at v3.0-rc2 8.4 kB view raw
1/* 2 * Generic waiting primitives. 3 * 4 * (C) 2004 William Irwin, Oracle 5 */ 6#include <linux/init.h> 7#include <linux/module.h> 8#include <linux/sched.h> 9#include <linux/mm.h> 10#include <linux/wait.h> 11#include <linux/hash.h> 12 13void __init_waitqueue_head(wait_queue_head_t *q, struct lock_class_key *key) 14{ 15 spin_lock_init(&q->lock); 16 lockdep_set_class(&q->lock, key); 17 INIT_LIST_HEAD(&q->task_list); 18} 19 20EXPORT_SYMBOL(__init_waitqueue_head); 21 22void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) 23{ 24 unsigned long flags; 25 26 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 27 spin_lock_irqsave(&q->lock, flags); 28 __add_wait_queue(q, wait); 29 spin_unlock_irqrestore(&q->lock, flags); 30} 31EXPORT_SYMBOL(add_wait_queue); 32 33void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait) 34{ 35 unsigned long flags; 36 37 wait->flags |= WQ_FLAG_EXCLUSIVE; 38 spin_lock_irqsave(&q->lock, flags); 39 __add_wait_queue_tail(q, wait); 40 spin_unlock_irqrestore(&q->lock, flags); 41} 42EXPORT_SYMBOL(add_wait_queue_exclusive); 43 44void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) 45{ 46 unsigned long flags; 47 48 spin_lock_irqsave(&q->lock, flags); 49 __remove_wait_queue(q, wait); 50 spin_unlock_irqrestore(&q->lock, flags); 51} 52EXPORT_SYMBOL(remove_wait_queue); 53 54 55/* 56 * Note: we use "set_current_state()" _after_ the wait-queue add, 57 * because we need a memory barrier there on SMP, so that any 58 * wake-function that tests for the wait-queue being active 59 * will be guaranteed to see waitqueue addition _or_ subsequent 60 * tests in this thread will see the wakeup having taken place. 61 * 62 * The spin_unlock() itself is semi-permeable and only protects 63 * one way (it only protects stuff inside the critical region and 64 * stops them from bleeding out - it would still allow subsequent 65 * loads to move into the critical region). 66 */ 67void 68prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state) 69{ 70 unsigned long flags; 71 72 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 73 spin_lock_irqsave(&q->lock, flags); 74 if (list_empty(&wait->task_list)) 75 __add_wait_queue(q, wait); 76 set_current_state(state); 77 spin_unlock_irqrestore(&q->lock, flags); 78} 79EXPORT_SYMBOL(prepare_to_wait); 80 81void 82prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state) 83{ 84 unsigned long flags; 85 86 wait->flags |= WQ_FLAG_EXCLUSIVE; 87 spin_lock_irqsave(&q->lock, flags); 88 if (list_empty(&wait->task_list)) 89 __add_wait_queue_tail(q, wait); 90 set_current_state(state); 91 spin_unlock_irqrestore(&q->lock, flags); 92} 93EXPORT_SYMBOL(prepare_to_wait_exclusive); 94 95/** 96 * finish_wait - clean up after waiting in a queue 97 * @q: waitqueue waited on 98 * @wait: wait descriptor 99 * 100 * Sets current thread back to running state and removes 101 * the wait descriptor from the given waitqueue if still 102 * queued. 103 */ 104void finish_wait(wait_queue_head_t *q, wait_queue_t *wait) 105{ 106 unsigned long flags; 107 108 __set_current_state(TASK_RUNNING); 109 /* 110 * We can check for list emptiness outside the lock 111 * IFF: 112 * - we use the "careful" check that verifies both 113 * the next and prev pointers, so that there cannot 114 * be any half-pending updates in progress on other 115 * CPU's that we haven't seen yet (and that might 116 * still change the stack area. 117 * and 118 * - all other users take the lock (ie we can only 119 * have _one_ other CPU that looks at or modifies 120 * the list). 121 */ 122 if (!list_empty_careful(&wait->task_list)) { 123 spin_lock_irqsave(&q->lock, flags); 124 list_del_init(&wait->task_list); 125 spin_unlock_irqrestore(&q->lock, flags); 126 } 127} 128EXPORT_SYMBOL(finish_wait); 129 130/** 131 * abort_exclusive_wait - abort exclusive waiting in a queue 132 * @q: waitqueue waited on 133 * @wait: wait descriptor 134 * @mode: runstate of the waiter to be woken 135 * @key: key to identify a wait bit queue or %NULL 136 * 137 * Sets current thread back to running state and removes 138 * the wait descriptor from the given waitqueue if still 139 * queued. 140 * 141 * Wakes up the next waiter if the caller is concurrently 142 * woken up through the queue. 143 * 144 * This prevents waiter starvation where an exclusive waiter 145 * aborts and is woken up concurrently and no one wakes up 146 * the next waiter. 147 */ 148void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, 149 unsigned int mode, void *key) 150{ 151 unsigned long flags; 152 153 __set_current_state(TASK_RUNNING); 154 spin_lock_irqsave(&q->lock, flags); 155 if (!list_empty(&wait->task_list)) 156 list_del_init(&wait->task_list); 157 else if (waitqueue_active(q)) 158 __wake_up_locked_key(q, mode, key); 159 spin_unlock_irqrestore(&q->lock, flags); 160} 161EXPORT_SYMBOL(abort_exclusive_wait); 162 163int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) 164{ 165 int ret = default_wake_function(wait, mode, sync, key); 166 167 if (ret) 168 list_del_init(&wait->task_list); 169 return ret; 170} 171EXPORT_SYMBOL(autoremove_wake_function); 172 173int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) 174{ 175 struct wait_bit_key *key = arg; 176 struct wait_bit_queue *wait_bit 177 = container_of(wait, struct wait_bit_queue, wait); 178 179 if (wait_bit->key.flags != key->flags || 180 wait_bit->key.bit_nr != key->bit_nr || 181 test_bit(key->bit_nr, key->flags)) 182 return 0; 183 else 184 return autoremove_wake_function(wait, mode, sync, key); 185} 186EXPORT_SYMBOL(wake_bit_function); 187 188/* 189 * To allow interruptible waiting and asynchronous (i.e. nonblocking) 190 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are 191 * permitted return codes. Nonzero return codes halt waiting and return. 192 */ 193int __sched 194__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q, 195 int (*action)(void *), unsigned mode) 196{ 197 int ret = 0; 198 199 do { 200 prepare_to_wait(wq, &q->wait, mode); 201 if (test_bit(q->key.bit_nr, q->key.flags)) 202 ret = (*action)(q->key.flags); 203 } while (test_bit(q->key.bit_nr, q->key.flags) && !ret); 204 finish_wait(wq, &q->wait); 205 return ret; 206} 207EXPORT_SYMBOL(__wait_on_bit); 208 209int __sched out_of_line_wait_on_bit(void *word, int bit, 210 int (*action)(void *), unsigned mode) 211{ 212 wait_queue_head_t *wq = bit_waitqueue(word, bit); 213 DEFINE_WAIT_BIT(wait, word, bit); 214 215 return __wait_on_bit(wq, &wait, action, mode); 216} 217EXPORT_SYMBOL(out_of_line_wait_on_bit); 218 219int __sched 220__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q, 221 int (*action)(void *), unsigned mode) 222{ 223 do { 224 int ret; 225 226 prepare_to_wait_exclusive(wq, &q->wait, mode); 227 if (!test_bit(q->key.bit_nr, q->key.flags)) 228 continue; 229 ret = action(q->key.flags); 230 if (!ret) 231 continue; 232 abort_exclusive_wait(wq, &q->wait, mode, &q->key); 233 return ret; 234 } while (test_and_set_bit(q->key.bit_nr, q->key.flags)); 235 finish_wait(wq, &q->wait); 236 return 0; 237} 238EXPORT_SYMBOL(__wait_on_bit_lock); 239 240int __sched out_of_line_wait_on_bit_lock(void *word, int bit, 241 int (*action)(void *), unsigned mode) 242{ 243 wait_queue_head_t *wq = bit_waitqueue(word, bit); 244 DEFINE_WAIT_BIT(wait, word, bit); 245 246 return __wait_on_bit_lock(wq, &wait, action, mode); 247} 248EXPORT_SYMBOL(out_of_line_wait_on_bit_lock); 249 250void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit) 251{ 252 struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit); 253 if (waitqueue_active(wq)) 254 __wake_up(wq, TASK_NORMAL, 1, &key); 255} 256EXPORT_SYMBOL(__wake_up_bit); 257 258/** 259 * wake_up_bit - wake up a waiter on a bit 260 * @word: the word being waited on, a kernel virtual address 261 * @bit: the bit of the word being waited on 262 * 263 * There is a standard hashed waitqueue table for generic use. This 264 * is the part of the hashtable's accessor API that wakes up waiters 265 * on a bit. For instance, if one were to have waiters on a bitflag, 266 * one would call wake_up_bit() after clearing the bit. 267 * 268 * In order for this to function properly, as it uses waitqueue_active() 269 * internally, some kind of memory barrier must be done prior to calling 270 * this. Typically, this will be smp_mb__after_clear_bit(), but in some 271 * cases where bitflags are manipulated non-atomically under a lock, one 272 * may need to use a less regular barrier, such fs/inode.c's smp_mb(), 273 * because spin_unlock() does not guarantee a memory barrier. 274 */ 275void wake_up_bit(void *word, int bit) 276{ 277 __wake_up_bit(bit_waitqueue(word, bit), word, bit); 278} 279EXPORT_SYMBOL(wake_up_bit); 280 281wait_queue_head_t *bit_waitqueue(void *word, int bit) 282{ 283 const int shift = BITS_PER_LONG == 32 ? 5 : 6; 284 const struct zone *zone = page_zone(virt_to_page(word)); 285 unsigned long val = (unsigned long)word << shift | bit; 286 287 return &zone->wait_table[hash_long(val, zone->wait_table_bits)]; 288} 289EXPORT_SYMBOL(bit_waitqueue);