at v3.0-rc3 23 kB view raw
1/* 2 * Copyright (C) 2010 IBM Corporation 3 * 4 * Author: 5 * Mimi Zohar <zohar@us.ibm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation, version 2 of the License. 10 * 11 * See Documentation/security/keys-trusted-encrypted.txt 12 */ 13 14#include <linux/uaccess.h> 15#include <linux/module.h> 16#include <linux/init.h> 17#include <linux/slab.h> 18#include <linux/parser.h> 19#include <linux/string.h> 20#include <linux/err.h> 21#include <keys/user-type.h> 22#include <keys/trusted-type.h> 23#include <keys/encrypted-type.h> 24#include <linux/key-type.h> 25#include <linux/random.h> 26#include <linux/rcupdate.h> 27#include <linux/scatterlist.h> 28#include <linux/crypto.h> 29#include <crypto/hash.h> 30#include <crypto/sha.h> 31#include <crypto/aes.h> 32 33#include "encrypted.h" 34 35static const char KEY_TRUSTED_PREFIX[] = "trusted:"; 36static const char KEY_USER_PREFIX[] = "user:"; 37static const char hash_alg[] = "sha256"; 38static const char hmac_alg[] = "hmac(sha256)"; 39static const char blkcipher_alg[] = "cbc(aes)"; 40static unsigned int ivsize; 41static int blksize; 42 43#define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1) 44#define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1) 45#define HASH_SIZE SHA256_DIGEST_SIZE 46#define MAX_DATA_SIZE 4096 47#define MIN_DATA_SIZE 20 48 49struct sdesc { 50 struct shash_desc shash; 51 char ctx[]; 52}; 53 54static struct crypto_shash *hashalg; 55static struct crypto_shash *hmacalg; 56 57enum { 58 Opt_err = -1, Opt_new, Opt_load, Opt_update 59}; 60 61static const match_table_t key_tokens = { 62 {Opt_new, "new"}, 63 {Opt_load, "load"}, 64 {Opt_update, "update"}, 65 {Opt_err, NULL} 66}; 67 68static int aes_get_sizes(void) 69{ 70 struct crypto_blkcipher *tfm; 71 72 tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); 73 if (IS_ERR(tfm)) { 74 pr_err("encrypted_key: failed to alloc_cipher (%ld)\n", 75 PTR_ERR(tfm)); 76 return PTR_ERR(tfm); 77 } 78 ivsize = crypto_blkcipher_ivsize(tfm); 79 blksize = crypto_blkcipher_blocksize(tfm); 80 crypto_free_blkcipher(tfm); 81 return 0; 82} 83 84/* 85 * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key 86 * 87 * key-type:= "trusted:" | "encrypted:" 88 * desc:= master-key description 89 * 90 * Verify that 'key-type' is valid and that 'desc' exists. On key update, 91 * only the master key description is permitted to change, not the key-type. 92 * The key-type remains constant. 93 * 94 * On success returns 0, otherwise -EINVAL. 95 */ 96static int valid_master_desc(const char *new_desc, const char *orig_desc) 97{ 98 if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) { 99 if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN) 100 goto out; 101 if (orig_desc) 102 if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN)) 103 goto out; 104 } else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) { 105 if (strlen(new_desc) == KEY_USER_PREFIX_LEN) 106 goto out; 107 if (orig_desc) 108 if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN)) 109 goto out; 110 } else 111 goto out; 112 return 0; 113out: 114 return -EINVAL; 115} 116 117/* 118 * datablob_parse - parse the keyctl data 119 * 120 * datablob format: 121 * new <master-key name> <decrypted data length> 122 * load <master-key name> <decrypted data length> <encrypted iv + data> 123 * update <new-master-key name> 124 * 125 * Tokenizes a copy of the keyctl data, returning a pointer to each token, 126 * which is null terminated. 127 * 128 * On success returns 0, otherwise -EINVAL. 129 */ 130static int datablob_parse(char *datablob, char **master_desc, 131 char **decrypted_datalen, char **hex_encoded_iv) 132{ 133 substring_t args[MAX_OPT_ARGS]; 134 int ret = -EINVAL; 135 int key_cmd; 136 char *p; 137 138 p = strsep(&datablob, " \t"); 139 if (!p) 140 return ret; 141 key_cmd = match_token(p, key_tokens, args); 142 143 *master_desc = strsep(&datablob, " \t"); 144 if (!*master_desc) 145 goto out; 146 147 if (valid_master_desc(*master_desc, NULL) < 0) 148 goto out; 149 150 if (decrypted_datalen) { 151 *decrypted_datalen = strsep(&datablob, " \t"); 152 if (!*decrypted_datalen) 153 goto out; 154 } 155 156 switch (key_cmd) { 157 case Opt_new: 158 if (!decrypted_datalen) 159 break; 160 ret = 0; 161 break; 162 case Opt_load: 163 if (!decrypted_datalen) 164 break; 165 *hex_encoded_iv = strsep(&datablob, " \t"); 166 if (!*hex_encoded_iv) 167 break; 168 ret = 0; 169 break; 170 case Opt_update: 171 if (decrypted_datalen) 172 break; 173 ret = 0; 174 break; 175 case Opt_err: 176 break; 177 } 178out: 179 return ret; 180} 181 182/* 183 * datablob_format - format as an ascii string, before copying to userspace 184 */ 185static char *datablob_format(struct encrypted_key_payload *epayload, 186 size_t asciiblob_len) 187{ 188 char *ascii_buf, *bufp; 189 u8 *iv = epayload->iv; 190 int len; 191 int i; 192 193 ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL); 194 if (!ascii_buf) 195 goto out; 196 197 ascii_buf[asciiblob_len] = '\0'; 198 199 /* copy datablob master_desc and datalen strings */ 200 len = sprintf(ascii_buf, "%s %s ", epayload->master_desc, 201 epayload->datalen); 202 203 /* convert the hex encoded iv, encrypted-data and HMAC to ascii */ 204 bufp = &ascii_buf[len]; 205 for (i = 0; i < (asciiblob_len - len) / 2; i++) 206 bufp = pack_hex_byte(bufp, iv[i]); 207out: 208 return ascii_buf; 209} 210 211/* 212 * request_trusted_key - request the trusted key 213 * 214 * Trusted keys are sealed to PCRs and other metadata. Although userspace 215 * manages both trusted/encrypted key-types, like the encrypted key type 216 * data, trusted key type data is not visible decrypted from userspace. 217 */ 218static struct key *request_trusted_key(const char *trusted_desc, 219 u8 **master_key, size_t *master_keylen) 220{ 221 struct trusted_key_payload *tpayload; 222 struct key *tkey; 223 224 tkey = request_key(&key_type_trusted, trusted_desc, NULL); 225 if (IS_ERR(tkey)) 226 goto error; 227 228 down_read(&tkey->sem); 229 tpayload = rcu_dereference(tkey->payload.data); 230 *master_key = tpayload->key; 231 *master_keylen = tpayload->key_len; 232error: 233 return tkey; 234} 235 236/* 237 * request_user_key - request the user key 238 * 239 * Use a user provided key to encrypt/decrypt an encrypted-key. 240 */ 241static struct key *request_user_key(const char *master_desc, u8 **master_key, 242 size_t *master_keylen) 243{ 244 struct user_key_payload *upayload; 245 struct key *ukey; 246 247 ukey = request_key(&key_type_user, master_desc, NULL); 248 if (IS_ERR(ukey)) 249 goto error; 250 251 down_read(&ukey->sem); 252 upayload = rcu_dereference(ukey->payload.data); 253 *master_key = upayload->data; 254 *master_keylen = upayload->datalen; 255error: 256 return ukey; 257} 258 259static struct sdesc *alloc_sdesc(struct crypto_shash *alg) 260{ 261 struct sdesc *sdesc; 262 int size; 263 264 size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); 265 sdesc = kmalloc(size, GFP_KERNEL); 266 if (!sdesc) 267 return ERR_PTR(-ENOMEM); 268 sdesc->shash.tfm = alg; 269 sdesc->shash.flags = 0x0; 270 return sdesc; 271} 272 273static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen, 274 const u8 *buf, unsigned int buflen) 275{ 276 struct sdesc *sdesc; 277 int ret; 278 279 sdesc = alloc_sdesc(hmacalg); 280 if (IS_ERR(sdesc)) { 281 pr_info("encrypted_key: can't alloc %s\n", hmac_alg); 282 return PTR_ERR(sdesc); 283 } 284 285 ret = crypto_shash_setkey(hmacalg, key, keylen); 286 if (!ret) 287 ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest); 288 kfree(sdesc); 289 return ret; 290} 291 292static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen) 293{ 294 struct sdesc *sdesc; 295 int ret; 296 297 sdesc = alloc_sdesc(hashalg); 298 if (IS_ERR(sdesc)) { 299 pr_info("encrypted_key: can't alloc %s\n", hash_alg); 300 return PTR_ERR(sdesc); 301 } 302 303 ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest); 304 kfree(sdesc); 305 return ret; 306} 307 308enum derived_key_type { ENC_KEY, AUTH_KEY }; 309 310/* Derive authentication/encryption key from trusted key */ 311static int get_derived_key(u8 *derived_key, enum derived_key_type key_type, 312 const u8 *master_key, size_t master_keylen) 313{ 314 u8 *derived_buf; 315 unsigned int derived_buf_len; 316 int ret; 317 318 derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen; 319 if (derived_buf_len < HASH_SIZE) 320 derived_buf_len = HASH_SIZE; 321 322 derived_buf = kzalloc(derived_buf_len, GFP_KERNEL); 323 if (!derived_buf) { 324 pr_err("encrypted_key: out of memory\n"); 325 return -ENOMEM; 326 } 327 if (key_type) 328 strcpy(derived_buf, "AUTH_KEY"); 329 else 330 strcpy(derived_buf, "ENC_KEY"); 331 332 memcpy(derived_buf + strlen(derived_buf) + 1, master_key, 333 master_keylen); 334 ret = calc_hash(derived_key, derived_buf, derived_buf_len); 335 kfree(derived_buf); 336 return ret; 337} 338 339static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key, 340 unsigned int key_len, const u8 *iv, 341 unsigned int ivsize) 342{ 343 int ret; 344 345 desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); 346 if (IS_ERR(desc->tfm)) { 347 pr_err("encrypted_key: failed to load %s transform (%ld)\n", 348 blkcipher_alg, PTR_ERR(desc->tfm)); 349 return PTR_ERR(desc->tfm); 350 } 351 desc->flags = 0; 352 353 ret = crypto_blkcipher_setkey(desc->tfm, key, key_len); 354 if (ret < 0) { 355 pr_err("encrypted_key: failed to setkey (%d)\n", ret); 356 crypto_free_blkcipher(desc->tfm); 357 return ret; 358 } 359 crypto_blkcipher_set_iv(desc->tfm, iv, ivsize); 360 return 0; 361} 362 363static struct key *request_master_key(struct encrypted_key_payload *epayload, 364 u8 **master_key, size_t *master_keylen) 365{ 366 struct key *mkey = NULL; 367 368 if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX, 369 KEY_TRUSTED_PREFIX_LEN)) { 370 mkey = request_trusted_key(epayload->master_desc + 371 KEY_TRUSTED_PREFIX_LEN, 372 master_key, master_keylen); 373 } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX, 374 KEY_USER_PREFIX_LEN)) { 375 mkey = request_user_key(epayload->master_desc + 376 KEY_USER_PREFIX_LEN, 377 master_key, master_keylen); 378 } else 379 goto out; 380 381 if (IS_ERR(mkey)) 382 pr_info("encrypted_key: key %s not found", 383 epayload->master_desc); 384 if (mkey) 385 dump_master_key(*master_key, *master_keylen); 386out: 387 return mkey; 388} 389 390/* Before returning data to userspace, encrypt decrypted data. */ 391static int derived_key_encrypt(struct encrypted_key_payload *epayload, 392 const u8 *derived_key, 393 unsigned int derived_keylen) 394{ 395 struct scatterlist sg_in[2]; 396 struct scatterlist sg_out[1]; 397 struct blkcipher_desc desc; 398 unsigned int encrypted_datalen; 399 unsigned int padlen; 400 char pad[16]; 401 int ret; 402 403 encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); 404 padlen = encrypted_datalen - epayload->decrypted_datalen; 405 406 ret = init_blkcipher_desc(&desc, derived_key, derived_keylen, 407 epayload->iv, ivsize); 408 if (ret < 0) 409 goto out; 410 dump_decrypted_data(epayload); 411 412 memset(pad, 0, sizeof pad); 413 sg_init_table(sg_in, 2); 414 sg_set_buf(&sg_in[0], epayload->decrypted_data, 415 epayload->decrypted_datalen); 416 sg_set_buf(&sg_in[1], pad, padlen); 417 418 sg_init_table(sg_out, 1); 419 sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen); 420 421 ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen); 422 crypto_free_blkcipher(desc.tfm); 423 if (ret < 0) 424 pr_err("encrypted_key: failed to encrypt (%d)\n", ret); 425 else 426 dump_encrypted_data(epayload, encrypted_datalen); 427out: 428 return ret; 429} 430 431static int datablob_hmac_append(struct encrypted_key_payload *epayload, 432 const u8 *master_key, size_t master_keylen) 433{ 434 u8 derived_key[HASH_SIZE]; 435 u8 *digest; 436 int ret; 437 438 ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); 439 if (ret < 0) 440 goto out; 441 442 digest = epayload->master_desc + epayload->datablob_len; 443 ret = calc_hmac(digest, derived_key, sizeof derived_key, 444 epayload->master_desc, epayload->datablob_len); 445 if (!ret) 446 dump_hmac(NULL, digest, HASH_SIZE); 447out: 448 return ret; 449} 450 451/* verify HMAC before decrypting encrypted key */ 452static int datablob_hmac_verify(struct encrypted_key_payload *epayload, 453 const u8 *master_key, size_t master_keylen) 454{ 455 u8 derived_key[HASH_SIZE]; 456 u8 digest[HASH_SIZE]; 457 int ret; 458 459 ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); 460 if (ret < 0) 461 goto out; 462 463 ret = calc_hmac(digest, derived_key, sizeof derived_key, 464 epayload->master_desc, epayload->datablob_len); 465 if (ret < 0) 466 goto out; 467 ret = memcmp(digest, epayload->master_desc + epayload->datablob_len, 468 sizeof digest); 469 if (ret) { 470 ret = -EINVAL; 471 dump_hmac("datablob", 472 epayload->master_desc + epayload->datablob_len, 473 HASH_SIZE); 474 dump_hmac("calc", digest, HASH_SIZE); 475 } 476out: 477 return ret; 478} 479 480static int derived_key_decrypt(struct encrypted_key_payload *epayload, 481 const u8 *derived_key, 482 unsigned int derived_keylen) 483{ 484 struct scatterlist sg_in[1]; 485 struct scatterlist sg_out[2]; 486 struct blkcipher_desc desc; 487 unsigned int encrypted_datalen; 488 char pad[16]; 489 int ret; 490 491 encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); 492 ret = init_blkcipher_desc(&desc, derived_key, derived_keylen, 493 epayload->iv, ivsize); 494 if (ret < 0) 495 goto out; 496 dump_encrypted_data(epayload, encrypted_datalen); 497 498 memset(pad, 0, sizeof pad); 499 sg_init_table(sg_in, 1); 500 sg_init_table(sg_out, 2); 501 sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen); 502 sg_set_buf(&sg_out[0], epayload->decrypted_data, 503 epayload->decrypted_datalen); 504 sg_set_buf(&sg_out[1], pad, sizeof pad); 505 506 ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen); 507 crypto_free_blkcipher(desc.tfm); 508 if (ret < 0) 509 goto out; 510 dump_decrypted_data(epayload); 511out: 512 return ret; 513} 514 515/* Allocate memory for decrypted key and datablob. */ 516static struct encrypted_key_payload *encrypted_key_alloc(struct key *key, 517 const char *master_desc, 518 const char *datalen) 519{ 520 struct encrypted_key_payload *epayload = NULL; 521 unsigned short datablob_len; 522 unsigned short decrypted_datalen; 523 unsigned int encrypted_datalen; 524 long dlen; 525 int ret; 526 527 ret = strict_strtol(datalen, 10, &dlen); 528 if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE) 529 return ERR_PTR(-EINVAL); 530 531 decrypted_datalen = dlen; 532 encrypted_datalen = roundup(decrypted_datalen, blksize); 533 534 datablob_len = strlen(master_desc) + 1 + strlen(datalen) + 1 535 + ivsize + 1 + encrypted_datalen; 536 537 ret = key_payload_reserve(key, decrypted_datalen + datablob_len 538 + HASH_SIZE + 1); 539 if (ret < 0) 540 return ERR_PTR(ret); 541 542 epayload = kzalloc(sizeof(*epayload) + decrypted_datalen + 543 datablob_len + HASH_SIZE + 1, GFP_KERNEL); 544 if (!epayload) 545 return ERR_PTR(-ENOMEM); 546 547 epayload->decrypted_datalen = decrypted_datalen; 548 epayload->datablob_len = datablob_len; 549 return epayload; 550} 551 552static int encrypted_key_decrypt(struct encrypted_key_payload *epayload, 553 const char *hex_encoded_iv) 554{ 555 struct key *mkey; 556 u8 derived_key[HASH_SIZE]; 557 u8 *master_key; 558 u8 *hmac; 559 const char *hex_encoded_data; 560 unsigned int encrypted_datalen; 561 size_t master_keylen; 562 size_t asciilen; 563 int ret; 564 565 encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); 566 asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2; 567 if (strlen(hex_encoded_iv) != asciilen) 568 return -EINVAL; 569 570 hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2; 571 hex2bin(epayload->iv, hex_encoded_iv, ivsize); 572 hex2bin(epayload->encrypted_data, hex_encoded_data, encrypted_datalen); 573 574 hmac = epayload->master_desc + epayload->datablob_len; 575 hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2), HASH_SIZE); 576 577 mkey = request_master_key(epayload, &master_key, &master_keylen); 578 if (IS_ERR(mkey)) 579 return PTR_ERR(mkey); 580 581 ret = datablob_hmac_verify(epayload, master_key, master_keylen); 582 if (ret < 0) { 583 pr_err("encrypted_key: bad hmac (%d)\n", ret); 584 goto out; 585 } 586 587 ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); 588 if (ret < 0) 589 goto out; 590 591 ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key); 592 if (ret < 0) 593 pr_err("encrypted_key: failed to decrypt key (%d)\n", ret); 594out: 595 up_read(&mkey->sem); 596 key_put(mkey); 597 return ret; 598} 599 600static void __ekey_init(struct encrypted_key_payload *epayload, 601 const char *master_desc, const char *datalen) 602{ 603 epayload->master_desc = epayload->decrypted_data 604 + epayload->decrypted_datalen; 605 epayload->datalen = epayload->master_desc + strlen(master_desc) + 1; 606 epayload->iv = epayload->datalen + strlen(datalen) + 1; 607 epayload->encrypted_data = epayload->iv + ivsize + 1; 608 609 memcpy(epayload->master_desc, master_desc, strlen(master_desc)); 610 memcpy(epayload->datalen, datalen, strlen(datalen)); 611} 612 613/* 614 * encrypted_init - initialize an encrypted key 615 * 616 * For a new key, use a random number for both the iv and data 617 * itself. For an old key, decrypt the hex encoded data. 618 */ 619static int encrypted_init(struct encrypted_key_payload *epayload, 620 const char *master_desc, const char *datalen, 621 const char *hex_encoded_iv) 622{ 623 int ret = 0; 624 625 __ekey_init(epayload, master_desc, datalen); 626 if (!hex_encoded_iv) { 627 get_random_bytes(epayload->iv, ivsize); 628 629 get_random_bytes(epayload->decrypted_data, 630 epayload->decrypted_datalen); 631 } else 632 ret = encrypted_key_decrypt(epayload, hex_encoded_iv); 633 return ret; 634} 635 636/* 637 * encrypted_instantiate - instantiate an encrypted key 638 * 639 * Decrypt an existing encrypted datablob or create a new encrypted key 640 * based on a kernel random number. 641 * 642 * On success, return 0. Otherwise return errno. 643 */ 644static int encrypted_instantiate(struct key *key, const void *data, 645 size_t datalen) 646{ 647 struct encrypted_key_payload *epayload = NULL; 648 char *datablob = NULL; 649 char *master_desc = NULL; 650 char *decrypted_datalen = NULL; 651 char *hex_encoded_iv = NULL; 652 int ret; 653 654 if (datalen <= 0 || datalen > 32767 || !data) 655 return -EINVAL; 656 657 datablob = kmalloc(datalen + 1, GFP_KERNEL); 658 if (!datablob) 659 return -ENOMEM; 660 datablob[datalen] = 0; 661 memcpy(datablob, data, datalen); 662 ret = datablob_parse(datablob, &master_desc, &decrypted_datalen, 663 &hex_encoded_iv); 664 if (ret < 0) 665 goto out; 666 667 epayload = encrypted_key_alloc(key, master_desc, decrypted_datalen); 668 if (IS_ERR(epayload)) { 669 ret = PTR_ERR(epayload); 670 goto out; 671 } 672 ret = encrypted_init(epayload, master_desc, decrypted_datalen, 673 hex_encoded_iv); 674 if (ret < 0) { 675 kfree(epayload); 676 goto out; 677 } 678 679 rcu_assign_pointer(key->payload.data, epayload); 680out: 681 kfree(datablob); 682 return ret; 683} 684 685static void encrypted_rcu_free(struct rcu_head *rcu) 686{ 687 struct encrypted_key_payload *epayload; 688 689 epayload = container_of(rcu, struct encrypted_key_payload, rcu); 690 memset(epayload->decrypted_data, 0, epayload->decrypted_datalen); 691 kfree(epayload); 692} 693 694/* 695 * encrypted_update - update the master key description 696 * 697 * Change the master key description for an existing encrypted key. 698 * The next read will return an encrypted datablob using the new 699 * master key description. 700 * 701 * On success, return 0. Otherwise return errno. 702 */ 703static int encrypted_update(struct key *key, const void *data, size_t datalen) 704{ 705 struct encrypted_key_payload *epayload = key->payload.data; 706 struct encrypted_key_payload *new_epayload; 707 char *buf; 708 char *new_master_desc = NULL; 709 int ret = 0; 710 711 if (datalen <= 0 || datalen > 32767 || !data) 712 return -EINVAL; 713 714 buf = kmalloc(datalen + 1, GFP_KERNEL); 715 if (!buf) 716 return -ENOMEM; 717 718 buf[datalen] = 0; 719 memcpy(buf, data, datalen); 720 ret = datablob_parse(buf, &new_master_desc, NULL, NULL); 721 if (ret < 0) 722 goto out; 723 724 ret = valid_master_desc(new_master_desc, epayload->master_desc); 725 if (ret < 0) 726 goto out; 727 728 new_epayload = encrypted_key_alloc(key, new_master_desc, 729 epayload->datalen); 730 if (IS_ERR(new_epayload)) { 731 ret = PTR_ERR(new_epayload); 732 goto out; 733 } 734 735 __ekey_init(new_epayload, new_master_desc, epayload->datalen); 736 737 memcpy(new_epayload->iv, epayload->iv, ivsize); 738 memcpy(new_epayload->decrypted_data, epayload->decrypted_data, 739 epayload->decrypted_datalen); 740 741 rcu_assign_pointer(key->payload.data, new_epayload); 742 call_rcu(&epayload->rcu, encrypted_rcu_free); 743out: 744 kfree(buf); 745 return ret; 746} 747 748/* 749 * encrypted_read - format and copy the encrypted data to userspace 750 * 751 * The resulting datablob format is: 752 * <master-key name> <decrypted data length> <encrypted iv> <encrypted data> 753 * 754 * On success, return to userspace the encrypted key datablob size. 755 */ 756static long encrypted_read(const struct key *key, char __user *buffer, 757 size_t buflen) 758{ 759 struct encrypted_key_payload *epayload; 760 struct key *mkey; 761 u8 *master_key; 762 size_t master_keylen; 763 char derived_key[HASH_SIZE]; 764 char *ascii_buf; 765 size_t asciiblob_len; 766 int ret; 767 768 epayload = rcu_dereference_key(key); 769 770 /* returns the hex encoded iv, encrypted-data, and hmac as ascii */ 771 asciiblob_len = epayload->datablob_len + ivsize + 1 772 + roundup(epayload->decrypted_datalen, blksize) 773 + (HASH_SIZE * 2); 774 775 if (!buffer || buflen < asciiblob_len) 776 return asciiblob_len; 777 778 mkey = request_master_key(epayload, &master_key, &master_keylen); 779 if (IS_ERR(mkey)) 780 return PTR_ERR(mkey); 781 782 ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); 783 if (ret < 0) 784 goto out; 785 786 ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key); 787 if (ret < 0) 788 goto out; 789 790 ret = datablob_hmac_append(epayload, master_key, master_keylen); 791 if (ret < 0) 792 goto out; 793 794 ascii_buf = datablob_format(epayload, asciiblob_len); 795 if (!ascii_buf) { 796 ret = -ENOMEM; 797 goto out; 798 } 799 800 up_read(&mkey->sem); 801 key_put(mkey); 802 803 if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0) 804 ret = -EFAULT; 805 kfree(ascii_buf); 806 807 return asciiblob_len; 808out: 809 up_read(&mkey->sem); 810 key_put(mkey); 811 return ret; 812} 813 814/* 815 * encrypted_destroy - before freeing the key, clear the decrypted data 816 * 817 * Before freeing the key, clear the memory containing the decrypted 818 * key data. 819 */ 820static void encrypted_destroy(struct key *key) 821{ 822 struct encrypted_key_payload *epayload = key->payload.data; 823 824 if (!epayload) 825 return; 826 827 memset(epayload->decrypted_data, 0, epayload->decrypted_datalen); 828 kfree(key->payload.data); 829} 830 831struct key_type key_type_encrypted = { 832 .name = "encrypted", 833 .instantiate = encrypted_instantiate, 834 .update = encrypted_update, 835 .match = user_match, 836 .destroy = encrypted_destroy, 837 .describe = user_describe, 838 .read = encrypted_read, 839}; 840EXPORT_SYMBOL_GPL(key_type_encrypted); 841 842static void encrypted_shash_release(void) 843{ 844 if (hashalg) 845 crypto_free_shash(hashalg); 846 if (hmacalg) 847 crypto_free_shash(hmacalg); 848} 849 850static int __init encrypted_shash_alloc(void) 851{ 852 int ret; 853 854 hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC); 855 if (IS_ERR(hmacalg)) { 856 pr_info("encrypted_key: could not allocate crypto %s\n", 857 hmac_alg); 858 return PTR_ERR(hmacalg); 859 } 860 861 hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC); 862 if (IS_ERR(hashalg)) { 863 pr_info("encrypted_key: could not allocate crypto %s\n", 864 hash_alg); 865 ret = PTR_ERR(hashalg); 866 goto hashalg_fail; 867 } 868 869 return 0; 870 871hashalg_fail: 872 crypto_free_shash(hmacalg); 873 return ret; 874} 875 876static int __init init_encrypted(void) 877{ 878 int ret; 879 880 ret = encrypted_shash_alloc(); 881 if (ret < 0) 882 return ret; 883 ret = register_key_type(&key_type_encrypted); 884 if (ret < 0) 885 goto out; 886 return aes_get_sizes(); 887out: 888 encrypted_shash_release(); 889 return ret; 890 891} 892 893static void __exit cleanup_encrypted(void) 894{ 895 encrypted_shash_release(); 896 unregister_key_type(&key_type_encrypted); 897} 898 899late_initcall(init_encrypted); 900module_exit(cleanup_encrypted); 901 902MODULE_LICENSE("GPL");