 /* Reset SKB transmit buffers. */ 383 fep->skb_cur = fep->skb_dirty = 0; 384 for (i = 0; i <= TX_RING_MOD_MASK; i++) { 385 if (fep->tx_skbuff[i]) { 386 dev_kfree_skb_any(fep->tx_skbuff[i]); 387 fep->tx_skbuff[i] = NULL; 388 } 389 } 390 391 /* Enable MII mode */ 392 if (duplex) { 393 /* FD enable */ 394 writel(0x04, fep->hwp + FEC_X_CNTRL); 395 } else { 396 /* No Rcv on Xmit */ 397 rcntl |= 0x02; 398 writel(0x0, fep->hwp + FEC_X_CNTRL); 399 } 400 401 fep->full_duplex = duplex; 402 403 /* Set MII speed */ 404 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 405 406 /* 407 * The phy interface and speed need to get configured 408 * differently on enet-mac. 409 */ 410 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) { 411 /* Enable flow control and length check */ 412 rcntl |= 0x40000000 | 0x00000020; 413 414 /* MII or RMII */ 415 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 416 rcntl |= (1 << 8); 417 else 418 rcntl &= ~(1 << 8); 419 420 /* 10M or 100M */ 421 if (fep->phy_dev && fep->phy_dev->speed == SPEED_100) 422 rcntl &= ~(1 << 9); 423 else 424 rcntl |= (1 << 9); 425 426 } else { 427#ifdef FEC_MIIGSK_ENR 428 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) { 429 /* disable the gasket and wait */ 430 writel(0, fep->hwp + FEC_MIIGSK_ENR); 431 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 432 udelay(1); 433 434 /* 435 * configure the gasket: 436 * RMII, 50 MHz, no loopback, no echo 437 */ 438 writel(1, fep->hwp + FEC_MIIGSK_CFGR); 439 440 /* re-enable the gasket */ 441 writel(2, fep->hwp + FEC_MIIGSK_ENR); 442 } 443#endif 444 } 445 writel(rcntl, fep->hwp + FEC_R_CNTRL); 446 447 /* And last, enable the transmit and receive processing */ 448 writel(2, fep->hwp + FEC_ECNTRL); 449 writel(0, fep->hwp + FEC_R_DES_ACTIVE); 450 451 /* Enable interrupts we wish to service */ 452 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 453} 454 455static void 456fec_stop(struct net_device *ndev) 457{ 458 struct fec_enet_private *fep = netdev_priv(ndev); 459 460 /* We cannot expect a graceful transmit stop without link !!! */ 461 if (fep->link) { 462 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 463 udelay(10); 464 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 465 printk("fec_stop : Graceful transmit stop did not complete !\n"); 466 } 467 468 /* Whack a reset. We should wait for this. */ 469 writel(1, fep->hwp + FEC_ECNTRL); 470 udelay(10); 471 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 472 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 473} 474 475 476static void 477fec_timeout(struct net_device *ndev) 478{ 479 struct fec_enet_private *fep = netdev_priv(ndev); 480 481 ndev->stats.tx_errors++; 482 483 fec_restart(ndev, fep->full_duplex); 484 netif_wake_queue(ndev); 485} 486 487static void 488fec_enet_tx(struct net_device *ndev) 489{ 490 struct fec_enet_private *fep; 491 struct bufdesc *bdp; 492 unsigned short status; 493 struct sk_buff *skb; 494 495 fep = netdev_priv(ndev); 496 spin_lock(&fep->hw_lock); 497 bdp = fep->dirty_tx; 498 499 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) { 500 if (bdp == fep->cur_tx && fep->tx_full == 0) 501 break; 502 503 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, 504 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE); 505 bdp->cbd_bufaddr = 0; 506 507 skb = fep->tx_skbuff[fep->skb_dirty]; 508 /* Check for errors. */ 509 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 510 BD_ENET_TX_RL | BD_ENET_TX_UN | 511 BD_ENET_TX_CSL)) { 512 ndev->stats.tx_errors++; 513 if (status & BD_ENET_TX_HB) /* No heartbeat */ 514 ndev->stats.tx_heartbeat_errors++; 515 if (status & BD_ENET_TX_LC) /* Late collision */ 516 ndev->stats.tx_window_errors++; 517 if (status & BD_ENET_TX_RL) /* Retrans limit */ 518 ndev->stats.tx_aborted_errors++; 519 if (status & BD_ENET_TX_UN) /* Underrun */ 520 ndev->stats.tx_fifo_errors++; 521 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 522 ndev->stats.tx_carrier_errors++; 523 } else { 524 ndev->stats.tx_packets++; 525 } 526 527 if (status & BD_ENET_TX_READY) 528 printk("HEY! Enet xmit interrupt and TX_READY.\n"); 529 530 /* Deferred means some collisions occurred during transmit, 531 * but we eventually sent the packet OK. 532 */ 533 if (status & BD_ENET_TX_DEF) 534 ndev->stats.collisions++; 535 536 /* Free the sk buffer associated with this last transmit */ 537 dev_kfree_skb_any(skb); 538 fep->tx_skbuff[fep->skb_dirty] = NULL; 539 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK; 540 541 /* Update pointer to next buffer descriptor to be transmitted */ 542 if (status & BD_ENET_TX_WRAP) 543 bdp = fep->tx_bd_base; 544 else 545 bdp++; 546 547 /* Since we have freed up a buffer, the ring is no longer full 548 */ 549 if (fep->tx_full) { 550 fep->tx_full = 0; 551 if (netif_queue_stopped(ndev)) 552 netif_wake_queue(ndev); 553 } 554 } 555 fep->dirty_tx = bdp; 556 spin_unlock(&fep->hw_lock); 557} 558 559 560/* During a receive, the cur_rx points to the current incoming buffer. 561 * When we update through the ring, if the next incoming buffer has 562 * not been given to the system, we just set the empty indicator, 563 * effectively tossing the packet. 564 */ 565static void 566fec_enet_rx(struct net_device *ndev) 567{ 568 struct fec_enet_private *fep = netdev_priv(ndev); 569 const struct platform_device_id *id_entry = 570 platform_get_device_id(fep->pdev); 571 struct bufdesc *bdp; 572 unsigned short status; 573 struct sk_buff *skb; 574 ushort pkt_len; 575 __u8 *data; 576 577#ifdef CONFIG_M532x 578 flush_cache_all(); 579#endif 580 581 spin_lock(&fep->hw_lock); 582 583 /* First, grab all of the stats for the incoming packet. 584 * These get messed up if we get called due to a busy condition. 585 */ 586 bdp = fep->cur_rx; 587 588 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) { 589 590 /* Since we have allocated space to hold a complete frame, 591 * the last indicator should be set. 592 */ 593 if ((status & BD_ENET_RX_LAST) == 0) 594 printk("FEC ENET: rcv is not +last\n"); 595 596 if (!fep->opened) 597 goto rx_processing_done; 598 599 /* Check for errors. */ 600 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 601 BD_ENET_RX_CR | BD_ENET_RX_OV)) { 602 ndev->stats.rx_errors++; 603 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { 604 /* Frame too long or too short. */ 605 ndev->stats.rx_length_errors++; 606 } 607 if (status & BD_ENET_RX_NO) /* Frame alignment */ 608 ndev->stats.rx_frame_errors++; 609 if (status & BD_ENET_RX_CR) /* CRC Error */ 610 ndev->stats.rx_crc_errors++; 611 if (status & BD_ENET_RX_OV) /* FIFO overrun */ 612 ndev->stats.rx_fifo_errors++; 613 } 614 615 /* Report late collisions as a frame error. 616 * On this error, the BD is closed, but we don't know what we 617 * have in the buffer. So, just drop this frame on the floor. 618 */ 619 if (status & BD_ENET_RX_CL) { 620 ndev->stats.rx_errors++; 621 ndev->stats.rx_frame_errors++; 622 goto rx_processing_done; 623 } 624 625 /* Process the incoming frame. */ 626 ndev->stats.rx_packets++; 627 pkt_len = bdp->cbd_datlen; 628 ndev->stats.rx_bytes += pkt_len; 629 data = (__u8*)__va(bdp->cbd_bufaddr); 630 631 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, 632 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE); 633 634 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) 635 swap_buffer(data, pkt_len); 636 637 /* This does 16 byte alignment, exactly what we need. 638 * The packet length includes FCS, but we don't want to 639 * include that when passing upstream as it messes up 640 * bridging applications. 641 */ 642 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN); 643 644 if (unlikely(!skb)) { 645 printk("%s: Memory squeeze, dropping packet.\n", 646 ndev->name); 647 ndev->stats.rx_dropped++; 648 } else { 649 skb_reserve(skb, NET_IP_ALIGN); 650 skb_put(skb, pkt_len - 4); /* Make room */ 651 skb_copy_to_linear_data(skb, data, pkt_len - 4); 652 skb->protocol = eth_type_trans(skb, ndev); 653 netif_rx(skb); 654 } 655 656 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data, 657 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE); 658rx_processing_done: 659 /* Clear the status flags for this buffer */ 660 status &= ~BD_ENET_RX_STATS; 661 662 /* Mark the buffer empty */ 663 status |= BD_ENET_RX_EMPTY; 664 bdp->cbd_sc = status; 665 666 /* Update BD pointer to next entry */ 667 if (status & BD_ENET_RX_WRAP) 668 bdp = fep->rx_bd_base; 669 else 670 bdp++; 671 /* Doing this here will keep the FEC running while we process 672 * incoming frames. On a heavily loaded network, we should be 673 * able to keep up at the expense of system resources. 674 */ 675 writel(0, fep->hwp + FEC_R_DES_ACTIVE); 676 } 677 fep->cur_rx = bdp; 678 679 spin_unlock(&fep->hw_lock); 680} 681 682static irqreturn_t 683fec_enet_interrupt(int irq, void *dev_id) 684{ 685 struct net_device *ndev = dev_id; 686 struct fec_enet_private *fep = netdev_priv(ndev); 687 uint int_events; 688 irqreturn_t ret = IRQ_NONE; 689 690 do { 691 int_events = readl(fep->hwp + FEC_IEVENT); 692 writel(int_events, fep->hwp + FEC_IEVENT); 693 694 if (int_events & FEC_ENET_RXF) { 695 ret = IRQ_HANDLED; 696 fec_enet_rx(ndev); 697 } 698 699 /* Transmit OK, or non-fatal error. Update the buffer 700 * descriptors. FEC handles all errors, we just discover 701 * them as part of the transmit process. 702 */ 703 if (int_events & FEC_ENET_TXF) { 704 ret = IRQ_HANDLED; 705 fec_enet_tx(ndev); 706 } 707 708 if (int_events & FEC_ENET_MII) { 709 ret = IRQ_HANDLED; 710 complete(&fep->mdio_done); 711 } 712 } while (int_events); 713 714 return ret; 715} 716 717 718 719/* ------------------------------------------------------------------------- */ 720static void __inline__ fec_get_mac(struct net_device *ndev) 721{ 722 struct fec_enet_private *fep = netdev_priv(ndev); 723 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 724 unsigned char *iap, tmpaddr[ETH_ALEN]; 725 726 /* 727 * try to get mac address in following order: 728 * 729 * 1) module parameter via kernel command line in form 730 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 731 */ 732 iap = macaddr; 733 734 /* 735 * 2) from flash or fuse (via platform data) 736 */ 737 if (!is_valid_ether_addr(iap)) { 738#ifdef CONFIG_M5272 739 if (FEC_FLASHMAC) 740 iap = (unsigned char *)FEC_FLASHMAC; 741#else 742 if (pdata) 743 memcpy(iap, pdata->mac, ETH_ALEN); 744#endif 745 } 746 747 /* 748 * 3) FEC mac registers set by bootloader 749 */ 750 if (!is_valid_ether_addr(iap)) { 751 *((unsigned long *) &tmpaddr[0]) = 752 be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW)); 753 *((unsigned short *) &tmpaddr[4]) = 754 be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 755 iap = &tmpaddr[0]; 756 } 757 758 memcpy(ndev->dev_addr, iap, ETH_ALEN); 759 760 /* Adjust MAC if using macaddr */ 761 if (iap == macaddr) 762 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->pdev->id; 763} 764 765/* ------------------------------------------------------------------------- */ 766 767/* 768 * Phy section 769 */ 770static void fec_enet_adjust_link(struct net_device *ndev) 771{ 772 struct fec_enet_private *fep = netdev_priv(ndev); 773 struct phy_device *phy_dev = fep->phy_dev; 774 unsigned long flags; 775 776 int status_change = 0; 777 778 spin_lock_irqsave(&fep->hw_lock, flags); 779 780 /* Prevent a state halted on mii error */ 781 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) { 782 phy_dev->state = PHY_RESUMING; 783 goto spin_unlock; 784 } 785 786 /* Duplex link change */ 787 if (phy_dev->link) { 788 if (fep->full_duplex != phy_dev->duplex) { 789 fec_restart(ndev, phy_dev->duplex); 790 status_change = 1; 791 } 792 } 793 794 /* Link on or off change */ 795 if (phy_dev->link != fep->link) { 796 fep->link = phy_dev->link; 797 if (phy_dev->link) 798 fec_restart(ndev, phy_dev->duplex); 799 else 800 fec_stop(ndev); 801 status_change = 1; 802 } 803 804spin_unlock: 805 spin_unlock_irqrestore(&fep->hw_lock, flags); 806 807 if (status_change) 808 phy_print_status(phy_dev); 809} 810 811static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 812{ 813 struct fec_enet_private *fep = bus->priv; 814 unsigned long time_left; 815 816 fep->mii_timeout = 0; 817 init_completion(&fep->mdio_done); 818 819 /* start a read op */ 820 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ | 821 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | 822 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 823 824 /* wait for end of transfer */ 825 time_left = wait_for_completion_timeout(&fep->mdio_done, 826 usecs_to_jiffies(FEC_MII_TIMEOUT)); 827 if (time_left == 0) { 828 fep->mii_timeout = 1; 829 printk(KERN_ERR "FEC: MDIO read timeout\n"); 830 return -ETIMEDOUT; 831 } 832 833 /* return value */ 834 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 835} 836 837static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 838 u16 value) 839{ 840 struct fec_enet_private *fep = bus->priv; 841 unsigned long time_left; 842 843 fep->mii_timeout = 0; 844 init_completion(&fep->mdio_done); 845 846 /* start a write op */ 847 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE | 848 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | 849 FEC_MMFR_TA | FEC_MMFR_DATA(value), 850 fep->hwp + FEC_MII_DATA); 851 852 /* wait for end of transfer */ 853 time_left = wait_for_completion_timeout(&fep->mdio_done, 854 usecs_to_jiffies(FEC_MII_TIMEOUT)); 855 if (time_left == 0) { 856 fep->mii_timeout = 1; 857 printk(KERN_ERR "FEC: MDIO write timeout\n"); 858 return -ETIMEDOUT; 859 } 860 861 return 0; 862} 863 864static int fec_enet_mdio_reset(struct mii_bus *bus) 865{ 866 return 0; 867} 868 869static int fec_enet_mii_probe(struct net_device *ndev) 870{ 871 struct fec_enet_private *fep = netdev_priv(ndev); 872 struct phy_device *phy_dev = NULL; 873 char mdio_bus_id[MII_BUS_ID_SIZE]; 874 char phy_name[MII_BUS_ID_SIZE + 3]; 875 int phy_id; 876 int dev_id = fep->pdev->id; 877 878 fep->phy_dev = NULL; 879 880 /* check for attached phy */ 881 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 882 if ((fep->mii_bus->phy_mask & (1 << phy_id))) 883 continue; 884 if (fep->mii_bus->phy_map[phy_id] == NULL) 885 continue; 886 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0) 887 continue; 888 if (dev_id--) 889 continue; 890 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 891 break; 892 } 893 894 if (phy_id >= PHY_MAX_ADDR) { 895 printk(KERN_INFO "%s: no PHY, assuming direct connection " 896 "to switch\n", ndev->name); 897 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE); 898 phy_id = 0; 899 } 900 901 snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id); 902 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0, 903 PHY_INTERFACE_MODE_MII); 904 if (IS_ERR(phy_dev)) { 905 printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name); 906 return PTR_ERR(phy_dev); 907 } 908 909 /* mask with MAC supported features */ 910 phy_dev->supported &= PHY_BASIC_FEATURES; 911 phy_dev->advertising = phy_dev->supported; 912 913 fep->phy_dev = phy_dev; 914 fep->link = 0; 915 fep->full_duplex = 0; 916 917 printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] " 918 "(mii_bus:phy_addr=%s, irq=%d)\n", ndev->name, 919 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev), 920 fep->phy_dev->irq); 921 922 return 0; 923} 924 925static int fec_enet_mii_init(struct platform_device *pdev) 926{ 927 static struct mii_bus *fec0_mii_bus; 928 struct net_device *ndev = platform_get_drvdata(pdev); 929 struct fec_enet_private *fep = netdev_priv(ndev); 930 const struct platform_device_id *id_entry = 931 platform_get_device_id(fep->pdev); 932 int err = -ENXIO, i; 933 934 /* 935 * The dual fec interfaces are not equivalent with enet-mac. 936 * Here are the differences: 937 * 938 * - fec0 supports MII & RMII modes while fec1 only supports RMII 939 * - fec0 acts as the 1588 time master while fec1 is slave 940 * - external phys can only be configured by fec0 941 * 942 * That is to say fec1 can not work independently. It only works 943 * when fec0 is working. The reason behind this design is that the 944 * second interface is added primarily for Switch mode. 945 * 946 * Because of the last point above, both phys are attached on fec0 947 * mdio interface in board design, and need to be configured by 948 * fec0 mii_bus. 949 */ 950 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && pdev->id) { 951 /* fec1 uses fec0 mii_bus */ 952 fep->mii_bus = fec0_mii_bus; 953 return 0; 954 } 955 956 fep->mii_timeout = 0; 957 958 /* 959 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed) 960 */ 961 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1; 962 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 963 964 fep->mii_bus = mdiobus_alloc(); 965 if (fep->mii_bus == NULL) { 966 err = -ENOMEM; 967 goto err_out; 968 } 969 970 fep->mii_bus->name = "fec_enet_mii_bus"; 971 fep->mii_bus->read = fec_enet_mdio_read; 972 fep->mii_bus->write = fec_enet_mdio_write; 973 fep->mii_bus->reset = fec_enet_mdio_reset; 974 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id + 1); 975 fep->mii_bus->priv = fep; 976 fep->mii_bus->parent = &pdev->dev; 977 978 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL); 979 if (!fep->mii_bus->irq) { 980 err = -ENOMEM; 981 goto err_out_free_mdiobus; 982 } 983 984 for (i = 0; i < PHY_MAX_ADDR; i++) 985 fep->mii_bus->irq[i] = PHY_POLL; 986 987 if (mdiobus_register(fep->mii_bus)) 988 goto err_out_free_mdio_irq; 989 990 /* save fec0 mii_bus */ 991 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) 992 fec0_mii_bus = fep->mii_bus; 993 994 return 0; 995 996err_out_free_mdio_irq: 997 kfree(fep->mii_bus->irq); 998err_out_free_mdiobus: 999 mdiobus_free(fep->mii_bus); 1000err_out: 1001 return err; 1002} 1003 1004static void fec_enet_mii_remove(struct fec_enet_private *fep) 1005{ 1006 if (fep->phy_dev) 1007 phy_disconnect(fep->phy_dev); 1008 mdiobus_unregister(fep->mii_bus); 1009 kfree(fep->mii_bus->irq); 1010 mdiobus_free(fep->mii_bus); 1011} 1012 1013static int fec_enet_get_settings(struct net_device *ndev, 1014 struct ethtool_cmd *cmd) 1015{ 1016 struct fec_enet_private *fep = netdev_priv(ndev); 1017 struct phy_device *phydev = fep->phy_dev; 1018 1019 if (!phydev) 1020 return -ENODEV; 1021 1022 return phy_ethtool_gset(phydev, cmd); 1023} 1024 1025static int fec_enet_set_settings(struct net_device *ndev, 1026 struct ethtool_cmd *cmd) 1027{ 1028 struct fec_enet_private *fep = netdev_priv(ndev); 1029 struct phy_device *phydev = fep->phy_dev; 1030 1031 if (!phydev) 1032 return -ENODEV; 1033 1034 return phy_ethtool_sset(phydev, cmd); 1035} 1036 1037static void fec_enet_get_drvinfo(struct net_device *ndev, 1038 struct ethtool_drvinfo *info) 1039{ 1040 struct fec_enet_private *fep = netdev_priv(ndev); 1041 1042 strcpy(info->driver, fep->pdev->dev.driver->name); 1043 strcpy(info->version, "Revision: 1.0"); 1044 strcpy(info->bus_info, dev_name(&ndev->dev)); 1045} 1046 1047static struct ethtool_ops fec_enet_ethtool_ops = { 1048 .get_settings = fec_enet_get_settings, 1049 .set_settings = fec_enet_set_settings, 1050 .get_drvinfo = fec_enet_get_drvinfo, 1051 .get_link = ethtool_op_get_link, 1052}; 1053 1054static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 1055{ 1056 struct fec_enet_private *fep = netdev_priv(ndev); 1057 struct phy_device *phydev = fep->phy_dev; 1058 1059 if (!netif_running(ndev)) 1060 return -EINVAL; 1061 1062 if (!phydev) 1063 return -ENODEV; 1064 1065 return phy_mii_ioctl(phydev, rq, cmd); 1066} 1067 1068static void fec_enet_free_buffers(struct net_device *ndev) 1069{ 1070 struct fec_enet_private *fep = netdev_priv(ndev); 1071 int i; 1072 struct sk_buff *skb; 1073 struct bufdesc *bdp; 1074 1075 bdp = fep->rx_bd_base; 1076 for (i = 0; i < RX_RING_SIZE; i++) { 1077 skb = fep->rx_skbuff[i]; 1078 1079 if (bdp->cbd_bufaddr) 1080 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, 1081 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE); 1082 if (skb) 1083 dev_kfree_skb(skb); 1084 bdp++; 1085 } 1086 1087 bdp = fep->tx_bd_base; 1088 for (i = 0; i < TX_RING_SIZE; i++) 1089 kfree(fep->tx_bounce[i]); 1090} 1091 1092static int fec_enet_alloc_buffers(struct net_device *ndev) 1093{ 1094 struct fec_enet_private *fep = netdev_priv(ndev); 1095 int i; 1096 struct sk_buff *skb; 1097 struct bufdesc *bdp; 1098 1099 bdp = fep->rx_bd_base; 1100 for (i = 0; i < RX_RING_SIZE; i++) { 1101 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE); 1102 if (!skb) { 1103 fec_enet_free_buffers(ndev); 1104 return -ENOMEM; 1105 } 1106 fep->rx_skbuff[i] = skb; 1107 1108 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data, 1109 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE); 1110 bdp->cbd_sc = BD_ENET_RX_EMPTY; 1111 bdp++; 1112 } 1113 1114 /* Set the last buffer to wrap. */ 1115 bdp--; 1116 bdp->cbd_sc |= BD_SC_WRAP; 1117 1118 bdp = fep->tx_bd_base; 1119 for (i = 0; i < TX_RING_SIZE; i++) { 1120 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 1121 1122 bdp->cbd_sc = 0; 1123 bdp->cbd_bufaddr = 0; 1124 bdp++; 1125 } 1126 1127 /* Set the last buffer to wrap. */ 1128 bdp--; 1129 bdp->cbd_sc |= BD_SC_WRAP; 1130 1131 return 0; 1132} 1133 1134static int 1135fec_enet_open(struct net_device *ndev) 1136{ 1137 struct fec_enet_private *fep = netdev_priv(ndev); 1138 int ret; 1139 1140 /* I should reset the ring buffers here, but I don't yet know 1141 * a simple way to do that. 1142 */ 1143 1144 ret = fec_enet_alloc_buffers(ndev); 1145 if (ret) 1146 return ret; 1147 1148 /* Probe and connect to PHY when open the interface */ 1149 ret = fec_enet_mii_probe(ndev); 1150 if (ret) { 1151 fec_enet_free_buffers(ndev); 1152 return ret; 1153 } 1154 phy_start(fep->phy_dev); 1155 netif_start_queue(ndev); 1156 fep->opened = 1; 1157 return 0; 1158} 1159 1160static int 1161fec_enet_close(struct net_device *ndev) 1162{ 1163 struct fec_enet_private *fep = netdev_priv(ndev); 1164 1165 /* Don't know what to do yet. */ 1166 fep->opened = 0; 1167 netif_stop_queue(ndev); 1168 fec_stop(ndev); 1169 1170 if (fep->phy_dev) { 1171 phy_stop(fep->phy_dev); 1172 phy_disconnect(fep->phy_dev); 1173 } 1174 1175 fec_enet_free_buffers(ndev); 1176 1177 return 0; 1178} 1179 1180/* Set or clear the multicast filter for this adaptor. 1181 * Skeleton taken from sunlance driver. 1182 * The CPM Ethernet implementation allows Multicast as well as individual 1183 * MAC address filtering. Some of the drivers check to make sure it is 1184 * a group multicast address, and discard those that are not. I guess I 1185 * will do the same for now, but just remove the test if you want 1186 * individual filtering as well (do the upper net layers want or support 1187 * this kind of feature?). 1188 */ 1189 1190#define HASH_BITS 6 /* #bits in hash */ 1191#define CRC32_POLY 0xEDB88320 1192 1193static void set_multicast_list(struct net_device *ndev) 1194{ 1195 struct fec_enet_private *fep = netdev_priv(ndev); 1196 struct netdev_hw_addr *ha; 1197 unsigned int i, bit, data, crc, tmp; 1198 unsigned char hash; 1199 1200 if (ndev->flags & IFF_PROMISC) { 1201 tmp = readl(fep->hwp + FEC_R_CNTRL); 1202 tmp |= 0x8; 1203 writel(tmp, fep->hwp + FEC_R_CNTRL); 1204 return; 1205 } 1206 1207 tmp = readl(fep->hwp + FEC_R_CNTRL); 1208 tmp &= ~0x8; 1209 writel(tmp, fep->hwp + FEC_R_CNTRL); 1210 1211 if (ndev->flags & IFF_ALLMULTI) { 1212 /* Catch all multicast addresses, so set the 1213 * filter to all 1's 1214 */ 1215 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 1216 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 1217 1218 return; 1219 } 1220 1221 /* Clear filter and add the addresses in hash register 1222 */ 1223 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 1224 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 1225 1226 netdev_for_each_mc_addr(ha, ndev) { 1227 /* Only support group multicast for now */ 1228 if (!(ha->addr[0] & 1)) 1229 continue; 1230 1231 /* calculate crc32 value of mac address */ 1232 crc = 0xffffffff; 1233 1234 for (i = 0; i < ndev->addr_len; i++) { 1235 data = ha->addr[i]; 1236 for (bit = 0; bit < 8; bit++, data >>= 1) { 1237 crc = (crc >> 1) ^ 1238 (((crc ^ data) & 1) ? CRC32_POLY : 0); 1239 } 1240 } 1241 1242 /* only upper 6 bits (HASH_BITS) are used 1243 * which point to specific bit in he hash registers 1244 */ 1245 hash = (crc >> (32 - HASH_BITS)) & 0x3f; 1246 1247 if (hash > 31) { 1248 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 1249 tmp |= 1 << (hash - 32); 1250 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 1251 } else { 1252 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW); 1253 tmp |= 1 << hash; 1254 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 1255 } 1256 } 1257} 1258 1259/* Set a MAC change in hardware. */ 1260static int 1261fec_set_mac_address(struct net_device *ndev, void *p) 1262{ 1263 struct fec_enet_private *fep = netdev_priv(ndev); 1264 struct sockaddr *addr = p; 1265 1266 if (!is_valid_ether_addr(addr->sa_data)) 1267 return -EADDRNOTAVAIL; 1268 1269 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 1270 1271 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 1272 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 1273 fep->hwp + FEC_ADDR_LOW); 1274 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 1275 fep->hwp + FEC_ADDR_HIGH); 1276 return 0; 1277} 1278 1279static const struct net_device_ops fec_netdev_ops = { 1280 .ndo_open = fec_enet_open, 1281 .ndo_stop = fec_enet_close, 1282 .ndo_start_xmit = fec_enet_start_xmit, 1283 .ndo_set_multicast_list = set_multicast_list, 1284 .ndo_change_mtu = eth_change_mtu, 1285 .ndo_validate_addr = eth_validate_addr, 1286 .ndo_tx_timeout = fec_timeout, 1287 .ndo_set_mac_address = fec_set_mac_address, 1288 .ndo_do_ioctl = fec_enet_ioctl, 1289}; 1290 1291 /* 1292 * XXX: We need to clean up on failure exits here. 1293 * 1294 */ 1295static int fec_enet_init(struct net_device *ndev) 1296{ 1297 struct fec_enet_private *fep = netdev_priv(ndev); 1298 struct bufdesc *cbd_base; 1299 struct bufdesc *bdp; 1300 int i; 1301 1302 /* Allocate memory for buffer descriptors. */ 1303 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma, 1304 GFP_KERNEL); 1305 if (!cbd_base) { 1306 printk("FEC: allocate descriptor memory failed?\n"); 1307 return -ENOMEM; 1308 } 1309 1310 spin_lock_init(&fep->hw_lock); 1311 1312 fep->netdev = ndev; 1313 1314 /* Get the Ethernet address */ 1315 fec_get_mac(ndev); 1316 1317 /* Set receive and transmit descriptor base. */ 1318 fep->rx_bd_base = cbd_base; 1319 fep->tx_bd_base = cbd_base + RX_RING_SIZE; 1320 1321 /* The FEC Ethernet specific entries in the device structure */ 1322 ndev->watchdog_timeo = TX_TIMEOUT; 1323 ndev->netdev_ops = &fec_netdev_ops; 1324 ndev->ethtool_ops = &fec_enet_ethtool_ops; 1325 1326 /* Initialize the receive buffer descriptors. */ 1327 bdp = fep->rx_bd_base; 1328 for (i = 0; i < RX_RING_SIZE; i++) { 1329 1330 /* Initialize the BD for every fragment in the page. */ 1331 bdp->cbd_sc = 0; 1332 bdp++; 1333 } 1334 1335 /* Set the last buffer to wrap */ 1336 bdp--; 1337 bdp->cbd_sc |= BD_SC_WRAP; 1338 1339 /* ...and the same for transmit */ 1340 bdp = fep->tx_bd_base; 1341 for (i = 0; i < TX_RING_SIZE; i++) { 1342 1343 /* Initialize the BD for every fragment in the page. */ 1344 bdp->cbd_sc = 0; 1345 bdp->cbd_bufaddr = 0; 1346 bdp++; 1347 } 1348 1349 /* Set the last buffer to wrap */ 1350 bdp--; 1351 bdp->cbd_sc |= BD_SC_WRAP; 1352 1353 fec_restart(ndev, 0); 1354 1355 return 0; 1356} 1357 1358static int __devinit 1359fec_probe(struct platform_device *pdev) 1360{ 1361 struct fec_enet_private *fep; 1362 struct fec_platform_data *pdata; 1363 struct net_device *ndev; 1364 int i, irq, ret = 0; 1365 struct resource *r; 1366 1367 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1368 if (!r) 1369 return -ENXIO; 1370 1371 r = request_mem_region(r->start, resource_size(r), pdev->name); 1372 if (!r) 1373 return -EBUSY; 1374 1375 /* Init network device */ 1376 ndev = alloc_etherdev(sizeof(struct fec_enet_private)); 1377 if (!ndev) { 1378 ret = -ENOMEM; 1379 goto failed_alloc_etherdev; 1380 } 1381 1382 SET_NETDEV_DEV(ndev, &pdev->dev); 1383 1384 /* setup board info structure */ 1385 fep = netdev_priv(ndev); 1386 1387 fep->hwp = ioremap(r->start, resource_size(r)); 1388 fep->pdev = pdev; 1389 1390 if (!fep->hwp) { 1391 ret = -ENOMEM; 1392 goto failed_ioremap; 1393 } 1394 1395 platform_set_drvdata(pdev, ndev); 1396 1397 pdata = pdev->dev.platform_data; 1398 if (pdata) 1399 fep->phy_interface = pdata->phy; 1400 1401 /* This device has up to three irqs on some platforms */ 1402 for (i = 0; i < 3; i++) { 1403 irq = platform_get_irq(pdev, i); 1404 if (i && irq < 0) 1405 break; 1406 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev); 1407 if (ret) { 1408 while (--i >= 0) { 1409 irq = platform_get_irq(pdev, i); 1410 free_irq(irq, ndev); 1411 } 1412 goto failed_irq; 1413 } 1414 } 1415 1416 fep->clk = clk_get(&pdev->dev, "fec_clk"); 1417 if (IS_ERR(fep->clk)) { 1418 ret = PTR_ERR(fep->clk); 1419 goto failed_clk; 1420 } 1421 clk_enable(fep->clk); 1422 1423 ret = fec_enet_init(ndev); 1424 if (ret) 1425 goto failed_init; 1426 1427 ret = fec_enet_mii_init(pdev); 1428 if (ret) 1429 goto failed_mii_init; 1430 1431 /* Carrier starts down, phylib will bring it up */ 1432 netif_carrier_off(ndev); 1433 1434 ret = register_netdev(ndev); 1435 if (ret) 1436 goto failed_register; 1437 1438 return 0; 1439 1440failed_register: 1441 fec_enet_mii_remove(fep); 1442failed_mii_init: 1443failed_init: 1444 clk_disable(fep->clk); 1445 clk_put(fep->clk); 1446failed_clk: 1447 for (i = 0; i < 3; i++) { 1448 irq = platform_get_irq(pdev, i); 1449 if (irq > 0) 1450 free_irq(irq, ndev); 1451 } 1452failed_irq: 1453 iounmap(fep->hwp); 1454failed_ioremap: 1455 free_netdev(ndev); 1456failed_alloc_etherdev: 1457 release_mem_region(r->start, resource_size(r)); 1458 1459 return ret; 1460} 1461 1462static int __devexit 1463fec_drv_remove(struct platform_device *pdev) 1464{ 1465 struct net_device *ndev = platform_get_drvdata(pdev); 1466 struct fec_enet_private *fep = netdev_priv(ndev); 1467 struct resource *r; 1468 1469 fec_stop(ndev); 1470 fec_enet_mii_remove(fep); 1471 clk_disable(fep->clk); 1472 clk_put(fep->clk); 1473 iounmap(fep->hwp); 1474 unregister_netdev(ndev); 1475 free_netdev(ndev); 1476 1477 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1478 BUG_ON(!r); 1479 release_mem_region(r->start, resource_size(r)); 1480 1481 platform_set_drvdata(pdev, NULL); 1482 1483 return 0; 1484} 1485 1486#ifdef CONFIG_PM 1487static int 1488fec_suspend(struct device *dev) 1489{ 1490 struct net_device *ndev = dev_get_drvdata(dev); 1491 struct fec_enet_private *fep = netdev_priv(ndev); 1492 1493 if (netif_running(ndev)) { 1494 fec_stop(ndev); 1495 netif_device_detach(ndev); 1496 } 1497 clk_disable(fep->clk); 1498 1499 return 0; 1500} 1501 1502static int 1503fec_resume(struct device *dev) 1504{ 1505 struct net_device *ndev = dev_get_drvdata(dev); 1506 struct fec_enet_private *fep = netdev_priv(ndev); 1507 1508 clk_enable(fep->clk); 1509 if (netif_running(ndev)) { 1510 fec_restart(ndev, fep->full_duplex); 1511 netif_device_attach(ndev); 1512 } 1513 1514 return 0; 1515} 1516 1517static const struct dev_pm_ops fec_pm_ops = { 1518 .suspend = fec_suspend, 1519 .resume = fec_resume, 1520 .freeze = fec_suspend, 1521 .thaw = fec_resume, 1522 .poweroff = fec_suspend, 1523 .restore = fec_resume, 1524}; 1525#endif 1526 1527static struct platform_driver fec_driver = { 1528 .driver = { 1529 .name = DRIVER_NAME, 1530 .owner = THIS_MODULE, 1531#ifdef CONFIG_PM 1532 .pm = &fec_pm_ops, 1533#endif 1534 }, 1535 .id_table = fec_devtype, 1536 .probe = fec_probe, 1537 .remove = __devexit_p(fec_drv_remove), 1538}; 1539 1540static int __init 1541fec_enet_module_init(void) 1542{ 1543 printk(KERN_INFO "FEC Ethernet Driver\n"); 1544 1545 return platform_driver_register(&fec_driver); 1546} 1547 1548static void __exit 1549fec_enet_cleanup(void) 1550{ 1551 platform_driver_unregister(&fec_driver); 1552} 1553 1554module_exit(fec_enet_cleanup); 1555module_init(fec_enet_module_init); 1556 1557MODULE_LICENSE("GPL");