at v3.0-rc3 2692 lines 80 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4/* 5 * cloning flags: 6 */ 7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8#define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15#define CLONE_THREAD 0x00010000 /* Same thread group? */ 16#define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24/* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state) 25 and is now available for re-use. */ 26#define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 27#define CLONE_NEWIPC 0x08000000 /* New ipcs */ 28#define CLONE_NEWUSER 0x10000000 /* New user namespace */ 29#define CLONE_NEWPID 0x20000000 /* New pid namespace */ 30#define CLONE_NEWNET 0x40000000 /* New network namespace */ 31#define CLONE_IO 0x80000000 /* Clone io context */ 32 33/* 34 * Scheduling policies 35 */ 36#define SCHED_NORMAL 0 37#define SCHED_FIFO 1 38#define SCHED_RR 2 39#define SCHED_BATCH 3 40/* SCHED_ISO: reserved but not implemented yet */ 41#define SCHED_IDLE 5 42/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 43#define SCHED_RESET_ON_FORK 0x40000000 44 45#ifdef __KERNEL__ 46 47struct sched_param { 48 int sched_priority; 49}; 50 51#include <asm/param.h> /* for HZ */ 52 53#include <linux/capability.h> 54#include <linux/threads.h> 55#include <linux/kernel.h> 56#include <linux/types.h> 57#include <linux/timex.h> 58#include <linux/jiffies.h> 59#include <linux/rbtree.h> 60#include <linux/thread_info.h> 61#include <linux/cpumask.h> 62#include <linux/errno.h> 63#include <linux/nodemask.h> 64#include <linux/mm_types.h> 65 66#include <asm/system.h> 67#include <asm/page.h> 68#include <asm/ptrace.h> 69#include <asm/cputime.h> 70 71#include <linux/smp.h> 72#include <linux/sem.h> 73#include <linux/signal.h> 74#include <linux/compiler.h> 75#include <linux/completion.h> 76#include <linux/pid.h> 77#include <linux/percpu.h> 78#include <linux/topology.h> 79#include <linux/proportions.h> 80#include <linux/seccomp.h> 81#include <linux/rcupdate.h> 82#include <linux/rculist.h> 83#include <linux/rtmutex.h> 84 85#include <linux/time.h> 86#include <linux/param.h> 87#include <linux/resource.h> 88#include <linux/timer.h> 89#include <linux/hrtimer.h> 90#include <linux/task_io_accounting.h> 91#include <linux/latencytop.h> 92#include <linux/cred.h> 93 94#include <asm/processor.h> 95 96struct exec_domain; 97struct futex_pi_state; 98struct robust_list_head; 99struct bio_list; 100struct fs_struct; 101struct perf_event_context; 102struct blk_plug; 103 104/* 105 * List of flags we want to share for kernel threads, 106 * if only because they are not used by them anyway. 107 */ 108#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 109 110/* 111 * These are the constant used to fake the fixed-point load-average 112 * counting. Some notes: 113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 114 * a load-average precision of 10 bits integer + 11 bits fractional 115 * - if you want to count load-averages more often, you need more 116 * precision, or rounding will get you. With 2-second counting freq, 117 * the EXP_n values would be 1981, 2034 and 2043 if still using only 118 * 11 bit fractions. 119 */ 120extern unsigned long avenrun[]; /* Load averages */ 121extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 122 123#define FSHIFT 11 /* nr of bits of precision */ 124#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 125#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 126#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 127#define EXP_5 2014 /* 1/exp(5sec/5min) */ 128#define EXP_15 2037 /* 1/exp(5sec/15min) */ 129 130#define CALC_LOAD(load,exp,n) \ 131 load *= exp; \ 132 load += n*(FIXED_1-exp); \ 133 load >>= FSHIFT; 134 135extern unsigned long total_forks; 136extern int nr_threads; 137DECLARE_PER_CPU(unsigned long, process_counts); 138extern int nr_processes(void); 139extern unsigned long nr_running(void); 140extern unsigned long nr_uninterruptible(void); 141extern unsigned long nr_iowait(void); 142extern unsigned long nr_iowait_cpu(int cpu); 143extern unsigned long this_cpu_load(void); 144 145 146extern void calc_global_load(unsigned long ticks); 147 148extern unsigned long get_parent_ip(unsigned long addr); 149 150struct seq_file; 151struct cfs_rq; 152struct task_group; 153#ifdef CONFIG_SCHED_DEBUG 154extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 155extern void proc_sched_set_task(struct task_struct *p); 156extern void 157print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 158#else 159static inline void 160proc_sched_show_task(struct task_struct *p, struct seq_file *m) 161{ 162} 163static inline void proc_sched_set_task(struct task_struct *p) 164{ 165} 166static inline void 167print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 168{ 169} 170#endif 171 172/* 173 * Task state bitmask. NOTE! These bits are also 174 * encoded in fs/proc/array.c: get_task_state(). 175 * 176 * We have two separate sets of flags: task->state 177 * is about runnability, while task->exit_state are 178 * about the task exiting. Confusing, but this way 179 * modifying one set can't modify the other one by 180 * mistake. 181 */ 182#define TASK_RUNNING 0 183#define TASK_INTERRUPTIBLE 1 184#define TASK_UNINTERRUPTIBLE 2 185#define __TASK_STOPPED 4 186#define __TASK_TRACED 8 187/* in tsk->exit_state */ 188#define EXIT_ZOMBIE 16 189#define EXIT_DEAD 32 190/* in tsk->state again */ 191#define TASK_DEAD 64 192#define TASK_WAKEKILL 128 193#define TASK_WAKING 256 194#define TASK_STATE_MAX 512 195 196#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 197 198extern char ___assert_task_state[1 - 2*!!( 199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 200 201/* Convenience macros for the sake of set_task_state */ 202#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 203#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 204#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 205 206/* Convenience macros for the sake of wake_up */ 207#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 208#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 209 210/* get_task_state() */ 211#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 213 __TASK_TRACED) 214 215#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 216#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 217#define task_is_dead(task) ((task)->exit_state != 0) 218#define task_is_stopped_or_traced(task) \ 219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 220#define task_contributes_to_load(task) \ 221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 222 (task->flags & PF_FREEZING) == 0) 223 224#define __set_task_state(tsk, state_value) \ 225 do { (tsk)->state = (state_value); } while (0) 226#define set_task_state(tsk, state_value) \ 227 set_mb((tsk)->state, (state_value)) 228 229/* 230 * set_current_state() includes a barrier so that the write of current->state 231 * is correctly serialised wrt the caller's subsequent test of whether to 232 * actually sleep: 233 * 234 * set_current_state(TASK_UNINTERRUPTIBLE); 235 * if (do_i_need_to_sleep()) 236 * schedule(); 237 * 238 * If the caller does not need such serialisation then use __set_current_state() 239 */ 240#define __set_current_state(state_value) \ 241 do { current->state = (state_value); } while (0) 242#define set_current_state(state_value) \ 243 set_mb(current->state, (state_value)) 244 245/* Task command name length */ 246#define TASK_COMM_LEN 16 247 248#include <linux/spinlock.h> 249 250/* 251 * This serializes "schedule()" and also protects 252 * the run-queue from deletions/modifications (but 253 * _adding_ to the beginning of the run-queue has 254 * a separate lock). 255 */ 256extern rwlock_t tasklist_lock; 257extern spinlock_t mmlist_lock; 258 259struct task_struct; 260 261#ifdef CONFIG_PROVE_RCU 262extern int lockdep_tasklist_lock_is_held(void); 263#endif /* #ifdef CONFIG_PROVE_RCU */ 264 265extern void sched_init(void); 266extern void sched_init_smp(void); 267extern asmlinkage void schedule_tail(struct task_struct *prev); 268extern void init_idle(struct task_struct *idle, int cpu); 269extern void init_idle_bootup_task(struct task_struct *idle); 270 271extern int runqueue_is_locked(int cpu); 272 273extern cpumask_var_t nohz_cpu_mask; 274#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 275extern void select_nohz_load_balancer(int stop_tick); 276extern int get_nohz_timer_target(void); 277#else 278static inline void select_nohz_load_balancer(int stop_tick) { } 279#endif 280 281/* 282 * Only dump TASK_* tasks. (0 for all tasks) 283 */ 284extern void show_state_filter(unsigned long state_filter); 285 286static inline void show_state(void) 287{ 288 show_state_filter(0); 289} 290 291extern void show_regs(struct pt_regs *); 292 293/* 294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 295 * task), SP is the stack pointer of the first frame that should be shown in the back 296 * trace (or NULL if the entire call-chain of the task should be shown). 297 */ 298extern void show_stack(struct task_struct *task, unsigned long *sp); 299 300void io_schedule(void); 301long io_schedule_timeout(long timeout); 302 303extern void cpu_init (void); 304extern void trap_init(void); 305extern void update_process_times(int user); 306extern void scheduler_tick(void); 307 308extern void sched_show_task(struct task_struct *p); 309 310#ifdef CONFIG_LOCKUP_DETECTOR 311extern void touch_softlockup_watchdog(void); 312extern void touch_softlockup_watchdog_sync(void); 313extern void touch_all_softlockup_watchdogs(void); 314extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 315 void __user *buffer, 316 size_t *lenp, loff_t *ppos); 317extern unsigned int softlockup_panic; 318void lockup_detector_init(void); 319#else 320static inline void touch_softlockup_watchdog(void) 321{ 322} 323static inline void touch_softlockup_watchdog_sync(void) 324{ 325} 326static inline void touch_all_softlockup_watchdogs(void) 327{ 328} 329static inline void lockup_detector_init(void) 330{ 331} 332#endif 333 334#ifdef CONFIG_DETECT_HUNG_TASK 335extern unsigned int sysctl_hung_task_panic; 336extern unsigned long sysctl_hung_task_check_count; 337extern unsigned long sysctl_hung_task_timeout_secs; 338extern unsigned long sysctl_hung_task_warnings; 339extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 340 void __user *buffer, 341 size_t *lenp, loff_t *ppos); 342#else 343/* Avoid need for ifdefs elsewhere in the code */ 344enum { sysctl_hung_task_timeout_secs = 0 }; 345#endif 346 347/* Attach to any functions which should be ignored in wchan output. */ 348#define __sched __attribute__((__section__(".sched.text"))) 349 350/* Linker adds these: start and end of __sched functions */ 351extern char __sched_text_start[], __sched_text_end[]; 352 353/* Is this address in the __sched functions? */ 354extern int in_sched_functions(unsigned long addr); 355 356#define MAX_SCHEDULE_TIMEOUT LONG_MAX 357extern signed long schedule_timeout(signed long timeout); 358extern signed long schedule_timeout_interruptible(signed long timeout); 359extern signed long schedule_timeout_killable(signed long timeout); 360extern signed long schedule_timeout_uninterruptible(signed long timeout); 361asmlinkage void schedule(void); 362extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner); 363 364struct nsproxy; 365struct user_namespace; 366 367/* 368 * Default maximum number of active map areas, this limits the number of vmas 369 * per mm struct. Users can overwrite this number by sysctl but there is a 370 * problem. 371 * 372 * When a program's coredump is generated as ELF format, a section is created 373 * per a vma. In ELF, the number of sections is represented in unsigned short. 374 * This means the number of sections should be smaller than 65535 at coredump. 375 * Because the kernel adds some informative sections to a image of program at 376 * generating coredump, we need some margin. The number of extra sections is 377 * 1-3 now and depends on arch. We use "5" as safe margin, here. 378 */ 379#define MAPCOUNT_ELF_CORE_MARGIN (5) 380#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 381 382extern int sysctl_max_map_count; 383 384#include <linux/aio.h> 385 386#ifdef CONFIG_MMU 387extern void arch_pick_mmap_layout(struct mm_struct *mm); 388extern unsigned long 389arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 390 unsigned long, unsigned long); 391extern unsigned long 392arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 393 unsigned long len, unsigned long pgoff, 394 unsigned long flags); 395extern void arch_unmap_area(struct mm_struct *, unsigned long); 396extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 397#else 398static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 399#endif 400 401 402extern void set_dumpable(struct mm_struct *mm, int value); 403extern int get_dumpable(struct mm_struct *mm); 404 405/* mm flags */ 406/* dumpable bits */ 407#define MMF_DUMPABLE 0 /* core dump is permitted */ 408#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 409 410#define MMF_DUMPABLE_BITS 2 411#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 412 413/* coredump filter bits */ 414#define MMF_DUMP_ANON_PRIVATE 2 415#define MMF_DUMP_ANON_SHARED 3 416#define MMF_DUMP_MAPPED_PRIVATE 4 417#define MMF_DUMP_MAPPED_SHARED 5 418#define MMF_DUMP_ELF_HEADERS 6 419#define MMF_DUMP_HUGETLB_PRIVATE 7 420#define MMF_DUMP_HUGETLB_SHARED 8 421 422#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 423#define MMF_DUMP_FILTER_BITS 7 424#define MMF_DUMP_FILTER_MASK \ 425 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 426#define MMF_DUMP_FILTER_DEFAULT \ 427 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 428 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 429 430#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 431# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 432#else 433# define MMF_DUMP_MASK_DEFAULT_ELF 0 434#endif 435 /* leave room for more dump flags */ 436#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 437#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 438 439#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 440 441struct sighand_struct { 442 atomic_t count; 443 struct k_sigaction action[_NSIG]; 444 spinlock_t siglock; 445 wait_queue_head_t signalfd_wqh; 446}; 447 448struct pacct_struct { 449 int ac_flag; 450 long ac_exitcode; 451 unsigned long ac_mem; 452 cputime_t ac_utime, ac_stime; 453 unsigned long ac_minflt, ac_majflt; 454}; 455 456struct cpu_itimer { 457 cputime_t expires; 458 cputime_t incr; 459 u32 error; 460 u32 incr_error; 461}; 462 463/** 464 * struct task_cputime - collected CPU time counts 465 * @utime: time spent in user mode, in &cputime_t units 466 * @stime: time spent in kernel mode, in &cputime_t units 467 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 468 * 469 * This structure groups together three kinds of CPU time that are 470 * tracked for threads and thread groups. Most things considering 471 * CPU time want to group these counts together and treat all three 472 * of them in parallel. 473 */ 474struct task_cputime { 475 cputime_t utime; 476 cputime_t stime; 477 unsigned long long sum_exec_runtime; 478}; 479/* Alternate field names when used to cache expirations. */ 480#define prof_exp stime 481#define virt_exp utime 482#define sched_exp sum_exec_runtime 483 484#define INIT_CPUTIME \ 485 (struct task_cputime) { \ 486 .utime = cputime_zero, \ 487 .stime = cputime_zero, \ 488 .sum_exec_runtime = 0, \ 489 } 490 491/* 492 * Disable preemption until the scheduler is running. 493 * Reset by start_kernel()->sched_init()->init_idle(). 494 * 495 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 496 * before the scheduler is active -- see should_resched(). 497 */ 498#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 499 500/** 501 * struct thread_group_cputimer - thread group interval timer counts 502 * @cputime: thread group interval timers. 503 * @running: non-zero when there are timers running and 504 * @cputime receives updates. 505 * @lock: lock for fields in this struct. 506 * 507 * This structure contains the version of task_cputime, above, that is 508 * used for thread group CPU timer calculations. 509 */ 510struct thread_group_cputimer { 511 struct task_cputime cputime; 512 int running; 513 spinlock_t lock; 514}; 515 516#include <linux/rwsem.h> 517struct autogroup; 518 519/* 520 * NOTE! "signal_struct" does not have its own 521 * locking, because a shared signal_struct always 522 * implies a shared sighand_struct, so locking 523 * sighand_struct is always a proper superset of 524 * the locking of signal_struct. 525 */ 526struct signal_struct { 527 atomic_t sigcnt; 528 atomic_t live; 529 int nr_threads; 530 531 wait_queue_head_t wait_chldexit; /* for wait4() */ 532 533 /* current thread group signal load-balancing target: */ 534 struct task_struct *curr_target; 535 536 /* shared signal handling: */ 537 struct sigpending shared_pending; 538 539 /* thread group exit support */ 540 int group_exit_code; 541 /* overloaded: 542 * - notify group_exit_task when ->count is equal to notify_count 543 * - everyone except group_exit_task is stopped during signal delivery 544 * of fatal signals, group_exit_task processes the signal. 545 */ 546 int notify_count; 547 struct task_struct *group_exit_task; 548 549 /* thread group stop support, overloads group_exit_code too */ 550 int group_stop_count; 551 unsigned int flags; /* see SIGNAL_* flags below */ 552 553 /* POSIX.1b Interval Timers */ 554 struct list_head posix_timers; 555 556 /* ITIMER_REAL timer for the process */ 557 struct hrtimer real_timer; 558 struct pid *leader_pid; 559 ktime_t it_real_incr; 560 561 /* 562 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 563 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 564 * values are defined to 0 and 1 respectively 565 */ 566 struct cpu_itimer it[2]; 567 568 /* 569 * Thread group totals for process CPU timers. 570 * See thread_group_cputimer(), et al, for details. 571 */ 572 struct thread_group_cputimer cputimer; 573 574 /* Earliest-expiration cache. */ 575 struct task_cputime cputime_expires; 576 577 struct list_head cpu_timers[3]; 578 579 struct pid *tty_old_pgrp; 580 581 /* boolean value for session group leader */ 582 int leader; 583 584 struct tty_struct *tty; /* NULL if no tty */ 585 586#ifdef CONFIG_SCHED_AUTOGROUP 587 struct autogroup *autogroup; 588#endif 589 /* 590 * Cumulative resource counters for dead threads in the group, 591 * and for reaped dead child processes forked by this group. 592 * Live threads maintain their own counters and add to these 593 * in __exit_signal, except for the group leader. 594 */ 595 cputime_t utime, stime, cutime, cstime; 596 cputime_t gtime; 597 cputime_t cgtime; 598#ifndef CONFIG_VIRT_CPU_ACCOUNTING 599 cputime_t prev_utime, prev_stime; 600#endif 601 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 602 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 603 unsigned long inblock, oublock, cinblock, coublock; 604 unsigned long maxrss, cmaxrss; 605 struct task_io_accounting ioac; 606 607 /* 608 * Cumulative ns of schedule CPU time fo dead threads in the 609 * group, not including a zombie group leader, (This only differs 610 * from jiffies_to_ns(utime + stime) if sched_clock uses something 611 * other than jiffies.) 612 */ 613 unsigned long long sum_sched_runtime; 614 615 /* 616 * We don't bother to synchronize most readers of this at all, 617 * because there is no reader checking a limit that actually needs 618 * to get both rlim_cur and rlim_max atomically, and either one 619 * alone is a single word that can safely be read normally. 620 * getrlimit/setrlimit use task_lock(current->group_leader) to 621 * protect this instead of the siglock, because they really 622 * have no need to disable irqs. 623 */ 624 struct rlimit rlim[RLIM_NLIMITS]; 625 626#ifdef CONFIG_BSD_PROCESS_ACCT 627 struct pacct_struct pacct; /* per-process accounting information */ 628#endif 629#ifdef CONFIG_TASKSTATS 630 struct taskstats *stats; 631#endif 632#ifdef CONFIG_AUDIT 633 unsigned audit_tty; 634 struct tty_audit_buf *tty_audit_buf; 635#endif 636#ifdef CONFIG_CGROUPS 637 /* 638 * The threadgroup_fork_lock prevents threads from forking with 639 * CLONE_THREAD while held for writing. Use this for fork-sensitive 640 * threadgroup-wide operations. It's taken for reading in fork.c in 641 * copy_process(). 642 * Currently only needed write-side by cgroups. 643 */ 644 struct rw_semaphore threadgroup_fork_lock; 645#endif 646 647 int oom_adj; /* OOM kill score adjustment (bit shift) */ 648 int oom_score_adj; /* OOM kill score adjustment */ 649 int oom_score_adj_min; /* OOM kill score adjustment minimum value. 650 * Only settable by CAP_SYS_RESOURCE. */ 651 652 struct mutex cred_guard_mutex; /* guard against foreign influences on 653 * credential calculations 654 * (notably. ptrace) */ 655}; 656 657/* Context switch must be unlocked if interrupts are to be enabled */ 658#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 659# define __ARCH_WANT_UNLOCKED_CTXSW 660#endif 661 662/* 663 * Bits in flags field of signal_struct. 664 */ 665#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 666#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 667#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 668/* 669 * Pending notifications to parent. 670 */ 671#define SIGNAL_CLD_STOPPED 0x00000010 672#define SIGNAL_CLD_CONTINUED 0x00000020 673#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 674 675#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 676 677/* If true, all threads except ->group_exit_task have pending SIGKILL */ 678static inline int signal_group_exit(const struct signal_struct *sig) 679{ 680 return (sig->flags & SIGNAL_GROUP_EXIT) || 681 (sig->group_exit_task != NULL); 682} 683 684/* 685 * Some day this will be a full-fledged user tracking system.. 686 */ 687struct user_struct { 688 atomic_t __count; /* reference count */ 689 atomic_t processes; /* How many processes does this user have? */ 690 atomic_t files; /* How many open files does this user have? */ 691 atomic_t sigpending; /* How many pending signals does this user have? */ 692#ifdef CONFIG_INOTIFY_USER 693 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 694 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 695#endif 696#ifdef CONFIG_FANOTIFY 697 atomic_t fanotify_listeners; 698#endif 699#ifdef CONFIG_EPOLL 700 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 701#endif 702#ifdef CONFIG_POSIX_MQUEUE 703 /* protected by mq_lock */ 704 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 705#endif 706 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 707 708#ifdef CONFIG_KEYS 709 struct key *uid_keyring; /* UID specific keyring */ 710 struct key *session_keyring; /* UID's default session keyring */ 711#endif 712 713 /* Hash table maintenance information */ 714 struct hlist_node uidhash_node; 715 uid_t uid; 716 struct user_namespace *user_ns; 717 718#ifdef CONFIG_PERF_EVENTS 719 atomic_long_t locked_vm; 720#endif 721}; 722 723extern int uids_sysfs_init(void); 724 725extern struct user_struct *find_user(uid_t); 726 727extern struct user_struct root_user; 728#define INIT_USER (&root_user) 729 730 731struct backing_dev_info; 732struct reclaim_state; 733 734#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 735struct sched_info { 736 /* cumulative counters */ 737 unsigned long pcount; /* # of times run on this cpu */ 738 unsigned long long run_delay; /* time spent waiting on a runqueue */ 739 740 /* timestamps */ 741 unsigned long long last_arrival,/* when we last ran on a cpu */ 742 last_queued; /* when we were last queued to run */ 743}; 744#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 745 746#ifdef CONFIG_TASK_DELAY_ACCT 747struct task_delay_info { 748 spinlock_t lock; 749 unsigned int flags; /* Private per-task flags */ 750 751 /* For each stat XXX, add following, aligned appropriately 752 * 753 * struct timespec XXX_start, XXX_end; 754 * u64 XXX_delay; 755 * u32 XXX_count; 756 * 757 * Atomicity of updates to XXX_delay, XXX_count protected by 758 * single lock above (split into XXX_lock if contention is an issue). 759 */ 760 761 /* 762 * XXX_count is incremented on every XXX operation, the delay 763 * associated with the operation is added to XXX_delay. 764 * XXX_delay contains the accumulated delay time in nanoseconds. 765 */ 766 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 767 u64 blkio_delay; /* wait for sync block io completion */ 768 u64 swapin_delay; /* wait for swapin block io completion */ 769 u32 blkio_count; /* total count of the number of sync block */ 770 /* io operations performed */ 771 u32 swapin_count; /* total count of the number of swapin block */ 772 /* io operations performed */ 773 774 struct timespec freepages_start, freepages_end; 775 u64 freepages_delay; /* wait for memory reclaim */ 776 u32 freepages_count; /* total count of memory reclaim */ 777}; 778#endif /* CONFIG_TASK_DELAY_ACCT */ 779 780static inline int sched_info_on(void) 781{ 782#ifdef CONFIG_SCHEDSTATS 783 return 1; 784#elif defined(CONFIG_TASK_DELAY_ACCT) 785 extern int delayacct_on; 786 return delayacct_on; 787#else 788 return 0; 789#endif 790} 791 792enum cpu_idle_type { 793 CPU_IDLE, 794 CPU_NOT_IDLE, 795 CPU_NEWLY_IDLE, 796 CPU_MAX_IDLE_TYPES 797}; 798 799/* 800 * Increase resolution of nice-level calculations for 64-bit architectures. 801 * The extra resolution improves shares distribution and load balancing of 802 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 803 * hierarchies, especially on larger systems. This is not a user-visible change 804 * and does not change the user-interface for setting shares/weights. 805 * 806 * We increase resolution only if we have enough bits to allow this increased 807 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 808 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 809 * increased costs. 810 */ 811#if BITS_PER_LONG > 32 812# define SCHED_LOAD_RESOLUTION 10 813# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 814# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 815#else 816# define SCHED_LOAD_RESOLUTION 0 817# define scale_load(w) (w) 818# define scale_load_down(w) (w) 819#endif 820 821#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 822#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 823 824/* 825 * Increase resolution of cpu_power calculations 826 */ 827#define SCHED_POWER_SHIFT 10 828#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 829 830/* 831 * sched-domains (multiprocessor balancing) declarations: 832 */ 833#ifdef CONFIG_SMP 834#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 835#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 836#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 837#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 838#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 839#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 840#define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 841#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 842#define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ 843#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 844#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 845#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 846#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 847 848enum powersavings_balance_level { 849 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 850 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 851 * first for long running threads 852 */ 853 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 854 * cpu package for power savings 855 */ 856 MAX_POWERSAVINGS_BALANCE_LEVELS 857}; 858 859extern int sched_mc_power_savings, sched_smt_power_savings; 860 861static inline int sd_balance_for_mc_power(void) 862{ 863 if (sched_smt_power_savings) 864 return SD_POWERSAVINGS_BALANCE; 865 866 if (!sched_mc_power_savings) 867 return SD_PREFER_SIBLING; 868 869 return 0; 870} 871 872static inline int sd_balance_for_package_power(void) 873{ 874 if (sched_mc_power_savings | sched_smt_power_savings) 875 return SD_POWERSAVINGS_BALANCE; 876 877 return SD_PREFER_SIBLING; 878} 879 880extern int __weak arch_sd_sibiling_asym_packing(void); 881 882/* 883 * Optimise SD flags for power savings: 884 * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings. 885 * Keep default SD flags if sched_{smt,mc}_power_saving=0 886 */ 887 888static inline int sd_power_saving_flags(void) 889{ 890 if (sched_mc_power_savings | sched_smt_power_savings) 891 return SD_BALANCE_NEWIDLE; 892 893 return 0; 894} 895 896struct sched_group { 897 struct sched_group *next; /* Must be a circular list */ 898 atomic_t ref; 899 900 /* 901 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 902 * single CPU. 903 */ 904 unsigned int cpu_power, cpu_power_orig; 905 unsigned int group_weight; 906 907 /* 908 * The CPUs this group covers. 909 * 910 * NOTE: this field is variable length. (Allocated dynamically 911 * by attaching extra space to the end of the structure, 912 * depending on how many CPUs the kernel has booted up with) 913 */ 914 unsigned long cpumask[0]; 915}; 916 917static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 918{ 919 return to_cpumask(sg->cpumask); 920} 921 922struct sched_domain_attr { 923 int relax_domain_level; 924}; 925 926#define SD_ATTR_INIT (struct sched_domain_attr) { \ 927 .relax_domain_level = -1, \ 928} 929 930extern int sched_domain_level_max; 931 932struct sched_domain { 933 /* These fields must be setup */ 934 struct sched_domain *parent; /* top domain must be null terminated */ 935 struct sched_domain *child; /* bottom domain must be null terminated */ 936 struct sched_group *groups; /* the balancing groups of the domain */ 937 unsigned long min_interval; /* Minimum balance interval ms */ 938 unsigned long max_interval; /* Maximum balance interval ms */ 939 unsigned int busy_factor; /* less balancing by factor if busy */ 940 unsigned int imbalance_pct; /* No balance until over watermark */ 941 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 942 unsigned int busy_idx; 943 unsigned int idle_idx; 944 unsigned int newidle_idx; 945 unsigned int wake_idx; 946 unsigned int forkexec_idx; 947 unsigned int smt_gain; 948 int flags; /* See SD_* */ 949 int level; 950 951 /* Runtime fields. */ 952 unsigned long last_balance; /* init to jiffies. units in jiffies */ 953 unsigned int balance_interval; /* initialise to 1. units in ms. */ 954 unsigned int nr_balance_failed; /* initialise to 0 */ 955 956 u64 last_update; 957 958#ifdef CONFIG_SCHEDSTATS 959 /* load_balance() stats */ 960 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 961 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 962 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 963 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 964 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 965 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 966 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 967 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 968 969 /* Active load balancing */ 970 unsigned int alb_count; 971 unsigned int alb_failed; 972 unsigned int alb_pushed; 973 974 /* SD_BALANCE_EXEC stats */ 975 unsigned int sbe_count; 976 unsigned int sbe_balanced; 977 unsigned int sbe_pushed; 978 979 /* SD_BALANCE_FORK stats */ 980 unsigned int sbf_count; 981 unsigned int sbf_balanced; 982 unsigned int sbf_pushed; 983 984 /* try_to_wake_up() stats */ 985 unsigned int ttwu_wake_remote; 986 unsigned int ttwu_move_affine; 987 unsigned int ttwu_move_balance; 988#endif 989#ifdef CONFIG_SCHED_DEBUG 990 char *name; 991#endif 992 union { 993 void *private; /* used during construction */ 994 struct rcu_head rcu; /* used during destruction */ 995 }; 996 997 unsigned int span_weight; 998 /* 999 * Span of all CPUs in this domain. 1000 * 1001 * NOTE: this field is variable length. (Allocated dynamically 1002 * by attaching extra space to the end of the structure, 1003 * depending on how many CPUs the kernel has booted up with) 1004 */ 1005 unsigned long span[0]; 1006}; 1007 1008static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1009{ 1010 return to_cpumask(sd->span); 1011} 1012 1013extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1014 struct sched_domain_attr *dattr_new); 1015 1016/* Allocate an array of sched domains, for partition_sched_domains(). */ 1017cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1018void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1019 1020/* Test a flag in parent sched domain */ 1021static inline int test_sd_parent(struct sched_domain *sd, int flag) 1022{ 1023 if (sd->parent && (sd->parent->flags & flag)) 1024 return 1; 1025 1026 return 0; 1027} 1028 1029unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1030unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1031 1032#else /* CONFIG_SMP */ 1033 1034struct sched_domain_attr; 1035 1036static inline void 1037partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1038 struct sched_domain_attr *dattr_new) 1039{ 1040} 1041#endif /* !CONFIG_SMP */ 1042 1043 1044struct io_context; /* See blkdev.h */ 1045 1046 1047#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1048extern void prefetch_stack(struct task_struct *t); 1049#else 1050static inline void prefetch_stack(struct task_struct *t) { } 1051#endif 1052 1053struct audit_context; /* See audit.c */ 1054struct mempolicy; 1055struct pipe_inode_info; 1056struct uts_namespace; 1057 1058struct rq; 1059struct sched_domain; 1060 1061/* 1062 * wake flags 1063 */ 1064#define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1065#define WF_FORK 0x02 /* child wakeup after fork */ 1066#define WF_MIGRATED 0x04 /* internal use, task got migrated */ 1067 1068#define ENQUEUE_WAKEUP 1 1069#define ENQUEUE_HEAD 2 1070#ifdef CONFIG_SMP 1071#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1072#else 1073#define ENQUEUE_WAKING 0 1074#endif 1075 1076#define DEQUEUE_SLEEP 1 1077 1078struct sched_class { 1079 const struct sched_class *next; 1080 1081 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1082 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1083 void (*yield_task) (struct rq *rq); 1084 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1085 1086 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1087 1088 struct task_struct * (*pick_next_task) (struct rq *rq); 1089 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1090 1091#ifdef CONFIG_SMP 1092 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1093 1094 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1095 void (*post_schedule) (struct rq *this_rq); 1096 void (*task_waking) (struct task_struct *task); 1097 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1098 1099 void (*set_cpus_allowed)(struct task_struct *p, 1100 const struct cpumask *newmask); 1101 1102 void (*rq_online)(struct rq *rq); 1103 void (*rq_offline)(struct rq *rq); 1104#endif 1105 1106 void (*set_curr_task) (struct rq *rq); 1107 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1108 void (*task_fork) (struct task_struct *p); 1109 1110 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1111 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1112 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1113 int oldprio); 1114 1115 unsigned int (*get_rr_interval) (struct rq *rq, 1116 struct task_struct *task); 1117 1118#ifdef CONFIG_FAIR_GROUP_SCHED 1119 void (*task_move_group) (struct task_struct *p, int on_rq); 1120#endif 1121}; 1122 1123struct load_weight { 1124 unsigned long weight, inv_weight; 1125}; 1126 1127#ifdef CONFIG_SCHEDSTATS 1128struct sched_statistics { 1129 u64 wait_start; 1130 u64 wait_max; 1131 u64 wait_count; 1132 u64 wait_sum; 1133 u64 iowait_count; 1134 u64 iowait_sum; 1135 1136 u64 sleep_start; 1137 u64 sleep_max; 1138 s64 sum_sleep_runtime; 1139 1140 u64 block_start; 1141 u64 block_max; 1142 u64 exec_max; 1143 u64 slice_max; 1144 1145 u64 nr_migrations_cold; 1146 u64 nr_failed_migrations_affine; 1147 u64 nr_failed_migrations_running; 1148 u64 nr_failed_migrations_hot; 1149 u64 nr_forced_migrations; 1150 1151 u64 nr_wakeups; 1152 u64 nr_wakeups_sync; 1153 u64 nr_wakeups_migrate; 1154 u64 nr_wakeups_local; 1155 u64 nr_wakeups_remote; 1156 u64 nr_wakeups_affine; 1157 u64 nr_wakeups_affine_attempts; 1158 u64 nr_wakeups_passive; 1159 u64 nr_wakeups_idle; 1160}; 1161#endif 1162 1163struct sched_entity { 1164 struct load_weight load; /* for load-balancing */ 1165 struct rb_node run_node; 1166 struct list_head group_node; 1167 unsigned int on_rq; 1168 1169 u64 exec_start; 1170 u64 sum_exec_runtime; 1171 u64 vruntime; 1172 u64 prev_sum_exec_runtime; 1173 1174 u64 nr_migrations; 1175 1176#ifdef CONFIG_SCHEDSTATS 1177 struct sched_statistics statistics; 1178#endif 1179 1180#ifdef CONFIG_FAIR_GROUP_SCHED 1181 struct sched_entity *parent; 1182 /* rq on which this entity is (to be) queued: */ 1183 struct cfs_rq *cfs_rq; 1184 /* rq "owned" by this entity/group: */ 1185 struct cfs_rq *my_q; 1186#endif 1187}; 1188 1189struct sched_rt_entity { 1190 struct list_head run_list; 1191 unsigned long timeout; 1192 unsigned int time_slice; 1193 int nr_cpus_allowed; 1194 1195 struct sched_rt_entity *back; 1196#ifdef CONFIG_RT_GROUP_SCHED 1197 struct sched_rt_entity *parent; 1198 /* rq on which this entity is (to be) queued: */ 1199 struct rt_rq *rt_rq; 1200 /* rq "owned" by this entity/group: */ 1201 struct rt_rq *my_q; 1202#endif 1203}; 1204 1205struct rcu_node; 1206 1207enum perf_event_task_context { 1208 perf_invalid_context = -1, 1209 perf_hw_context = 0, 1210 perf_sw_context, 1211 perf_nr_task_contexts, 1212}; 1213 1214struct task_struct { 1215 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1216 void *stack; 1217 atomic_t usage; 1218 unsigned int flags; /* per process flags, defined below */ 1219 unsigned int ptrace; 1220 1221#ifdef CONFIG_SMP 1222 struct task_struct *wake_entry; 1223 int on_cpu; 1224#endif 1225 int on_rq; 1226 1227 int prio, static_prio, normal_prio; 1228 unsigned int rt_priority; 1229 const struct sched_class *sched_class; 1230 struct sched_entity se; 1231 struct sched_rt_entity rt; 1232 1233#ifdef CONFIG_PREEMPT_NOTIFIERS 1234 /* list of struct preempt_notifier: */ 1235 struct hlist_head preempt_notifiers; 1236#endif 1237 1238 /* 1239 * fpu_counter contains the number of consecutive context switches 1240 * that the FPU is used. If this is over a threshold, the lazy fpu 1241 * saving becomes unlazy to save the trap. This is an unsigned char 1242 * so that after 256 times the counter wraps and the behavior turns 1243 * lazy again; this to deal with bursty apps that only use FPU for 1244 * a short time 1245 */ 1246 unsigned char fpu_counter; 1247#ifdef CONFIG_BLK_DEV_IO_TRACE 1248 unsigned int btrace_seq; 1249#endif 1250 1251 unsigned int policy; 1252 cpumask_t cpus_allowed; 1253 1254#ifdef CONFIG_PREEMPT_RCU 1255 int rcu_read_lock_nesting; 1256 char rcu_read_unlock_special; 1257 struct list_head rcu_node_entry; 1258#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1259#ifdef CONFIG_TREE_PREEMPT_RCU 1260 struct rcu_node *rcu_blocked_node; 1261#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1262#ifdef CONFIG_RCU_BOOST 1263 struct rt_mutex *rcu_boost_mutex; 1264#endif /* #ifdef CONFIG_RCU_BOOST */ 1265 1266#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1267 struct sched_info sched_info; 1268#endif 1269 1270 struct list_head tasks; 1271#ifdef CONFIG_SMP 1272 struct plist_node pushable_tasks; 1273#endif 1274 1275 struct mm_struct *mm, *active_mm; 1276#ifdef CONFIG_COMPAT_BRK 1277 unsigned brk_randomized:1; 1278#endif 1279#if defined(SPLIT_RSS_COUNTING) 1280 struct task_rss_stat rss_stat; 1281#endif 1282/* task state */ 1283 int exit_state; 1284 int exit_code, exit_signal; 1285 int pdeath_signal; /* The signal sent when the parent dies */ 1286 unsigned int group_stop; /* GROUP_STOP_*, siglock protected */ 1287 /* ??? */ 1288 unsigned int personality; 1289 unsigned did_exec:1; 1290 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1291 * execve */ 1292 unsigned in_iowait:1; 1293 1294 1295 /* Revert to default priority/policy when forking */ 1296 unsigned sched_reset_on_fork:1; 1297 unsigned sched_contributes_to_load:1; 1298 1299 pid_t pid; 1300 pid_t tgid; 1301 1302#ifdef CONFIG_CC_STACKPROTECTOR 1303 /* Canary value for the -fstack-protector gcc feature */ 1304 unsigned long stack_canary; 1305#endif 1306 1307 /* 1308 * pointers to (original) parent process, youngest child, younger sibling, 1309 * older sibling, respectively. (p->father can be replaced with 1310 * p->real_parent->pid) 1311 */ 1312 struct task_struct *real_parent; /* real parent process */ 1313 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1314 /* 1315 * children/sibling forms the list of my natural children 1316 */ 1317 struct list_head children; /* list of my children */ 1318 struct list_head sibling; /* linkage in my parent's children list */ 1319 struct task_struct *group_leader; /* threadgroup leader */ 1320 1321 /* 1322 * ptraced is the list of tasks this task is using ptrace on. 1323 * This includes both natural children and PTRACE_ATTACH targets. 1324 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1325 */ 1326 struct list_head ptraced; 1327 struct list_head ptrace_entry; 1328 1329 /* PID/PID hash table linkage. */ 1330 struct pid_link pids[PIDTYPE_MAX]; 1331 struct list_head thread_group; 1332 1333 struct completion *vfork_done; /* for vfork() */ 1334 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1335 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1336 1337 cputime_t utime, stime, utimescaled, stimescaled; 1338 cputime_t gtime; 1339#ifndef CONFIG_VIRT_CPU_ACCOUNTING 1340 cputime_t prev_utime, prev_stime; 1341#endif 1342 unsigned long nvcsw, nivcsw; /* context switch counts */ 1343 struct timespec start_time; /* monotonic time */ 1344 struct timespec real_start_time; /* boot based time */ 1345/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1346 unsigned long min_flt, maj_flt; 1347 1348 struct task_cputime cputime_expires; 1349 struct list_head cpu_timers[3]; 1350 1351/* process credentials */ 1352 const struct cred __rcu *real_cred; /* objective and real subjective task 1353 * credentials (COW) */ 1354 const struct cred __rcu *cred; /* effective (overridable) subjective task 1355 * credentials (COW) */ 1356 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ 1357 1358 char comm[TASK_COMM_LEN]; /* executable name excluding path 1359 - access with [gs]et_task_comm (which lock 1360 it with task_lock()) 1361 - initialized normally by setup_new_exec */ 1362/* file system info */ 1363 int link_count, total_link_count; 1364#ifdef CONFIG_SYSVIPC 1365/* ipc stuff */ 1366 struct sysv_sem sysvsem; 1367#endif 1368#ifdef CONFIG_DETECT_HUNG_TASK 1369/* hung task detection */ 1370 unsigned long last_switch_count; 1371#endif 1372/* CPU-specific state of this task */ 1373 struct thread_struct thread; 1374/* filesystem information */ 1375 struct fs_struct *fs; 1376/* open file information */ 1377 struct files_struct *files; 1378/* namespaces */ 1379 struct nsproxy *nsproxy; 1380/* signal handlers */ 1381 struct signal_struct *signal; 1382 struct sighand_struct *sighand; 1383 1384 sigset_t blocked, real_blocked; 1385 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1386 struct sigpending pending; 1387 1388 unsigned long sas_ss_sp; 1389 size_t sas_ss_size; 1390 int (*notifier)(void *priv); 1391 void *notifier_data; 1392 sigset_t *notifier_mask; 1393 struct audit_context *audit_context; 1394#ifdef CONFIG_AUDITSYSCALL 1395 uid_t loginuid; 1396 unsigned int sessionid; 1397#endif 1398 seccomp_t seccomp; 1399 1400/* Thread group tracking */ 1401 u32 parent_exec_id; 1402 u32 self_exec_id; 1403/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1404 * mempolicy */ 1405 spinlock_t alloc_lock; 1406 1407#ifdef CONFIG_GENERIC_HARDIRQS 1408 /* IRQ handler threads */ 1409 struct irqaction *irqaction; 1410#endif 1411 1412 /* Protection of the PI data structures: */ 1413 raw_spinlock_t pi_lock; 1414 1415#ifdef CONFIG_RT_MUTEXES 1416 /* PI waiters blocked on a rt_mutex held by this task */ 1417 struct plist_head pi_waiters; 1418 /* Deadlock detection and priority inheritance handling */ 1419 struct rt_mutex_waiter *pi_blocked_on; 1420#endif 1421 1422#ifdef CONFIG_DEBUG_MUTEXES 1423 /* mutex deadlock detection */ 1424 struct mutex_waiter *blocked_on; 1425#endif 1426#ifdef CONFIG_TRACE_IRQFLAGS 1427 unsigned int irq_events; 1428 unsigned long hardirq_enable_ip; 1429 unsigned long hardirq_disable_ip; 1430 unsigned int hardirq_enable_event; 1431 unsigned int hardirq_disable_event; 1432 int hardirqs_enabled; 1433 int hardirq_context; 1434 unsigned long softirq_disable_ip; 1435 unsigned long softirq_enable_ip; 1436 unsigned int softirq_disable_event; 1437 unsigned int softirq_enable_event; 1438 int softirqs_enabled; 1439 int softirq_context; 1440#endif 1441#ifdef CONFIG_LOCKDEP 1442# define MAX_LOCK_DEPTH 48UL 1443 u64 curr_chain_key; 1444 int lockdep_depth; 1445 unsigned int lockdep_recursion; 1446 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1447 gfp_t lockdep_reclaim_gfp; 1448#endif 1449 1450/* journalling filesystem info */ 1451 void *journal_info; 1452 1453/* stacked block device info */ 1454 struct bio_list *bio_list; 1455 1456#ifdef CONFIG_BLOCK 1457/* stack plugging */ 1458 struct blk_plug *plug; 1459#endif 1460 1461/* VM state */ 1462 struct reclaim_state *reclaim_state; 1463 1464 struct backing_dev_info *backing_dev_info; 1465 1466 struct io_context *io_context; 1467 1468 unsigned long ptrace_message; 1469 siginfo_t *last_siginfo; /* For ptrace use. */ 1470 struct task_io_accounting ioac; 1471#if defined(CONFIG_TASK_XACCT) 1472 u64 acct_rss_mem1; /* accumulated rss usage */ 1473 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1474 cputime_t acct_timexpd; /* stime + utime since last update */ 1475#endif 1476#ifdef CONFIG_CPUSETS 1477 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1478 int mems_allowed_change_disable; 1479 int cpuset_mem_spread_rotor; 1480 int cpuset_slab_spread_rotor; 1481#endif 1482#ifdef CONFIG_CGROUPS 1483 /* Control Group info protected by css_set_lock */ 1484 struct css_set __rcu *cgroups; 1485 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1486 struct list_head cg_list; 1487#endif 1488#ifdef CONFIG_FUTEX 1489 struct robust_list_head __user *robust_list; 1490#ifdef CONFIG_COMPAT 1491 struct compat_robust_list_head __user *compat_robust_list; 1492#endif 1493 struct list_head pi_state_list; 1494 struct futex_pi_state *pi_state_cache; 1495#endif 1496#ifdef CONFIG_PERF_EVENTS 1497 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1498 struct mutex perf_event_mutex; 1499 struct list_head perf_event_list; 1500#endif 1501#ifdef CONFIG_NUMA 1502 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1503 short il_next; 1504 short pref_node_fork; 1505#endif 1506 atomic_t fs_excl; /* holding fs exclusive resources */ 1507 struct rcu_head rcu; 1508 1509 /* 1510 * cache last used pipe for splice 1511 */ 1512 struct pipe_inode_info *splice_pipe; 1513#ifdef CONFIG_TASK_DELAY_ACCT 1514 struct task_delay_info *delays; 1515#endif 1516#ifdef CONFIG_FAULT_INJECTION 1517 int make_it_fail; 1518#endif 1519 struct prop_local_single dirties; 1520#ifdef CONFIG_LATENCYTOP 1521 int latency_record_count; 1522 struct latency_record latency_record[LT_SAVECOUNT]; 1523#endif 1524 /* 1525 * time slack values; these are used to round up poll() and 1526 * select() etc timeout values. These are in nanoseconds. 1527 */ 1528 unsigned long timer_slack_ns; 1529 unsigned long default_timer_slack_ns; 1530 1531 struct list_head *scm_work_list; 1532#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1533 /* Index of current stored address in ret_stack */ 1534 int curr_ret_stack; 1535 /* Stack of return addresses for return function tracing */ 1536 struct ftrace_ret_stack *ret_stack; 1537 /* time stamp for last schedule */ 1538 unsigned long long ftrace_timestamp; 1539 /* 1540 * Number of functions that haven't been traced 1541 * because of depth overrun. 1542 */ 1543 atomic_t trace_overrun; 1544 /* Pause for the tracing */ 1545 atomic_t tracing_graph_pause; 1546#endif 1547#ifdef CONFIG_TRACING 1548 /* state flags for use by tracers */ 1549 unsigned long trace; 1550 /* bitmask and counter of trace recursion */ 1551 unsigned long trace_recursion; 1552#endif /* CONFIG_TRACING */ 1553#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ 1554 struct memcg_batch_info { 1555 int do_batch; /* incremented when batch uncharge started */ 1556 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1557 unsigned long nr_pages; /* uncharged usage */ 1558 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1559 } memcg_batch; 1560#endif 1561#ifdef CONFIG_HAVE_HW_BREAKPOINT 1562 atomic_t ptrace_bp_refcnt; 1563#endif 1564}; 1565 1566/* Future-safe accessor for struct task_struct's cpus_allowed. */ 1567#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1568 1569/* 1570 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1571 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1572 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1573 * values are inverted: lower p->prio value means higher priority. 1574 * 1575 * The MAX_USER_RT_PRIO value allows the actual maximum 1576 * RT priority to be separate from the value exported to 1577 * user-space. This allows kernel threads to set their 1578 * priority to a value higher than any user task. Note: 1579 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1580 */ 1581 1582#define MAX_USER_RT_PRIO 100 1583#define MAX_RT_PRIO MAX_USER_RT_PRIO 1584 1585#define MAX_PRIO (MAX_RT_PRIO + 40) 1586#define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1587 1588static inline int rt_prio(int prio) 1589{ 1590 if (unlikely(prio < MAX_RT_PRIO)) 1591 return 1; 1592 return 0; 1593} 1594 1595static inline int rt_task(struct task_struct *p) 1596{ 1597 return rt_prio(p->prio); 1598} 1599 1600static inline struct pid *task_pid(struct task_struct *task) 1601{ 1602 return task->pids[PIDTYPE_PID].pid; 1603} 1604 1605static inline struct pid *task_tgid(struct task_struct *task) 1606{ 1607 return task->group_leader->pids[PIDTYPE_PID].pid; 1608} 1609 1610/* 1611 * Without tasklist or rcu lock it is not safe to dereference 1612 * the result of task_pgrp/task_session even if task == current, 1613 * we can race with another thread doing sys_setsid/sys_setpgid. 1614 */ 1615static inline struct pid *task_pgrp(struct task_struct *task) 1616{ 1617 return task->group_leader->pids[PIDTYPE_PGID].pid; 1618} 1619 1620static inline struct pid *task_session(struct task_struct *task) 1621{ 1622 return task->group_leader->pids[PIDTYPE_SID].pid; 1623} 1624 1625struct pid_namespace; 1626 1627/* 1628 * the helpers to get the task's different pids as they are seen 1629 * from various namespaces 1630 * 1631 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1632 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1633 * current. 1634 * task_xid_nr_ns() : id seen from the ns specified; 1635 * 1636 * set_task_vxid() : assigns a virtual id to a task; 1637 * 1638 * see also pid_nr() etc in include/linux/pid.h 1639 */ 1640pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1641 struct pid_namespace *ns); 1642 1643static inline pid_t task_pid_nr(struct task_struct *tsk) 1644{ 1645 return tsk->pid; 1646} 1647 1648static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1649 struct pid_namespace *ns) 1650{ 1651 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1652} 1653 1654static inline pid_t task_pid_vnr(struct task_struct *tsk) 1655{ 1656 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1657} 1658 1659 1660static inline pid_t task_tgid_nr(struct task_struct *tsk) 1661{ 1662 return tsk->tgid; 1663} 1664 1665pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1666 1667static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1668{ 1669 return pid_vnr(task_tgid(tsk)); 1670} 1671 1672 1673static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1674 struct pid_namespace *ns) 1675{ 1676 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1677} 1678 1679static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1680{ 1681 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1682} 1683 1684 1685static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1686 struct pid_namespace *ns) 1687{ 1688 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1689} 1690 1691static inline pid_t task_session_vnr(struct task_struct *tsk) 1692{ 1693 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1694} 1695 1696/* obsolete, do not use */ 1697static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1698{ 1699 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1700} 1701 1702/** 1703 * pid_alive - check that a task structure is not stale 1704 * @p: Task structure to be checked. 1705 * 1706 * Test if a process is not yet dead (at most zombie state) 1707 * If pid_alive fails, then pointers within the task structure 1708 * can be stale and must not be dereferenced. 1709 */ 1710static inline int pid_alive(struct task_struct *p) 1711{ 1712 return p->pids[PIDTYPE_PID].pid != NULL; 1713} 1714 1715/** 1716 * is_global_init - check if a task structure is init 1717 * @tsk: Task structure to be checked. 1718 * 1719 * Check if a task structure is the first user space task the kernel created. 1720 */ 1721static inline int is_global_init(struct task_struct *tsk) 1722{ 1723 return tsk->pid == 1; 1724} 1725 1726/* 1727 * is_container_init: 1728 * check whether in the task is init in its own pid namespace. 1729 */ 1730extern int is_container_init(struct task_struct *tsk); 1731 1732extern struct pid *cad_pid; 1733 1734extern void free_task(struct task_struct *tsk); 1735#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1736 1737extern void __put_task_struct(struct task_struct *t); 1738 1739static inline void put_task_struct(struct task_struct *t) 1740{ 1741 if (atomic_dec_and_test(&t->usage)) 1742 __put_task_struct(t); 1743} 1744 1745extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1746extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1747 1748/* 1749 * Per process flags 1750 */ 1751#define PF_STARTING 0x00000002 /* being created */ 1752#define PF_EXITING 0x00000004 /* getting shut down */ 1753#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1754#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1755#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1756#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1757#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1758#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1759#define PF_DUMPCORE 0x00000200 /* dumped core */ 1760#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1761#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1762#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1763#define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ 1764#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1765#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1766#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1767#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1768#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1769#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1770#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1771#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1772#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1773#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1774#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1775#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1776#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1777#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1778#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1779#define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1780 1781/* 1782 * Only the _current_ task can read/write to tsk->flags, but other 1783 * tasks can access tsk->flags in readonly mode for example 1784 * with tsk_used_math (like during threaded core dumping). 1785 * There is however an exception to this rule during ptrace 1786 * or during fork: the ptracer task is allowed to write to the 1787 * child->flags of its traced child (same goes for fork, the parent 1788 * can write to the child->flags), because we're guaranteed the 1789 * child is not running and in turn not changing child->flags 1790 * at the same time the parent does it. 1791 */ 1792#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1793#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1794#define clear_used_math() clear_stopped_child_used_math(current) 1795#define set_used_math() set_stopped_child_used_math(current) 1796#define conditional_stopped_child_used_math(condition, child) \ 1797 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1798#define conditional_used_math(condition) \ 1799 conditional_stopped_child_used_math(condition, current) 1800#define copy_to_stopped_child_used_math(child) \ 1801 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1802/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1803#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1804#define used_math() tsk_used_math(current) 1805 1806/* 1807 * task->group_stop flags 1808 */ 1809#define GROUP_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1810#define GROUP_STOP_PENDING (1 << 16) /* task should stop for group stop */ 1811#define GROUP_STOP_CONSUME (1 << 17) /* consume group stop count */ 1812#define GROUP_STOP_TRAPPING (1 << 18) /* switching from STOPPED to TRACED */ 1813#define GROUP_STOP_DEQUEUED (1 << 19) /* stop signal dequeued */ 1814 1815extern void task_clear_group_stop_pending(struct task_struct *task); 1816 1817#ifdef CONFIG_PREEMPT_RCU 1818 1819#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1820#define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */ 1821#define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */ 1822 1823static inline void rcu_copy_process(struct task_struct *p) 1824{ 1825 p->rcu_read_lock_nesting = 0; 1826 p->rcu_read_unlock_special = 0; 1827#ifdef CONFIG_TREE_PREEMPT_RCU 1828 p->rcu_blocked_node = NULL; 1829#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1830#ifdef CONFIG_RCU_BOOST 1831 p->rcu_boost_mutex = NULL; 1832#endif /* #ifdef CONFIG_RCU_BOOST */ 1833 INIT_LIST_HEAD(&p->rcu_node_entry); 1834} 1835 1836#else 1837 1838static inline void rcu_copy_process(struct task_struct *p) 1839{ 1840} 1841 1842#endif 1843 1844#ifdef CONFIG_SMP 1845extern void do_set_cpus_allowed(struct task_struct *p, 1846 const struct cpumask *new_mask); 1847 1848extern int set_cpus_allowed_ptr(struct task_struct *p, 1849 const struct cpumask *new_mask); 1850#else 1851static inline void do_set_cpus_allowed(struct task_struct *p, 1852 const struct cpumask *new_mask) 1853{ 1854} 1855static inline int set_cpus_allowed_ptr(struct task_struct *p, 1856 const struct cpumask *new_mask) 1857{ 1858 if (!cpumask_test_cpu(0, new_mask)) 1859 return -EINVAL; 1860 return 0; 1861} 1862#endif 1863 1864#ifndef CONFIG_CPUMASK_OFFSTACK 1865static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1866{ 1867 return set_cpus_allowed_ptr(p, &new_mask); 1868} 1869#endif 1870 1871/* 1872 * Do not use outside of architecture code which knows its limitations. 1873 * 1874 * sched_clock() has no promise of monotonicity or bounded drift between 1875 * CPUs, use (which you should not) requires disabling IRQs. 1876 * 1877 * Please use one of the three interfaces below. 1878 */ 1879extern unsigned long long notrace sched_clock(void); 1880/* 1881 * See the comment in kernel/sched_clock.c 1882 */ 1883extern u64 cpu_clock(int cpu); 1884extern u64 local_clock(void); 1885extern u64 sched_clock_cpu(int cpu); 1886 1887 1888extern void sched_clock_init(void); 1889 1890#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1891static inline void sched_clock_tick(void) 1892{ 1893} 1894 1895static inline void sched_clock_idle_sleep_event(void) 1896{ 1897} 1898 1899static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1900{ 1901} 1902#else 1903/* 1904 * Architectures can set this to 1 if they have specified 1905 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1906 * but then during bootup it turns out that sched_clock() 1907 * is reliable after all: 1908 */ 1909extern int sched_clock_stable; 1910 1911extern void sched_clock_tick(void); 1912extern void sched_clock_idle_sleep_event(void); 1913extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1914#endif 1915 1916#ifdef CONFIG_IRQ_TIME_ACCOUNTING 1917/* 1918 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1919 * The reason for this explicit opt-in is not to have perf penalty with 1920 * slow sched_clocks. 1921 */ 1922extern void enable_sched_clock_irqtime(void); 1923extern void disable_sched_clock_irqtime(void); 1924#else 1925static inline void enable_sched_clock_irqtime(void) {} 1926static inline void disable_sched_clock_irqtime(void) {} 1927#endif 1928 1929extern unsigned long long 1930task_sched_runtime(struct task_struct *task); 1931extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1932 1933/* sched_exec is called by processes performing an exec */ 1934#ifdef CONFIG_SMP 1935extern void sched_exec(void); 1936#else 1937#define sched_exec() {} 1938#endif 1939 1940extern void sched_clock_idle_sleep_event(void); 1941extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1942 1943#ifdef CONFIG_HOTPLUG_CPU 1944extern void idle_task_exit(void); 1945#else 1946static inline void idle_task_exit(void) {} 1947#endif 1948 1949#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1950extern void wake_up_idle_cpu(int cpu); 1951#else 1952static inline void wake_up_idle_cpu(int cpu) { } 1953#endif 1954 1955extern unsigned int sysctl_sched_latency; 1956extern unsigned int sysctl_sched_min_granularity; 1957extern unsigned int sysctl_sched_wakeup_granularity; 1958extern unsigned int sysctl_sched_child_runs_first; 1959 1960enum sched_tunable_scaling { 1961 SCHED_TUNABLESCALING_NONE, 1962 SCHED_TUNABLESCALING_LOG, 1963 SCHED_TUNABLESCALING_LINEAR, 1964 SCHED_TUNABLESCALING_END, 1965}; 1966extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 1967 1968#ifdef CONFIG_SCHED_DEBUG 1969extern unsigned int sysctl_sched_migration_cost; 1970extern unsigned int sysctl_sched_nr_migrate; 1971extern unsigned int sysctl_sched_time_avg; 1972extern unsigned int sysctl_timer_migration; 1973extern unsigned int sysctl_sched_shares_window; 1974 1975int sched_proc_update_handler(struct ctl_table *table, int write, 1976 void __user *buffer, size_t *length, 1977 loff_t *ppos); 1978#endif 1979#ifdef CONFIG_SCHED_DEBUG 1980static inline unsigned int get_sysctl_timer_migration(void) 1981{ 1982 return sysctl_timer_migration; 1983} 1984#else 1985static inline unsigned int get_sysctl_timer_migration(void) 1986{ 1987 return 1; 1988} 1989#endif 1990extern unsigned int sysctl_sched_rt_period; 1991extern int sysctl_sched_rt_runtime; 1992 1993int sched_rt_handler(struct ctl_table *table, int write, 1994 void __user *buffer, size_t *lenp, 1995 loff_t *ppos); 1996 1997#ifdef CONFIG_SCHED_AUTOGROUP 1998extern unsigned int sysctl_sched_autogroup_enabled; 1999 2000extern void sched_autogroup_create_attach(struct task_struct *p); 2001extern void sched_autogroup_detach(struct task_struct *p); 2002extern void sched_autogroup_fork(struct signal_struct *sig); 2003extern void sched_autogroup_exit(struct signal_struct *sig); 2004#ifdef CONFIG_PROC_FS 2005extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2006extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice); 2007#endif 2008#else 2009static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2010static inline void sched_autogroup_detach(struct task_struct *p) { } 2011static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2012static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2013#endif 2014 2015#ifdef CONFIG_RT_MUTEXES 2016extern int rt_mutex_getprio(struct task_struct *p); 2017extern void rt_mutex_setprio(struct task_struct *p, int prio); 2018extern void rt_mutex_adjust_pi(struct task_struct *p); 2019#else 2020static inline int rt_mutex_getprio(struct task_struct *p) 2021{ 2022 return p->normal_prio; 2023} 2024# define rt_mutex_adjust_pi(p) do { } while (0) 2025#endif 2026 2027extern bool yield_to(struct task_struct *p, bool preempt); 2028extern void set_user_nice(struct task_struct *p, long nice); 2029extern int task_prio(const struct task_struct *p); 2030extern int task_nice(const struct task_struct *p); 2031extern int can_nice(const struct task_struct *p, const int nice); 2032extern int task_curr(const struct task_struct *p); 2033extern int idle_cpu(int cpu); 2034extern int sched_setscheduler(struct task_struct *, int, 2035 const struct sched_param *); 2036extern int sched_setscheduler_nocheck(struct task_struct *, int, 2037 const struct sched_param *); 2038extern struct task_struct *idle_task(int cpu); 2039extern struct task_struct *curr_task(int cpu); 2040extern void set_curr_task(int cpu, struct task_struct *p); 2041 2042void yield(void); 2043 2044/* 2045 * The default (Linux) execution domain. 2046 */ 2047extern struct exec_domain default_exec_domain; 2048 2049union thread_union { 2050 struct thread_info thread_info; 2051 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2052}; 2053 2054#ifndef __HAVE_ARCH_KSTACK_END 2055static inline int kstack_end(void *addr) 2056{ 2057 /* Reliable end of stack detection: 2058 * Some APM bios versions misalign the stack 2059 */ 2060 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2061} 2062#endif 2063 2064extern union thread_union init_thread_union; 2065extern struct task_struct init_task; 2066 2067extern struct mm_struct init_mm; 2068 2069extern struct pid_namespace init_pid_ns; 2070 2071/* 2072 * find a task by one of its numerical ids 2073 * 2074 * find_task_by_pid_ns(): 2075 * finds a task by its pid in the specified namespace 2076 * find_task_by_vpid(): 2077 * finds a task by its virtual pid 2078 * 2079 * see also find_vpid() etc in include/linux/pid.h 2080 */ 2081 2082extern struct task_struct *find_task_by_vpid(pid_t nr); 2083extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2084 struct pid_namespace *ns); 2085 2086extern void __set_special_pids(struct pid *pid); 2087 2088/* per-UID process charging. */ 2089extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 2090static inline struct user_struct *get_uid(struct user_struct *u) 2091{ 2092 atomic_inc(&u->__count); 2093 return u; 2094} 2095extern void free_uid(struct user_struct *); 2096extern void release_uids(struct user_namespace *ns); 2097 2098#include <asm/current.h> 2099 2100extern void xtime_update(unsigned long ticks); 2101 2102extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2103extern int wake_up_process(struct task_struct *tsk); 2104extern void wake_up_new_task(struct task_struct *tsk); 2105#ifdef CONFIG_SMP 2106 extern void kick_process(struct task_struct *tsk); 2107#else 2108 static inline void kick_process(struct task_struct *tsk) { } 2109#endif 2110extern void sched_fork(struct task_struct *p); 2111extern void sched_dead(struct task_struct *p); 2112 2113extern void proc_caches_init(void); 2114extern void flush_signals(struct task_struct *); 2115extern void __flush_signals(struct task_struct *); 2116extern void ignore_signals(struct task_struct *); 2117extern void flush_signal_handlers(struct task_struct *, int force_default); 2118extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2119 2120static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2121{ 2122 unsigned long flags; 2123 int ret; 2124 2125 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2126 ret = dequeue_signal(tsk, mask, info); 2127 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2128 2129 return ret; 2130} 2131 2132extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2133 sigset_t *mask); 2134extern void unblock_all_signals(void); 2135extern void release_task(struct task_struct * p); 2136extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2137extern int force_sigsegv(int, struct task_struct *); 2138extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2139extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2140extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2141extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 2142extern int kill_pgrp(struct pid *pid, int sig, int priv); 2143extern int kill_pid(struct pid *pid, int sig, int priv); 2144extern int kill_proc_info(int, struct siginfo *, pid_t); 2145extern int do_notify_parent(struct task_struct *, int); 2146extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2147extern void force_sig(int, struct task_struct *); 2148extern int send_sig(int, struct task_struct *, int); 2149extern int zap_other_threads(struct task_struct *p); 2150extern struct sigqueue *sigqueue_alloc(void); 2151extern void sigqueue_free(struct sigqueue *); 2152extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2153extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2154extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2155 2156static inline int kill_cad_pid(int sig, int priv) 2157{ 2158 return kill_pid(cad_pid, sig, priv); 2159} 2160 2161/* These can be the second arg to send_sig_info/send_group_sig_info. */ 2162#define SEND_SIG_NOINFO ((struct siginfo *) 0) 2163#define SEND_SIG_PRIV ((struct siginfo *) 1) 2164#define SEND_SIG_FORCED ((struct siginfo *) 2) 2165 2166/* 2167 * True if we are on the alternate signal stack. 2168 */ 2169static inline int on_sig_stack(unsigned long sp) 2170{ 2171#ifdef CONFIG_STACK_GROWSUP 2172 return sp >= current->sas_ss_sp && 2173 sp - current->sas_ss_sp < current->sas_ss_size; 2174#else 2175 return sp > current->sas_ss_sp && 2176 sp - current->sas_ss_sp <= current->sas_ss_size; 2177#endif 2178} 2179 2180static inline int sas_ss_flags(unsigned long sp) 2181{ 2182 return (current->sas_ss_size == 0 ? SS_DISABLE 2183 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2184} 2185 2186/* 2187 * Routines for handling mm_structs 2188 */ 2189extern struct mm_struct * mm_alloc(void); 2190 2191/* mmdrop drops the mm and the page tables */ 2192extern void __mmdrop(struct mm_struct *); 2193static inline void mmdrop(struct mm_struct * mm) 2194{ 2195 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2196 __mmdrop(mm); 2197} 2198 2199/* mmput gets rid of the mappings and all user-space */ 2200extern void mmput(struct mm_struct *); 2201/* Grab a reference to a task's mm, if it is not already going away */ 2202extern struct mm_struct *get_task_mm(struct task_struct *task); 2203/* Remove the current tasks stale references to the old mm_struct */ 2204extern void mm_release(struct task_struct *, struct mm_struct *); 2205/* Allocate a new mm structure and copy contents from tsk->mm */ 2206extern struct mm_struct *dup_mm(struct task_struct *tsk); 2207 2208extern int copy_thread(unsigned long, unsigned long, unsigned long, 2209 struct task_struct *, struct pt_regs *); 2210extern void flush_thread(void); 2211extern void exit_thread(void); 2212 2213extern void exit_files(struct task_struct *); 2214extern void __cleanup_sighand(struct sighand_struct *); 2215 2216extern void exit_itimers(struct signal_struct *); 2217extern void flush_itimer_signals(void); 2218 2219extern NORET_TYPE void do_group_exit(int); 2220 2221extern void daemonize(const char *, ...); 2222extern int allow_signal(int); 2223extern int disallow_signal(int); 2224 2225extern int do_execve(const char *, 2226 const char __user * const __user *, 2227 const char __user * const __user *, struct pt_regs *); 2228extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2229struct task_struct *fork_idle(int); 2230 2231extern void set_task_comm(struct task_struct *tsk, char *from); 2232extern char *get_task_comm(char *to, struct task_struct *tsk); 2233 2234#ifdef CONFIG_SMP 2235void scheduler_ipi(void); 2236extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2237#else 2238static inline void scheduler_ipi(void) { } 2239static inline unsigned long wait_task_inactive(struct task_struct *p, 2240 long match_state) 2241{ 2242 return 1; 2243} 2244#endif 2245 2246#define next_task(p) \ 2247 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2248 2249#define for_each_process(p) \ 2250 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2251 2252extern bool current_is_single_threaded(void); 2253 2254/* 2255 * Careful: do_each_thread/while_each_thread is a double loop so 2256 * 'break' will not work as expected - use goto instead. 2257 */ 2258#define do_each_thread(g, t) \ 2259 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2260 2261#define while_each_thread(g, t) \ 2262 while ((t = next_thread(t)) != g) 2263 2264static inline int get_nr_threads(struct task_struct *tsk) 2265{ 2266 return tsk->signal->nr_threads; 2267} 2268 2269/* de_thread depends on thread_group_leader not being a pid based check */ 2270#define thread_group_leader(p) (p == p->group_leader) 2271 2272/* Do to the insanities of de_thread it is possible for a process 2273 * to have the pid of the thread group leader without actually being 2274 * the thread group leader. For iteration through the pids in proc 2275 * all we care about is that we have a task with the appropriate 2276 * pid, we don't actually care if we have the right task. 2277 */ 2278static inline int has_group_leader_pid(struct task_struct *p) 2279{ 2280 return p->pid == p->tgid; 2281} 2282 2283static inline 2284int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2285{ 2286 return p1->tgid == p2->tgid; 2287} 2288 2289static inline struct task_struct *next_thread(const struct task_struct *p) 2290{ 2291 return list_entry_rcu(p->thread_group.next, 2292 struct task_struct, thread_group); 2293} 2294 2295static inline int thread_group_empty(struct task_struct *p) 2296{ 2297 return list_empty(&p->thread_group); 2298} 2299 2300#define delay_group_leader(p) \ 2301 (thread_group_leader(p) && !thread_group_empty(p)) 2302 2303static inline int task_detached(struct task_struct *p) 2304{ 2305 return p->exit_signal == -1; 2306} 2307 2308/* 2309 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2310 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2311 * pins the final release of task.io_context. Also protects ->cpuset and 2312 * ->cgroup.subsys[]. 2313 * 2314 * Nests both inside and outside of read_lock(&tasklist_lock). 2315 * It must not be nested with write_lock_irq(&tasklist_lock), 2316 * neither inside nor outside. 2317 */ 2318static inline void task_lock(struct task_struct *p) 2319{ 2320 spin_lock(&p->alloc_lock); 2321} 2322 2323static inline void task_unlock(struct task_struct *p) 2324{ 2325 spin_unlock(&p->alloc_lock); 2326} 2327 2328extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2329 unsigned long *flags); 2330 2331#define lock_task_sighand(tsk, flags) \ 2332({ struct sighand_struct *__ss; \ 2333 __cond_lock(&(tsk)->sighand->siglock, \ 2334 (__ss = __lock_task_sighand(tsk, flags))); \ 2335 __ss; \ 2336}) \ 2337 2338static inline void unlock_task_sighand(struct task_struct *tsk, 2339 unsigned long *flags) 2340{ 2341 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2342} 2343 2344/* See the declaration of threadgroup_fork_lock in signal_struct. */ 2345#ifdef CONFIG_CGROUPS 2346static inline void threadgroup_fork_read_lock(struct task_struct *tsk) 2347{ 2348 down_read(&tsk->signal->threadgroup_fork_lock); 2349} 2350static inline void threadgroup_fork_read_unlock(struct task_struct *tsk) 2351{ 2352 up_read(&tsk->signal->threadgroup_fork_lock); 2353} 2354static inline void threadgroup_fork_write_lock(struct task_struct *tsk) 2355{ 2356 down_write(&tsk->signal->threadgroup_fork_lock); 2357} 2358static inline void threadgroup_fork_write_unlock(struct task_struct *tsk) 2359{ 2360 up_write(&tsk->signal->threadgroup_fork_lock); 2361} 2362#else 2363static inline void threadgroup_fork_read_lock(struct task_struct *tsk) {} 2364static inline void threadgroup_fork_read_unlock(struct task_struct *tsk) {} 2365static inline void threadgroup_fork_write_lock(struct task_struct *tsk) {} 2366static inline void threadgroup_fork_write_unlock(struct task_struct *tsk) {} 2367#endif 2368 2369#ifndef __HAVE_THREAD_FUNCTIONS 2370 2371#define task_thread_info(task) ((struct thread_info *)(task)->stack) 2372#define task_stack_page(task) ((task)->stack) 2373 2374static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2375{ 2376 *task_thread_info(p) = *task_thread_info(org); 2377 task_thread_info(p)->task = p; 2378} 2379 2380static inline unsigned long *end_of_stack(struct task_struct *p) 2381{ 2382 return (unsigned long *)(task_thread_info(p) + 1); 2383} 2384 2385#endif 2386 2387static inline int object_is_on_stack(void *obj) 2388{ 2389 void *stack = task_stack_page(current); 2390 2391 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2392} 2393 2394extern void thread_info_cache_init(void); 2395 2396#ifdef CONFIG_DEBUG_STACK_USAGE 2397static inline unsigned long stack_not_used(struct task_struct *p) 2398{ 2399 unsigned long *n = end_of_stack(p); 2400 2401 do { /* Skip over canary */ 2402 n++; 2403 } while (!*n); 2404 2405 return (unsigned long)n - (unsigned long)end_of_stack(p); 2406} 2407#endif 2408 2409/* set thread flags in other task's structures 2410 * - see asm/thread_info.h for TIF_xxxx flags available 2411 */ 2412static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2413{ 2414 set_ti_thread_flag(task_thread_info(tsk), flag); 2415} 2416 2417static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2418{ 2419 clear_ti_thread_flag(task_thread_info(tsk), flag); 2420} 2421 2422static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2423{ 2424 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2425} 2426 2427static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2428{ 2429 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2430} 2431 2432static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2433{ 2434 return test_ti_thread_flag(task_thread_info(tsk), flag); 2435} 2436 2437static inline void set_tsk_need_resched(struct task_struct *tsk) 2438{ 2439 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2440} 2441 2442static inline void clear_tsk_need_resched(struct task_struct *tsk) 2443{ 2444 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2445} 2446 2447static inline int test_tsk_need_resched(struct task_struct *tsk) 2448{ 2449 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2450} 2451 2452static inline int restart_syscall(void) 2453{ 2454 set_tsk_thread_flag(current, TIF_SIGPENDING); 2455 return -ERESTARTNOINTR; 2456} 2457 2458static inline int signal_pending(struct task_struct *p) 2459{ 2460 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2461} 2462 2463static inline int __fatal_signal_pending(struct task_struct *p) 2464{ 2465 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2466} 2467 2468static inline int fatal_signal_pending(struct task_struct *p) 2469{ 2470 return signal_pending(p) && __fatal_signal_pending(p); 2471} 2472 2473static inline int signal_pending_state(long state, struct task_struct *p) 2474{ 2475 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2476 return 0; 2477 if (!signal_pending(p)) 2478 return 0; 2479 2480 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2481} 2482 2483static inline int need_resched(void) 2484{ 2485 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2486} 2487 2488/* 2489 * cond_resched() and cond_resched_lock(): latency reduction via 2490 * explicit rescheduling in places that are safe. The return 2491 * value indicates whether a reschedule was done in fact. 2492 * cond_resched_lock() will drop the spinlock before scheduling, 2493 * cond_resched_softirq() will enable bhs before scheduling. 2494 */ 2495extern int _cond_resched(void); 2496 2497#define cond_resched() ({ \ 2498 __might_sleep(__FILE__, __LINE__, 0); \ 2499 _cond_resched(); \ 2500}) 2501 2502extern int __cond_resched_lock(spinlock_t *lock); 2503 2504#ifdef CONFIG_PREEMPT 2505#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2506#else 2507#define PREEMPT_LOCK_OFFSET 0 2508#endif 2509 2510#define cond_resched_lock(lock) ({ \ 2511 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2512 __cond_resched_lock(lock); \ 2513}) 2514 2515extern int __cond_resched_softirq(void); 2516 2517#define cond_resched_softirq() ({ \ 2518 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2519 __cond_resched_softirq(); \ 2520}) 2521 2522/* 2523 * Does a critical section need to be broken due to another 2524 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2525 * but a general need for low latency) 2526 */ 2527static inline int spin_needbreak(spinlock_t *lock) 2528{ 2529#ifdef CONFIG_PREEMPT 2530 return spin_is_contended(lock); 2531#else 2532 return 0; 2533#endif 2534} 2535 2536/* 2537 * Thread group CPU time accounting. 2538 */ 2539void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2540void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2541 2542static inline void thread_group_cputime_init(struct signal_struct *sig) 2543{ 2544 spin_lock_init(&sig->cputimer.lock); 2545} 2546 2547/* 2548 * Reevaluate whether the task has signals pending delivery. 2549 * Wake the task if so. 2550 * This is required every time the blocked sigset_t changes. 2551 * callers must hold sighand->siglock. 2552 */ 2553extern void recalc_sigpending_and_wake(struct task_struct *t); 2554extern void recalc_sigpending(void); 2555 2556extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2557 2558/* 2559 * Wrappers for p->thread_info->cpu access. No-op on UP. 2560 */ 2561#ifdef CONFIG_SMP 2562 2563static inline unsigned int task_cpu(const struct task_struct *p) 2564{ 2565 return task_thread_info(p)->cpu; 2566} 2567 2568extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2569 2570#else 2571 2572static inline unsigned int task_cpu(const struct task_struct *p) 2573{ 2574 return 0; 2575} 2576 2577static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2578{ 2579} 2580 2581#endif /* CONFIG_SMP */ 2582 2583extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2584extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2585 2586extern void normalize_rt_tasks(void); 2587 2588#ifdef CONFIG_CGROUP_SCHED 2589 2590extern struct task_group root_task_group; 2591 2592extern struct task_group *sched_create_group(struct task_group *parent); 2593extern void sched_destroy_group(struct task_group *tg); 2594extern void sched_move_task(struct task_struct *tsk); 2595#ifdef CONFIG_FAIR_GROUP_SCHED 2596extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2597extern unsigned long sched_group_shares(struct task_group *tg); 2598#endif 2599#ifdef CONFIG_RT_GROUP_SCHED 2600extern int sched_group_set_rt_runtime(struct task_group *tg, 2601 long rt_runtime_us); 2602extern long sched_group_rt_runtime(struct task_group *tg); 2603extern int sched_group_set_rt_period(struct task_group *tg, 2604 long rt_period_us); 2605extern long sched_group_rt_period(struct task_group *tg); 2606extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2607#endif 2608#endif 2609 2610extern int task_can_switch_user(struct user_struct *up, 2611 struct task_struct *tsk); 2612 2613#ifdef CONFIG_TASK_XACCT 2614static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2615{ 2616 tsk->ioac.rchar += amt; 2617} 2618 2619static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2620{ 2621 tsk->ioac.wchar += amt; 2622} 2623 2624static inline void inc_syscr(struct task_struct *tsk) 2625{ 2626 tsk->ioac.syscr++; 2627} 2628 2629static inline void inc_syscw(struct task_struct *tsk) 2630{ 2631 tsk->ioac.syscw++; 2632} 2633#else 2634static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2635{ 2636} 2637 2638static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2639{ 2640} 2641 2642static inline void inc_syscr(struct task_struct *tsk) 2643{ 2644} 2645 2646static inline void inc_syscw(struct task_struct *tsk) 2647{ 2648} 2649#endif 2650 2651#ifndef TASK_SIZE_OF 2652#define TASK_SIZE_OF(tsk) TASK_SIZE 2653#endif 2654 2655#ifdef CONFIG_MM_OWNER 2656extern void mm_update_next_owner(struct mm_struct *mm); 2657extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2658#else 2659static inline void mm_update_next_owner(struct mm_struct *mm) 2660{ 2661} 2662 2663static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2664{ 2665} 2666#endif /* CONFIG_MM_OWNER */ 2667 2668static inline unsigned long task_rlimit(const struct task_struct *tsk, 2669 unsigned int limit) 2670{ 2671 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2672} 2673 2674static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2675 unsigned int limit) 2676{ 2677 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2678} 2679 2680static inline unsigned long rlimit(unsigned int limit) 2681{ 2682 return task_rlimit(current, limit); 2683} 2684 2685static inline unsigned long rlimit_max(unsigned int limit) 2686{ 2687 return task_rlimit_max(current, limit); 2688} 2689 2690#endif /* __KERNEL__ */ 2691 2692#endif