at v3.0-rc2 1212 lines 34 kB view raw
1/**************************************************************************** 2 * Driver for Solarflare Solarstorm network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2010 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11#include <linux/pci.h> 12#include <linux/tcp.h> 13#include <linux/ip.h> 14#include <linux/in.h> 15#include <linux/ipv6.h> 16#include <linux/slab.h> 17#include <net/ipv6.h> 18#include <linux/if_ether.h> 19#include <linux/highmem.h> 20#include "net_driver.h" 21#include "efx.h" 22#include "nic.h" 23#include "workarounds.h" 24 25/* 26 * TX descriptor ring full threshold 27 * 28 * The tx_queue descriptor ring fill-level must fall below this value 29 * before we restart the netif queue 30 */ 31#define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u) 32 33static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue, 34 struct efx_tx_buffer *buffer) 35{ 36 if (buffer->unmap_len) { 37 struct pci_dev *pci_dev = tx_queue->efx->pci_dev; 38 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len - 39 buffer->unmap_len); 40 if (buffer->unmap_single) 41 pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len, 42 PCI_DMA_TODEVICE); 43 else 44 pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len, 45 PCI_DMA_TODEVICE); 46 buffer->unmap_len = 0; 47 buffer->unmap_single = false; 48 } 49 50 if (buffer->skb) { 51 dev_kfree_skb_any((struct sk_buff *) buffer->skb); 52 buffer->skb = NULL; 53 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, 54 "TX queue %d transmission id %x complete\n", 55 tx_queue->queue, tx_queue->read_count); 56 } 57} 58 59/** 60 * struct efx_tso_header - a DMA mapped buffer for packet headers 61 * @next: Linked list of free ones. 62 * The list is protected by the TX queue lock. 63 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0. 64 * @dma_addr: The DMA address of the header below. 65 * 66 * This controls the memory used for a TSO header. Use TSOH_DATA() 67 * to find the packet header data. Use TSOH_SIZE() to calculate the 68 * total size required for a given packet header length. TSO headers 69 * in the free list are exactly %TSOH_STD_SIZE bytes in size. 70 */ 71struct efx_tso_header { 72 union { 73 struct efx_tso_header *next; 74 size_t unmap_len; 75 }; 76 dma_addr_t dma_addr; 77}; 78 79static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, 80 struct sk_buff *skb); 81static void efx_fini_tso(struct efx_tx_queue *tx_queue); 82static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, 83 struct efx_tso_header *tsoh); 84 85static void efx_tsoh_free(struct efx_tx_queue *tx_queue, 86 struct efx_tx_buffer *buffer) 87{ 88 if (buffer->tsoh) { 89 if (likely(!buffer->tsoh->unmap_len)) { 90 buffer->tsoh->next = tx_queue->tso_headers_free; 91 tx_queue->tso_headers_free = buffer->tsoh; 92 } else { 93 efx_tsoh_heap_free(tx_queue, buffer->tsoh); 94 } 95 buffer->tsoh = NULL; 96 } 97} 98 99 100static inline unsigned 101efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr) 102{ 103 /* Depending on the NIC revision, we can use descriptor 104 * lengths up to 8K or 8K-1. However, since PCI Express 105 * devices must split read requests at 4K boundaries, there is 106 * little benefit from using descriptors that cross those 107 * boundaries and we keep things simple by not doing so. 108 */ 109 unsigned len = (~dma_addr & 0xfff) + 1; 110 111 /* Work around hardware bug for unaligned buffers. */ 112 if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf)) 113 len = min_t(unsigned, len, 512 - (dma_addr & 0xf)); 114 115 return len; 116} 117 118/* 119 * Add a socket buffer to a TX queue 120 * 121 * This maps all fragments of a socket buffer for DMA and adds them to 122 * the TX queue. The queue's insert pointer will be incremented by 123 * the number of fragments in the socket buffer. 124 * 125 * If any DMA mapping fails, any mapped fragments will be unmapped, 126 * the queue's insert pointer will be restored to its original value. 127 * 128 * This function is split out from efx_hard_start_xmit to allow the 129 * loopback test to direct packets via specific TX queues. 130 * 131 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY 132 * You must hold netif_tx_lock() to call this function. 133 */ 134netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb) 135{ 136 struct efx_nic *efx = tx_queue->efx; 137 struct pci_dev *pci_dev = efx->pci_dev; 138 struct efx_tx_buffer *buffer; 139 skb_frag_t *fragment; 140 struct page *page; 141 int page_offset; 142 unsigned int len, unmap_len = 0, fill_level, insert_ptr; 143 dma_addr_t dma_addr, unmap_addr = 0; 144 unsigned int dma_len; 145 bool unmap_single; 146 int q_space, i = 0; 147 netdev_tx_t rc = NETDEV_TX_OK; 148 149 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); 150 151 if (skb_shinfo(skb)->gso_size) 152 return efx_enqueue_skb_tso(tx_queue, skb); 153 154 /* Get size of the initial fragment */ 155 len = skb_headlen(skb); 156 157 /* Pad if necessary */ 158 if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) { 159 EFX_BUG_ON_PARANOID(skb->data_len); 160 len = 32 + 1; 161 if (skb_pad(skb, len - skb->len)) 162 return NETDEV_TX_OK; 163 } 164 165 fill_level = tx_queue->insert_count - tx_queue->old_read_count; 166 q_space = efx->txq_entries - 1 - fill_level; 167 168 /* Map for DMA. Use pci_map_single rather than pci_map_page 169 * since this is more efficient on machines with sparse 170 * memory. 171 */ 172 unmap_single = true; 173 dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE); 174 175 /* Process all fragments */ 176 while (1) { 177 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr))) 178 goto pci_err; 179 180 /* Store fields for marking in the per-fragment final 181 * descriptor */ 182 unmap_len = len; 183 unmap_addr = dma_addr; 184 185 /* Add to TX queue, splitting across DMA boundaries */ 186 do { 187 if (unlikely(q_space-- <= 0)) { 188 /* It might be that completions have 189 * happened since the xmit path last 190 * checked. Update the xmit path's 191 * copy of read_count. 192 */ 193 netif_tx_stop_queue(tx_queue->core_txq); 194 /* This memory barrier protects the 195 * change of queue state from the access 196 * of read_count. */ 197 smp_mb(); 198 tx_queue->old_read_count = 199 ACCESS_ONCE(tx_queue->read_count); 200 fill_level = (tx_queue->insert_count 201 - tx_queue->old_read_count); 202 q_space = efx->txq_entries - 1 - fill_level; 203 if (unlikely(q_space-- <= 0)) { 204 rc = NETDEV_TX_BUSY; 205 goto unwind; 206 } 207 smp_mb(); 208 if (likely(!efx->loopback_selftest)) 209 netif_tx_start_queue( 210 tx_queue->core_txq); 211 } 212 213 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; 214 buffer = &tx_queue->buffer[insert_ptr]; 215 efx_tsoh_free(tx_queue, buffer); 216 EFX_BUG_ON_PARANOID(buffer->tsoh); 217 EFX_BUG_ON_PARANOID(buffer->skb); 218 EFX_BUG_ON_PARANOID(buffer->len); 219 EFX_BUG_ON_PARANOID(!buffer->continuation); 220 EFX_BUG_ON_PARANOID(buffer->unmap_len); 221 222 dma_len = efx_max_tx_len(efx, dma_addr); 223 if (likely(dma_len >= len)) 224 dma_len = len; 225 226 /* Fill out per descriptor fields */ 227 buffer->len = dma_len; 228 buffer->dma_addr = dma_addr; 229 len -= dma_len; 230 dma_addr += dma_len; 231 ++tx_queue->insert_count; 232 } while (len); 233 234 /* Transfer ownership of the unmapping to the final buffer */ 235 buffer->unmap_single = unmap_single; 236 buffer->unmap_len = unmap_len; 237 unmap_len = 0; 238 239 /* Get address and size of next fragment */ 240 if (i >= skb_shinfo(skb)->nr_frags) 241 break; 242 fragment = &skb_shinfo(skb)->frags[i]; 243 len = fragment->size; 244 page = fragment->page; 245 page_offset = fragment->page_offset; 246 i++; 247 /* Map for DMA */ 248 unmap_single = false; 249 dma_addr = pci_map_page(pci_dev, page, page_offset, len, 250 PCI_DMA_TODEVICE); 251 } 252 253 /* Transfer ownership of the skb to the final buffer */ 254 buffer->skb = skb; 255 buffer->continuation = false; 256 257 /* Pass off to hardware */ 258 efx_nic_push_buffers(tx_queue); 259 260 return NETDEV_TX_OK; 261 262 pci_err: 263 netif_err(efx, tx_err, efx->net_dev, 264 " TX queue %d could not map skb with %d bytes %d " 265 "fragments for DMA\n", tx_queue->queue, skb->len, 266 skb_shinfo(skb)->nr_frags + 1); 267 268 /* Mark the packet as transmitted, and free the SKB ourselves */ 269 dev_kfree_skb_any(skb); 270 271 unwind: 272 /* Work backwards until we hit the original insert pointer value */ 273 while (tx_queue->insert_count != tx_queue->write_count) { 274 --tx_queue->insert_count; 275 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; 276 buffer = &tx_queue->buffer[insert_ptr]; 277 efx_dequeue_buffer(tx_queue, buffer); 278 buffer->len = 0; 279 } 280 281 /* Free the fragment we were mid-way through pushing */ 282 if (unmap_len) { 283 if (unmap_single) 284 pci_unmap_single(pci_dev, unmap_addr, unmap_len, 285 PCI_DMA_TODEVICE); 286 else 287 pci_unmap_page(pci_dev, unmap_addr, unmap_len, 288 PCI_DMA_TODEVICE); 289 } 290 291 return rc; 292} 293 294/* Remove packets from the TX queue 295 * 296 * This removes packets from the TX queue, up to and including the 297 * specified index. 298 */ 299static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue, 300 unsigned int index) 301{ 302 struct efx_nic *efx = tx_queue->efx; 303 unsigned int stop_index, read_ptr; 304 305 stop_index = (index + 1) & tx_queue->ptr_mask; 306 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 307 308 while (read_ptr != stop_index) { 309 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; 310 if (unlikely(buffer->len == 0)) { 311 netif_err(efx, tx_err, efx->net_dev, 312 "TX queue %d spurious TX completion id %x\n", 313 tx_queue->queue, read_ptr); 314 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP); 315 return; 316 } 317 318 efx_dequeue_buffer(tx_queue, buffer); 319 buffer->continuation = true; 320 buffer->len = 0; 321 322 ++tx_queue->read_count; 323 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 324 } 325} 326 327/* Initiate a packet transmission. We use one channel per CPU 328 * (sharing when we have more CPUs than channels). On Falcon, the TX 329 * completion events will be directed back to the CPU that transmitted 330 * the packet, which should be cache-efficient. 331 * 332 * Context: non-blocking. 333 * Note that returning anything other than NETDEV_TX_OK will cause the 334 * OS to free the skb. 335 */ 336netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb, 337 struct net_device *net_dev) 338{ 339 struct efx_nic *efx = netdev_priv(net_dev); 340 struct efx_tx_queue *tx_queue; 341 unsigned index, type; 342 343 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev)); 344 345 index = skb_get_queue_mapping(skb); 346 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0; 347 if (index >= efx->n_tx_channels) { 348 index -= efx->n_tx_channels; 349 type |= EFX_TXQ_TYPE_HIGHPRI; 350 } 351 tx_queue = efx_get_tx_queue(efx, index, type); 352 353 return efx_enqueue_skb(tx_queue, skb); 354} 355 356void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue) 357{ 358 struct efx_nic *efx = tx_queue->efx; 359 360 /* Must be inverse of queue lookup in efx_hard_start_xmit() */ 361 tx_queue->core_txq = 362 netdev_get_tx_queue(efx->net_dev, 363 tx_queue->queue / EFX_TXQ_TYPES + 364 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? 365 efx->n_tx_channels : 0)); 366} 367 368int efx_setup_tc(struct net_device *net_dev, u8 num_tc) 369{ 370 struct efx_nic *efx = netdev_priv(net_dev); 371 struct efx_channel *channel; 372 struct efx_tx_queue *tx_queue; 373 unsigned tc; 374 int rc; 375 376 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC) 377 return -EINVAL; 378 379 if (num_tc == net_dev->num_tc) 380 return 0; 381 382 for (tc = 0; tc < num_tc; tc++) { 383 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels; 384 net_dev->tc_to_txq[tc].count = efx->n_tx_channels; 385 } 386 387 if (num_tc > net_dev->num_tc) { 388 /* Initialise high-priority queues as necessary */ 389 efx_for_each_channel(channel, efx) { 390 efx_for_each_possible_channel_tx_queue(tx_queue, 391 channel) { 392 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI)) 393 continue; 394 if (!tx_queue->buffer) { 395 rc = efx_probe_tx_queue(tx_queue); 396 if (rc) 397 return rc; 398 } 399 if (!tx_queue->initialised) 400 efx_init_tx_queue(tx_queue); 401 efx_init_tx_queue_core_txq(tx_queue); 402 } 403 } 404 } else { 405 /* Reduce number of classes before number of queues */ 406 net_dev->num_tc = num_tc; 407 } 408 409 rc = netif_set_real_num_tx_queues(net_dev, 410 max_t(int, num_tc, 1) * 411 efx->n_tx_channels); 412 if (rc) 413 return rc; 414 415 /* Do not destroy high-priority queues when they become 416 * unused. We would have to flush them first, and it is 417 * fairly difficult to flush a subset of TX queues. Leave 418 * it to efx_fini_channels(). 419 */ 420 421 net_dev->num_tc = num_tc; 422 return 0; 423} 424 425void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index) 426{ 427 unsigned fill_level; 428 struct efx_nic *efx = tx_queue->efx; 429 430 EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask); 431 432 efx_dequeue_buffers(tx_queue, index); 433 434 /* See if we need to restart the netif queue. This barrier 435 * separates the update of read_count from the test of the 436 * queue state. */ 437 smp_mb(); 438 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && 439 likely(efx->port_enabled) && 440 likely(netif_device_present(efx->net_dev))) { 441 fill_level = tx_queue->insert_count - tx_queue->read_count; 442 if (fill_level < EFX_TXQ_THRESHOLD(efx)) { 443 EFX_BUG_ON_PARANOID(!efx_dev_registered(efx)); 444 netif_tx_wake_queue(tx_queue->core_txq); 445 } 446 } 447 448 /* Check whether the hardware queue is now empty */ 449 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { 450 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count); 451 if (tx_queue->read_count == tx_queue->old_write_count) { 452 smp_mb(); 453 tx_queue->empty_read_count = 454 tx_queue->read_count | EFX_EMPTY_COUNT_VALID; 455 } 456 } 457} 458 459int efx_probe_tx_queue(struct efx_tx_queue *tx_queue) 460{ 461 struct efx_nic *efx = tx_queue->efx; 462 unsigned int entries; 463 int i, rc; 464 465 /* Create the smallest power-of-two aligned ring */ 466 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE); 467 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 468 tx_queue->ptr_mask = entries - 1; 469 470 netif_dbg(efx, probe, efx->net_dev, 471 "creating TX queue %d size %#x mask %#x\n", 472 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); 473 474 /* Allocate software ring */ 475 tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer), 476 GFP_KERNEL); 477 if (!tx_queue->buffer) 478 return -ENOMEM; 479 for (i = 0; i <= tx_queue->ptr_mask; ++i) 480 tx_queue->buffer[i].continuation = true; 481 482 /* Allocate hardware ring */ 483 rc = efx_nic_probe_tx(tx_queue); 484 if (rc) 485 goto fail; 486 487 return 0; 488 489 fail: 490 kfree(tx_queue->buffer); 491 tx_queue->buffer = NULL; 492 return rc; 493} 494 495void efx_init_tx_queue(struct efx_tx_queue *tx_queue) 496{ 497 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 498 "initialising TX queue %d\n", tx_queue->queue); 499 500 tx_queue->insert_count = 0; 501 tx_queue->write_count = 0; 502 tx_queue->old_write_count = 0; 503 tx_queue->read_count = 0; 504 tx_queue->old_read_count = 0; 505 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID; 506 507 /* Set up TX descriptor ring */ 508 efx_nic_init_tx(tx_queue); 509 510 tx_queue->initialised = true; 511} 512 513void efx_release_tx_buffers(struct efx_tx_queue *tx_queue) 514{ 515 struct efx_tx_buffer *buffer; 516 517 if (!tx_queue->buffer) 518 return; 519 520 /* Free any buffers left in the ring */ 521 while (tx_queue->read_count != tx_queue->write_count) { 522 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; 523 efx_dequeue_buffer(tx_queue, buffer); 524 buffer->continuation = true; 525 buffer->len = 0; 526 527 ++tx_queue->read_count; 528 } 529} 530 531void efx_fini_tx_queue(struct efx_tx_queue *tx_queue) 532{ 533 if (!tx_queue->initialised) 534 return; 535 536 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 537 "shutting down TX queue %d\n", tx_queue->queue); 538 539 tx_queue->initialised = false; 540 541 /* Flush TX queue, remove descriptor ring */ 542 efx_nic_fini_tx(tx_queue); 543 544 efx_release_tx_buffers(tx_queue); 545 546 /* Free up TSO header cache */ 547 efx_fini_tso(tx_queue); 548} 549 550void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) 551{ 552 if (!tx_queue->buffer) 553 return; 554 555 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 556 "destroying TX queue %d\n", tx_queue->queue); 557 efx_nic_remove_tx(tx_queue); 558 559 kfree(tx_queue->buffer); 560 tx_queue->buffer = NULL; 561} 562 563 564/* Efx TCP segmentation acceleration. 565 * 566 * Why? Because by doing it here in the driver we can go significantly 567 * faster than the GSO. 568 * 569 * Requires TX checksum offload support. 570 */ 571 572/* Number of bytes inserted at the start of a TSO header buffer, 573 * similar to NET_IP_ALIGN. 574 */ 575#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 576#define TSOH_OFFSET 0 577#else 578#define TSOH_OFFSET NET_IP_ALIGN 579#endif 580 581#define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET) 582 583/* Total size of struct efx_tso_header, buffer and padding */ 584#define TSOH_SIZE(hdr_len) \ 585 (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len) 586 587/* Size of blocks on free list. Larger blocks must be allocated from 588 * the heap. 589 */ 590#define TSOH_STD_SIZE 128 591 592#define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2)) 593#define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data) 594#define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data) 595#define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data) 596#define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data) 597 598/** 599 * struct tso_state - TSO state for an SKB 600 * @out_len: Remaining length in current segment 601 * @seqnum: Current sequence number 602 * @ipv4_id: Current IPv4 ID, host endian 603 * @packet_space: Remaining space in current packet 604 * @dma_addr: DMA address of current position 605 * @in_len: Remaining length in current SKB fragment 606 * @unmap_len: Length of SKB fragment 607 * @unmap_addr: DMA address of SKB fragment 608 * @unmap_single: DMA single vs page mapping flag 609 * @protocol: Network protocol (after any VLAN header) 610 * @header_len: Number of bytes of header 611 * @full_packet_size: Number of bytes to put in each outgoing segment 612 * 613 * The state used during segmentation. It is put into this data structure 614 * just to make it easy to pass into inline functions. 615 */ 616struct tso_state { 617 /* Output position */ 618 unsigned out_len; 619 unsigned seqnum; 620 unsigned ipv4_id; 621 unsigned packet_space; 622 623 /* Input position */ 624 dma_addr_t dma_addr; 625 unsigned in_len; 626 unsigned unmap_len; 627 dma_addr_t unmap_addr; 628 bool unmap_single; 629 630 __be16 protocol; 631 unsigned header_len; 632 int full_packet_size; 633}; 634 635 636/* 637 * Verify that our various assumptions about sk_buffs and the conditions 638 * under which TSO will be attempted hold true. Return the protocol number. 639 */ 640static __be16 efx_tso_check_protocol(struct sk_buff *skb) 641{ 642 __be16 protocol = skb->protocol; 643 644 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto != 645 protocol); 646 if (protocol == htons(ETH_P_8021Q)) { 647 /* Find the encapsulated protocol; reset network header 648 * and transport header based on that. */ 649 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 650 protocol = veh->h_vlan_encapsulated_proto; 651 skb_set_network_header(skb, sizeof(*veh)); 652 if (protocol == htons(ETH_P_IP)) 653 skb_set_transport_header(skb, sizeof(*veh) + 654 4 * ip_hdr(skb)->ihl); 655 else if (protocol == htons(ETH_P_IPV6)) 656 skb_set_transport_header(skb, sizeof(*veh) + 657 sizeof(struct ipv6hdr)); 658 } 659 660 if (protocol == htons(ETH_P_IP)) { 661 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP); 662 } else { 663 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6)); 664 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP); 665 } 666 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) 667 + (tcp_hdr(skb)->doff << 2u)) > 668 skb_headlen(skb)); 669 670 return protocol; 671} 672 673 674/* 675 * Allocate a page worth of efx_tso_header structures, and string them 676 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM. 677 */ 678static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue) 679{ 680 681 struct pci_dev *pci_dev = tx_queue->efx->pci_dev; 682 struct efx_tso_header *tsoh; 683 dma_addr_t dma_addr; 684 u8 *base_kva, *kva; 685 686 base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr); 687 if (base_kva == NULL) { 688 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev, 689 "Unable to allocate page for TSO headers\n"); 690 return -ENOMEM; 691 } 692 693 /* pci_alloc_consistent() allocates pages. */ 694 EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u)); 695 696 for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) { 697 tsoh = (struct efx_tso_header *)kva; 698 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva); 699 tsoh->next = tx_queue->tso_headers_free; 700 tx_queue->tso_headers_free = tsoh; 701 } 702 703 return 0; 704} 705 706 707/* Free up a TSO header, and all others in the same page. */ 708static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue, 709 struct efx_tso_header *tsoh, 710 struct pci_dev *pci_dev) 711{ 712 struct efx_tso_header **p; 713 unsigned long base_kva; 714 dma_addr_t base_dma; 715 716 base_kva = (unsigned long)tsoh & PAGE_MASK; 717 base_dma = tsoh->dma_addr & PAGE_MASK; 718 719 p = &tx_queue->tso_headers_free; 720 while (*p != NULL) { 721 if (((unsigned long)*p & PAGE_MASK) == base_kva) 722 *p = (*p)->next; 723 else 724 p = &(*p)->next; 725 } 726 727 pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma); 728} 729 730static struct efx_tso_header * 731efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len) 732{ 733 struct efx_tso_header *tsoh; 734 735 tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA); 736 if (unlikely(!tsoh)) 737 return NULL; 738 739 tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev, 740 TSOH_BUFFER(tsoh), header_len, 741 PCI_DMA_TODEVICE); 742 if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev, 743 tsoh->dma_addr))) { 744 kfree(tsoh); 745 return NULL; 746 } 747 748 tsoh->unmap_len = header_len; 749 return tsoh; 750} 751 752static void 753efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh) 754{ 755 pci_unmap_single(tx_queue->efx->pci_dev, 756 tsoh->dma_addr, tsoh->unmap_len, 757 PCI_DMA_TODEVICE); 758 kfree(tsoh); 759} 760 761/** 762 * efx_tx_queue_insert - push descriptors onto the TX queue 763 * @tx_queue: Efx TX queue 764 * @dma_addr: DMA address of fragment 765 * @len: Length of fragment 766 * @final_buffer: The final buffer inserted into the queue 767 * 768 * Push descriptors onto the TX queue. Return 0 on success or 1 if 769 * @tx_queue full. 770 */ 771static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue, 772 dma_addr_t dma_addr, unsigned len, 773 struct efx_tx_buffer **final_buffer) 774{ 775 struct efx_tx_buffer *buffer; 776 struct efx_nic *efx = tx_queue->efx; 777 unsigned dma_len, fill_level, insert_ptr; 778 int q_space; 779 780 EFX_BUG_ON_PARANOID(len <= 0); 781 782 fill_level = tx_queue->insert_count - tx_queue->old_read_count; 783 /* -1 as there is no way to represent all descriptors used */ 784 q_space = efx->txq_entries - 1 - fill_level; 785 786 while (1) { 787 if (unlikely(q_space-- <= 0)) { 788 /* It might be that completions have happened 789 * since the xmit path last checked. Update 790 * the xmit path's copy of read_count. 791 */ 792 netif_tx_stop_queue(tx_queue->core_txq); 793 /* This memory barrier protects the change of 794 * queue state from the access of read_count. */ 795 smp_mb(); 796 tx_queue->old_read_count = 797 ACCESS_ONCE(tx_queue->read_count); 798 fill_level = (tx_queue->insert_count 799 - tx_queue->old_read_count); 800 q_space = efx->txq_entries - 1 - fill_level; 801 if (unlikely(q_space-- <= 0)) { 802 *final_buffer = NULL; 803 return 1; 804 } 805 smp_mb(); 806 netif_tx_start_queue(tx_queue->core_txq); 807 } 808 809 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; 810 buffer = &tx_queue->buffer[insert_ptr]; 811 ++tx_queue->insert_count; 812 813 EFX_BUG_ON_PARANOID(tx_queue->insert_count - 814 tx_queue->read_count >= 815 efx->txq_entries); 816 817 efx_tsoh_free(tx_queue, buffer); 818 EFX_BUG_ON_PARANOID(buffer->len); 819 EFX_BUG_ON_PARANOID(buffer->unmap_len); 820 EFX_BUG_ON_PARANOID(buffer->skb); 821 EFX_BUG_ON_PARANOID(!buffer->continuation); 822 EFX_BUG_ON_PARANOID(buffer->tsoh); 823 824 buffer->dma_addr = dma_addr; 825 826 dma_len = efx_max_tx_len(efx, dma_addr); 827 828 /* If there is enough space to send then do so */ 829 if (dma_len >= len) 830 break; 831 832 buffer->len = dma_len; /* Don't set the other members */ 833 dma_addr += dma_len; 834 len -= dma_len; 835 } 836 837 EFX_BUG_ON_PARANOID(!len); 838 buffer->len = len; 839 *final_buffer = buffer; 840 return 0; 841} 842 843 844/* 845 * Put a TSO header into the TX queue. 846 * 847 * This is special-cased because we know that it is small enough to fit in 848 * a single fragment, and we know it doesn't cross a page boundary. It 849 * also allows us to not worry about end-of-packet etc. 850 */ 851static void efx_tso_put_header(struct efx_tx_queue *tx_queue, 852 struct efx_tso_header *tsoh, unsigned len) 853{ 854 struct efx_tx_buffer *buffer; 855 856 buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask]; 857 efx_tsoh_free(tx_queue, buffer); 858 EFX_BUG_ON_PARANOID(buffer->len); 859 EFX_BUG_ON_PARANOID(buffer->unmap_len); 860 EFX_BUG_ON_PARANOID(buffer->skb); 861 EFX_BUG_ON_PARANOID(!buffer->continuation); 862 EFX_BUG_ON_PARANOID(buffer->tsoh); 863 buffer->len = len; 864 buffer->dma_addr = tsoh->dma_addr; 865 buffer->tsoh = tsoh; 866 867 ++tx_queue->insert_count; 868} 869 870 871/* Remove descriptors put into a tx_queue. */ 872static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue) 873{ 874 struct efx_tx_buffer *buffer; 875 dma_addr_t unmap_addr; 876 877 /* Work backwards until we hit the original insert pointer value */ 878 while (tx_queue->insert_count != tx_queue->write_count) { 879 --tx_queue->insert_count; 880 buffer = &tx_queue->buffer[tx_queue->insert_count & 881 tx_queue->ptr_mask]; 882 efx_tsoh_free(tx_queue, buffer); 883 EFX_BUG_ON_PARANOID(buffer->skb); 884 if (buffer->unmap_len) { 885 unmap_addr = (buffer->dma_addr + buffer->len - 886 buffer->unmap_len); 887 if (buffer->unmap_single) 888 pci_unmap_single(tx_queue->efx->pci_dev, 889 unmap_addr, buffer->unmap_len, 890 PCI_DMA_TODEVICE); 891 else 892 pci_unmap_page(tx_queue->efx->pci_dev, 893 unmap_addr, buffer->unmap_len, 894 PCI_DMA_TODEVICE); 895 buffer->unmap_len = 0; 896 } 897 buffer->len = 0; 898 buffer->continuation = true; 899 } 900} 901 902 903/* Parse the SKB header and initialise state. */ 904static void tso_start(struct tso_state *st, const struct sk_buff *skb) 905{ 906 /* All ethernet/IP/TCP headers combined size is TCP header size 907 * plus offset of TCP header relative to start of packet. 908 */ 909 st->header_len = ((tcp_hdr(skb)->doff << 2u) 910 + PTR_DIFF(tcp_hdr(skb), skb->data)); 911 st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size; 912 913 if (st->protocol == htons(ETH_P_IP)) 914 st->ipv4_id = ntohs(ip_hdr(skb)->id); 915 else 916 st->ipv4_id = 0; 917 st->seqnum = ntohl(tcp_hdr(skb)->seq); 918 919 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg); 920 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn); 921 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst); 922 923 st->packet_space = st->full_packet_size; 924 st->out_len = skb->len - st->header_len; 925 st->unmap_len = 0; 926 st->unmap_single = false; 927} 928 929static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx, 930 skb_frag_t *frag) 931{ 932 st->unmap_addr = pci_map_page(efx->pci_dev, frag->page, 933 frag->page_offset, frag->size, 934 PCI_DMA_TODEVICE); 935 if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) { 936 st->unmap_single = false; 937 st->unmap_len = frag->size; 938 st->in_len = frag->size; 939 st->dma_addr = st->unmap_addr; 940 return 0; 941 } 942 return -ENOMEM; 943} 944 945static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx, 946 const struct sk_buff *skb) 947{ 948 int hl = st->header_len; 949 int len = skb_headlen(skb) - hl; 950 951 st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl, 952 len, PCI_DMA_TODEVICE); 953 if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) { 954 st->unmap_single = true; 955 st->unmap_len = len; 956 st->in_len = len; 957 st->dma_addr = st->unmap_addr; 958 return 0; 959 } 960 return -ENOMEM; 961} 962 963 964/** 965 * tso_fill_packet_with_fragment - form descriptors for the current fragment 966 * @tx_queue: Efx TX queue 967 * @skb: Socket buffer 968 * @st: TSO state 969 * 970 * Form descriptors for the current fragment, until we reach the end 971 * of fragment or end-of-packet. Return 0 on success, 1 if not enough 972 * space in @tx_queue. 973 */ 974static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue, 975 const struct sk_buff *skb, 976 struct tso_state *st) 977{ 978 struct efx_tx_buffer *buffer; 979 int n, end_of_packet, rc; 980 981 if (st->in_len == 0) 982 return 0; 983 if (st->packet_space == 0) 984 return 0; 985 986 EFX_BUG_ON_PARANOID(st->in_len <= 0); 987 EFX_BUG_ON_PARANOID(st->packet_space <= 0); 988 989 n = min(st->in_len, st->packet_space); 990 991 st->packet_space -= n; 992 st->out_len -= n; 993 st->in_len -= n; 994 995 rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer); 996 if (likely(rc == 0)) { 997 if (st->out_len == 0) 998 /* Transfer ownership of the skb */ 999 buffer->skb = skb; 1000 1001 end_of_packet = st->out_len == 0 || st->packet_space == 0; 1002 buffer->continuation = !end_of_packet; 1003 1004 if (st->in_len == 0) { 1005 /* Transfer ownership of the pci mapping */ 1006 buffer->unmap_len = st->unmap_len; 1007 buffer->unmap_single = st->unmap_single; 1008 st->unmap_len = 0; 1009 } 1010 } 1011 1012 st->dma_addr += n; 1013 return rc; 1014} 1015 1016 1017/** 1018 * tso_start_new_packet - generate a new header and prepare for the new packet 1019 * @tx_queue: Efx TX queue 1020 * @skb: Socket buffer 1021 * @st: TSO state 1022 * 1023 * Generate a new header and prepare for the new packet. Return 0 on 1024 * success, or -1 if failed to alloc header. 1025 */ 1026static int tso_start_new_packet(struct efx_tx_queue *tx_queue, 1027 const struct sk_buff *skb, 1028 struct tso_state *st) 1029{ 1030 struct efx_tso_header *tsoh; 1031 struct tcphdr *tsoh_th; 1032 unsigned ip_length; 1033 u8 *header; 1034 1035 /* Allocate a DMA-mapped header buffer. */ 1036 if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) { 1037 if (tx_queue->tso_headers_free == NULL) { 1038 if (efx_tsoh_block_alloc(tx_queue)) 1039 return -1; 1040 } 1041 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free); 1042 tsoh = tx_queue->tso_headers_free; 1043 tx_queue->tso_headers_free = tsoh->next; 1044 tsoh->unmap_len = 0; 1045 } else { 1046 tx_queue->tso_long_headers++; 1047 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len); 1048 if (unlikely(!tsoh)) 1049 return -1; 1050 } 1051 1052 header = TSOH_BUFFER(tsoh); 1053 tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb)); 1054 1055 /* Copy and update the headers. */ 1056 memcpy(header, skb->data, st->header_len); 1057 1058 tsoh_th->seq = htonl(st->seqnum); 1059 st->seqnum += skb_shinfo(skb)->gso_size; 1060 if (st->out_len > skb_shinfo(skb)->gso_size) { 1061 /* This packet will not finish the TSO burst. */ 1062 ip_length = st->full_packet_size - ETH_HDR_LEN(skb); 1063 tsoh_th->fin = 0; 1064 tsoh_th->psh = 0; 1065 } else { 1066 /* This packet will be the last in the TSO burst. */ 1067 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len; 1068 tsoh_th->fin = tcp_hdr(skb)->fin; 1069 tsoh_th->psh = tcp_hdr(skb)->psh; 1070 } 1071 1072 if (st->protocol == htons(ETH_P_IP)) { 1073 struct iphdr *tsoh_iph = 1074 (struct iphdr *)(header + SKB_IPV4_OFF(skb)); 1075 1076 tsoh_iph->tot_len = htons(ip_length); 1077 1078 /* Linux leaves suitable gaps in the IP ID space for us to fill. */ 1079 tsoh_iph->id = htons(st->ipv4_id); 1080 st->ipv4_id++; 1081 } else { 1082 struct ipv6hdr *tsoh_iph = 1083 (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb)); 1084 1085 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph)); 1086 } 1087 1088 st->packet_space = skb_shinfo(skb)->gso_size; 1089 ++tx_queue->tso_packets; 1090 1091 /* Form a descriptor for this header. */ 1092 efx_tso_put_header(tx_queue, tsoh, st->header_len); 1093 1094 return 0; 1095} 1096 1097 1098/** 1099 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer 1100 * @tx_queue: Efx TX queue 1101 * @skb: Socket buffer 1102 * 1103 * Context: You must hold netif_tx_lock() to call this function. 1104 * 1105 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if 1106 * @skb was not enqueued. In all cases @skb is consumed. Return 1107 * %NETDEV_TX_OK or %NETDEV_TX_BUSY. 1108 */ 1109static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, 1110 struct sk_buff *skb) 1111{ 1112 struct efx_nic *efx = tx_queue->efx; 1113 int frag_i, rc, rc2 = NETDEV_TX_OK; 1114 struct tso_state state; 1115 1116 /* Find the packet protocol and sanity-check it */ 1117 state.protocol = efx_tso_check_protocol(skb); 1118 1119 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); 1120 1121 tso_start(&state, skb); 1122 1123 /* Assume that skb header area contains exactly the headers, and 1124 * all payload is in the frag list. 1125 */ 1126 if (skb_headlen(skb) == state.header_len) { 1127 /* Grab the first payload fragment. */ 1128 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1); 1129 frag_i = 0; 1130 rc = tso_get_fragment(&state, efx, 1131 skb_shinfo(skb)->frags + frag_i); 1132 if (rc) 1133 goto mem_err; 1134 } else { 1135 rc = tso_get_head_fragment(&state, efx, skb); 1136 if (rc) 1137 goto mem_err; 1138 frag_i = -1; 1139 } 1140 1141 if (tso_start_new_packet(tx_queue, skb, &state) < 0) 1142 goto mem_err; 1143 1144 while (1) { 1145 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state); 1146 if (unlikely(rc)) { 1147 rc2 = NETDEV_TX_BUSY; 1148 goto unwind; 1149 } 1150 1151 /* Move onto the next fragment? */ 1152 if (state.in_len == 0) { 1153 if (++frag_i >= skb_shinfo(skb)->nr_frags) 1154 /* End of payload reached. */ 1155 break; 1156 rc = tso_get_fragment(&state, efx, 1157 skb_shinfo(skb)->frags + frag_i); 1158 if (rc) 1159 goto mem_err; 1160 } 1161 1162 /* Start at new packet? */ 1163 if (state.packet_space == 0 && 1164 tso_start_new_packet(tx_queue, skb, &state) < 0) 1165 goto mem_err; 1166 } 1167 1168 /* Pass off to hardware */ 1169 efx_nic_push_buffers(tx_queue); 1170 1171 tx_queue->tso_bursts++; 1172 return NETDEV_TX_OK; 1173 1174 mem_err: 1175 netif_err(efx, tx_err, efx->net_dev, 1176 "Out of memory for TSO headers, or PCI mapping error\n"); 1177 dev_kfree_skb_any(skb); 1178 1179 unwind: 1180 /* Free the DMA mapping we were in the process of writing out */ 1181 if (state.unmap_len) { 1182 if (state.unmap_single) 1183 pci_unmap_single(efx->pci_dev, state.unmap_addr, 1184 state.unmap_len, PCI_DMA_TODEVICE); 1185 else 1186 pci_unmap_page(efx->pci_dev, state.unmap_addr, 1187 state.unmap_len, PCI_DMA_TODEVICE); 1188 } 1189 1190 efx_enqueue_unwind(tx_queue); 1191 return rc2; 1192} 1193 1194 1195/* 1196 * Free up all TSO datastructures associated with tx_queue. This 1197 * routine should be called only once the tx_queue is both empty and 1198 * will no longer be used. 1199 */ 1200static void efx_fini_tso(struct efx_tx_queue *tx_queue) 1201{ 1202 unsigned i; 1203 1204 if (tx_queue->buffer) { 1205 for (i = 0; i <= tx_queue->ptr_mask; ++i) 1206 efx_tsoh_free(tx_queue, &tx_queue->buffer[i]); 1207 } 1208 1209 while (tx_queue->tso_headers_free != NULL) 1210 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free, 1211 tx_queue->efx->pci_dev); 1212}