at v2.6.39 32 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <linux/types.h> 18#include <linux/ioctl.h> 19#include <asm/byteorder.h> 20 21/* 22 * User-space ABI bits: 23 */ 24 25/* 26 * attr.type 27 */ 28enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 PERF_TYPE_BREAKPOINT = 5, 35 36 PERF_TYPE_MAX, /* non-ABI */ 37}; 38 39/* 40 * Generalized performance event event_id types, used by the 41 * attr.event_id parameter of the sys_perf_event_open() 42 * syscall: 43 */ 44enum perf_hw_id { 45 /* 46 * Common hardware events, generalized by the kernel: 47 */ 48 PERF_COUNT_HW_CPU_CYCLES = 0, 49 PERF_COUNT_HW_INSTRUCTIONS = 1, 50 PERF_COUNT_HW_CACHE_REFERENCES = 2, 51 PERF_COUNT_HW_CACHE_MISSES = 3, 52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 53 PERF_COUNT_HW_BRANCH_MISSES = 5, 54 PERF_COUNT_HW_BUS_CYCLES = 6, 55 56 PERF_COUNT_HW_MAX, /* non-ABI */ 57}; 58 59/* 60 * Generalized hardware cache events: 61 * 62 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x 63 * { read, write, prefetch } x 64 * { accesses, misses } 65 */ 66enum perf_hw_cache_id { 67 PERF_COUNT_HW_CACHE_L1D = 0, 68 PERF_COUNT_HW_CACHE_L1I = 1, 69 PERF_COUNT_HW_CACHE_LL = 2, 70 PERF_COUNT_HW_CACHE_DTLB = 3, 71 PERF_COUNT_HW_CACHE_ITLB = 4, 72 PERF_COUNT_HW_CACHE_BPU = 5, 73 74 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 75}; 76 77enum perf_hw_cache_op_id { 78 PERF_COUNT_HW_CACHE_OP_READ = 0, 79 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 80 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 81 82 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 83}; 84 85enum perf_hw_cache_op_result_id { 86 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 87 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 88 89 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 90}; 91 92/* 93 * Special "software" events provided by the kernel, even if the hardware 94 * does not support performance events. These events measure various 95 * physical and sw events of the kernel (and allow the profiling of them as 96 * well): 97 */ 98enum perf_sw_ids { 99 PERF_COUNT_SW_CPU_CLOCK = 0, 100 PERF_COUNT_SW_TASK_CLOCK = 1, 101 PERF_COUNT_SW_PAGE_FAULTS = 2, 102 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 103 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 104 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 105 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 106 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 107 PERF_COUNT_SW_EMULATION_FAULTS = 8, 108 109 PERF_COUNT_SW_MAX, /* non-ABI */ 110}; 111 112/* 113 * Bits that can be set in attr.sample_type to request information 114 * in the overflow packets. 115 */ 116enum perf_event_sample_format { 117 PERF_SAMPLE_IP = 1U << 0, 118 PERF_SAMPLE_TID = 1U << 1, 119 PERF_SAMPLE_TIME = 1U << 2, 120 PERF_SAMPLE_ADDR = 1U << 3, 121 PERF_SAMPLE_READ = 1U << 4, 122 PERF_SAMPLE_CALLCHAIN = 1U << 5, 123 PERF_SAMPLE_ID = 1U << 6, 124 PERF_SAMPLE_CPU = 1U << 7, 125 PERF_SAMPLE_PERIOD = 1U << 8, 126 PERF_SAMPLE_STREAM_ID = 1U << 9, 127 PERF_SAMPLE_RAW = 1U << 10, 128 129 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */ 130}; 131 132/* 133 * The format of the data returned by read() on a perf event fd, 134 * as specified by attr.read_format: 135 * 136 * struct read_format { 137 * { u64 value; 138 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 139 * { u64 time_running; } && PERF_FORMAT_RUNNING 140 * { u64 id; } && PERF_FORMAT_ID 141 * } && !PERF_FORMAT_GROUP 142 * 143 * { u64 nr; 144 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 145 * { u64 time_running; } && PERF_FORMAT_RUNNING 146 * { u64 value; 147 * { u64 id; } && PERF_FORMAT_ID 148 * } cntr[nr]; 149 * } && PERF_FORMAT_GROUP 150 * }; 151 */ 152enum perf_event_read_format { 153 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 154 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 155 PERF_FORMAT_ID = 1U << 2, 156 PERF_FORMAT_GROUP = 1U << 3, 157 158 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 159}; 160 161#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 162 163/* 164 * Hardware event_id to monitor via a performance monitoring event: 165 */ 166struct perf_event_attr { 167 168 /* 169 * Major type: hardware/software/tracepoint/etc. 170 */ 171 __u32 type; 172 173 /* 174 * Size of the attr structure, for fwd/bwd compat. 175 */ 176 __u32 size; 177 178 /* 179 * Type specific configuration information. 180 */ 181 __u64 config; 182 183 union { 184 __u64 sample_period; 185 __u64 sample_freq; 186 }; 187 188 __u64 sample_type; 189 __u64 read_format; 190 191 __u64 disabled : 1, /* off by default */ 192 inherit : 1, /* children inherit it */ 193 pinned : 1, /* must always be on PMU */ 194 exclusive : 1, /* only group on PMU */ 195 exclude_user : 1, /* don't count user */ 196 exclude_kernel : 1, /* ditto kernel */ 197 exclude_hv : 1, /* ditto hypervisor */ 198 exclude_idle : 1, /* don't count when idle */ 199 mmap : 1, /* include mmap data */ 200 comm : 1, /* include comm data */ 201 freq : 1, /* use freq, not period */ 202 inherit_stat : 1, /* per task counts */ 203 enable_on_exec : 1, /* next exec enables */ 204 task : 1, /* trace fork/exit */ 205 watermark : 1, /* wakeup_watermark */ 206 /* 207 * precise_ip: 208 * 209 * 0 - SAMPLE_IP can have arbitrary skid 210 * 1 - SAMPLE_IP must have constant skid 211 * 2 - SAMPLE_IP requested to have 0 skid 212 * 3 - SAMPLE_IP must have 0 skid 213 * 214 * See also PERF_RECORD_MISC_EXACT_IP 215 */ 216 precise_ip : 2, /* skid constraint */ 217 mmap_data : 1, /* non-exec mmap data */ 218 sample_id_all : 1, /* sample_type all events */ 219 220 __reserved_1 : 45; 221 222 union { 223 __u32 wakeup_events; /* wakeup every n events */ 224 __u32 wakeup_watermark; /* bytes before wakeup */ 225 }; 226 227 __u32 bp_type; 228 union { 229 __u64 bp_addr; 230 __u64 config1; /* extension of config */ 231 }; 232 union { 233 __u64 bp_len; 234 __u64 config2; /* extension of config1 */ 235 }; 236}; 237 238/* 239 * Ioctls that can be done on a perf event fd: 240 */ 241#define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 242#define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 243#define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 244#define PERF_EVENT_IOC_RESET _IO ('$', 3) 245#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 246#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 247#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 248 249enum perf_event_ioc_flags { 250 PERF_IOC_FLAG_GROUP = 1U << 0, 251}; 252 253/* 254 * Structure of the page that can be mapped via mmap 255 */ 256struct perf_event_mmap_page { 257 __u32 version; /* version number of this structure */ 258 __u32 compat_version; /* lowest version this is compat with */ 259 260 /* 261 * Bits needed to read the hw events in user-space. 262 * 263 * u32 seq; 264 * s64 count; 265 * 266 * do { 267 * seq = pc->lock; 268 * 269 * barrier() 270 * if (pc->index) { 271 * count = pmc_read(pc->index - 1); 272 * count += pc->offset; 273 * } else 274 * goto regular_read; 275 * 276 * barrier(); 277 * } while (pc->lock != seq); 278 * 279 * NOTE: for obvious reason this only works on self-monitoring 280 * processes. 281 */ 282 __u32 lock; /* seqlock for synchronization */ 283 __u32 index; /* hardware event identifier */ 284 __s64 offset; /* add to hardware event value */ 285 __u64 time_enabled; /* time event active */ 286 __u64 time_running; /* time event on cpu */ 287 288 /* 289 * Hole for extension of the self monitor capabilities 290 */ 291 292 __u64 __reserved[123]; /* align to 1k */ 293 294 /* 295 * Control data for the mmap() data buffer. 296 * 297 * User-space reading the @data_head value should issue an rmb(), on 298 * SMP capable platforms, after reading this value -- see 299 * perf_event_wakeup(). 300 * 301 * When the mapping is PROT_WRITE the @data_tail value should be 302 * written by userspace to reflect the last read data. In this case 303 * the kernel will not over-write unread data. 304 */ 305 __u64 data_head; /* head in the data section */ 306 __u64 data_tail; /* user-space written tail */ 307}; 308 309#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 310#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 311#define PERF_RECORD_MISC_KERNEL (1 << 0) 312#define PERF_RECORD_MISC_USER (2 << 0) 313#define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 314#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 315#define PERF_RECORD_MISC_GUEST_USER (5 << 0) 316 317/* 318 * Indicates that the content of PERF_SAMPLE_IP points to 319 * the actual instruction that triggered the event. See also 320 * perf_event_attr::precise_ip. 321 */ 322#define PERF_RECORD_MISC_EXACT_IP (1 << 14) 323/* 324 * Reserve the last bit to indicate some extended misc field 325 */ 326#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 327 328struct perf_event_header { 329 __u32 type; 330 __u16 misc; 331 __u16 size; 332}; 333 334enum perf_event_type { 335 336 /* 337 * If perf_event_attr.sample_id_all is set then all event types will 338 * have the sample_type selected fields related to where/when 339 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID) 340 * described in PERF_RECORD_SAMPLE below, it will be stashed just after 341 * the perf_event_header and the fields already present for the existing 342 * fields, i.e. at the end of the payload. That way a newer perf.data 343 * file will be supported by older perf tools, with these new optional 344 * fields being ignored. 345 * 346 * The MMAP events record the PROT_EXEC mappings so that we can 347 * correlate userspace IPs to code. They have the following structure: 348 * 349 * struct { 350 * struct perf_event_header header; 351 * 352 * u32 pid, tid; 353 * u64 addr; 354 * u64 len; 355 * u64 pgoff; 356 * char filename[]; 357 * }; 358 */ 359 PERF_RECORD_MMAP = 1, 360 361 /* 362 * struct { 363 * struct perf_event_header header; 364 * u64 id; 365 * u64 lost; 366 * }; 367 */ 368 PERF_RECORD_LOST = 2, 369 370 /* 371 * struct { 372 * struct perf_event_header header; 373 * 374 * u32 pid, tid; 375 * char comm[]; 376 * }; 377 */ 378 PERF_RECORD_COMM = 3, 379 380 /* 381 * struct { 382 * struct perf_event_header header; 383 * u32 pid, ppid; 384 * u32 tid, ptid; 385 * u64 time; 386 * }; 387 */ 388 PERF_RECORD_EXIT = 4, 389 390 /* 391 * struct { 392 * struct perf_event_header header; 393 * u64 time; 394 * u64 id; 395 * u64 stream_id; 396 * }; 397 */ 398 PERF_RECORD_THROTTLE = 5, 399 PERF_RECORD_UNTHROTTLE = 6, 400 401 /* 402 * struct { 403 * struct perf_event_header header; 404 * u32 pid, ppid; 405 * u32 tid, ptid; 406 * u64 time; 407 * }; 408 */ 409 PERF_RECORD_FORK = 7, 410 411 /* 412 * struct { 413 * struct perf_event_header header; 414 * u32 pid, tid; 415 * 416 * struct read_format values; 417 * }; 418 */ 419 PERF_RECORD_READ = 8, 420 421 /* 422 * struct { 423 * struct perf_event_header header; 424 * 425 * { u64 ip; } && PERF_SAMPLE_IP 426 * { u32 pid, tid; } && PERF_SAMPLE_TID 427 * { u64 time; } && PERF_SAMPLE_TIME 428 * { u64 addr; } && PERF_SAMPLE_ADDR 429 * { u64 id; } && PERF_SAMPLE_ID 430 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 431 * { u32 cpu, res; } && PERF_SAMPLE_CPU 432 * { u64 period; } && PERF_SAMPLE_PERIOD 433 * 434 * { struct read_format values; } && PERF_SAMPLE_READ 435 * 436 * { u64 nr, 437 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 438 * 439 * # 440 * # The RAW record below is opaque data wrt the ABI 441 * # 442 * # That is, the ABI doesn't make any promises wrt to 443 * # the stability of its content, it may vary depending 444 * # on event, hardware, kernel version and phase of 445 * # the moon. 446 * # 447 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 448 * # 449 * 450 * { u32 size; 451 * char data[size];}&& PERF_SAMPLE_RAW 452 * }; 453 */ 454 PERF_RECORD_SAMPLE = 9, 455 456 PERF_RECORD_MAX, /* non-ABI */ 457}; 458 459enum perf_callchain_context { 460 PERF_CONTEXT_HV = (__u64)-32, 461 PERF_CONTEXT_KERNEL = (__u64)-128, 462 PERF_CONTEXT_USER = (__u64)-512, 463 464 PERF_CONTEXT_GUEST = (__u64)-2048, 465 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 466 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 467 468 PERF_CONTEXT_MAX = (__u64)-4095, 469}; 470 471#define PERF_FLAG_FD_NO_GROUP (1U << 0) 472#define PERF_FLAG_FD_OUTPUT (1U << 1) 473#define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */ 474 475#ifdef __KERNEL__ 476/* 477 * Kernel-internal data types and definitions: 478 */ 479 480#ifdef CONFIG_PERF_EVENTS 481# include <linux/cgroup.h> 482# include <asm/perf_event.h> 483# include <asm/local64.h> 484#endif 485 486struct perf_guest_info_callbacks { 487 int (*is_in_guest) (void); 488 int (*is_user_mode) (void); 489 unsigned long (*get_guest_ip) (void); 490}; 491 492#ifdef CONFIG_HAVE_HW_BREAKPOINT 493#include <asm/hw_breakpoint.h> 494#endif 495 496#include <linux/list.h> 497#include <linux/mutex.h> 498#include <linux/rculist.h> 499#include <linux/rcupdate.h> 500#include <linux/spinlock.h> 501#include <linux/hrtimer.h> 502#include <linux/fs.h> 503#include <linux/pid_namespace.h> 504#include <linux/workqueue.h> 505#include <linux/ftrace.h> 506#include <linux/cpu.h> 507#include <linux/irq_work.h> 508#include <linux/jump_label_ref.h> 509#include <asm/atomic.h> 510#include <asm/local.h> 511 512#define PERF_MAX_STACK_DEPTH 255 513 514struct perf_callchain_entry { 515 __u64 nr; 516 __u64 ip[PERF_MAX_STACK_DEPTH]; 517}; 518 519struct perf_raw_record { 520 u32 size; 521 void *data; 522}; 523 524struct perf_branch_entry { 525 __u64 from; 526 __u64 to; 527 __u64 flags; 528}; 529 530struct perf_branch_stack { 531 __u64 nr; 532 struct perf_branch_entry entries[0]; 533}; 534 535struct task_struct; 536 537/** 538 * struct hw_perf_event - performance event hardware details: 539 */ 540struct hw_perf_event { 541#ifdef CONFIG_PERF_EVENTS 542 union { 543 struct { /* hardware */ 544 u64 config; 545 u64 last_tag; 546 unsigned long config_base; 547 unsigned long event_base; 548 int idx; 549 int last_cpu; 550 unsigned int extra_reg; 551 u64 extra_config; 552 int extra_alloc; 553 }; 554 struct { /* software */ 555 struct hrtimer hrtimer; 556 }; 557#ifdef CONFIG_HAVE_HW_BREAKPOINT 558 struct { /* breakpoint */ 559 struct arch_hw_breakpoint info; 560 struct list_head bp_list; 561 /* 562 * Crufty hack to avoid the chicken and egg 563 * problem hw_breakpoint has with context 564 * creation and event initalization. 565 */ 566 struct task_struct *bp_target; 567 }; 568#endif 569 }; 570 int state; 571 local64_t prev_count; 572 u64 sample_period; 573 u64 last_period; 574 local64_t period_left; 575 u64 interrupts; 576 577 u64 freq_time_stamp; 578 u64 freq_count_stamp; 579#endif 580}; 581 582/* 583 * hw_perf_event::state flags 584 */ 585#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 586#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 587#define PERF_HES_ARCH 0x04 588 589struct perf_event; 590 591/* 592 * Common implementation detail of pmu::{start,commit,cancel}_txn 593 */ 594#define PERF_EVENT_TXN 0x1 595 596/** 597 * struct pmu - generic performance monitoring unit 598 */ 599struct pmu { 600 struct list_head entry; 601 602 struct device *dev; 603 char *name; 604 int type; 605 606 int * __percpu pmu_disable_count; 607 struct perf_cpu_context * __percpu pmu_cpu_context; 608 int task_ctx_nr; 609 610 /* 611 * Fully disable/enable this PMU, can be used to protect from the PMI 612 * as well as for lazy/batch writing of the MSRs. 613 */ 614 void (*pmu_enable) (struct pmu *pmu); /* optional */ 615 void (*pmu_disable) (struct pmu *pmu); /* optional */ 616 617 /* 618 * Try and initialize the event for this PMU. 619 * Should return -ENOENT when the @event doesn't match this PMU. 620 */ 621 int (*event_init) (struct perf_event *event); 622 623#define PERF_EF_START 0x01 /* start the counter when adding */ 624#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 625#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 626 627 /* 628 * Adds/Removes a counter to/from the PMU, can be done inside 629 * a transaction, see the ->*_txn() methods. 630 */ 631 int (*add) (struct perf_event *event, int flags); 632 void (*del) (struct perf_event *event, int flags); 633 634 /* 635 * Starts/Stops a counter present on the PMU. The PMI handler 636 * should stop the counter when perf_event_overflow() returns 637 * !0. ->start() will be used to continue. 638 */ 639 void (*start) (struct perf_event *event, int flags); 640 void (*stop) (struct perf_event *event, int flags); 641 642 /* 643 * Updates the counter value of the event. 644 */ 645 void (*read) (struct perf_event *event); 646 647 /* 648 * Group events scheduling is treated as a transaction, add 649 * group events as a whole and perform one schedulability test. 650 * If the test fails, roll back the whole group 651 * 652 * Start the transaction, after this ->add() doesn't need to 653 * do schedulability tests. 654 */ 655 void (*start_txn) (struct pmu *pmu); /* optional */ 656 /* 657 * If ->start_txn() disabled the ->add() schedulability test 658 * then ->commit_txn() is required to perform one. On success 659 * the transaction is closed. On error the transaction is kept 660 * open until ->cancel_txn() is called. 661 */ 662 int (*commit_txn) (struct pmu *pmu); /* optional */ 663 /* 664 * Will cancel the transaction, assumes ->del() is called 665 * for each successful ->add() during the transaction. 666 */ 667 void (*cancel_txn) (struct pmu *pmu); /* optional */ 668}; 669 670/** 671 * enum perf_event_active_state - the states of a event 672 */ 673enum perf_event_active_state { 674 PERF_EVENT_STATE_ERROR = -2, 675 PERF_EVENT_STATE_OFF = -1, 676 PERF_EVENT_STATE_INACTIVE = 0, 677 PERF_EVENT_STATE_ACTIVE = 1, 678}; 679 680struct file; 681 682#define PERF_BUFFER_WRITABLE 0x01 683 684struct perf_buffer { 685 atomic_t refcount; 686 struct rcu_head rcu_head; 687#ifdef CONFIG_PERF_USE_VMALLOC 688 struct work_struct work; 689 int page_order; /* allocation order */ 690#endif 691 int nr_pages; /* nr of data pages */ 692 int writable; /* are we writable */ 693 694 atomic_t poll; /* POLL_ for wakeups */ 695 696 local_t head; /* write position */ 697 local_t nest; /* nested writers */ 698 local_t events; /* event limit */ 699 local_t wakeup; /* wakeup stamp */ 700 local_t lost; /* nr records lost */ 701 702 long watermark; /* wakeup watermark */ 703 704 struct perf_event_mmap_page *user_page; 705 void *data_pages[0]; 706}; 707 708struct perf_sample_data; 709 710typedef void (*perf_overflow_handler_t)(struct perf_event *, int, 711 struct perf_sample_data *, 712 struct pt_regs *regs); 713 714enum perf_group_flag { 715 PERF_GROUP_SOFTWARE = 0x1, 716}; 717 718#define SWEVENT_HLIST_BITS 8 719#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 720 721struct swevent_hlist { 722 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 723 struct rcu_head rcu_head; 724}; 725 726#define PERF_ATTACH_CONTEXT 0x01 727#define PERF_ATTACH_GROUP 0x02 728#define PERF_ATTACH_TASK 0x04 729 730#ifdef CONFIG_CGROUP_PERF 731/* 732 * perf_cgroup_info keeps track of time_enabled for a cgroup. 733 * This is a per-cpu dynamically allocated data structure. 734 */ 735struct perf_cgroup_info { 736 u64 time; 737 u64 timestamp; 738}; 739 740struct perf_cgroup { 741 struct cgroup_subsys_state css; 742 struct perf_cgroup_info *info; /* timing info, one per cpu */ 743}; 744#endif 745 746/** 747 * struct perf_event - performance event kernel representation: 748 */ 749struct perf_event { 750#ifdef CONFIG_PERF_EVENTS 751 struct list_head group_entry; 752 struct list_head event_entry; 753 struct list_head sibling_list; 754 struct hlist_node hlist_entry; 755 int nr_siblings; 756 int group_flags; 757 struct perf_event *group_leader; 758 struct pmu *pmu; 759 760 enum perf_event_active_state state; 761 unsigned int attach_state; 762 local64_t count; 763 atomic64_t child_count; 764 765 /* 766 * These are the total time in nanoseconds that the event 767 * has been enabled (i.e. eligible to run, and the task has 768 * been scheduled in, if this is a per-task event) 769 * and running (scheduled onto the CPU), respectively. 770 * 771 * They are computed from tstamp_enabled, tstamp_running and 772 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 773 */ 774 u64 total_time_enabled; 775 u64 total_time_running; 776 777 /* 778 * These are timestamps used for computing total_time_enabled 779 * and total_time_running when the event is in INACTIVE or 780 * ACTIVE state, measured in nanoseconds from an arbitrary point 781 * in time. 782 * tstamp_enabled: the notional time when the event was enabled 783 * tstamp_running: the notional time when the event was scheduled on 784 * tstamp_stopped: in INACTIVE state, the notional time when the 785 * event was scheduled off. 786 */ 787 u64 tstamp_enabled; 788 u64 tstamp_running; 789 u64 tstamp_stopped; 790 791 /* 792 * timestamp shadows the actual context timing but it can 793 * be safely used in NMI interrupt context. It reflects the 794 * context time as it was when the event was last scheduled in. 795 * 796 * ctx_time already accounts for ctx->timestamp. Therefore to 797 * compute ctx_time for a sample, simply add perf_clock(). 798 */ 799 u64 shadow_ctx_time; 800 801 struct perf_event_attr attr; 802 u16 header_size; 803 u16 id_header_size; 804 u16 read_size; 805 struct hw_perf_event hw; 806 807 struct perf_event_context *ctx; 808 struct file *filp; 809 810 /* 811 * These accumulate total time (in nanoseconds) that children 812 * events have been enabled and running, respectively. 813 */ 814 atomic64_t child_total_time_enabled; 815 atomic64_t child_total_time_running; 816 817 /* 818 * Protect attach/detach and child_list: 819 */ 820 struct mutex child_mutex; 821 struct list_head child_list; 822 struct perf_event *parent; 823 824 int oncpu; 825 int cpu; 826 827 struct list_head owner_entry; 828 struct task_struct *owner; 829 830 /* mmap bits */ 831 struct mutex mmap_mutex; 832 atomic_t mmap_count; 833 int mmap_locked; 834 struct user_struct *mmap_user; 835 struct perf_buffer *buffer; 836 837 /* poll related */ 838 wait_queue_head_t waitq; 839 struct fasync_struct *fasync; 840 841 /* delayed work for NMIs and such */ 842 int pending_wakeup; 843 int pending_kill; 844 int pending_disable; 845 struct irq_work pending; 846 847 atomic_t event_limit; 848 849 void (*destroy)(struct perf_event *); 850 struct rcu_head rcu_head; 851 852 struct pid_namespace *ns; 853 u64 id; 854 855 perf_overflow_handler_t overflow_handler; 856 857#ifdef CONFIG_EVENT_TRACING 858 struct ftrace_event_call *tp_event; 859 struct event_filter *filter; 860#endif 861 862#ifdef CONFIG_CGROUP_PERF 863 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 864 int cgrp_defer_enabled; 865#endif 866 867#endif /* CONFIG_PERF_EVENTS */ 868}; 869 870enum perf_event_context_type { 871 task_context, 872 cpu_context, 873}; 874 875/** 876 * struct perf_event_context - event context structure 877 * 878 * Used as a container for task events and CPU events as well: 879 */ 880struct perf_event_context { 881 struct pmu *pmu; 882 enum perf_event_context_type type; 883 /* 884 * Protect the states of the events in the list, 885 * nr_active, and the list: 886 */ 887 raw_spinlock_t lock; 888 /* 889 * Protect the list of events. Locking either mutex or lock 890 * is sufficient to ensure the list doesn't change; to change 891 * the list you need to lock both the mutex and the spinlock. 892 */ 893 struct mutex mutex; 894 895 struct list_head pinned_groups; 896 struct list_head flexible_groups; 897 struct list_head event_list; 898 int nr_events; 899 int nr_active; 900 int is_active; 901 int nr_stat; 902 int rotate_disable; 903 atomic_t refcount; 904 struct task_struct *task; 905 906 /* 907 * Context clock, runs when context enabled. 908 */ 909 u64 time; 910 u64 timestamp; 911 912 /* 913 * These fields let us detect when two contexts have both 914 * been cloned (inherited) from a common ancestor. 915 */ 916 struct perf_event_context *parent_ctx; 917 u64 parent_gen; 918 u64 generation; 919 int pin_count; 920 struct rcu_head rcu_head; 921 int nr_cgroups; /* cgroup events present */ 922}; 923 924/* 925 * Number of contexts where an event can trigger: 926 * task, softirq, hardirq, nmi. 927 */ 928#define PERF_NR_CONTEXTS 4 929 930/** 931 * struct perf_event_cpu_context - per cpu event context structure 932 */ 933struct perf_cpu_context { 934 struct perf_event_context ctx; 935 struct perf_event_context *task_ctx; 936 int active_oncpu; 937 int exclusive; 938 struct list_head rotation_list; 939 int jiffies_interval; 940 struct pmu *active_pmu; 941 struct perf_cgroup *cgrp; 942}; 943 944struct perf_output_handle { 945 struct perf_event *event; 946 struct perf_buffer *buffer; 947 unsigned long wakeup; 948 unsigned long size; 949 void *addr; 950 int page; 951 int nmi; 952 int sample; 953}; 954 955#ifdef CONFIG_PERF_EVENTS 956 957extern int perf_pmu_register(struct pmu *pmu, char *name, int type); 958extern void perf_pmu_unregister(struct pmu *pmu); 959 960extern int perf_num_counters(void); 961extern const char *perf_pmu_name(void); 962extern void __perf_event_task_sched_in(struct task_struct *task); 963extern void __perf_event_task_sched_out(struct task_struct *task, struct task_struct *next); 964extern int perf_event_init_task(struct task_struct *child); 965extern void perf_event_exit_task(struct task_struct *child); 966extern void perf_event_free_task(struct task_struct *task); 967extern void perf_event_delayed_put(struct task_struct *task); 968extern void perf_event_print_debug(void); 969extern void perf_pmu_disable(struct pmu *pmu); 970extern void perf_pmu_enable(struct pmu *pmu); 971extern int perf_event_task_disable(void); 972extern int perf_event_task_enable(void); 973extern void perf_event_update_userpage(struct perf_event *event); 974extern int perf_event_release_kernel(struct perf_event *event); 975extern struct perf_event * 976perf_event_create_kernel_counter(struct perf_event_attr *attr, 977 int cpu, 978 struct task_struct *task, 979 perf_overflow_handler_t callback); 980extern u64 perf_event_read_value(struct perf_event *event, 981 u64 *enabled, u64 *running); 982 983struct perf_sample_data { 984 u64 type; 985 986 u64 ip; 987 struct { 988 u32 pid; 989 u32 tid; 990 } tid_entry; 991 u64 time; 992 u64 addr; 993 u64 id; 994 u64 stream_id; 995 struct { 996 u32 cpu; 997 u32 reserved; 998 } cpu_entry; 999 u64 period; 1000 struct perf_callchain_entry *callchain; 1001 struct perf_raw_record *raw; 1002}; 1003 1004static inline 1005void perf_sample_data_init(struct perf_sample_data *data, u64 addr) 1006{ 1007 data->addr = addr; 1008 data->raw = NULL; 1009} 1010 1011extern void perf_output_sample(struct perf_output_handle *handle, 1012 struct perf_event_header *header, 1013 struct perf_sample_data *data, 1014 struct perf_event *event); 1015extern void perf_prepare_sample(struct perf_event_header *header, 1016 struct perf_sample_data *data, 1017 struct perf_event *event, 1018 struct pt_regs *regs); 1019 1020extern int perf_event_overflow(struct perf_event *event, int nmi, 1021 struct perf_sample_data *data, 1022 struct pt_regs *regs); 1023 1024static inline bool is_sampling_event(struct perf_event *event) 1025{ 1026 return event->attr.sample_period != 0; 1027} 1028 1029/* 1030 * Return 1 for a software event, 0 for a hardware event 1031 */ 1032static inline int is_software_event(struct perf_event *event) 1033{ 1034 return event->pmu->task_ctx_nr == perf_sw_context; 1035} 1036 1037extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1038 1039extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64); 1040 1041#ifndef perf_arch_fetch_caller_regs 1042static inline void 1043perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1044#endif 1045 1046/* 1047 * Take a snapshot of the regs. Skip ip and frame pointer to 1048 * the nth caller. We only need a few of the regs: 1049 * - ip for PERF_SAMPLE_IP 1050 * - cs for user_mode() tests 1051 * - bp for callchains 1052 * - eflags, for future purposes, just in case 1053 */ 1054static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1055{ 1056 memset(regs, 0, sizeof(*regs)); 1057 1058 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1059} 1060 1061static __always_inline void 1062perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr) 1063{ 1064 struct pt_regs hot_regs; 1065 1066 JUMP_LABEL(&perf_swevent_enabled[event_id], have_event); 1067 return; 1068 1069have_event: 1070 if (!regs) { 1071 perf_fetch_caller_regs(&hot_regs); 1072 regs = &hot_regs; 1073 } 1074 __perf_sw_event(event_id, nr, nmi, regs, addr); 1075} 1076 1077extern atomic_t perf_sched_events; 1078 1079static inline void perf_event_task_sched_in(struct task_struct *task) 1080{ 1081 COND_STMT(&perf_sched_events, __perf_event_task_sched_in(task)); 1082} 1083 1084static inline 1085void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next) 1086{ 1087 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0); 1088 1089 __perf_event_task_sched_out(task, next); 1090} 1091 1092extern void perf_event_mmap(struct vm_area_struct *vma); 1093extern struct perf_guest_info_callbacks *perf_guest_cbs; 1094extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1095extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1096 1097extern void perf_event_comm(struct task_struct *tsk); 1098extern void perf_event_fork(struct task_struct *tsk); 1099 1100/* Callchains */ 1101DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1102 1103extern void perf_callchain_user(struct perf_callchain_entry *entry, 1104 struct pt_regs *regs); 1105extern void perf_callchain_kernel(struct perf_callchain_entry *entry, 1106 struct pt_regs *regs); 1107 1108 1109static inline void 1110perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 1111{ 1112 if (entry->nr < PERF_MAX_STACK_DEPTH) 1113 entry->ip[entry->nr++] = ip; 1114} 1115 1116extern int sysctl_perf_event_paranoid; 1117extern int sysctl_perf_event_mlock; 1118extern int sysctl_perf_event_sample_rate; 1119 1120extern int perf_proc_update_handler(struct ctl_table *table, int write, 1121 void __user *buffer, size_t *lenp, 1122 loff_t *ppos); 1123 1124static inline bool perf_paranoid_tracepoint_raw(void) 1125{ 1126 return sysctl_perf_event_paranoid > -1; 1127} 1128 1129static inline bool perf_paranoid_cpu(void) 1130{ 1131 return sysctl_perf_event_paranoid > 0; 1132} 1133 1134static inline bool perf_paranoid_kernel(void) 1135{ 1136 return sysctl_perf_event_paranoid > 1; 1137} 1138 1139extern void perf_event_init(void); 1140extern void perf_tp_event(u64 addr, u64 count, void *record, 1141 int entry_size, struct pt_regs *regs, 1142 struct hlist_head *head, int rctx); 1143extern void perf_bp_event(struct perf_event *event, void *data); 1144 1145#ifndef perf_misc_flags 1146#define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \ 1147 PERF_RECORD_MISC_KERNEL) 1148#define perf_instruction_pointer(regs) instruction_pointer(regs) 1149#endif 1150 1151extern int perf_output_begin(struct perf_output_handle *handle, 1152 struct perf_event *event, unsigned int size, 1153 int nmi, int sample); 1154extern void perf_output_end(struct perf_output_handle *handle); 1155extern void perf_output_copy(struct perf_output_handle *handle, 1156 const void *buf, unsigned int len); 1157extern int perf_swevent_get_recursion_context(void); 1158extern void perf_swevent_put_recursion_context(int rctx); 1159extern void perf_event_enable(struct perf_event *event); 1160extern void perf_event_disable(struct perf_event *event); 1161extern void perf_event_task_tick(void); 1162#else 1163static inline void 1164perf_event_task_sched_in(struct task_struct *task) { } 1165static inline void 1166perf_event_task_sched_out(struct task_struct *task, 1167 struct task_struct *next) { } 1168static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1169static inline void perf_event_exit_task(struct task_struct *child) { } 1170static inline void perf_event_free_task(struct task_struct *task) { } 1171static inline void perf_event_delayed_put(struct task_struct *task) { } 1172static inline void perf_event_print_debug(void) { } 1173static inline int perf_event_task_disable(void) { return -EINVAL; } 1174static inline int perf_event_task_enable(void) { return -EINVAL; } 1175 1176static inline void 1177perf_sw_event(u32 event_id, u64 nr, int nmi, 1178 struct pt_regs *regs, u64 addr) { } 1179static inline void 1180perf_bp_event(struct perf_event *event, void *data) { } 1181 1182static inline int perf_register_guest_info_callbacks 1183(struct perf_guest_info_callbacks *callbacks) { return 0; } 1184static inline int perf_unregister_guest_info_callbacks 1185(struct perf_guest_info_callbacks *callbacks) { return 0; } 1186 1187static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1188static inline void perf_event_comm(struct task_struct *tsk) { } 1189static inline void perf_event_fork(struct task_struct *tsk) { } 1190static inline void perf_event_init(void) { } 1191static inline int perf_swevent_get_recursion_context(void) { return -1; } 1192static inline void perf_swevent_put_recursion_context(int rctx) { } 1193static inline void perf_event_enable(struct perf_event *event) { } 1194static inline void perf_event_disable(struct perf_event *event) { } 1195static inline void perf_event_task_tick(void) { } 1196#endif 1197 1198#define perf_output_put(handle, x) \ 1199 perf_output_copy((handle), &(x), sizeof(x)) 1200 1201/* 1202 * This has to have a higher priority than migration_notifier in sched.c. 1203 */ 1204#define perf_cpu_notifier(fn) \ 1205do { \ 1206 static struct notifier_block fn##_nb __cpuinitdata = \ 1207 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1208 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1209 (void *)(unsigned long)smp_processor_id()); \ 1210 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1211 (void *)(unsigned long)smp_processor_id()); \ 1212 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1213 (void *)(unsigned long)smp_processor_id()); \ 1214 register_cpu_notifier(&fn##_nb); \ 1215} while (0) 1216 1217#endif /* __KERNEL__ */ 1218#endif /* _LINUX_PERF_EVENT_H */