at v3.0-rc2 749 lines 22 kB view raw
1/**************************************************************************** 2 * Driver for Solarflare Solarstorm network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2011 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11#include <linux/socket.h> 12#include <linux/in.h> 13#include <linux/slab.h> 14#include <linux/ip.h> 15#include <linux/tcp.h> 16#include <linux/udp.h> 17#include <linux/prefetch.h> 18#include <net/ip.h> 19#include <net/checksum.h> 20#include "net_driver.h" 21#include "efx.h" 22#include "nic.h" 23#include "selftest.h" 24#include "workarounds.h" 25 26/* Number of RX descriptors pushed at once. */ 27#define EFX_RX_BATCH 8 28 29/* Maximum size of a buffer sharing a page */ 30#define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state)) 31 32/* Size of buffer allocated for skb header area. */ 33#define EFX_SKB_HEADERS 64u 34 35/* 36 * rx_alloc_method - RX buffer allocation method 37 * 38 * This driver supports two methods for allocating and using RX buffers: 39 * each RX buffer may be backed by an skb or by an order-n page. 40 * 41 * When GRO is in use then the second method has a lower overhead, 42 * since we don't have to allocate then free skbs on reassembled frames. 43 * 44 * Values: 45 * - RX_ALLOC_METHOD_AUTO = 0 46 * - RX_ALLOC_METHOD_SKB = 1 47 * - RX_ALLOC_METHOD_PAGE = 2 48 * 49 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count 50 * controlled by the parameters below. 51 * 52 * - Since pushing and popping descriptors are separated by the rx_queue 53 * size, so the watermarks should be ~rxd_size. 54 * - The performance win by using page-based allocation for GRO is less 55 * than the performance hit of using page-based allocation of non-GRO, 56 * so the watermarks should reflect this. 57 * 58 * Per channel we maintain a single variable, updated by each channel: 59 * 60 * rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO : 61 * RX_ALLOC_FACTOR_SKB) 62 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which 63 * limits the hysteresis), and update the allocation strategy: 64 * 65 * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ? 66 * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB) 67 */ 68static int rx_alloc_method = RX_ALLOC_METHOD_AUTO; 69 70#define RX_ALLOC_LEVEL_GRO 0x2000 71#define RX_ALLOC_LEVEL_MAX 0x3000 72#define RX_ALLOC_FACTOR_GRO 1 73#define RX_ALLOC_FACTOR_SKB (-2) 74 75/* This is the percentage fill level below which new RX descriptors 76 * will be added to the RX descriptor ring. 77 */ 78static unsigned int rx_refill_threshold = 90; 79 80/* This is the percentage fill level to which an RX queue will be refilled 81 * when the "RX refill threshold" is reached. 82 */ 83static unsigned int rx_refill_limit = 95; 84 85/* 86 * RX maximum head room required. 87 * 88 * This must be at least 1 to prevent overflow and at least 2 to allow 89 * pipelined receives. 90 */ 91#define EFX_RXD_HEAD_ROOM 2 92 93/* Offset of ethernet header within page */ 94static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx, 95 struct efx_rx_buffer *buf) 96{ 97 /* Offset is always within one page, so we don't need to consider 98 * the page order. 99 */ 100 return (((__force unsigned long) buf->dma_addr & (PAGE_SIZE - 1)) + 101 efx->type->rx_buffer_hash_size); 102} 103static inline unsigned int efx_rx_buf_size(struct efx_nic *efx) 104{ 105 return PAGE_SIZE << efx->rx_buffer_order; 106} 107 108static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf) 109{ 110 if (buf->is_page) 111 return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf); 112 else 113 return ((u8 *)buf->u.skb->data + 114 efx->type->rx_buffer_hash_size); 115} 116 117static inline u32 efx_rx_buf_hash(const u8 *eh) 118{ 119 /* The ethernet header is always directly after any hash. */ 120#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0 121 return __le32_to_cpup((const __le32 *)(eh - 4)); 122#else 123 const u8 *data = eh - 4; 124 return ((u32)data[0] | 125 (u32)data[1] << 8 | 126 (u32)data[2] << 16 | 127 (u32)data[3] << 24); 128#endif 129} 130 131/** 132 * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers 133 * 134 * @rx_queue: Efx RX queue 135 * 136 * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a 137 * struct efx_rx_buffer for each one. Return a negative error code or 0 138 * on success. May fail having only inserted fewer than EFX_RX_BATCH 139 * buffers. 140 */ 141static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue) 142{ 143 struct efx_nic *efx = rx_queue->efx; 144 struct net_device *net_dev = efx->net_dev; 145 struct efx_rx_buffer *rx_buf; 146 struct sk_buff *skb; 147 int skb_len = efx->rx_buffer_len; 148 unsigned index, count; 149 150 for (count = 0; count < EFX_RX_BATCH; ++count) { 151 index = rx_queue->added_count & rx_queue->ptr_mask; 152 rx_buf = efx_rx_buffer(rx_queue, index); 153 154 rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len); 155 if (unlikely(!skb)) 156 return -ENOMEM; 157 158 /* Adjust the SKB for padding and checksum */ 159 skb_reserve(skb, NET_IP_ALIGN); 160 rx_buf->len = skb_len - NET_IP_ALIGN; 161 rx_buf->is_page = false; 162 skb->ip_summed = CHECKSUM_UNNECESSARY; 163 164 rx_buf->dma_addr = pci_map_single(efx->pci_dev, 165 skb->data, rx_buf->len, 166 PCI_DMA_FROMDEVICE); 167 if (unlikely(pci_dma_mapping_error(efx->pci_dev, 168 rx_buf->dma_addr))) { 169 dev_kfree_skb_any(skb); 170 rx_buf->u.skb = NULL; 171 return -EIO; 172 } 173 174 ++rx_queue->added_count; 175 ++rx_queue->alloc_skb_count; 176 } 177 178 return 0; 179} 180 181/** 182 * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers 183 * 184 * @rx_queue: Efx RX queue 185 * 186 * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA, 187 * and populates struct efx_rx_buffers for each one. Return a negative error 188 * code or 0 on success. If a single page can be split between two buffers, 189 * then the page will either be inserted fully, or not at at all. 190 */ 191static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue) 192{ 193 struct efx_nic *efx = rx_queue->efx; 194 struct efx_rx_buffer *rx_buf; 195 struct page *page; 196 void *page_addr; 197 struct efx_rx_page_state *state; 198 dma_addr_t dma_addr; 199 unsigned index, count; 200 201 /* We can split a page between two buffers */ 202 BUILD_BUG_ON(EFX_RX_BATCH & 1); 203 204 for (count = 0; count < EFX_RX_BATCH; ++count) { 205 page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC, 206 efx->rx_buffer_order); 207 if (unlikely(page == NULL)) 208 return -ENOMEM; 209 dma_addr = pci_map_page(efx->pci_dev, page, 0, 210 efx_rx_buf_size(efx), 211 PCI_DMA_FROMDEVICE); 212 if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) { 213 __free_pages(page, efx->rx_buffer_order); 214 return -EIO; 215 } 216 page_addr = page_address(page); 217 state = page_addr; 218 state->refcnt = 0; 219 state->dma_addr = dma_addr; 220 221 page_addr += sizeof(struct efx_rx_page_state); 222 dma_addr += sizeof(struct efx_rx_page_state); 223 224 split: 225 index = rx_queue->added_count & rx_queue->ptr_mask; 226 rx_buf = efx_rx_buffer(rx_queue, index); 227 rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN; 228 rx_buf->u.page = page; 229 rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN; 230 rx_buf->is_page = true; 231 ++rx_queue->added_count; 232 ++rx_queue->alloc_page_count; 233 ++state->refcnt; 234 235 if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) { 236 /* Use the second half of the page */ 237 get_page(page); 238 dma_addr += (PAGE_SIZE >> 1); 239 page_addr += (PAGE_SIZE >> 1); 240 ++count; 241 goto split; 242 } 243 } 244 245 return 0; 246} 247 248static void efx_unmap_rx_buffer(struct efx_nic *efx, 249 struct efx_rx_buffer *rx_buf) 250{ 251 if (rx_buf->is_page && rx_buf->u.page) { 252 struct efx_rx_page_state *state; 253 254 state = page_address(rx_buf->u.page); 255 if (--state->refcnt == 0) { 256 pci_unmap_page(efx->pci_dev, 257 state->dma_addr, 258 efx_rx_buf_size(efx), 259 PCI_DMA_FROMDEVICE); 260 } 261 } else if (!rx_buf->is_page && rx_buf->u.skb) { 262 pci_unmap_single(efx->pci_dev, rx_buf->dma_addr, 263 rx_buf->len, PCI_DMA_FROMDEVICE); 264 } 265} 266 267static void efx_free_rx_buffer(struct efx_nic *efx, 268 struct efx_rx_buffer *rx_buf) 269{ 270 if (rx_buf->is_page && rx_buf->u.page) { 271 __free_pages(rx_buf->u.page, efx->rx_buffer_order); 272 rx_buf->u.page = NULL; 273 } else if (!rx_buf->is_page && rx_buf->u.skb) { 274 dev_kfree_skb_any(rx_buf->u.skb); 275 rx_buf->u.skb = NULL; 276 } 277} 278 279static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, 280 struct efx_rx_buffer *rx_buf) 281{ 282 efx_unmap_rx_buffer(rx_queue->efx, rx_buf); 283 efx_free_rx_buffer(rx_queue->efx, rx_buf); 284} 285 286/* Attempt to resurrect the other receive buffer that used to share this page, 287 * which had previously been passed up to the kernel and freed. */ 288static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue, 289 struct efx_rx_buffer *rx_buf) 290{ 291 struct efx_rx_page_state *state = page_address(rx_buf->u.page); 292 struct efx_rx_buffer *new_buf; 293 unsigned fill_level, index; 294 295 /* +1 because efx_rx_packet() incremented removed_count. +1 because 296 * we'd like to insert an additional descriptor whilst leaving 297 * EFX_RXD_HEAD_ROOM for the non-recycle path */ 298 fill_level = (rx_queue->added_count - rx_queue->removed_count + 2); 299 if (unlikely(fill_level > rx_queue->max_fill)) { 300 /* We could place "state" on a list, and drain the list in 301 * efx_fast_push_rx_descriptors(). For now, this will do. */ 302 return; 303 } 304 305 ++state->refcnt; 306 get_page(rx_buf->u.page); 307 308 index = rx_queue->added_count & rx_queue->ptr_mask; 309 new_buf = efx_rx_buffer(rx_queue, index); 310 new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1); 311 new_buf->u.page = rx_buf->u.page; 312 new_buf->len = rx_buf->len; 313 new_buf->is_page = true; 314 ++rx_queue->added_count; 315} 316 317/* Recycle the given rx buffer directly back into the rx_queue. There is 318 * always room to add this buffer, because we've just popped a buffer. */ 319static void efx_recycle_rx_buffer(struct efx_channel *channel, 320 struct efx_rx_buffer *rx_buf) 321{ 322 struct efx_nic *efx = channel->efx; 323 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 324 struct efx_rx_buffer *new_buf; 325 unsigned index; 326 327 if (rx_buf->is_page && efx->rx_buffer_len <= EFX_RX_HALF_PAGE && 328 page_count(rx_buf->u.page) == 1) 329 efx_resurrect_rx_buffer(rx_queue, rx_buf); 330 331 index = rx_queue->added_count & rx_queue->ptr_mask; 332 new_buf = efx_rx_buffer(rx_queue, index); 333 334 memcpy(new_buf, rx_buf, sizeof(*new_buf)); 335 rx_buf->u.page = NULL; 336 ++rx_queue->added_count; 337} 338 339/** 340 * efx_fast_push_rx_descriptors - push new RX descriptors quickly 341 * @rx_queue: RX descriptor queue 342 * This will aim to fill the RX descriptor queue up to 343 * @rx_queue->@fast_fill_limit. If there is insufficient atomic 344 * memory to do so, a slow fill will be scheduled. 345 * 346 * The caller must provide serialisation (none is used here). In practise, 347 * this means this function must run from the NAPI handler, or be called 348 * when NAPI is disabled. 349 */ 350void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue) 351{ 352 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 353 unsigned fill_level; 354 int space, rc = 0; 355 356 /* Calculate current fill level, and exit if we don't need to fill */ 357 fill_level = (rx_queue->added_count - rx_queue->removed_count); 358 EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries); 359 if (fill_level >= rx_queue->fast_fill_trigger) 360 goto out; 361 362 /* Record minimum fill level */ 363 if (unlikely(fill_level < rx_queue->min_fill)) { 364 if (fill_level) 365 rx_queue->min_fill = fill_level; 366 } 367 368 space = rx_queue->fast_fill_limit - fill_level; 369 if (space < EFX_RX_BATCH) 370 goto out; 371 372 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 373 "RX queue %d fast-filling descriptor ring from" 374 " level %d to level %d using %s allocation\n", 375 efx_rx_queue_index(rx_queue), fill_level, 376 rx_queue->fast_fill_limit, 377 channel->rx_alloc_push_pages ? "page" : "skb"); 378 379 do { 380 if (channel->rx_alloc_push_pages) 381 rc = efx_init_rx_buffers_page(rx_queue); 382 else 383 rc = efx_init_rx_buffers_skb(rx_queue); 384 if (unlikely(rc)) { 385 /* Ensure that we don't leave the rx queue empty */ 386 if (rx_queue->added_count == rx_queue->removed_count) 387 efx_schedule_slow_fill(rx_queue); 388 goto out; 389 } 390 } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH); 391 392 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 393 "RX queue %d fast-filled descriptor ring " 394 "to level %d\n", efx_rx_queue_index(rx_queue), 395 rx_queue->added_count - rx_queue->removed_count); 396 397 out: 398 if (rx_queue->notified_count != rx_queue->added_count) 399 efx_nic_notify_rx_desc(rx_queue); 400} 401 402void efx_rx_slow_fill(unsigned long context) 403{ 404 struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context; 405 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 406 407 /* Post an event to cause NAPI to run and refill the queue */ 408 efx_nic_generate_fill_event(channel); 409 ++rx_queue->slow_fill_count; 410} 411 412static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, 413 struct efx_rx_buffer *rx_buf, 414 int len, bool *discard, 415 bool *leak_packet) 416{ 417 struct efx_nic *efx = rx_queue->efx; 418 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; 419 420 if (likely(len <= max_len)) 421 return; 422 423 /* The packet must be discarded, but this is only a fatal error 424 * if the caller indicated it was 425 */ 426 *discard = true; 427 428 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) { 429 if (net_ratelimit()) 430 netif_err(efx, rx_err, efx->net_dev, 431 " RX queue %d seriously overlength " 432 "RX event (0x%x > 0x%x+0x%x). Leaking\n", 433 efx_rx_queue_index(rx_queue), len, max_len, 434 efx->type->rx_buffer_padding); 435 /* If this buffer was skb-allocated, then the meta 436 * data at the end of the skb will be trashed. So 437 * we have no choice but to leak the fragment. 438 */ 439 *leak_packet = !rx_buf->is_page; 440 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY); 441 } else { 442 if (net_ratelimit()) 443 netif_err(efx, rx_err, efx->net_dev, 444 " RX queue %d overlength RX event " 445 "(0x%x > 0x%x)\n", 446 efx_rx_queue_index(rx_queue), len, max_len); 447 } 448 449 efx_rx_queue_channel(rx_queue)->n_rx_overlength++; 450} 451 452/* Pass a received packet up through the generic GRO stack 453 * 454 * Handles driverlink veto, and passes the fragment up via 455 * the appropriate GRO method 456 */ 457static void efx_rx_packet_gro(struct efx_channel *channel, 458 struct efx_rx_buffer *rx_buf, 459 const u8 *eh, bool checksummed) 460{ 461 struct napi_struct *napi = &channel->napi_str; 462 gro_result_t gro_result; 463 464 /* Pass the skb/page into the GRO engine */ 465 if (rx_buf->is_page) { 466 struct efx_nic *efx = channel->efx; 467 struct page *page = rx_buf->u.page; 468 struct sk_buff *skb; 469 470 rx_buf->u.page = NULL; 471 472 skb = napi_get_frags(napi); 473 if (!skb) { 474 put_page(page); 475 return; 476 } 477 478 if (efx->net_dev->features & NETIF_F_RXHASH) 479 skb->rxhash = efx_rx_buf_hash(eh); 480 481 skb_shinfo(skb)->frags[0].page = page; 482 skb_shinfo(skb)->frags[0].page_offset = 483 efx_rx_buf_offset(efx, rx_buf); 484 skb_shinfo(skb)->frags[0].size = rx_buf->len; 485 skb_shinfo(skb)->nr_frags = 1; 486 487 skb->len = rx_buf->len; 488 skb->data_len = rx_buf->len; 489 skb->truesize += rx_buf->len; 490 skb->ip_summed = 491 checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE; 492 493 skb_record_rx_queue(skb, channel->channel); 494 495 gro_result = napi_gro_frags(napi); 496 } else { 497 struct sk_buff *skb = rx_buf->u.skb; 498 499 EFX_BUG_ON_PARANOID(!checksummed); 500 rx_buf->u.skb = NULL; 501 502 gro_result = napi_gro_receive(napi, skb); 503 } 504 505 if (gro_result == GRO_NORMAL) { 506 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; 507 } else if (gro_result != GRO_DROP) { 508 channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO; 509 channel->irq_mod_score += 2; 510 } 511} 512 513void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, 514 unsigned int len, bool checksummed, bool discard) 515{ 516 struct efx_nic *efx = rx_queue->efx; 517 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 518 struct efx_rx_buffer *rx_buf; 519 bool leak_packet = false; 520 521 rx_buf = efx_rx_buffer(rx_queue, index); 522 523 /* This allows the refill path to post another buffer. 524 * EFX_RXD_HEAD_ROOM ensures that the slot we are using 525 * isn't overwritten yet. 526 */ 527 rx_queue->removed_count++; 528 529 /* Validate the length encoded in the event vs the descriptor pushed */ 530 efx_rx_packet__check_len(rx_queue, rx_buf, len, 531 &discard, &leak_packet); 532 533 netif_vdbg(efx, rx_status, efx->net_dev, 534 "RX queue %d received id %x at %llx+%x %s%s\n", 535 efx_rx_queue_index(rx_queue), index, 536 (unsigned long long)rx_buf->dma_addr, len, 537 (checksummed ? " [SUMMED]" : ""), 538 (discard ? " [DISCARD]" : "")); 539 540 /* Discard packet, if instructed to do so */ 541 if (unlikely(discard)) { 542 if (unlikely(leak_packet)) 543 channel->n_skbuff_leaks++; 544 else 545 efx_recycle_rx_buffer(channel, rx_buf); 546 547 /* Don't hold off the previous receive */ 548 rx_buf = NULL; 549 goto out; 550 } 551 552 /* Release card resources - assumes all RX buffers consumed in-order 553 * per RX queue 554 */ 555 efx_unmap_rx_buffer(efx, rx_buf); 556 557 /* Prefetch nice and early so data will (hopefully) be in cache by 558 * the time we look at it. 559 */ 560 prefetch(efx_rx_buf_eh(efx, rx_buf)); 561 562 /* Pipeline receives so that we give time for packet headers to be 563 * prefetched into cache. 564 */ 565 rx_buf->len = len - efx->type->rx_buffer_hash_size; 566out: 567 if (channel->rx_pkt) 568 __efx_rx_packet(channel, 569 channel->rx_pkt, channel->rx_pkt_csummed); 570 channel->rx_pkt = rx_buf; 571 channel->rx_pkt_csummed = checksummed; 572} 573 574/* Handle a received packet. Second half: Touches packet payload. */ 575void __efx_rx_packet(struct efx_channel *channel, 576 struct efx_rx_buffer *rx_buf, bool checksummed) 577{ 578 struct efx_nic *efx = channel->efx; 579 struct sk_buff *skb; 580 u8 *eh = efx_rx_buf_eh(efx, rx_buf); 581 582 /* If we're in loopback test, then pass the packet directly to the 583 * loopback layer, and free the rx_buf here 584 */ 585 if (unlikely(efx->loopback_selftest)) { 586 efx_loopback_rx_packet(efx, eh, rx_buf->len); 587 efx_free_rx_buffer(efx, rx_buf); 588 return; 589 } 590 591 if (!rx_buf->is_page) { 592 skb = rx_buf->u.skb; 593 594 prefetch(skb_shinfo(skb)); 595 596 skb_reserve(skb, efx->type->rx_buffer_hash_size); 597 skb_put(skb, rx_buf->len); 598 599 if (efx->net_dev->features & NETIF_F_RXHASH) 600 skb->rxhash = efx_rx_buf_hash(eh); 601 602 /* Move past the ethernet header. rx_buf->data still points 603 * at the ethernet header */ 604 skb->protocol = eth_type_trans(skb, efx->net_dev); 605 606 skb_record_rx_queue(skb, channel->channel); 607 } 608 609 if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM))) 610 checksummed = false; 611 612 if (likely(checksummed || rx_buf->is_page)) { 613 efx_rx_packet_gro(channel, rx_buf, eh, checksummed); 614 return; 615 } 616 617 /* We now own the SKB */ 618 skb = rx_buf->u.skb; 619 rx_buf->u.skb = NULL; 620 621 /* Set the SKB flags */ 622 skb_checksum_none_assert(skb); 623 624 /* Pass the packet up */ 625 netif_receive_skb(skb); 626 627 /* Update allocation strategy method */ 628 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; 629} 630 631void efx_rx_strategy(struct efx_channel *channel) 632{ 633 enum efx_rx_alloc_method method = rx_alloc_method; 634 635 /* Only makes sense to use page based allocation if GRO is enabled */ 636 if (!(channel->efx->net_dev->features & NETIF_F_GRO)) { 637 method = RX_ALLOC_METHOD_SKB; 638 } else if (method == RX_ALLOC_METHOD_AUTO) { 639 /* Constrain the rx_alloc_level */ 640 if (channel->rx_alloc_level < 0) 641 channel->rx_alloc_level = 0; 642 else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX) 643 channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX; 644 645 /* Decide on the allocation method */ 646 method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ? 647 RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB); 648 } 649 650 /* Push the option */ 651 channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE); 652} 653 654int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) 655{ 656 struct efx_nic *efx = rx_queue->efx; 657 unsigned int entries; 658 int rc; 659 660 /* Create the smallest power-of-two aligned ring */ 661 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); 662 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 663 rx_queue->ptr_mask = entries - 1; 664 665 netif_dbg(efx, probe, efx->net_dev, 666 "creating RX queue %d size %#x mask %#x\n", 667 efx_rx_queue_index(rx_queue), efx->rxq_entries, 668 rx_queue->ptr_mask); 669 670 /* Allocate RX buffers */ 671 rx_queue->buffer = kzalloc(entries * sizeof(*rx_queue->buffer), 672 GFP_KERNEL); 673 if (!rx_queue->buffer) 674 return -ENOMEM; 675 676 rc = efx_nic_probe_rx(rx_queue); 677 if (rc) { 678 kfree(rx_queue->buffer); 679 rx_queue->buffer = NULL; 680 } 681 return rc; 682} 683 684void efx_init_rx_queue(struct efx_rx_queue *rx_queue) 685{ 686 struct efx_nic *efx = rx_queue->efx; 687 unsigned int max_fill, trigger, limit; 688 689 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 690 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); 691 692 /* Initialise ptr fields */ 693 rx_queue->added_count = 0; 694 rx_queue->notified_count = 0; 695 rx_queue->removed_count = 0; 696 rx_queue->min_fill = -1U; 697 698 /* Initialise limit fields */ 699 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; 700 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; 701 limit = max_fill * min(rx_refill_limit, 100U) / 100U; 702 703 rx_queue->max_fill = max_fill; 704 rx_queue->fast_fill_trigger = trigger; 705 rx_queue->fast_fill_limit = limit; 706 707 /* Set up RX descriptor ring */ 708 efx_nic_init_rx(rx_queue); 709} 710 711void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) 712{ 713 int i; 714 struct efx_rx_buffer *rx_buf; 715 716 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 717 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); 718 719 del_timer_sync(&rx_queue->slow_fill); 720 efx_nic_fini_rx(rx_queue); 721 722 /* Release RX buffers NB start at index 0 not current HW ptr */ 723 if (rx_queue->buffer) { 724 for (i = 0; i <= rx_queue->ptr_mask; i++) { 725 rx_buf = efx_rx_buffer(rx_queue, i); 726 efx_fini_rx_buffer(rx_queue, rx_buf); 727 } 728 } 729} 730 731void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) 732{ 733 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 734 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); 735 736 efx_nic_remove_rx(rx_queue); 737 738 kfree(rx_queue->buffer); 739 rx_queue->buffer = NULL; 740} 741 742 743module_param(rx_alloc_method, int, 0644); 744MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers"); 745 746module_param(rx_refill_threshold, uint, 0444); 747MODULE_PARM_DESC(rx_refill_threshold, 748 "RX descriptor ring fast/slow fill threshold (%)"); 749