at v2.6.39 11 kB view raw
1/* 2 * Flexible array managed in PAGE_SIZE parts 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright IBM Corporation, 2009 19 * 20 * Author: Dave Hansen <dave@linux.vnet.ibm.com> 21 */ 22 23#include <linux/flex_array.h> 24#include <linux/slab.h> 25#include <linux/stddef.h> 26#include <linux/module.h> 27 28struct flex_array_part { 29 char elements[FLEX_ARRAY_PART_SIZE]; 30}; 31 32/* 33 * If a user requests an allocation which is small 34 * enough, we may simply use the space in the 35 * flex_array->parts[] array to store the user 36 * data. 37 */ 38static inline int elements_fit_in_base(struct flex_array *fa) 39{ 40 int data_size = fa->element_size * fa->total_nr_elements; 41 if (data_size <= FLEX_ARRAY_BASE_BYTES_LEFT) 42 return 1; 43 return 0; 44} 45 46/** 47 * flex_array_alloc - allocate a new flexible array 48 * @element_size: the size of individual elements in the array 49 * @total: total number of elements that this should hold 50 * @flags: page allocation flags to use for base array 51 * 52 * Note: all locking must be provided by the caller. 53 * 54 * @total is used to size internal structures. If the user ever 55 * accesses any array indexes >=@total, it will produce errors. 56 * 57 * The maximum number of elements is defined as: the number of 58 * elements that can be stored in a page times the number of 59 * page pointers that we can fit in the base structure or (using 60 * integer math): 61 * 62 * (PAGE_SIZE/element_size) * (PAGE_SIZE-8)/sizeof(void *) 63 * 64 * Here's a table showing example capacities. Note that the maximum 65 * index that the get/put() functions is just nr_objects-1. This 66 * basically means that you get 4MB of storage on 32-bit and 2MB on 67 * 64-bit. 68 * 69 * 70 * Element size | Objects | Objects | 71 * PAGE_SIZE=4k | 32-bit | 64-bit | 72 * ---------------------------------| 73 * 1 bytes | 4186112 | 2093056 | 74 * 2 bytes | 2093056 | 1046528 | 75 * 3 bytes | 1395030 | 697515 | 76 * 4 bytes | 1046528 | 523264 | 77 * 32 bytes | 130816 | 65408 | 78 * 33 bytes | 126728 | 63364 | 79 * 2048 bytes | 2044 | 1022 | 80 * 2049 bytes | 1022 | 511 | 81 * void * | 1046528 | 261632 | 82 * 83 * Since 64-bit pointers are twice the size, we lose half the 84 * capacity in the base structure. Also note that no effort is made 85 * to efficiently pack objects across page boundaries. 86 */ 87struct flex_array *flex_array_alloc(int element_size, unsigned int total, 88 gfp_t flags) 89{ 90 struct flex_array *ret; 91 int max_size = FLEX_ARRAY_NR_BASE_PTRS * 92 FLEX_ARRAY_ELEMENTS_PER_PART(element_size); 93 94 /* max_size will end up 0 if element_size > PAGE_SIZE */ 95 if (total > max_size) 96 return NULL; 97 ret = kzalloc(sizeof(struct flex_array), flags); 98 if (!ret) 99 return NULL; 100 ret->element_size = element_size; 101 ret->total_nr_elements = total; 102 if (elements_fit_in_base(ret) && !(flags & __GFP_ZERO)) 103 memset(&ret->parts[0], FLEX_ARRAY_FREE, 104 FLEX_ARRAY_BASE_BYTES_LEFT); 105 return ret; 106} 107EXPORT_SYMBOL(flex_array_alloc); 108 109static int fa_element_to_part_nr(struct flex_array *fa, 110 unsigned int element_nr) 111{ 112 return element_nr / FLEX_ARRAY_ELEMENTS_PER_PART(fa->element_size); 113} 114 115/** 116 * flex_array_free_parts - just free the second-level pages 117 * @fa: the flex array from which to free parts 118 * 119 * This is to be used in cases where the base 'struct flex_array' 120 * has been statically allocated and should not be free. 121 */ 122void flex_array_free_parts(struct flex_array *fa) 123{ 124 int part_nr; 125 126 if (elements_fit_in_base(fa)) 127 return; 128 for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++) 129 kfree(fa->parts[part_nr]); 130} 131EXPORT_SYMBOL(flex_array_free_parts); 132 133void flex_array_free(struct flex_array *fa) 134{ 135 flex_array_free_parts(fa); 136 kfree(fa); 137} 138EXPORT_SYMBOL(flex_array_free); 139 140static unsigned int index_inside_part(struct flex_array *fa, 141 unsigned int element_nr) 142{ 143 unsigned int part_offset; 144 145 part_offset = element_nr % 146 FLEX_ARRAY_ELEMENTS_PER_PART(fa->element_size); 147 return part_offset * fa->element_size; 148} 149 150static struct flex_array_part * 151__fa_get_part(struct flex_array *fa, int part_nr, gfp_t flags) 152{ 153 struct flex_array_part *part = fa->parts[part_nr]; 154 if (!part) { 155 part = kmalloc(sizeof(struct flex_array_part), flags); 156 if (!part) 157 return NULL; 158 if (!(flags & __GFP_ZERO)) 159 memset(part, FLEX_ARRAY_FREE, 160 sizeof(struct flex_array_part)); 161 fa->parts[part_nr] = part; 162 } 163 return part; 164} 165 166/** 167 * flex_array_put - copy data into the array at @element_nr 168 * @fa: the flex array to copy data into 169 * @element_nr: index of the position in which to insert 170 * the new element. 171 * @src: address of data to copy into the array 172 * @flags: page allocation flags to use for array expansion 173 * 174 * 175 * Note that this *copies* the contents of @src into 176 * the array. If you are trying to store an array of 177 * pointers, make sure to pass in &ptr instead of ptr. 178 * You may instead wish to use the flex_array_put_ptr() 179 * helper function. 180 * 181 * Locking must be provided by the caller. 182 */ 183int flex_array_put(struct flex_array *fa, unsigned int element_nr, void *src, 184 gfp_t flags) 185{ 186 int part_nr = fa_element_to_part_nr(fa, element_nr); 187 struct flex_array_part *part; 188 void *dst; 189 190 if (element_nr >= fa->total_nr_elements) 191 return -ENOSPC; 192 if (elements_fit_in_base(fa)) 193 part = (struct flex_array_part *)&fa->parts[0]; 194 else { 195 part = __fa_get_part(fa, part_nr, flags); 196 if (!part) 197 return -ENOMEM; 198 } 199 dst = &part->elements[index_inside_part(fa, element_nr)]; 200 memcpy(dst, src, fa->element_size); 201 return 0; 202} 203EXPORT_SYMBOL(flex_array_put); 204 205/** 206 * flex_array_clear - clear element in array at @element_nr 207 * @fa: the flex array of the element. 208 * @element_nr: index of the position to clear. 209 * 210 * Locking must be provided by the caller. 211 */ 212int flex_array_clear(struct flex_array *fa, unsigned int element_nr) 213{ 214 int part_nr = fa_element_to_part_nr(fa, element_nr); 215 struct flex_array_part *part; 216 void *dst; 217 218 if (element_nr >= fa->total_nr_elements) 219 return -ENOSPC; 220 if (elements_fit_in_base(fa)) 221 part = (struct flex_array_part *)&fa->parts[0]; 222 else { 223 part = fa->parts[part_nr]; 224 if (!part) 225 return -EINVAL; 226 } 227 dst = &part->elements[index_inside_part(fa, element_nr)]; 228 memset(dst, FLEX_ARRAY_FREE, fa->element_size); 229 return 0; 230} 231EXPORT_SYMBOL(flex_array_clear); 232 233/** 234 * flex_array_prealloc - guarantee that array space exists 235 * @fa: the flex array for which to preallocate parts 236 * @start: index of first array element for which space is allocated 237 * @nr_elements: number of elements for which space is allocated 238 * @flags: page allocation flags 239 * 240 * This will guarantee that no future calls to flex_array_put() 241 * will allocate memory. It can be used if you are expecting to 242 * be holding a lock or in some atomic context while writing 243 * data into the array. 244 * 245 * Locking must be provided by the caller. 246 */ 247int flex_array_prealloc(struct flex_array *fa, unsigned int start, 248 unsigned int nr_elements, gfp_t flags) 249{ 250 int start_part; 251 int end_part; 252 int part_nr; 253 unsigned int end; 254 struct flex_array_part *part; 255 256 if (!start && !nr_elements) 257 return 0; 258 if (start >= fa->total_nr_elements) 259 return -ENOSPC; 260 if (!nr_elements) 261 return 0; 262 263 end = start + nr_elements - 1; 264 265 if (end >= fa->total_nr_elements) 266 return -ENOSPC; 267 if (elements_fit_in_base(fa)) 268 return 0; 269 start_part = fa_element_to_part_nr(fa, start); 270 end_part = fa_element_to_part_nr(fa, end); 271 for (part_nr = start_part; part_nr <= end_part; part_nr++) { 272 part = __fa_get_part(fa, part_nr, flags); 273 if (!part) 274 return -ENOMEM; 275 } 276 return 0; 277} 278EXPORT_SYMBOL(flex_array_prealloc); 279 280/** 281 * flex_array_get - pull data back out of the array 282 * @fa: the flex array from which to extract data 283 * @element_nr: index of the element to fetch from the array 284 * 285 * Returns a pointer to the data at index @element_nr. Note 286 * that this is a copy of the data that was passed in. If you 287 * are using this to store pointers, you'll get back &ptr. You 288 * may instead wish to use the flex_array_get_ptr helper. 289 * 290 * Locking must be provided by the caller. 291 */ 292void *flex_array_get(struct flex_array *fa, unsigned int element_nr) 293{ 294 int part_nr = fa_element_to_part_nr(fa, element_nr); 295 struct flex_array_part *part; 296 297 if (element_nr >= fa->total_nr_elements) 298 return NULL; 299 if (elements_fit_in_base(fa)) 300 part = (struct flex_array_part *)&fa->parts[0]; 301 else { 302 part = fa->parts[part_nr]; 303 if (!part) 304 return NULL; 305 } 306 return &part->elements[index_inside_part(fa, element_nr)]; 307} 308EXPORT_SYMBOL(flex_array_get); 309 310/** 311 * flex_array_get_ptr - pull a ptr back out of the array 312 * @fa: the flex array from which to extract data 313 * @element_nr: index of the element to fetch from the array 314 * 315 * Returns the pointer placed in the flex array at element_nr using 316 * flex_array_put_ptr(). This function should not be called if the 317 * element in question was not set using the _put_ptr() helper. 318 */ 319void *flex_array_get_ptr(struct flex_array *fa, unsigned int element_nr) 320{ 321 void **tmp; 322 323 tmp = flex_array_get(fa, element_nr); 324 if (!tmp) 325 return NULL; 326 327 return *tmp; 328} 329EXPORT_SYMBOL(flex_array_get_ptr); 330 331static int part_is_free(struct flex_array_part *part) 332{ 333 int i; 334 335 for (i = 0; i < sizeof(struct flex_array_part); i++) 336 if (part->elements[i] != FLEX_ARRAY_FREE) 337 return 0; 338 return 1; 339} 340 341/** 342 * flex_array_shrink - free unused second-level pages 343 * @fa: the flex array to shrink 344 * 345 * Frees all second-level pages that consist solely of unused 346 * elements. Returns the number of pages freed. 347 * 348 * Locking must be provided by the caller. 349 */ 350int flex_array_shrink(struct flex_array *fa) 351{ 352 struct flex_array_part *part; 353 int part_nr; 354 int ret = 0; 355 356 if (!fa->total_nr_elements) 357 return 0; 358 if (elements_fit_in_base(fa)) 359 return ret; 360 for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++) { 361 part = fa->parts[part_nr]; 362 if (!part) 363 continue; 364 if (part_is_free(part)) { 365 fa->parts[part_nr] = NULL; 366 kfree(part); 367 ret++; 368 } 369 } 370 return ret; 371} 372EXPORT_SYMBOL(flex_array_shrink);