at v3.0-rc1 32 kB view raw
1#ifndef __LINUX_PERCPU_H 2#define __LINUX_PERCPU_H 3 4#include <linux/preempt.h> 5#include <linux/smp.h> 6#include <linux/cpumask.h> 7#include <linux/pfn.h> 8#include <linux/init.h> 9 10#include <asm/percpu.h> 11 12/* enough to cover all DEFINE_PER_CPUs in modules */ 13#ifdef CONFIG_MODULES 14#define PERCPU_MODULE_RESERVE (8 << 10) 15#else 16#define PERCPU_MODULE_RESERVE 0 17#endif 18 19#ifndef PERCPU_ENOUGH_ROOM 20#define PERCPU_ENOUGH_ROOM \ 21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 22 PERCPU_MODULE_RESERVE) 23#endif 24 25/* 26 * Must be an lvalue. Since @var must be a simple identifier, 27 * we force a syntax error here if it isn't. 28 */ 29#define get_cpu_var(var) (*({ \ 30 preempt_disable(); \ 31 &__get_cpu_var(var); })) 32 33/* 34 * The weird & is necessary because sparse considers (void)(var) to be 35 * a direct dereference of percpu variable (var). 36 */ 37#define put_cpu_var(var) do { \ 38 (void)&(var); \ 39 preempt_enable(); \ 40} while (0) 41 42#define get_cpu_ptr(var) ({ \ 43 preempt_disable(); \ 44 this_cpu_ptr(var); }) 45 46#define put_cpu_ptr(var) do { \ 47 (void)(var); \ 48 preempt_enable(); \ 49} while (0) 50 51/* minimum unit size, also is the maximum supported allocation size */ 52#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10) 53 54/* 55 * Percpu allocator can serve percpu allocations before slab is 56 * initialized which allows slab to depend on the percpu allocator. 57 * The following two parameters decide how much resource to 58 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or 59 * larger than PERCPU_DYNAMIC_EARLY_SIZE. 60 */ 61#define PERCPU_DYNAMIC_EARLY_SLOTS 128 62#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10) 63 64/* 65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 66 * back on the first chunk for dynamic percpu allocation if arch is 67 * manually allocating and mapping it for faster access (as a part of 68 * large page mapping for example). 69 * 70 * The following values give between one and two pages of free space 71 * after typical minimal boot (2-way SMP, single disk and NIC) with 72 * both defconfig and a distro config on x86_64 and 32. More 73 * intelligent way to determine this would be nice. 74 */ 75#if BITS_PER_LONG > 32 76#define PERCPU_DYNAMIC_RESERVE (20 << 10) 77#else 78#define PERCPU_DYNAMIC_RESERVE (12 << 10) 79#endif 80 81extern void *pcpu_base_addr; 82extern const unsigned long *pcpu_unit_offsets; 83 84struct pcpu_group_info { 85 int nr_units; /* aligned # of units */ 86 unsigned long base_offset; /* base address offset */ 87 unsigned int *cpu_map; /* unit->cpu map, empty 88 * entries contain NR_CPUS */ 89}; 90 91struct pcpu_alloc_info { 92 size_t static_size; 93 size_t reserved_size; 94 size_t dyn_size; 95 size_t unit_size; 96 size_t atom_size; 97 size_t alloc_size; 98 size_t __ai_size; /* internal, don't use */ 99 int nr_groups; /* 0 if grouping unnecessary */ 100 struct pcpu_group_info groups[]; 101}; 102 103enum pcpu_fc { 104 PCPU_FC_AUTO, 105 PCPU_FC_EMBED, 106 PCPU_FC_PAGE, 107 108 PCPU_FC_NR, 109}; 110extern const char *pcpu_fc_names[PCPU_FC_NR]; 111 112extern enum pcpu_fc pcpu_chosen_fc; 113 114typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 115 size_t align); 116typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 117typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 118typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 119 120extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 121 int nr_units); 122extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 123 124extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 125 void *base_addr); 126 127#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 128extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 129 size_t atom_size, 130 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 131 pcpu_fc_alloc_fn_t alloc_fn, 132 pcpu_fc_free_fn_t free_fn); 133#endif 134 135#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 136extern int __init pcpu_page_first_chunk(size_t reserved_size, 137 pcpu_fc_alloc_fn_t alloc_fn, 138 pcpu_fc_free_fn_t free_fn, 139 pcpu_fc_populate_pte_fn_t populate_pte_fn); 140#endif 141 142/* 143 * Use this to get to a cpu's version of the per-cpu object 144 * dynamically allocated. Non-atomic access to the current CPU's 145 * version should probably be combined with get_cpu()/put_cpu(). 146 */ 147#ifdef CONFIG_SMP 148#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 149#else 150#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); }) 151#endif 152 153extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); 154extern bool is_kernel_percpu_address(unsigned long addr); 155 156#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 157extern void __init setup_per_cpu_areas(void); 158#endif 159extern void __init percpu_init_late(void); 160 161extern void __percpu *__alloc_percpu(size_t size, size_t align); 162extern void free_percpu(void __percpu *__pdata); 163extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 164 165#define alloc_percpu(type) \ 166 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) 167 168/* 169 * Optional methods for optimized non-lvalue per-cpu variable access. 170 * 171 * @var can be a percpu variable or a field of it and its size should 172 * equal char, int or long. percpu_read() evaluates to a lvalue and 173 * all others to void. 174 * 175 * These operations are guaranteed to be atomic w.r.t. preemption. 176 * The generic versions use plain get/put_cpu_var(). Archs are 177 * encouraged to implement single-instruction alternatives which don't 178 * require preemption protection. 179 */ 180#ifndef percpu_read 181# define percpu_read(var) \ 182 ({ \ 183 typeof(var) *pr_ptr__ = &(var); \ 184 typeof(var) pr_ret__; \ 185 pr_ret__ = get_cpu_var(*pr_ptr__); \ 186 put_cpu_var(*pr_ptr__); \ 187 pr_ret__; \ 188 }) 189#endif 190 191#define __percpu_generic_to_op(var, val, op) \ 192do { \ 193 typeof(var) *pgto_ptr__ = &(var); \ 194 get_cpu_var(*pgto_ptr__) op val; \ 195 put_cpu_var(*pgto_ptr__); \ 196} while (0) 197 198#ifndef percpu_write 199# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) 200#endif 201 202#ifndef percpu_add 203# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) 204#endif 205 206#ifndef percpu_sub 207# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) 208#endif 209 210#ifndef percpu_and 211# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) 212#endif 213 214#ifndef percpu_or 215# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) 216#endif 217 218#ifndef percpu_xor 219# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) 220#endif 221 222/* 223 * Branching function to split up a function into a set of functions that 224 * are called for different scalar sizes of the objects handled. 225 */ 226 227extern void __bad_size_call_parameter(void); 228 229#define __pcpu_size_call_return(stem, variable) \ 230({ typeof(variable) pscr_ret__; \ 231 __verify_pcpu_ptr(&(variable)); \ 232 switch(sizeof(variable)) { \ 233 case 1: pscr_ret__ = stem##1(variable);break; \ 234 case 2: pscr_ret__ = stem##2(variable);break; \ 235 case 4: pscr_ret__ = stem##4(variable);break; \ 236 case 8: pscr_ret__ = stem##8(variable);break; \ 237 default: \ 238 __bad_size_call_parameter();break; \ 239 } \ 240 pscr_ret__; \ 241}) 242 243#define __pcpu_size_call_return2(stem, variable, ...) \ 244({ \ 245 typeof(variable) pscr2_ret__; \ 246 __verify_pcpu_ptr(&(variable)); \ 247 switch(sizeof(variable)) { \ 248 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \ 249 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \ 250 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \ 251 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \ 252 default: \ 253 __bad_size_call_parameter(); break; \ 254 } \ 255 pscr2_ret__; \ 256}) 257 258/* 259 * Special handling for cmpxchg_double. cmpxchg_double is passed two 260 * percpu variables. The first has to be aligned to a double word 261 * boundary and the second has to follow directly thereafter. 262 */ 263#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \ 264({ \ 265 bool pdcrb_ret__; \ 266 __verify_pcpu_ptr(&pcp1); \ 267 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \ 268 VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \ 269 VM_BUG_ON((unsigned long)(&pcp2) != \ 270 (unsigned long)(&pcp1) + sizeof(pcp1)); \ 271 switch(sizeof(pcp1)) { \ 272 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \ 273 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \ 274 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \ 275 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \ 276 default: \ 277 __bad_size_call_parameter(); break; \ 278 } \ 279 pdcrb_ret__; \ 280}) 281 282#define __pcpu_size_call(stem, variable, ...) \ 283do { \ 284 __verify_pcpu_ptr(&(variable)); \ 285 switch(sizeof(variable)) { \ 286 case 1: stem##1(variable, __VA_ARGS__);break; \ 287 case 2: stem##2(variable, __VA_ARGS__);break; \ 288 case 4: stem##4(variable, __VA_ARGS__);break; \ 289 case 8: stem##8(variable, __VA_ARGS__);break; \ 290 default: \ 291 __bad_size_call_parameter();break; \ 292 } \ 293} while (0) 294 295/* 296 * Optimized manipulation for memory allocated through the per cpu 297 * allocator or for addresses of per cpu variables. 298 * 299 * These operation guarantee exclusivity of access for other operations 300 * on the *same* processor. The assumption is that per cpu data is only 301 * accessed by a single processor instance (the current one). 302 * 303 * The first group is used for accesses that must be done in a 304 * preemption safe way since we know that the context is not preempt 305 * safe. Interrupts may occur. If the interrupt modifies the variable 306 * too then RMW actions will not be reliable. 307 * 308 * The arch code can provide optimized functions in two ways: 309 * 310 * 1. Override the function completely. F.e. define this_cpu_add(). 311 * The arch must then ensure that the various scalar format passed 312 * are handled correctly. 313 * 314 * 2. Provide functions for certain scalar sizes. F.e. provide 315 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 316 * sized RMW actions. If arch code does not provide operations for 317 * a scalar size then the fallback in the generic code will be 318 * used. 319 */ 320 321#define _this_cpu_generic_read(pcp) \ 322({ typeof(pcp) ret__; \ 323 preempt_disable(); \ 324 ret__ = *this_cpu_ptr(&(pcp)); \ 325 preempt_enable(); \ 326 ret__; \ 327}) 328 329#ifndef this_cpu_read 330# ifndef this_cpu_read_1 331# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 332# endif 333# ifndef this_cpu_read_2 334# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 335# endif 336# ifndef this_cpu_read_4 337# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 338# endif 339# ifndef this_cpu_read_8 340# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 341# endif 342# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 343#endif 344 345#define _this_cpu_generic_to_op(pcp, val, op) \ 346do { \ 347 preempt_disable(); \ 348 *__this_cpu_ptr(&(pcp)) op val; \ 349 preempt_enable(); \ 350} while (0) 351 352#ifndef this_cpu_write 353# ifndef this_cpu_write_1 354# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 355# endif 356# ifndef this_cpu_write_2 357# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 358# endif 359# ifndef this_cpu_write_4 360# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 361# endif 362# ifndef this_cpu_write_8 363# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 364# endif 365# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 366#endif 367 368#ifndef this_cpu_add 369# ifndef this_cpu_add_1 370# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 371# endif 372# ifndef this_cpu_add_2 373# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 374# endif 375# ifndef this_cpu_add_4 376# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 377# endif 378# ifndef this_cpu_add_8 379# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 380# endif 381# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 382#endif 383 384#ifndef this_cpu_sub 385# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) 386#endif 387 388#ifndef this_cpu_inc 389# define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 390#endif 391 392#ifndef this_cpu_dec 393# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 394#endif 395 396#ifndef this_cpu_and 397# ifndef this_cpu_and_1 398# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 399# endif 400# ifndef this_cpu_and_2 401# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 402# endif 403# ifndef this_cpu_and_4 404# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 405# endif 406# ifndef this_cpu_and_8 407# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 408# endif 409# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 410#endif 411 412#ifndef this_cpu_or 413# ifndef this_cpu_or_1 414# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 415# endif 416# ifndef this_cpu_or_2 417# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 418# endif 419# ifndef this_cpu_or_4 420# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 421# endif 422# ifndef this_cpu_or_8 423# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 424# endif 425# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 426#endif 427 428#ifndef this_cpu_xor 429# ifndef this_cpu_xor_1 430# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 431# endif 432# ifndef this_cpu_xor_2 433# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 434# endif 435# ifndef this_cpu_xor_4 436# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 437# endif 438# ifndef this_cpu_xor_8 439# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 440# endif 441# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 442#endif 443 444#define _this_cpu_generic_add_return(pcp, val) \ 445({ \ 446 typeof(pcp) ret__; \ 447 preempt_disable(); \ 448 __this_cpu_add(pcp, val); \ 449 ret__ = __this_cpu_read(pcp); \ 450 preempt_enable(); \ 451 ret__; \ 452}) 453 454#ifndef this_cpu_add_return 455# ifndef this_cpu_add_return_1 456# define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val) 457# endif 458# ifndef this_cpu_add_return_2 459# define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val) 460# endif 461# ifndef this_cpu_add_return_4 462# define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val) 463# endif 464# ifndef this_cpu_add_return_8 465# define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val) 466# endif 467# define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val) 468#endif 469 470#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val)) 471#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1) 472#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1) 473 474#define _this_cpu_generic_xchg(pcp, nval) \ 475({ typeof(pcp) ret__; \ 476 preempt_disable(); \ 477 ret__ = __this_cpu_read(pcp); \ 478 __this_cpu_write(pcp, nval); \ 479 preempt_enable(); \ 480 ret__; \ 481}) 482 483#ifndef this_cpu_xchg 484# ifndef this_cpu_xchg_1 485# define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 486# endif 487# ifndef this_cpu_xchg_2 488# define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 489# endif 490# ifndef this_cpu_xchg_4 491# define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 492# endif 493# ifndef this_cpu_xchg_8 494# define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 495# endif 496# define this_cpu_xchg(pcp, nval) \ 497 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval) 498#endif 499 500#define _this_cpu_generic_cmpxchg(pcp, oval, nval) \ 501({ typeof(pcp) ret__; \ 502 preempt_disable(); \ 503 ret__ = __this_cpu_read(pcp); \ 504 if (ret__ == (oval)) \ 505 __this_cpu_write(pcp, nval); \ 506 preempt_enable(); \ 507 ret__; \ 508}) 509 510#ifndef this_cpu_cmpxchg 511# ifndef this_cpu_cmpxchg_1 512# define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 513# endif 514# ifndef this_cpu_cmpxchg_2 515# define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 516# endif 517# ifndef this_cpu_cmpxchg_4 518# define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 519# endif 520# ifndef this_cpu_cmpxchg_8 521# define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 522# endif 523# define this_cpu_cmpxchg(pcp, oval, nval) \ 524 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval) 525#endif 526 527/* 528 * cmpxchg_double replaces two adjacent scalars at once. The first 529 * two parameters are per cpu variables which have to be of the same 530 * size. A truth value is returned to indicate success or failure 531 * (since a double register result is difficult to handle). There is 532 * very limited hardware support for these operations, so only certain 533 * sizes may work. 534 */ 535#define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 536({ \ 537 int ret__; \ 538 preempt_disable(); \ 539 ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \ 540 oval1, oval2, nval1, nval2); \ 541 preempt_enable(); \ 542 ret__; \ 543}) 544 545#ifndef this_cpu_cmpxchg_double 546# ifndef this_cpu_cmpxchg_double_1 547# define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 548 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 549# endif 550# ifndef this_cpu_cmpxchg_double_2 551# define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 552 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 553# endif 554# ifndef this_cpu_cmpxchg_double_4 555# define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 556 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 557# endif 558# ifndef this_cpu_cmpxchg_double_8 559# define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 560 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 561# endif 562# define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 563 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) 564#endif 565 566/* 567 * Generic percpu operations that do not require preemption handling. 568 * Either we do not care about races or the caller has the 569 * responsibility of handling preemptions issues. Arch code can still 570 * override these instructions since the arch per cpu code may be more 571 * efficient and may actually get race freeness for free (that is the 572 * case for x86 for example). 573 * 574 * If there is no other protection through preempt disable and/or 575 * disabling interupts then one of these RMW operations can show unexpected 576 * behavior because the execution thread was rescheduled on another processor 577 * or an interrupt occurred and the same percpu variable was modified from 578 * the interrupt context. 579 */ 580#ifndef __this_cpu_read 581# ifndef __this_cpu_read_1 582# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) 583# endif 584# ifndef __this_cpu_read_2 585# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) 586# endif 587# ifndef __this_cpu_read_4 588# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) 589# endif 590# ifndef __this_cpu_read_8 591# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) 592# endif 593# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) 594#endif 595 596#define __this_cpu_generic_to_op(pcp, val, op) \ 597do { \ 598 *__this_cpu_ptr(&(pcp)) op val; \ 599} while (0) 600 601#ifndef __this_cpu_write 602# ifndef __this_cpu_write_1 603# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 604# endif 605# ifndef __this_cpu_write_2 606# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 607# endif 608# ifndef __this_cpu_write_4 609# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 610# endif 611# ifndef __this_cpu_write_8 612# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 613# endif 614# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) 615#endif 616 617#ifndef __this_cpu_add 618# ifndef __this_cpu_add_1 619# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 620# endif 621# ifndef __this_cpu_add_2 622# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 623# endif 624# ifndef __this_cpu_add_4 625# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 626# endif 627# ifndef __this_cpu_add_8 628# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 629# endif 630# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) 631#endif 632 633#ifndef __this_cpu_sub 634# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) 635#endif 636 637#ifndef __this_cpu_inc 638# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 639#endif 640 641#ifndef __this_cpu_dec 642# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 643#endif 644 645#ifndef __this_cpu_and 646# ifndef __this_cpu_and_1 647# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 648# endif 649# ifndef __this_cpu_and_2 650# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 651# endif 652# ifndef __this_cpu_and_4 653# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 654# endif 655# ifndef __this_cpu_and_8 656# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 657# endif 658# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) 659#endif 660 661#ifndef __this_cpu_or 662# ifndef __this_cpu_or_1 663# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 664# endif 665# ifndef __this_cpu_or_2 666# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 667# endif 668# ifndef __this_cpu_or_4 669# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 670# endif 671# ifndef __this_cpu_or_8 672# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 673# endif 674# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) 675#endif 676 677#ifndef __this_cpu_xor 678# ifndef __this_cpu_xor_1 679# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 680# endif 681# ifndef __this_cpu_xor_2 682# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 683# endif 684# ifndef __this_cpu_xor_4 685# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 686# endif 687# ifndef __this_cpu_xor_8 688# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 689# endif 690# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) 691#endif 692 693#define __this_cpu_generic_add_return(pcp, val) \ 694({ \ 695 __this_cpu_add(pcp, val); \ 696 __this_cpu_read(pcp); \ 697}) 698 699#ifndef __this_cpu_add_return 700# ifndef __this_cpu_add_return_1 701# define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val) 702# endif 703# ifndef __this_cpu_add_return_2 704# define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val) 705# endif 706# ifndef __this_cpu_add_return_4 707# define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val) 708# endif 709# ifndef __this_cpu_add_return_8 710# define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val) 711# endif 712# define __this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val) 713#endif 714 715#define __this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val)) 716#define __this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1) 717#define __this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1) 718 719#define __this_cpu_generic_xchg(pcp, nval) \ 720({ typeof(pcp) ret__; \ 721 ret__ = __this_cpu_read(pcp); \ 722 __this_cpu_write(pcp, nval); \ 723 ret__; \ 724}) 725 726#ifndef __this_cpu_xchg 727# ifndef __this_cpu_xchg_1 728# define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 729# endif 730# ifndef __this_cpu_xchg_2 731# define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 732# endif 733# ifndef __this_cpu_xchg_4 734# define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 735# endif 736# ifndef __this_cpu_xchg_8 737# define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 738# endif 739# define __this_cpu_xchg(pcp, nval) \ 740 __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval) 741#endif 742 743#define __this_cpu_generic_cmpxchg(pcp, oval, nval) \ 744({ \ 745 typeof(pcp) ret__; \ 746 ret__ = __this_cpu_read(pcp); \ 747 if (ret__ == (oval)) \ 748 __this_cpu_write(pcp, nval); \ 749 ret__; \ 750}) 751 752#ifndef __this_cpu_cmpxchg 753# ifndef __this_cpu_cmpxchg_1 754# define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 755# endif 756# ifndef __this_cpu_cmpxchg_2 757# define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 758# endif 759# ifndef __this_cpu_cmpxchg_4 760# define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 761# endif 762# ifndef __this_cpu_cmpxchg_8 763# define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 764# endif 765# define __this_cpu_cmpxchg(pcp, oval, nval) \ 766 __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval) 767#endif 768 769#define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 770({ \ 771 int __ret = 0; \ 772 if (__this_cpu_read(pcp1) == (oval1) && \ 773 __this_cpu_read(pcp2) == (oval2)) { \ 774 __this_cpu_write(pcp1, (nval1)); \ 775 __this_cpu_write(pcp2, (nval2)); \ 776 __ret = 1; \ 777 } \ 778 (__ret); \ 779}) 780 781#ifndef __this_cpu_cmpxchg_double 782# ifndef __this_cpu_cmpxchg_double_1 783# define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 784 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 785# endif 786# ifndef __this_cpu_cmpxchg_double_2 787# define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 788 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 789# endif 790# ifndef __this_cpu_cmpxchg_double_4 791# define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 792 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 793# endif 794# ifndef __this_cpu_cmpxchg_double_8 795# define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 796 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 797# endif 798# define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 799 __pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) 800#endif 801 802/* 803 * IRQ safe versions of the per cpu RMW operations. Note that these operations 804 * are *not* safe against modification of the same variable from another 805 * processors (which one gets when using regular atomic operations) 806 * They are guaranteed to be atomic vs. local interrupts and 807 * preemption only. 808 */ 809#define irqsafe_cpu_generic_to_op(pcp, val, op) \ 810do { \ 811 unsigned long flags; \ 812 local_irq_save(flags); \ 813 *__this_cpu_ptr(&(pcp)) op val; \ 814 local_irq_restore(flags); \ 815} while (0) 816 817#ifndef irqsafe_cpu_add 818# ifndef irqsafe_cpu_add_1 819# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 820# endif 821# ifndef irqsafe_cpu_add_2 822# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 823# endif 824# ifndef irqsafe_cpu_add_4 825# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 826# endif 827# ifndef irqsafe_cpu_add_8 828# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 829# endif 830# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val)) 831#endif 832 833#ifndef irqsafe_cpu_sub 834# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val)) 835#endif 836 837#ifndef irqsafe_cpu_inc 838# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1) 839#endif 840 841#ifndef irqsafe_cpu_dec 842# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1) 843#endif 844 845#ifndef irqsafe_cpu_and 846# ifndef irqsafe_cpu_and_1 847# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 848# endif 849# ifndef irqsafe_cpu_and_2 850# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 851# endif 852# ifndef irqsafe_cpu_and_4 853# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 854# endif 855# ifndef irqsafe_cpu_and_8 856# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 857# endif 858# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val)) 859#endif 860 861#ifndef irqsafe_cpu_or 862# ifndef irqsafe_cpu_or_1 863# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 864# endif 865# ifndef irqsafe_cpu_or_2 866# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 867# endif 868# ifndef irqsafe_cpu_or_4 869# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 870# endif 871# ifndef irqsafe_cpu_or_8 872# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 873# endif 874# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val)) 875#endif 876 877#ifndef irqsafe_cpu_xor 878# ifndef irqsafe_cpu_xor_1 879# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 880# endif 881# ifndef irqsafe_cpu_xor_2 882# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 883# endif 884# ifndef irqsafe_cpu_xor_4 885# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 886# endif 887# ifndef irqsafe_cpu_xor_8 888# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 889# endif 890# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val)) 891#endif 892 893#define irqsafe_cpu_generic_cmpxchg(pcp, oval, nval) \ 894({ \ 895 typeof(pcp) ret__; \ 896 unsigned long flags; \ 897 local_irq_save(flags); \ 898 ret__ = __this_cpu_read(pcp); \ 899 if (ret__ == (oval)) \ 900 __this_cpu_write(pcp, nval); \ 901 local_irq_restore(flags); \ 902 ret__; \ 903}) 904 905#ifndef irqsafe_cpu_cmpxchg 906# ifndef irqsafe_cpu_cmpxchg_1 907# define irqsafe_cpu_cmpxchg_1(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval) 908# endif 909# ifndef irqsafe_cpu_cmpxchg_2 910# define irqsafe_cpu_cmpxchg_2(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval) 911# endif 912# ifndef irqsafe_cpu_cmpxchg_4 913# define irqsafe_cpu_cmpxchg_4(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval) 914# endif 915# ifndef irqsafe_cpu_cmpxchg_8 916# define irqsafe_cpu_cmpxchg_8(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval) 917# endif 918# define irqsafe_cpu_cmpxchg(pcp, oval, nval) \ 919 __pcpu_size_call_return2(irqsafe_cpu_cmpxchg_, (pcp), oval, nval) 920#endif 921 922#define irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 923({ \ 924 int ret__; \ 925 unsigned long flags; \ 926 local_irq_save(flags); \ 927 ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \ 928 oval1, oval2, nval1, nval2); \ 929 local_irq_restore(flags); \ 930 ret__; \ 931}) 932 933#ifndef irqsafe_cpu_cmpxchg_double 934# ifndef irqsafe_cpu_cmpxchg_double_1 935# define irqsafe_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 936 irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 937# endif 938# ifndef irqsafe_cpu_cmpxchg_double_2 939# define irqsafe_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 940 irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 941# endif 942# ifndef irqsafe_cpu_cmpxchg_double_4 943# define irqsafe_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 944 irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 945# endif 946# ifndef irqsafe_cpu_cmpxchg_double_8 947# define irqsafe_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 948 irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 949# endif 950# define irqsafe_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 951 __pcpu_double_call_return_bool(irqsafe_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) 952#endif 953 954#endif /* __LINUX_PERCPU_H */