at v2.6.39 86 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/if.h> 29#include <linux/if_ether.h> 30#include <linux/if_packet.h> 31#include <linux/if_link.h> 32 33#ifdef __KERNEL__ 34#include <linux/pm_qos_params.h> 35#include <linux/timer.h> 36#include <linux/delay.h> 37#include <linux/mm.h> 38#include <asm/atomic.h> 39#include <asm/cache.h> 40#include <asm/byteorder.h> 41 42#include <linux/device.h> 43#include <linux/percpu.h> 44#include <linux/rculist.h> 45#include <linux/dmaengine.h> 46#include <linux/workqueue.h> 47 48#include <linux/ethtool.h> 49#include <net/net_namespace.h> 50#include <net/dsa.h> 51#ifdef CONFIG_DCB 52#include <net/dcbnl.h> 53#endif 54 55struct vlan_group; 56struct netpoll_info; 57struct phy_device; 58/* 802.11 specific */ 59struct wireless_dev; 60 /* source back-compat hooks */ 61#define SET_ETHTOOL_OPS(netdev,ops) \ 62 ( (netdev)->ethtool_ops = (ops) ) 63 64#define HAVE_ALLOC_NETDEV /* feature macro: alloc_xxxdev 65 functions are available. */ 66#define HAVE_FREE_NETDEV /* free_netdev() */ 67#define HAVE_NETDEV_PRIV /* netdev_priv() */ 68 69/* hardware address assignment types */ 70#define NET_ADDR_PERM 0 /* address is permanent (default) */ 71#define NET_ADDR_RANDOM 1 /* address is generated randomly */ 72#define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 73 74/* Backlog congestion levels */ 75#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 76#define NET_RX_DROP 1 /* packet dropped */ 77 78/* 79 * Transmit return codes: transmit return codes originate from three different 80 * namespaces: 81 * 82 * - qdisc return codes 83 * - driver transmit return codes 84 * - errno values 85 * 86 * Drivers are allowed to return any one of those in their hard_start_xmit() 87 * function. Real network devices commonly used with qdiscs should only return 88 * the driver transmit return codes though - when qdiscs are used, the actual 89 * transmission happens asynchronously, so the value is not propagated to 90 * higher layers. Virtual network devices transmit synchronously, in this case 91 * the driver transmit return codes are consumed by dev_queue_xmit(), all 92 * others are propagated to higher layers. 93 */ 94 95/* qdisc ->enqueue() return codes. */ 96#define NET_XMIT_SUCCESS 0x00 97#define NET_XMIT_DROP 0x01 /* skb dropped */ 98#define NET_XMIT_CN 0x02 /* congestion notification */ 99#define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 100#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108/* Driver transmit return codes */ 109#define NETDEV_TX_MASK 0xf0 110 111enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 116}; 117typedef enum netdev_tx netdev_tx_t; 118 119/* 120 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 121 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 122 */ 123static inline bool dev_xmit_complete(int rc) 124{ 125 /* 126 * Positive cases with an skb consumed by a driver: 127 * - successful transmission (rc == NETDEV_TX_OK) 128 * - error while transmitting (rc < 0) 129 * - error while queueing to a different device (rc & NET_XMIT_MASK) 130 */ 131 if (likely(rc < NET_XMIT_MASK)) 132 return true; 133 134 return false; 135} 136 137#endif 138 139#define MAX_ADDR_LEN 32 /* Largest hardware address length */ 140 141/* Initial net device group. All devices belong to group 0 by default. */ 142#define INIT_NETDEV_GROUP 0 143 144#ifdef __KERNEL__ 145/* 146 * Compute the worst case header length according to the protocols 147 * used. 148 */ 149 150#if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE) 151# if defined(CONFIG_MAC80211_MESH) 152# define LL_MAX_HEADER 128 153# else 154# define LL_MAX_HEADER 96 155# endif 156#elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE) 157# define LL_MAX_HEADER 48 158#else 159# define LL_MAX_HEADER 32 160#endif 161 162#if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \ 163 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \ 164 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \ 165 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE) 166#define MAX_HEADER LL_MAX_HEADER 167#else 168#define MAX_HEADER (LL_MAX_HEADER + 48) 169#endif 170 171/* 172 * Old network device statistics. Fields are native words 173 * (unsigned long) so they can be read and written atomically. 174 */ 175 176struct net_device_stats { 177 unsigned long rx_packets; 178 unsigned long tx_packets; 179 unsigned long rx_bytes; 180 unsigned long tx_bytes; 181 unsigned long rx_errors; 182 unsigned long tx_errors; 183 unsigned long rx_dropped; 184 unsigned long tx_dropped; 185 unsigned long multicast; 186 unsigned long collisions; 187 unsigned long rx_length_errors; 188 unsigned long rx_over_errors; 189 unsigned long rx_crc_errors; 190 unsigned long rx_frame_errors; 191 unsigned long rx_fifo_errors; 192 unsigned long rx_missed_errors; 193 unsigned long tx_aborted_errors; 194 unsigned long tx_carrier_errors; 195 unsigned long tx_fifo_errors; 196 unsigned long tx_heartbeat_errors; 197 unsigned long tx_window_errors; 198 unsigned long rx_compressed; 199 unsigned long tx_compressed; 200}; 201 202#endif /* __KERNEL__ */ 203 204 205/* Media selection options. */ 206enum { 207 IF_PORT_UNKNOWN = 0, 208 IF_PORT_10BASE2, 209 IF_PORT_10BASET, 210 IF_PORT_AUI, 211 IF_PORT_100BASET, 212 IF_PORT_100BASETX, 213 IF_PORT_100BASEFX 214}; 215 216#ifdef __KERNEL__ 217 218#include <linux/cache.h> 219#include <linux/skbuff.h> 220 221struct neighbour; 222struct neigh_parms; 223struct sk_buff; 224 225struct netdev_hw_addr { 226 struct list_head list; 227 unsigned char addr[MAX_ADDR_LEN]; 228 unsigned char type; 229#define NETDEV_HW_ADDR_T_LAN 1 230#define NETDEV_HW_ADDR_T_SAN 2 231#define NETDEV_HW_ADDR_T_SLAVE 3 232#define NETDEV_HW_ADDR_T_UNICAST 4 233#define NETDEV_HW_ADDR_T_MULTICAST 5 234 bool synced; 235 bool global_use; 236 int refcount; 237 struct rcu_head rcu_head; 238}; 239 240struct netdev_hw_addr_list { 241 struct list_head list; 242 int count; 243}; 244 245#define netdev_hw_addr_list_count(l) ((l)->count) 246#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 247#define netdev_hw_addr_list_for_each(ha, l) \ 248 list_for_each_entry(ha, &(l)->list, list) 249 250#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 251#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 252#define netdev_for_each_uc_addr(ha, dev) \ 253 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 254 255#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 256#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 257#define netdev_for_each_mc_addr(ha, dev) \ 258 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 259 260struct hh_cache { 261 struct hh_cache *hh_next; /* Next entry */ 262 atomic_t hh_refcnt; /* number of users */ 263/* 264 * We want hh_output, hh_len, hh_lock and hh_data be a in a separate 265 * cache line on SMP. 266 * They are mostly read, but hh_refcnt may be changed quite frequently, 267 * incurring cache line ping pongs. 268 */ 269 __be16 hh_type ____cacheline_aligned_in_smp; 270 /* protocol identifier, f.e ETH_P_IP 271 * NOTE: For VLANs, this will be the 272 * encapuslated type. --BLG 273 */ 274 u16 hh_len; /* length of header */ 275 int (*hh_output)(struct sk_buff *skb); 276 seqlock_t hh_lock; 277 278 /* cached hardware header; allow for machine alignment needs. */ 279#define HH_DATA_MOD 16 280#define HH_DATA_OFF(__len) \ 281 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 282#define HH_DATA_ALIGN(__len) \ 283 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 284 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 285}; 286 287static inline void hh_cache_put(struct hh_cache *hh) 288{ 289 if (atomic_dec_and_test(&hh->hh_refcnt)) 290 kfree(hh); 291} 292 293/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 294 * Alternative is: 295 * dev->hard_header_len ? (dev->hard_header_len + 296 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 297 * 298 * We could use other alignment values, but we must maintain the 299 * relationship HH alignment <= LL alignment. 300 * 301 * LL_ALLOCATED_SPACE also takes into account the tailroom the device 302 * may need. 303 */ 304#define LL_RESERVED_SPACE(dev) \ 305 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 306#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 307 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 308#define LL_ALLOCATED_SPACE(dev) \ 309 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 310 311struct header_ops { 312 int (*create) (struct sk_buff *skb, struct net_device *dev, 313 unsigned short type, const void *daddr, 314 const void *saddr, unsigned len); 315 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 316 int (*rebuild)(struct sk_buff *skb); 317#define HAVE_HEADER_CACHE 318 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh); 319 void (*cache_update)(struct hh_cache *hh, 320 const struct net_device *dev, 321 const unsigned char *haddr); 322}; 323 324/* These flag bits are private to the generic network queueing 325 * layer, they may not be explicitly referenced by any other 326 * code. 327 */ 328 329enum netdev_state_t { 330 __LINK_STATE_START, 331 __LINK_STATE_PRESENT, 332 __LINK_STATE_NOCARRIER, 333 __LINK_STATE_LINKWATCH_PENDING, 334 __LINK_STATE_DORMANT, 335}; 336 337 338/* 339 * This structure holds at boot time configured netdevice settings. They 340 * are then used in the device probing. 341 */ 342struct netdev_boot_setup { 343 char name[IFNAMSIZ]; 344 struct ifmap map; 345}; 346#define NETDEV_BOOT_SETUP_MAX 8 347 348extern int __init netdev_boot_setup(char *str); 349 350/* 351 * Structure for NAPI scheduling similar to tasklet but with weighting 352 */ 353struct napi_struct { 354 /* The poll_list must only be managed by the entity which 355 * changes the state of the NAPI_STATE_SCHED bit. This means 356 * whoever atomically sets that bit can add this napi_struct 357 * to the per-cpu poll_list, and whoever clears that bit 358 * can remove from the list right before clearing the bit. 359 */ 360 struct list_head poll_list; 361 362 unsigned long state; 363 int weight; 364 int (*poll)(struct napi_struct *, int); 365#ifdef CONFIG_NETPOLL 366 spinlock_t poll_lock; 367 int poll_owner; 368#endif 369 370 unsigned int gro_count; 371 372 struct net_device *dev; 373 struct list_head dev_list; 374 struct sk_buff *gro_list; 375 struct sk_buff *skb; 376}; 377 378enum { 379 NAPI_STATE_SCHED, /* Poll is scheduled */ 380 NAPI_STATE_DISABLE, /* Disable pending */ 381 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 382}; 383 384enum gro_result { 385 GRO_MERGED, 386 GRO_MERGED_FREE, 387 GRO_HELD, 388 GRO_NORMAL, 389 GRO_DROP, 390}; 391typedef enum gro_result gro_result_t; 392 393/* 394 * enum rx_handler_result - Possible return values for rx_handlers. 395 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 396 * further. 397 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 398 * case skb->dev was changed by rx_handler. 399 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 400 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 401 * 402 * rx_handlers are functions called from inside __netif_receive_skb(), to do 403 * special processing of the skb, prior to delivery to protocol handlers. 404 * 405 * Currently, a net_device can only have a single rx_handler registered. Trying 406 * to register a second rx_handler will return -EBUSY. 407 * 408 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 409 * To unregister a rx_handler on a net_device, use 410 * netdev_rx_handler_unregister(). 411 * 412 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 413 * do with the skb. 414 * 415 * If the rx_handler consumed to skb in some way, it should return 416 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 417 * the skb to be delivered in some other ways. 418 * 419 * If the rx_handler changed skb->dev, to divert the skb to another 420 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 421 * new device will be called if it exists. 422 * 423 * If the rx_handler consider the skb should be ignored, it should return 424 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 425 * are registred on exact device (ptype->dev == skb->dev). 426 * 427 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 428 * delivered, it should return RX_HANDLER_PASS. 429 * 430 * A device without a registered rx_handler will behave as if rx_handler 431 * returned RX_HANDLER_PASS. 432 */ 433 434enum rx_handler_result { 435 RX_HANDLER_CONSUMED, 436 RX_HANDLER_ANOTHER, 437 RX_HANDLER_EXACT, 438 RX_HANDLER_PASS, 439}; 440typedef enum rx_handler_result rx_handler_result_t; 441typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 442 443extern void __napi_schedule(struct napi_struct *n); 444 445static inline int napi_disable_pending(struct napi_struct *n) 446{ 447 return test_bit(NAPI_STATE_DISABLE, &n->state); 448} 449 450/** 451 * napi_schedule_prep - check if napi can be scheduled 452 * @n: napi context 453 * 454 * Test if NAPI routine is already running, and if not mark 455 * it as running. This is used as a condition variable 456 * insure only one NAPI poll instance runs. We also make 457 * sure there is no pending NAPI disable. 458 */ 459static inline int napi_schedule_prep(struct napi_struct *n) 460{ 461 return !napi_disable_pending(n) && 462 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 463} 464 465/** 466 * napi_schedule - schedule NAPI poll 467 * @n: napi context 468 * 469 * Schedule NAPI poll routine to be called if it is not already 470 * running. 471 */ 472static inline void napi_schedule(struct napi_struct *n) 473{ 474 if (napi_schedule_prep(n)) 475 __napi_schedule(n); 476} 477 478/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 479static inline int napi_reschedule(struct napi_struct *napi) 480{ 481 if (napi_schedule_prep(napi)) { 482 __napi_schedule(napi); 483 return 1; 484 } 485 return 0; 486} 487 488/** 489 * napi_complete - NAPI processing complete 490 * @n: napi context 491 * 492 * Mark NAPI processing as complete. 493 */ 494extern void __napi_complete(struct napi_struct *n); 495extern void napi_complete(struct napi_struct *n); 496 497/** 498 * napi_disable - prevent NAPI from scheduling 499 * @n: napi context 500 * 501 * Stop NAPI from being scheduled on this context. 502 * Waits till any outstanding processing completes. 503 */ 504static inline void napi_disable(struct napi_struct *n) 505{ 506 set_bit(NAPI_STATE_DISABLE, &n->state); 507 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 508 msleep(1); 509 clear_bit(NAPI_STATE_DISABLE, &n->state); 510} 511 512/** 513 * napi_enable - enable NAPI scheduling 514 * @n: napi context 515 * 516 * Resume NAPI from being scheduled on this context. 517 * Must be paired with napi_disable. 518 */ 519static inline void napi_enable(struct napi_struct *n) 520{ 521 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 522 smp_mb__before_clear_bit(); 523 clear_bit(NAPI_STATE_SCHED, &n->state); 524} 525 526#ifdef CONFIG_SMP 527/** 528 * napi_synchronize - wait until NAPI is not running 529 * @n: napi context 530 * 531 * Wait until NAPI is done being scheduled on this context. 532 * Waits till any outstanding processing completes but 533 * does not disable future activations. 534 */ 535static inline void napi_synchronize(const struct napi_struct *n) 536{ 537 while (test_bit(NAPI_STATE_SCHED, &n->state)) 538 msleep(1); 539} 540#else 541# define napi_synchronize(n) barrier() 542#endif 543 544enum netdev_queue_state_t { 545 __QUEUE_STATE_XOFF, 546 __QUEUE_STATE_FROZEN, 547#define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \ 548 (1 << __QUEUE_STATE_FROZEN)) 549}; 550 551struct netdev_queue { 552/* 553 * read mostly part 554 */ 555 struct net_device *dev; 556 struct Qdisc *qdisc; 557 unsigned long state; 558 struct Qdisc *qdisc_sleeping; 559#ifdef CONFIG_RPS 560 struct kobject kobj; 561#endif 562#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 563 int numa_node; 564#endif 565/* 566 * write mostly part 567 */ 568 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 569 int xmit_lock_owner; 570 /* 571 * please use this field instead of dev->trans_start 572 */ 573 unsigned long trans_start; 574} ____cacheline_aligned_in_smp; 575 576static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 577{ 578#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 579 return q->numa_node; 580#else 581 return NUMA_NO_NODE; 582#endif 583} 584 585static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 586{ 587#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 588 q->numa_node = node; 589#endif 590} 591 592#ifdef CONFIG_RPS 593/* 594 * This structure holds an RPS map which can be of variable length. The 595 * map is an array of CPUs. 596 */ 597struct rps_map { 598 unsigned int len; 599 struct rcu_head rcu; 600 u16 cpus[0]; 601}; 602#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16))) 603 604/* 605 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 606 * tail pointer for that CPU's input queue at the time of last enqueue, and 607 * a hardware filter index. 608 */ 609struct rps_dev_flow { 610 u16 cpu; 611 u16 filter; 612 unsigned int last_qtail; 613}; 614#define RPS_NO_FILTER 0xffff 615 616/* 617 * The rps_dev_flow_table structure contains a table of flow mappings. 618 */ 619struct rps_dev_flow_table { 620 unsigned int mask; 621 struct rcu_head rcu; 622 struct work_struct free_work; 623 struct rps_dev_flow flows[0]; 624}; 625#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 626 (_num * sizeof(struct rps_dev_flow))) 627 628/* 629 * The rps_sock_flow_table contains mappings of flows to the last CPU 630 * on which they were processed by the application (set in recvmsg). 631 */ 632struct rps_sock_flow_table { 633 unsigned int mask; 634 u16 ents[0]; 635}; 636#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 637 (_num * sizeof(u16))) 638 639#define RPS_NO_CPU 0xffff 640 641static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 642 u32 hash) 643{ 644 if (table && hash) { 645 unsigned int cpu, index = hash & table->mask; 646 647 /* We only give a hint, preemption can change cpu under us */ 648 cpu = raw_smp_processor_id(); 649 650 if (table->ents[index] != cpu) 651 table->ents[index] = cpu; 652 } 653} 654 655static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 656 u32 hash) 657{ 658 if (table && hash) 659 table->ents[hash & table->mask] = RPS_NO_CPU; 660} 661 662extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 663 664#ifdef CONFIG_RFS_ACCEL 665extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 666 u32 flow_id, u16 filter_id); 667#endif 668 669/* This structure contains an instance of an RX queue. */ 670struct netdev_rx_queue { 671 struct rps_map __rcu *rps_map; 672 struct rps_dev_flow_table __rcu *rps_flow_table; 673 struct kobject kobj; 674 struct net_device *dev; 675} ____cacheline_aligned_in_smp; 676#endif /* CONFIG_RPS */ 677 678#ifdef CONFIG_XPS 679/* 680 * This structure holds an XPS map which can be of variable length. The 681 * map is an array of queues. 682 */ 683struct xps_map { 684 unsigned int len; 685 unsigned int alloc_len; 686 struct rcu_head rcu; 687 u16 queues[0]; 688}; 689#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16))) 690#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 691 / sizeof(u16)) 692 693/* 694 * This structure holds all XPS maps for device. Maps are indexed by CPU. 695 */ 696struct xps_dev_maps { 697 struct rcu_head rcu; 698 struct xps_map __rcu *cpu_map[0]; 699}; 700#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 701 (nr_cpu_ids * sizeof(struct xps_map *))) 702#endif /* CONFIG_XPS */ 703 704#define TC_MAX_QUEUE 16 705#define TC_BITMASK 15 706/* HW offloaded queuing disciplines txq count and offset maps */ 707struct netdev_tc_txq { 708 u16 count; 709 u16 offset; 710}; 711 712/* 713 * This structure defines the management hooks for network devices. 714 * The following hooks can be defined; unless noted otherwise, they are 715 * optional and can be filled with a null pointer. 716 * 717 * int (*ndo_init)(struct net_device *dev); 718 * This function is called once when network device is registered. 719 * The network device can use this to any late stage initializaton 720 * or semantic validattion. It can fail with an error code which will 721 * be propogated back to register_netdev 722 * 723 * void (*ndo_uninit)(struct net_device *dev); 724 * This function is called when device is unregistered or when registration 725 * fails. It is not called if init fails. 726 * 727 * int (*ndo_open)(struct net_device *dev); 728 * This function is called when network device transistions to the up 729 * state. 730 * 731 * int (*ndo_stop)(struct net_device *dev); 732 * This function is called when network device transistions to the down 733 * state. 734 * 735 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 736 * struct net_device *dev); 737 * Called when a packet needs to be transmitted. 738 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 739 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 740 * Required can not be NULL. 741 * 742 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 743 * Called to decide which queue to when device supports multiple 744 * transmit queues. 745 * 746 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 747 * This function is called to allow device receiver to make 748 * changes to configuration when multicast or promiscious is enabled. 749 * 750 * void (*ndo_set_rx_mode)(struct net_device *dev); 751 * This function is called device changes address list filtering. 752 * 753 * void (*ndo_set_multicast_list)(struct net_device *dev); 754 * This function is called when the multicast address list changes. 755 * 756 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 757 * This function is called when the Media Access Control address 758 * needs to be changed. If this interface is not defined, the 759 * mac address can not be changed. 760 * 761 * int (*ndo_validate_addr)(struct net_device *dev); 762 * Test if Media Access Control address is valid for the device. 763 * 764 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 765 * Called when a user request an ioctl which can't be handled by 766 * the generic interface code. If not defined ioctl's return 767 * not supported error code. 768 * 769 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 770 * Used to set network devices bus interface parameters. This interface 771 * is retained for legacy reason, new devices should use the bus 772 * interface (PCI) for low level management. 773 * 774 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 775 * Called when a user wants to change the Maximum Transfer Unit 776 * of a device. If not defined, any request to change MTU will 777 * will return an error. 778 * 779 * void (*ndo_tx_timeout)(struct net_device *dev); 780 * Callback uses when the transmitter has not made any progress 781 * for dev->watchdog ticks. 782 * 783 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 784 * struct rtnl_link_stats64 *storage); 785 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 786 * Called when a user wants to get the network device usage 787 * statistics. Drivers must do one of the following: 788 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 789 * rtnl_link_stats64 structure passed by the caller. 790 * 2. Define @ndo_get_stats to update a net_device_stats structure 791 * (which should normally be dev->stats) and return a pointer to 792 * it. The structure may be changed asynchronously only if each 793 * field is written atomically. 794 * 3. Update dev->stats asynchronously and atomically, and define 795 * neither operation. 796 * 797 * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp); 798 * If device support VLAN receive acceleration 799 * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called 800 * when vlan groups for the device changes. Note: grp is NULL 801 * if no vlan's groups are being used. 802 * 803 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 804 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 805 * this function is called when a VLAN id is registered. 806 * 807 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 808 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 809 * this function is called when a VLAN id is unregistered. 810 * 811 * void (*ndo_poll_controller)(struct net_device *dev); 812 * 813 * SR-IOV management functions. 814 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 815 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 816 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 817 * int (*ndo_get_vf_config)(struct net_device *dev, 818 * int vf, struct ifla_vf_info *ivf); 819 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 820 * struct nlattr *port[]); 821 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 822 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 823 * Called to setup 'tc' number of traffic classes in the net device. This 824 * is always called from the stack with the rtnl lock held and netif tx 825 * queues stopped. This allows the netdevice to perform queue management 826 * safely. 827 * 828 * Fiber Channel over Ethernet (FCoE) offload functions. 829 * int (*ndo_fcoe_enable)(struct net_device *dev); 830 * Called when the FCoE protocol stack wants to start using LLD for FCoE 831 * so the underlying device can perform whatever needed configuration or 832 * initialization to support acceleration of FCoE traffic. 833 * 834 * int (*ndo_fcoe_disable)(struct net_device *dev); 835 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 836 * so the underlying device can perform whatever needed clean-ups to 837 * stop supporting acceleration of FCoE traffic. 838 * 839 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 840 * struct scatterlist *sgl, unsigned int sgc); 841 * Called when the FCoE Initiator wants to initialize an I/O that 842 * is a possible candidate for Direct Data Placement (DDP). The LLD can 843 * perform necessary setup and returns 1 to indicate the device is set up 844 * successfully to perform DDP on this I/O, otherwise this returns 0. 845 * 846 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 847 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 848 * indicated by the FC exchange id 'xid', so the underlying device can 849 * clean up and reuse resources for later DDP requests. 850 * 851 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 852 * struct scatterlist *sgl, unsigned int sgc); 853 * Called when the FCoE Target wants to initialize an I/O that 854 * is a possible candidate for Direct Data Placement (DDP). The LLD can 855 * perform necessary setup and returns 1 to indicate the device is set up 856 * successfully to perform DDP on this I/O, otherwise this returns 0. 857 * 858 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 859 * Called when the underlying device wants to override default World Wide 860 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 861 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 862 * protocol stack to use. 863 * 864 * RFS acceleration. 865 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 866 * u16 rxq_index, u32 flow_id); 867 * Set hardware filter for RFS. rxq_index is the target queue index; 868 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 869 * Return the filter ID on success, or a negative error code. 870 * 871 * Slave management functions (for bridge, bonding, etc). User should 872 * call netdev_set_master() to set dev->master properly. 873 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 874 * Called to make another netdev an underling. 875 * 876 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 877 * Called to release previously enslaved netdev. 878 * 879 * Feature/offload setting functions. 880 * u32 (*ndo_fix_features)(struct net_device *dev, u32 features); 881 * Adjusts the requested feature flags according to device-specific 882 * constraints, and returns the resulting flags. Must not modify 883 * the device state. 884 * 885 * int (*ndo_set_features)(struct net_device *dev, u32 features); 886 * Called to update device configuration to new features. Passed 887 * feature set might be less than what was returned by ndo_fix_features()). 888 * Must return >0 or -errno if it changed dev->features itself. 889 * 890 */ 891#define HAVE_NET_DEVICE_OPS 892struct net_device_ops { 893 int (*ndo_init)(struct net_device *dev); 894 void (*ndo_uninit)(struct net_device *dev); 895 int (*ndo_open)(struct net_device *dev); 896 int (*ndo_stop)(struct net_device *dev); 897 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 898 struct net_device *dev); 899 u16 (*ndo_select_queue)(struct net_device *dev, 900 struct sk_buff *skb); 901 void (*ndo_change_rx_flags)(struct net_device *dev, 902 int flags); 903 void (*ndo_set_rx_mode)(struct net_device *dev); 904 void (*ndo_set_multicast_list)(struct net_device *dev); 905 int (*ndo_set_mac_address)(struct net_device *dev, 906 void *addr); 907 int (*ndo_validate_addr)(struct net_device *dev); 908 int (*ndo_do_ioctl)(struct net_device *dev, 909 struct ifreq *ifr, int cmd); 910 int (*ndo_set_config)(struct net_device *dev, 911 struct ifmap *map); 912 int (*ndo_change_mtu)(struct net_device *dev, 913 int new_mtu); 914 int (*ndo_neigh_setup)(struct net_device *dev, 915 struct neigh_parms *); 916 void (*ndo_tx_timeout) (struct net_device *dev); 917 918 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 919 struct rtnl_link_stats64 *storage); 920 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 921 922 void (*ndo_vlan_rx_register)(struct net_device *dev, 923 struct vlan_group *grp); 924 void (*ndo_vlan_rx_add_vid)(struct net_device *dev, 925 unsigned short vid); 926 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 927 unsigned short vid); 928#ifdef CONFIG_NET_POLL_CONTROLLER 929 void (*ndo_poll_controller)(struct net_device *dev); 930 int (*ndo_netpoll_setup)(struct net_device *dev, 931 struct netpoll_info *info); 932 void (*ndo_netpoll_cleanup)(struct net_device *dev); 933#endif 934 int (*ndo_set_vf_mac)(struct net_device *dev, 935 int queue, u8 *mac); 936 int (*ndo_set_vf_vlan)(struct net_device *dev, 937 int queue, u16 vlan, u8 qos); 938 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 939 int vf, int rate); 940 int (*ndo_get_vf_config)(struct net_device *dev, 941 int vf, 942 struct ifla_vf_info *ivf); 943 int (*ndo_set_vf_port)(struct net_device *dev, 944 int vf, 945 struct nlattr *port[]); 946 int (*ndo_get_vf_port)(struct net_device *dev, 947 int vf, struct sk_buff *skb); 948 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 949#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 950 int (*ndo_fcoe_enable)(struct net_device *dev); 951 int (*ndo_fcoe_disable)(struct net_device *dev); 952 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 953 u16 xid, 954 struct scatterlist *sgl, 955 unsigned int sgc); 956 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 957 u16 xid); 958 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 959 u16 xid, 960 struct scatterlist *sgl, 961 unsigned int sgc); 962#define NETDEV_FCOE_WWNN 0 963#define NETDEV_FCOE_WWPN 1 964 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 965 u64 *wwn, int type); 966#endif 967#ifdef CONFIG_RFS_ACCEL 968 int (*ndo_rx_flow_steer)(struct net_device *dev, 969 const struct sk_buff *skb, 970 u16 rxq_index, 971 u32 flow_id); 972#endif 973 int (*ndo_add_slave)(struct net_device *dev, 974 struct net_device *slave_dev); 975 int (*ndo_del_slave)(struct net_device *dev, 976 struct net_device *slave_dev); 977 u32 (*ndo_fix_features)(struct net_device *dev, 978 u32 features); 979 int (*ndo_set_features)(struct net_device *dev, 980 u32 features); 981}; 982 983/* 984 * The DEVICE structure. 985 * Actually, this whole structure is a big mistake. It mixes I/O 986 * data with strictly "high-level" data, and it has to know about 987 * almost every data structure used in the INET module. 988 * 989 * FIXME: cleanup struct net_device such that network protocol info 990 * moves out. 991 */ 992 993struct net_device { 994 995 /* 996 * This is the first field of the "visible" part of this structure 997 * (i.e. as seen by users in the "Space.c" file). It is the name 998 * of the interface. 999 */ 1000 char name[IFNAMSIZ]; 1001 1002 struct pm_qos_request_list pm_qos_req; 1003 1004 /* device name hash chain */ 1005 struct hlist_node name_hlist; 1006 /* snmp alias */ 1007 char *ifalias; 1008 1009 /* 1010 * I/O specific fields 1011 * FIXME: Merge these and struct ifmap into one 1012 */ 1013 unsigned long mem_end; /* shared mem end */ 1014 unsigned long mem_start; /* shared mem start */ 1015 unsigned long base_addr; /* device I/O address */ 1016 unsigned int irq; /* device IRQ number */ 1017 1018 /* 1019 * Some hardware also needs these fields, but they are not 1020 * part of the usual set specified in Space.c. 1021 */ 1022 1023 unsigned char if_port; /* Selectable AUI, TP,..*/ 1024 unsigned char dma; /* DMA channel */ 1025 1026 unsigned long state; 1027 1028 struct list_head dev_list; 1029 struct list_head napi_list; 1030 struct list_head unreg_list; 1031 1032 /* currently active device features */ 1033 u32 features; 1034 /* user-changeable features */ 1035 u32 hw_features; 1036 /* user-requested features */ 1037 u32 wanted_features; 1038 /* VLAN feature mask */ 1039 u32 vlan_features; 1040 1041 /* Net device feature bits; if you change something, 1042 * also update netdev_features_strings[] in ethtool.c */ 1043 1044#define NETIF_F_SG 1 /* Scatter/gather IO. */ 1045#define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */ 1046#define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */ 1047#define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */ 1048#define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */ 1049#define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */ 1050#define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */ 1051#define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */ 1052#define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */ 1053#define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */ 1054#define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */ 1055#define NETIF_F_GSO 2048 /* Enable software GSO. */ 1056#define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */ 1057 /* do not use LLTX in new drivers */ 1058#define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */ 1059#define NETIF_F_GRO 16384 /* Generic receive offload */ 1060#define NETIF_F_LRO 32768 /* large receive offload */ 1061 1062/* the GSO_MASK reserves bits 16 through 23 */ 1063#define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */ 1064#define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */ 1065#define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/ 1066#define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */ 1067#define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */ 1068#define NETIF_F_RXCSUM (1 << 29) /* Receive checksumming offload */ 1069 1070 /* Segmentation offload features */ 1071#define NETIF_F_GSO_SHIFT 16 1072#define NETIF_F_GSO_MASK 0x00ff0000 1073#define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT) 1074#define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT) 1075#define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT) 1076#define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT) 1077#define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT) 1078#define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT) 1079 1080 /* Features valid for ethtool to change */ 1081 /* = all defined minus driver/device-class-related */ 1082#define NETIF_F_NEVER_CHANGE (NETIF_F_HIGHDMA | NETIF_F_VLAN_CHALLENGED | \ 1083 NETIF_F_LLTX | NETIF_F_NETNS_LOCAL) 1084#define NETIF_F_ETHTOOL_BITS (0x3f3fffff & ~NETIF_F_NEVER_CHANGE) 1085 1086 /* List of features with software fallbacks. */ 1087#define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \ 1088 NETIF_F_TSO6 | NETIF_F_UFO) 1089 1090 1091#define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM) 1092#define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM) 1093#define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM) 1094#define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM) 1095 1096#define NETIF_F_ALL_TSO (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1097 1098#define NETIF_F_ALL_TX_OFFLOADS (NETIF_F_ALL_CSUM | NETIF_F_SG | \ 1099 NETIF_F_FRAGLIST | NETIF_F_ALL_TSO | \ 1100 NETIF_F_SCTP_CSUM | NETIF_F_FCOE_CRC) 1101 1102 /* 1103 * If one device supports one of these features, then enable them 1104 * for all in netdev_increment_features. 1105 */ 1106#define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \ 1107 NETIF_F_SG | NETIF_F_HIGHDMA | \ 1108 NETIF_F_FRAGLIST) 1109 1110 /* changeable features with no special hardware requirements */ 1111#define NETIF_F_SOFT_FEATURES (NETIF_F_GSO | NETIF_F_GRO) 1112 1113 /* Interface index. Unique device identifier */ 1114 int ifindex; 1115 int iflink; 1116 1117 struct net_device_stats stats; 1118 atomic_long_t rx_dropped; /* dropped packets by core network 1119 * Do not use this in drivers. 1120 */ 1121 1122#ifdef CONFIG_WIRELESS_EXT 1123 /* List of functions to handle Wireless Extensions (instead of ioctl). 1124 * See <net/iw_handler.h> for details. Jean II */ 1125 const struct iw_handler_def * wireless_handlers; 1126 /* Instance data managed by the core of Wireless Extensions. */ 1127 struct iw_public_data * wireless_data; 1128#endif 1129 /* Management operations */ 1130 const struct net_device_ops *netdev_ops; 1131 const struct ethtool_ops *ethtool_ops; 1132 1133 /* Hardware header description */ 1134 const struct header_ops *header_ops; 1135 1136 unsigned int flags; /* interface flags (a la BSD) */ 1137 unsigned short gflags; 1138 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */ 1139 unsigned short padded; /* How much padding added by alloc_netdev() */ 1140 1141 unsigned char operstate; /* RFC2863 operstate */ 1142 unsigned char link_mode; /* mapping policy to operstate */ 1143 1144 unsigned int mtu; /* interface MTU value */ 1145 unsigned short type; /* interface hardware type */ 1146 unsigned short hard_header_len; /* hardware hdr length */ 1147 1148 /* extra head- and tailroom the hardware may need, but not in all cases 1149 * can this be guaranteed, especially tailroom. Some cases also use 1150 * LL_MAX_HEADER instead to allocate the skb. 1151 */ 1152 unsigned short needed_headroom; 1153 unsigned short needed_tailroom; 1154 1155 /* Interface address info. */ 1156 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1157 unsigned char addr_assign_type; /* hw address assignment type */ 1158 unsigned char addr_len; /* hardware address length */ 1159 unsigned short dev_id; /* for shared network cards */ 1160 1161 spinlock_t addr_list_lock; 1162 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1163 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1164 int uc_promisc; 1165 unsigned int promiscuity; 1166 unsigned int allmulti; 1167 1168 1169 /* Protocol specific pointers */ 1170 1171#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 1172 struct vlan_group __rcu *vlgrp; /* VLAN group */ 1173#endif 1174#ifdef CONFIG_NET_DSA 1175 void *dsa_ptr; /* dsa specific data */ 1176#endif 1177 void *atalk_ptr; /* AppleTalk link */ 1178 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1179 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1180 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1181 void *ec_ptr; /* Econet specific data */ 1182 void *ax25_ptr; /* AX.25 specific data */ 1183 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1184 assign before registering */ 1185 1186/* 1187 * Cache lines mostly used on receive path (including eth_type_trans()) 1188 */ 1189 unsigned long last_rx; /* Time of last Rx 1190 * This should not be set in 1191 * drivers, unless really needed, 1192 * because network stack (bonding) 1193 * use it if/when necessary, to 1194 * avoid dirtying this cache line. 1195 */ 1196 1197 struct net_device *master; /* Pointer to master device of a group, 1198 * which this device is member of. 1199 */ 1200 1201 /* Interface address info used in eth_type_trans() */ 1202 unsigned char *dev_addr; /* hw address, (before bcast 1203 because most packets are 1204 unicast) */ 1205 1206 struct netdev_hw_addr_list dev_addrs; /* list of device 1207 hw addresses */ 1208 1209 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1210 1211#ifdef CONFIG_RPS 1212 struct kset *queues_kset; 1213 1214 struct netdev_rx_queue *_rx; 1215 1216 /* Number of RX queues allocated at register_netdev() time */ 1217 unsigned int num_rx_queues; 1218 1219 /* Number of RX queues currently active in device */ 1220 unsigned int real_num_rx_queues; 1221 1222#ifdef CONFIG_RFS_ACCEL 1223 /* CPU reverse-mapping for RX completion interrupts, indexed 1224 * by RX queue number. Assigned by driver. This must only be 1225 * set if the ndo_rx_flow_steer operation is defined. */ 1226 struct cpu_rmap *rx_cpu_rmap; 1227#endif 1228#endif 1229 1230 rx_handler_func_t __rcu *rx_handler; 1231 void __rcu *rx_handler_data; 1232 1233 struct netdev_queue __rcu *ingress_queue; 1234 1235/* 1236 * Cache lines mostly used on transmit path 1237 */ 1238 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1239 1240 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1241 unsigned int num_tx_queues; 1242 1243 /* Number of TX queues currently active in device */ 1244 unsigned int real_num_tx_queues; 1245 1246 /* root qdisc from userspace point of view */ 1247 struct Qdisc *qdisc; 1248 1249 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1250 spinlock_t tx_global_lock; 1251 1252#ifdef CONFIG_XPS 1253 struct xps_dev_maps __rcu *xps_maps; 1254#endif 1255 1256 /* These may be needed for future network-power-down code. */ 1257 1258 /* 1259 * trans_start here is expensive for high speed devices on SMP, 1260 * please use netdev_queue->trans_start instead. 1261 */ 1262 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1263 1264 int watchdog_timeo; /* used by dev_watchdog() */ 1265 struct timer_list watchdog_timer; 1266 1267 /* Number of references to this device */ 1268 int __percpu *pcpu_refcnt; 1269 1270 /* delayed register/unregister */ 1271 struct list_head todo_list; 1272 /* device index hash chain */ 1273 struct hlist_node index_hlist; 1274 1275 struct list_head link_watch_list; 1276 1277 /* register/unregister state machine */ 1278 enum { NETREG_UNINITIALIZED=0, 1279 NETREG_REGISTERED, /* completed register_netdevice */ 1280 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1281 NETREG_UNREGISTERED, /* completed unregister todo */ 1282 NETREG_RELEASED, /* called free_netdev */ 1283 NETREG_DUMMY, /* dummy device for NAPI poll */ 1284 } reg_state:16; 1285 1286 enum { 1287 RTNL_LINK_INITIALIZED, 1288 RTNL_LINK_INITIALIZING, 1289 } rtnl_link_state:16; 1290 1291 /* Called from unregister, can be used to call free_netdev */ 1292 void (*destructor)(struct net_device *dev); 1293 1294#ifdef CONFIG_NETPOLL 1295 struct netpoll_info *npinfo; 1296#endif 1297 1298#ifdef CONFIG_NET_NS 1299 /* Network namespace this network device is inside */ 1300 struct net *nd_net; 1301#endif 1302 1303 /* mid-layer private */ 1304 union { 1305 void *ml_priv; 1306 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1307 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1308 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1309 }; 1310 /* GARP */ 1311 struct garp_port __rcu *garp_port; 1312 1313 /* class/net/name entry */ 1314 struct device dev; 1315 /* space for optional device, statistics, and wireless sysfs groups */ 1316 const struct attribute_group *sysfs_groups[4]; 1317 1318 /* rtnetlink link ops */ 1319 const struct rtnl_link_ops *rtnl_link_ops; 1320 1321 /* for setting kernel sock attribute on TCP connection setup */ 1322#define GSO_MAX_SIZE 65536 1323 unsigned int gso_max_size; 1324 1325#ifdef CONFIG_DCB 1326 /* Data Center Bridging netlink ops */ 1327 const struct dcbnl_rtnl_ops *dcbnl_ops; 1328#endif 1329 u8 num_tc; 1330 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1331 u8 prio_tc_map[TC_BITMASK + 1]; 1332 1333#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 1334 /* max exchange id for FCoE LRO by ddp */ 1335 unsigned int fcoe_ddp_xid; 1336#endif 1337 /* n-tuple filter list attached to this device */ 1338 struct ethtool_rx_ntuple_list ethtool_ntuple_list; 1339 1340 /* phy device may attach itself for hardware timestamping */ 1341 struct phy_device *phydev; 1342 1343 /* group the device belongs to */ 1344 int group; 1345}; 1346#define to_net_dev(d) container_of(d, struct net_device, dev) 1347 1348#define NETDEV_ALIGN 32 1349 1350static inline 1351int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1352{ 1353 return dev->prio_tc_map[prio & TC_BITMASK]; 1354} 1355 1356static inline 1357int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1358{ 1359 if (tc >= dev->num_tc) 1360 return -EINVAL; 1361 1362 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1363 return 0; 1364} 1365 1366static inline 1367void netdev_reset_tc(struct net_device *dev) 1368{ 1369 dev->num_tc = 0; 1370 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1371 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1372} 1373 1374static inline 1375int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1376{ 1377 if (tc >= dev->num_tc) 1378 return -EINVAL; 1379 1380 dev->tc_to_txq[tc].count = count; 1381 dev->tc_to_txq[tc].offset = offset; 1382 return 0; 1383} 1384 1385static inline 1386int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1387{ 1388 if (num_tc > TC_MAX_QUEUE) 1389 return -EINVAL; 1390 1391 dev->num_tc = num_tc; 1392 return 0; 1393} 1394 1395static inline 1396int netdev_get_num_tc(struct net_device *dev) 1397{ 1398 return dev->num_tc; 1399} 1400 1401static inline 1402struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1403 unsigned int index) 1404{ 1405 return &dev->_tx[index]; 1406} 1407 1408static inline void netdev_for_each_tx_queue(struct net_device *dev, 1409 void (*f)(struct net_device *, 1410 struct netdev_queue *, 1411 void *), 1412 void *arg) 1413{ 1414 unsigned int i; 1415 1416 for (i = 0; i < dev->num_tx_queues; i++) 1417 f(dev, &dev->_tx[i], arg); 1418} 1419 1420/* 1421 * Net namespace inlines 1422 */ 1423static inline 1424struct net *dev_net(const struct net_device *dev) 1425{ 1426 return read_pnet(&dev->nd_net); 1427} 1428 1429static inline 1430void dev_net_set(struct net_device *dev, struct net *net) 1431{ 1432#ifdef CONFIG_NET_NS 1433 release_net(dev->nd_net); 1434 dev->nd_net = hold_net(net); 1435#endif 1436} 1437 1438static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1439{ 1440#ifdef CONFIG_NET_DSA_TAG_DSA 1441 if (dev->dsa_ptr != NULL) 1442 return dsa_uses_dsa_tags(dev->dsa_ptr); 1443#endif 1444 1445 return 0; 1446} 1447 1448#ifndef CONFIG_NET_NS 1449static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1450{ 1451 skb->dev = dev; 1452} 1453#else /* CONFIG_NET_NS */ 1454void skb_set_dev(struct sk_buff *skb, struct net_device *dev); 1455#endif 1456 1457static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1458{ 1459#ifdef CONFIG_NET_DSA_TAG_TRAILER 1460 if (dev->dsa_ptr != NULL) 1461 return dsa_uses_trailer_tags(dev->dsa_ptr); 1462#endif 1463 1464 return 0; 1465} 1466 1467/** 1468 * netdev_priv - access network device private data 1469 * @dev: network device 1470 * 1471 * Get network device private data 1472 */ 1473static inline void *netdev_priv(const struct net_device *dev) 1474{ 1475 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1476} 1477 1478/* Set the sysfs physical device reference for the network logical device 1479 * if set prior to registration will cause a symlink during initialization. 1480 */ 1481#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1482 1483/* Set the sysfs device type for the network logical device to allow 1484 * fin grained indentification of different network device types. For 1485 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1486 */ 1487#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1488 1489/** 1490 * netif_napi_add - initialize a napi context 1491 * @dev: network device 1492 * @napi: napi context 1493 * @poll: polling function 1494 * @weight: default weight 1495 * 1496 * netif_napi_add() must be used to initialize a napi context prior to calling 1497 * *any* of the other napi related functions. 1498 */ 1499void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1500 int (*poll)(struct napi_struct *, int), int weight); 1501 1502/** 1503 * netif_napi_del - remove a napi context 1504 * @napi: napi context 1505 * 1506 * netif_napi_del() removes a napi context from the network device napi list 1507 */ 1508void netif_napi_del(struct napi_struct *napi); 1509 1510struct napi_gro_cb { 1511 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1512 void *frag0; 1513 1514 /* Length of frag0. */ 1515 unsigned int frag0_len; 1516 1517 /* This indicates where we are processing relative to skb->data. */ 1518 int data_offset; 1519 1520 /* This is non-zero if the packet may be of the same flow. */ 1521 int same_flow; 1522 1523 /* This is non-zero if the packet cannot be merged with the new skb. */ 1524 int flush; 1525 1526 /* Number of segments aggregated. */ 1527 int count; 1528 1529 /* Free the skb? */ 1530 int free; 1531}; 1532 1533#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1534 1535struct packet_type { 1536 __be16 type; /* This is really htons(ether_type). */ 1537 struct net_device *dev; /* NULL is wildcarded here */ 1538 int (*func) (struct sk_buff *, 1539 struct net_device *, 1540 struct packet_type *, 1541 struct net_device *); 1542 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1543 u32 features); 1544 int (*gso_send_check)(struct sk_buff *skb); 1545 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1546 struct sk_buff *skb); 1547 int (*gro_complete)(struct sk_buff *skb); 1548 void *af_packet_priv; 1549 struct list_head list; 1550}; 1551 1552#include <linux/interrupt.h> 1553#include <linux/notifier.h> 1554 1555extern rwlock_t dev_base_lock; /* Device list lock */ 1556 1557 1558#define for_each_netdev(net, d) \ 1559 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1560#define for_each_netdev_reverse(net, d) \ 1561 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1562#define for_each_netdev_rcu(net, d) \ 1563 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1564#define for_each_netdev_safe(net, d, n) \ 1565 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1566#define for_each_netdev_continue(net, d) \ 1567 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1568#define for_each_netdev_continue_rcu(net, d) \ 1569 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1570#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1571 1572static inline struct net_device *next_net_device(struct net_device *dev) 1573{ 1574 struct list_head *lh; 1575 struct net *net; 1576 1577 net = dev_net(dev); 1578 lh = dev->dev_list.next; 1579 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1580} 1581 1582static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1583{ 1584 struct list_head *lh; 1585 struct net *net; 1586 1587 net = dev_net(dev); 1588 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1589 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1590} 1591 1592static inline struct net_device *first_net_device(struct net *net) 1593{ 1594 return list_empty(&net->dev_base_head) ? NULL : 1595 net_device_entry(net->dev_base_head.next); 1596} 1597 1598static inline struct net_device *first_net_device_rcu(struct net *net) 1599{ 1600 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1601 1602 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1603} 1604 1605extern int netdev_boot_setup_check(struct net_device *dev); 1606extern unsigned long netdev_boot_base(const char *prefix, int unit); 1607extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1608 const char *hwaddr); 1609extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1610extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1611extern void dev_add_pack(struct packet_type *pt); 1612extern void dev_remove_pack(struct packet_type *pt); 1613extern void __dev_remove_pack(struct packet_type *pt); 1614 1615extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1616 unsigned short mask); 1617extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1618extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1619extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1620extern int dev_alloc_name(struct net_device *dev, const char *name); 1621extern int dev_open(struct net_device *dev); 1622extern int dev_close(struct net_device *dev); 1623extern void dev_disable_lro(struct net_device *dev); 1624extern int dev_queue_xmit(struct sk_buff *skb); 1625extern int register_netdevice(struct net_device *dev); 1626extern void unregister_netdevice_queue(struct net_device *dev, 1627 struct list_head *head); 1628extern void unregister_netdevice_many(struct list_head *head); 1629static inline void unregister_netdevice(struct net_device *dev) 1630{ 1631 unregister_netdevice_queue(dev, NULL); 1632} 1633 1634extern int netdev_refcnt_read(const struct net_device *dev); 1635extern void free_netdev(struct net_device *dev); 1636extern void synchronize_net(void); 1637extern int register_netdevice_notifier(struct notifier_block *nb); 1638extern int unregister_netdevice_notifier(struct notifier_block *nb); 1639extern int init_dummy_netdev(struct net_device *dev); 1640extern void netdev_resync_ops(struct net_device *dev); 1641 1642extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1643extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1644extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1645extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1646extern int dev_restart(struct net_device *dev); 1647#ifdef CONFIG_NETPOLL_TRAP 1648extern int netpoll_trap(void); 1649#endif 1650extern int skb_gro_receive(struct sk_buff **head, 1651 struct sk_buff *skb); 1652extern void skb_gro_reset_offset(struct sk_buff *skb); 1653 1654static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1655{ 1656 return NAPI_GRO_CB(skb)->data_offset; 1657} 1658 1659static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1660{ 1661 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1662} 1663 1664static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1665{ 1666 NAPI_GRO_CB(skb)->data_offset += len; 1667} 1668 1669static inline void *skb_gro_header_fast(struct sk_buff *skb, 1670 unsigned int offset) 1671{ 1672 return NAPI_GRO_CB(skb)->frag0 + offset; 1673} 1674 1675static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1676{ 1677 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1678} 1679 1680static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1681 unsigned int offset) 1682{ 1683 NAPI_GRO_CB(skb)->frag0 = NULL; 1684 NAPI_GRO_CB(skb)->frag0_len = 0; 1685 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL; 1686} 1687 1688static inline void *skb_gro_mac_header(struct sk_buff *skb) 1689{ 1690 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1691} 1692 1693static inline void *skb_gro_network_header(struct sk_buff *skb) 1694{ 1695 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1696 skb_network_offset(skb); 1697} 1698 1699static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1700 unsigned short type, 1701 const void *daddr, const void *saddr, 1702 unsigned len) 1703{ 1704 if (!dev->header_ops || !dev->header_ops->create) 1705 return 0; 1706 1707 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1708} 1709 1710static inline int dev_parse_header(const struct sk_buff *skb, 1711 unsigned char *haddr) 1712{ 1713 const struct net_device *dev = skb->dev; 1714 1715 if (!dev->header_ops || !dev->header_ops->parse) 1716 return 0; 1717 return dev->header_ops->parse(skb, haddr); 1718} 1719 1720typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1721extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1722static inline int unregister_gifconf(unsigned int family) 1723{ 1724 return register_gifconf(family, NULL); 1725} 1726 1727/* 1728 * Incoming packets are placed on per-cpu queues 1729 */ 1730struct softnet_data { 1731 struct Qdisc *output_queue; 1732 struct Qdisc **output_queue_tailp; 1733 struct list_head poll_list; 1734 struct sk_buff *completion_queue; 1735 struct sk_buff_head process_queue; 1736 1737 /* stats */ 1738 unsigned int processed; 1739 unsigned int time_squeeze; 1740 unsigned int cpu_collision; 1741 unsigned int received_rps; 1742 1743#ifdef CONFIG_RPS 1744 struct softnet_data *rps_ipi_list; 1745 1746 /* Elements below can be accessed between CPUs for RPS */ 1747 struct call_single_data csd ____cacheline_aligned_in_smp; 1748 struct softnet_data *rps_ipi_next; 1749 unsigned int cpu; 1750 unsigned int input_queue_head; 1751 unsigned int input_queue_tail; 1752#endif 1753 unsigned dropped; 1754 struct sk_buff_head input_pkt_queue; 1755 struct napi_struct backlog; 1756}; 1757 1758static inline void input_queue_head_incr(struct softnet_data *sd) 1759{ 1760#ifdef CONFIG_RPS 1761 sd->input_queue_head++; 1762#endif 1763} 1764 1765static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1766 unsigned int *qtail) 1767{ 1768#ifdef CONFIG_RPS 1769 *qtail = ++sd->input_queue_tail; 1770#endif 1771} 1772 1773DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1774 1775#define HAVE_NETIF_QUEUE 1776 1777extern void __netif_schedule(struct Qdisc *q); 1778 1779static inline void netif_schedule_queue(struct netdev_queue *txq) 1780{ 1781 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state)) 1782 __netif_schedule(txq->qdisc); 1783} 1784 1785static inline void netif_tx_schedule_all(struct net_device *dev) 1786{ 1787 unsigned int i; 1788 1789 for (i = 0; i < dev->num_tx_queues; i++) 1790 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1791} 1792 1793static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1794{ 1795 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1796} 1797 1798/** 1799 * netif_start_queue - allow transmit 1800 * @dev: network device 1801 * 1802 * Allow upper layers to call the device hard_start_xmit routine. 1803 */ 1804static inline void netif_start_queue(struct net_device *dev) 1805{ 1806 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1807} 1808 1809static inline void netif_tx_start_all_queues(struct net_device *dev) 1810{ 1811 unsigned int i; 1812 1813 for (i = 0; i < dev->num_tx_queues; i++) { 1814 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1815 netif_tx_start_queue(txq); 1816 } 1817} 1818 1819static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1820{ 1821#ifdef CONFIG_NETPOLL_TRAP 1822 if (netpoll_trap()) { 1823 netif_tx_start_queue(dev_queue); 1824 return; 1825 } 1826#endif 1827 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state)) 1828 __netif_schedule(dev_queue->qdisc); 1829} 1830 1831/** 1832 * netif_wake_queue - restart transmit 1833 * @dev: network device 1834 * 1835 * Allow upper layers to call the device hard_start_xmit routine. 1836 * Used for flow control when transmit resources are available. 1837 */ 1838static inline void netif_wake_queue(struct net_device *dev) 1839{ 1840 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1841} 1842 1843static inline void netif_tx_wake_all_queues(struct net_device *dev) 1844{ 1845 unsigned int i; 1846 1847 for (i = 0; i < dev->num_tx_queues; i++) { 1848 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1849 netif_tx_wake_queue(txq); 1850 } 1851} 1852 1853static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1854{ 1855 if (WARN_ON(!dev_queue)) { 1856 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 1857 return; 1858 } 1859 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1860} 1861 1862/** 1863 * netif_stop_queue - stop transmitted packets 1864 * @dev: network device 1865 * 1866 * Stop upper layers calling the device hard_start_xmit routine. 1867 * Used for flow control when transmit resources are unavailable. 1868 */ 1869static inline void netif_stop_queue(struct net_device *dev) 1870{ 1871 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1872} 1873 1874static inline void netif_tx_stop_all_queues(struct net_device *dev) 1875{ 1876 unsigned int i; 1877 1878 for (i = 0; i < dev->num_tx_queues; i++) { 1879 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1880 netif_tx_stop_queue(txq); 1881 } 1882} 1883 1884static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1885{ 1886 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state); 1887} 1888 1889/** 1890 * netif_queue_stopped - test if transmit queue is flowblocked 1891 * @dev: network device 1892 * 1893 * Test if transmit queue on device is currently unable to send. 1894 */ 1895static inline int netif_queue_stopped(const struct net_device *dev) 1896{ 1897 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1898} 1899 1900static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue) 1901{ 1902 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN; 1903} 1904 1905/** 1906 * netif_running - test if up 1907 * @dev: network device 1908 * 1909 * Test if the device has been brought up. 1910 */ 1911static inline int netif_running(const struct net_device *dev) 1912{ 1913 return test_bit(__LINK_STATE_START, &dev->state); 1914} 1915 1916/* 1917 * Routines to manage the subqueues on a device. We only need start 1918 * stop, and a check if it's stopped. All other device management is 1919 * done at the overall netdevice level. 1920 * Also test the device if we're multiqueue. 1921 */ 1922 1923/** 1924 * netif_start_subqueue - allow sending packets on subqueue 1925 * @dev: network device 1926 * @queue_index: sub queue index 1927 * 1928 * Start individual transmit queue of a device with multiple transmit queues. 1929 */ 1930static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 1931{ 1932 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1933 1934 netif_tx_start_queue(txq); 1935} 1936 1937/** 1938 * netif_stop_subqueue - stop sending packets on subqueue 1939 * @dev: network device 1940 * @queue_index: sub queue index 1941 * 1942 * Stop individual transmit queue of a device with multiple transmit queues. 1943 */ 1944static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 1945{ 1946 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1947#ifdef CONFIG_NETPOLL_TRAP 1948 if (netpoll_trap()) 1949 return; 1950#endif 1951 netif_tx_stop_queue(txq); 1952} 1953 1954/** 1955 * netif_subqueue_stopped - test status of subqueue 1956 * @dev: network device 1957 * @queue_index: sub queue index 1958 * 1959 * Check individual transmit queue of a device with multiple transmit queues. 1960 */ 1961static inline int __netif_subqueue_stopped(const struct net_device *dev, 1962 u16 queue_index) 1963{ 1964 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1965 1966 return netif_tx_queue_stopped(txq); 1967} 1968 1969static inline int netif_subqueue_stopped(const struct net_device *dev, 1970 struct sk_buff *skb) 1971{ 1972 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 1973} 1974 1975/** 1976 * netif_wake_subqueue - allow sending packets on subqueue 1977 * @dev: network device 1978 * @queue_index: sub queue index 1979 * 1980 * Resume individual transmit queue of a device with multiple transmit queues. 1981 */ 1982static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 1983{ 1984 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 1985#ifdef CONFIG_NETPOLL_TRAP 1986 if (netpoll_trap()) 1987 return; 1988#endif 1989 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state)) 1990 __netif_schedule(txq->qdisc); 1991} 1992 1993/* 1994 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 1995 * as a distribution range limit for the returned value. 1996 */ 1997static inline u16 skb_tx_hash(const struct net_device *dev, 1998 const struct sk_buff *skb) 1999{ 2000 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2001} 2002 2003/** 2004 * netif_is_multiqueue - test if device has multiple transmit queues 2005 * @dev: network device 2006 * 2007 * Check if device has multiple transmit queues 2008 */ 2009static inline int netif_is_multiqueue(const struct net_device *dev) 2010{ 2011 return dev->num_tx_queues > 1; 2012} 2013 2014extern int netif_set_real_num_tx_queues(struct net_device *dev, 2015 unsigned int txq); 2016 2017#ifdef CONFIG_RPS 2018extern int netif_set_real_num_rx_queues(struct net_device *dev, 2019 unsigned int rxq); 2020#else 2021static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2022 unsigned int rxq) 2023{ 2024 return 0; 2025} 2026#endif 2027 2028static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2029 const struct net_device *from_dev) 2030{ 2031 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues); 2032#ifdef CONFIG_RPS 2033 return netif_set_real_num_rx_queues(to_dev, 2034 from_dev->real_num_rx_queues); 2035#else 2036 return 0; 2037#endif 2038} 2039 2040/* Use this variant when it is known for sure that it 2041 * is executing from hardware interrupt context or with hardware interrupts 2042 * disabled. 2043 */ 2044extern void dev_kfree_skb_irq(struct sk_buff *skb); 2045 2046/* Use this variant in places where it could be invoked 2047 * from either hardware interrupt or other context, with hardware interrupts 2048 * either disabled or enabled. 2049 */ 2050extern void dev_kfree_skb_any(struct sk_buff *skb); 2051 2052#define HAVE_NETIF_RX 1 2053extern int netif_rx(struct sk_buff *skb); 2054extern int netif_rx_ni(struct sk_buff *skb); 2055#define HAVE_NETIF_RECEIVE_SKB 1 2056extern int netif_receive_skb(struct sk_buff *skb); 2057extern gro_result_t dev_gro_receive(struct napi_struct *napi, 2058 struct sk_buff *skb); 2059extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb); 2060extern gro_result_t napi_gro_receive(struct napi_struct *napi, 2061 struct sk_buff *skb); 2062extern void napi_gro_flush(struct napi_struct *napi); 2063extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 2064extern gro_result_t napi_frags_finish(struct napi_struct *napi, 2065 struct sk_buff *skb, 2066 gro_result_t ret); 2067extern struct sk_buff * napi_frags_skb(struct napi_struct *napi); 2068extern gro_result_t napi_gro_frags(struct napi_struct *napi); 2069 2070static inline void napi_free_frags(struct napi_struct *napi) 2071{ 2072 kfree_skb(napi->skb); 2073 napi->skb = NULL; 2074} 2075 2076extern int netdev_rx_handler_register(struct net_device *dev, 2077 rx_handler_func_t *rx_handler, 2078 void *rx_handler_data); 2079extern void netdev_rx_handler_unregister(struct net_device *dev); 2080 2081extern int dev_valid_name(const char *name); 2082extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2083extern int dev_ethtool(struct net *net, struct ifreq *); 2084extern unsigned dev_get_flags(const struct net_device *); 2085extern int __dev_change_flags(struct net_device *, unsigned int flags); 2086extern int dev_change_flags(struct net_device *, unsigned); 2087extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 2088extern int dev_change_name(struct net_device *, const char *); 2089extern int dev_set_alias(struct net_device *, const char *, size_t); 2090extern int dev_change_net_namespace(struct net_device *, 2091 struct net *, const char *); 2092extern int dev_set_mtu(struct net_device *, int); 2093extern void dev_set_group(struct net_device *, int); 2094extern int dev_set_mac_address(struct net_device *, 2095 struct sockaddr *); 2096extern int dev_hard_start_xmit(struct sk_buff *skb, 2097 struct net_device *dev, 2098 struct netdev_queue *txq); 2099extern int dev_forward_skb(struct net_device *dev, 2100 struct sk_buff *skb); 2101 2102extern int netdev_budget; 2103 2104/* Called by rtnetlink.c:rtnl_unlock() */ 2105extern void netdev_run_todo(void); 2106 2107/** 2108 * dev_put - release reference to device 2109 * @dev: network device 2110 * 2111 * Release reference to device to allow it to be freed. 2112 */ 2113static inline void dev_put(struct net_device *dev) 2114{ 2115 irqsafe_cpu_dec(*dev->pcpu_refcnt); 2116} 2117 2118/** 2119 * dev_hold - get reference to device 2120 * @dev: network device 2121 * 2122 * Hold reference to device to keep it from being freed. 2123 */ 2124static inline void dev_hold(struct net_device *dev) 2125{ 2126 irqsafe_cpu_inc(*dev->pcpu_refcnt); 2127} 2128 2129/* Carrier loss detection, dial on demand. The functions netif_carrier_on 2130 * and _off may be called from IRQ context, but it is caller 2131 * who is responsible for serialization of these calls. 2132 * 2133 * The name carrier is inappropriate, these functions should really be 2134 * called netif_lowerlayer_*() because they represent the state of any 2135 * kind of lower layer not just hardware media. 2136 */ 2137 2138extern void linkwatch_fire_event(struct net_device *dev); 2139extern void linkwatch_forget_dev(struct net_device *dev); 2140 2141/** 2142 * netif_carrier_ok - test if carrier present 2143 * @dev: network device 2144 * 2145 * Check if carrier is present on device 2146 */ 2147static inline int netif_carrier_ok(const struct net_device *dev) 2148{ 2149 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2150} 2151 2152extern unsigned long dev_trans_start(struct net_device *dev); 2153 2154extern void __netdev_watchdog_up(struct net_device *dev); 2155 2156extern void netif_carrier_on(struct net_device *dev); 2157 2158extern void netif_carrier_off(struct net_device *dev); 2159 2160extern void netif_notify_peers(struct net_device *dev); 2161 2162/** 2163 * netif_dormant_on - mark device as dormant. 2164 * @dev: network device 2165 * 2166 * Mark device as dormant (as per RFC2863). 2167 * 2168 * The dormant state indicates that the relevant interface is not 2169 * actually in a condition to pass packets (i.e., it is not 'up') but is 2170 * in a "pending" state, waiting for some external event. For "on- 2171 * demand" interfaces, this new state identifies the situation where the 2172 * interface is waiting for events to place it in the up state. 2173 * 2174 */ 2175static inline void netif_dormant_on(struct net_device *dev) 2176{ 2177 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2178 linkwatch_fire_event(dev); 2179} 2180 2181/** 2182 * netif_dormant_off - set device as not dormant. 2183 * @dev: network device 2184 * 2185 * Device is not in dormant state. 2186 */ 2187static inline void netif_dormant_off(struct net_device *dev) 2188{ 2189 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2190 linkwatch_fire_event(dev); 2191} 2192 2193/** 2194 * netif_dormant - test if carrier present 2195 * @dev: network device 2196 * 2197 * Check if carrier is present on device 2198 */ 2199static inline int netif_dormant(const struct net_device *dev) 2200{ 2201 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2202} 2203 2204 2205/** 2206 * netif_oper_up - test if device is operational 2207 * @dev: network device 2208 * 2209 * Check if carrier is operational 2210 */ 2211static inline int netif_oper_up(const struct net_device *dev) 2212{ 2213 return (dev->operstate == IF_OPER_UP || 2214 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2215} 2216 2217/** 2218 * netif_device_present - is device available or removed 2219 * @dev: network device 2220 * 2221 * Check if device has not been removed from system. 2222 */ 2223static inline int netif_device_present(struct net_device *dev) 2224{ 2225 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2226} 2227 2228extern void netif_device_detach(struct net_device *dev); 2229 2230extern void netif_device_attach(struct net_device *dev); 2231 2232/* 2233 * Network interface message level settings 2234 */ 2235#define HAVE_NETIF_MSG 1 2236 2237enum { 2238 NETIF_MSG_DRV = 0x0001, 2239 NETIF_MSG_PROBE = 0x0002, 2240 NETIF_MSG_LINK = 0x0004, 2241 NETIF_MSG_TIMER = 0x0008, 2242 NETIF_MSG_IFDOWN = 0x0010, 2243 NETIF_MSG_IFUP = 0x0020, 2244 NETIF_MSG_RX_ERR = 0x0040, 2245 NETIF_MSG_TX_ERR = 0x0080, 2246 NETIF_MSG_TX_QUEUED = 0x0100, 2247 NETIF_MSG_INTR = 0x0200, 2248 NETIF_MSG_TX_DONE = 0x0400, 2249 NETIF_MSG_RX_STATUS = 0x0800, 2250 NETIF_MSG_PKTDATA = 0x1000, 2251 NETIF_MSG_HW = 0x2000, 2252 NETIF_MSG_WOL = 0x4000, 2253}; 2254 2255#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2256#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2257#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2258#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2259#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2260#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2261#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2262#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2263#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2264#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2265#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2266#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2267#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2268#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2269#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2270 2271static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2272{ 2273 /* use default */ 2274 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2275 return default_msg_enable_bits; 2276 if (debug_value == 0) /* no output */ 2277 return 0; 2278 /* set low N bits */ 2279 return (1 << debug_value) - 1; 2280} 2281 2282static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2283{ 2284 spin_lock(&txq->_xmit_lock); 2285 txq->xmit_lock_owner = cpu; 2286} 2287 2288static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2289{ 2290 spin_lock_bh(&txq->_xmit_lock); 2291 txq->xmit_lock_owner = smp_processor_id(); 2292} 2293 2294static inline int __netif_tx_trylock(struct netdev_queue *txq) 2295{ 2296 int ok = spin_trylock(&txq->_xmit_lock); 2297 if (likely(ok)) 2298 txq->xmit_lock_owner = smp_processor_id(); 2299 return ok; 2300} 2301 2302static inline void __netif_tx_unlock(struct netdev_queue *txq) 2303{ 2304 txq->xmit_lock_owner = -1; 2305 spin_unlock(&txq->_xmit_lock); 2306} 2307 2308static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2309{ 2310 txq->xmit_lock_owner = -1; 2311 spin_unlock_bh(&txq->_xmit_lock); 2312} 2313 2314static inline void txq_trans_update(struct netdev_queue *txq) 2315{ 2316 if (txq->xmit_lock_owner != -1) 2317 txq->trans_start = jiffies; 2318} 2319 2320/** 2321 * netif_tx_lock - grab network device transmit lock 2322 * @dev: network device 2323 * 2324 * Get network device transmit lock 2325 */ 2326static inline void netif_tx_lock(struct net_device *dev) 2327{ 2328 unsigned int i; 2329 int cpu; 2330 2331 spin_lock(&dev->tx_global_lock); 2332 cpu = smp_processor_id(); 2333 for (i = 0; i < dev->num_tx_queues; i++) { 2334 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2335 2336 /* We are the only thread of execution doing a 2337 * freeze, but we have to grab the _xmit_lock in 2338 * order to synchronize with threads which are in 2339 * the ->hard_start_xmit() handler and already 2340 * checked the frozen bit. 2341 */ 2342 __netif_tx_lock(txq, cpu); 2343 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2344 __netif_tx_unlock(txq); 2345 } 2346} 2347 2348static inline void netif_tx_lock_bh(struct net_device *dev) 2349{ 2350 local_bh_disable(); 2351 netif_tx_lock(dev); 2352} 2353 2354static inline void netif_tx_unlock(struct net_device *dev) 2355{ 2356 unsigned int i; 2357 2358 for (i = 0; i < dev->num_tx_queues; i++) { 2359 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2360 2361 /* No need to grab the _xmit_lock here. If the 2362 * queue is not stopped for another reason, we 2363 * force a schedule. 2364 */ 2365 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2366 netif_schedule_queue(txq); 2367 } 2368 spin_unlock(&dev->tx_global_lock); 2369} 2370 2371static inline void netif_tx_unlock_bh(struct net_device *dev) 2372{ 2373 netif_tx_unlock(dev); 2374 local_bh_enable(); 2375} 2376 2377#define HARD_TX_LOCK(dev, txq, cpu) { \ 2378 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2379 __netif_tx_lock(txq, cpu); \ 2380 } \ 2381} 2382 2383#define HARD_TX_UNLOCK(dev, txq) { \ 2384 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2385 __netif_tx_unlock(txq); \ 2386 } \ 2387} 2388 2389static inline void netif_tx_disable(struct net_device *dev) 2390{ 2391 unsigned int i; 2392 int cpu; 2393 2394 local_bh_disable(); 2395 cpu = smp_processor_id(); 2396 for (i = 0; i < dev->num_tx_queues; i++) { 2397 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2398 2399 __netif_tx_lock(txq, cpu); 2400 netif_tx_stop_queue(txq); 2401 __netif_tx_unlock(txq); 2402 } 2403 local_bh_enable(); 2404} 2405 2406static inline void netif_addr_lock(struct net_device *dev) 2407{ 2408 spin_lock(&dev->addr_list_lock); 2409} 2410 2411static inline void netif_addr_lock_bh(struct net_device *dev) 2412{ 2413 spin_lock_bh(&dev->addr_list_lock); 2414} 2415 2416static inline void netif_addr_unlock(struct net_device *dev) 2417{ 2418 spin_unlock(&dev->addr_list_lock); 2419} 2420 2421static inline void netif_addr_unlock_bh(struct net_device *dev) 2422{ 2423 spin_unlock_bh(&dev->addr_list_lock); 2424} 2425 2426/* 2427 * dev_addrs walker. Should be used only for read access. Call with 2428 * rcu_read_lock held. 2429 */ 2430#define for_each_dev_addr(dev, ha) \ 2431 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2432 2433/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2434 2435extern void ether_setup(struct net_device *dev); 2436 2437/* Support for loadable net-drivers */ 2438extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2439 void (*setup)(struct net_device *), 2440 unsigned int txqs, unsigned int rxqs); 2441#define alloc_netdev(sizeof_priv, name, setup) \ 2442 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2443 2444#define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2445 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2446 2447extern int register_netdev(struct net_device *dev); 2448extern void unregister_netdev(struct net_device *dev); 2449 2450/* General hardware address lists handling functions */ 2451extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2452 struct netdev_hw_addr_list *from_list, 2453 int addr_len, unsigned char addr_type); 2454extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2455 struct netdev_hw_addr_list *from_list, 2456 int addr_len, unsigned char addr_type); 2457extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2458 struct netdev_hw_addr_list *from_list, 2459 int addr_len); 2460extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2461 struct netdev_hw_addr_list *from_list, 2462 int addr_len); 2463extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2464extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2465 2466/* Functions used for device addresses handling */ 2467extern int dev_addr_add(struct net_device *dev, unsigned char *addr, 2468 unsigned char addr_type); 2469extern int dev_addr_del(struct net_device *dev, unsigned char *addr, 2470 unsigned char addr_type); 2471extern int dev_addr_add_multiple(struct net_device *to_dev, 2472 struct net_device *from_dev, 2473 unsigned char addr_type); 2474extern int dev_addr_del_multiple(struct net_device *to_dev, 2475 struct net_device *from_dev, 2476 unsigned char addr_type); 2477extern void dev_addr_flush(struct net_device *dev); 2478extern int dev_addr_init(struct net_device *dev); 2479 2480/* Functions used for unicast addresses handling */ 2481extern int dev_uc_add(struct net_device *dev, unsigned char *addr); 2482extern int dev_uc_del(struct net_device *dev, unsigned char *addr); 2483extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2484extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2485extern void dev_uc_flush(struct net_device *dev); 2486extern void dev_uc_init(struct net_device *dev); 2487 2488/* Functions used for multicast addresses handling */ 2489extern int dev_mc_add(struct net_device *dev, unsigned char *addr); 2490extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr); 2491extern int dev_mc_del(struct net_device *dev, unsigned char *addr); 2492extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr); 2493extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2494extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2495extern void dev_mc_flush(struct net_device *dev); 2496extern void dev_mc_init(struct net_device *dev); 2497 2498/* Functions used for secondary unicast and multicast support */ 2499extern void dev_set_rx_mode(struct net_device *dev); 2500extern void __dev_set_rx_mode(struct net_device *dev); 2501extern int dev_set_promiscuity(struct net_device *dev, int inc); 2502extern int dev_set_allmulti(struct net_device *dev, int inc); 2503extern void netdev_state_change(struct net_device *dev); 2504extern int netdev_bonding_change(struct net_device *dev, 2505 unsigned long event); 2506extern void netdev_features_change(struct net_device *dev); 2507/* Load a device via the kmod */ 2508extern void dev_load(struct net *net, const char *name); 2509extern void dev_mcast_init(void); 2510extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2511 struct rtnl_link_stats64 *storage); 2512 2513extern int netdev_max_backlog; 2514extern int netdev_tstamp_prequeue; 2515extern int weight_p; 2516extern int netdev_set_master(struct net_device *dev, struct net_device *master); 2517extern int netdev_set_bond_master(struct net_device *dev, 2518 struct net_device *master); 2519extern int skb_checksum_help(struct sk_buff *skb); 2520extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features); 2521#ifdef CONFIG_BUG 2522extern void netdev_rx_csum_fault(struct net_device *dev); 2523#else 2524static inline void netdev_rx_csum_fault(struct net_device *dev) 2525{ 2526} 2527#endif 2528/* rx skb timestamps */ 2529extern void net_enable_timestamp(void); 2530extern void net_disable_timestamp(void); 2531 2532#ifdef CONFIG_PROC_FS 2533extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 2534extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2535extern void dev_seq_stop(struct seq_file *seq, void *v); 2536#endif 2537 2538extern int netdev_class_create_file(struct class_attribute *class_attr); 2539extern void netdev_class_remove_file(struct class_attribute *class_attr); 2540 2541extern struct kobj_ns_type_operations net_ns_type_operations; 2542 2543extern char *netdev_drivername(const struct net_device *dev, char *buffer, int len); 2544 2545extern void linkwatch_run_queue(void); 2546 2547static inline u32 netdev_get_wanted_features(struct net_device *dev) 2548{ 2549 return (dev->features & ~dev->hw_features) | dev->wanted_features; 2550} 2551u32 netdev_increment_features(u32 all, u32 one, u32 mask); 2552u32 netdev_fix_features(struct net_device *dev, u32 features); 2553void netdev_update_features(struct net_device *dev); 2554 2555void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2556 struct net_device *dev); 2557 2558u32 netif_skb_features(struct sk_buff *skb); 2559 2560static inline int net_gso_ok(u32 features, int gso_type) 2561{ 2562 int feature = gso_type << NETIF_F_GSO_SHIFT; 2563 return (features & feature) == feature; 2564} 2565 2566static inline int skb_gso_ok(struct sk_buff *skb, u32 features) 2567{ 2568 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2569 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2570} 2571 2572static inline int netif_needs_gso(struct sk_buff *skb, int features) 2573{ 2574 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 2575 unlikely(skb->ip_summed != CHECKSUM_PARTIAL)); 2576} 2577 2578static inline void netif_set_gso_max_size(struct net_device *dev, 2579 unsigned int size) 2580{ 2581 dev->gso_max_size = size; 2582} 2583 2584static inline int netif_is_bond_slave(struct net_device *dev) 2585{ 2586 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 2587} 2588 2589extern struct pernet_operations __net_initdata loopback_net_ops; 2590 2591static inline int dev_ethtool_get_settings(struct net_device *dev, 2592 struct ethtool_cmd *cmd) 2593{ 2594 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings) 2595 return -EOPNOTSUPP; 2596 return dev->ethtool_ops->get_settings(dev, cmd); 2597} 2598 2599static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev) 2600{ 2601 if (dev->features & NETIF_F_RXCSUM) 2602 return 1; 2603 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum) 2604 return 0; 2605 return dev->ethtool_ops->get_rx_csum(dev); 2606} 2607 2608static inline u32 dev_ethtool_get_flags(struct net_device *dev) 2609{ 2610 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags) 2611 return 0; 2612 return dev->ethtool_ops->get_flags(dev); 2613} 2614 2615/* Logging, debugging and troubleshooting/diagnostic helpers. */ 2616 2617/* netdev_printk helpers, similar to dev_printk */ 2618 2619static inline const char *netdev_name(const struct net_device *dev) 2620{ 2621 if (dev->reg_state != NETREG_REGISTERED) 2622 return "(unregistered net_device)"; 2623 return dev->name; 2624} 2625 2626extern int netdev_printk(const char *level, const struct net_device *dev, 2627 const char *format, ...) 2628 __attribute__ ((format (printf, 3, 4))); 2629extern int netdev_emerg(const struct net_device *dev, const char *format, ...) 2630 __attribute__ ((format (printf, 2, 3))); 2631extern int netdev_alert(const struct net_device *dev, const char *format, ...) 2632 __attribute__ ((format (printf, 2, 3))); 2633extern int netdev_crit(const struct net_device *dev, const char *format, ...) 2634 __attribute__ ((format (printf, 2, 3))); 2635extern int netdev_err(const struct net_device *dev, const char *format, ...) 2636 __attribute__ ((format (printf, 2, 3))); 2637extern int netdev_warn(const struct net_device *dev, const char *format, ...) 2638 __attribute__ ((format (printf, 2, 3))); 2639extern int netdev_notice(const struct net_device *dev, const char *format, ...) 2640 __attribute__ ((format (printf, 2, 3))); 2641extern int netdev_info(const struct net_device *dev, const char *format, ...) 2642 __attribute__ ((format (printf, 2, 3))); 2643 2644#define MODULE_ALIAS_NETDEV(device) \ 2645 MODULE_ALIAS("netdev-" device) 2646 2647#if defined(DEBUG) 2648#define netdev_dbg(__dev, format, args...) \ 2649 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2650#elif defined(CONFIG_DYNAMIC_DEBUG) 2651#define netdev_dbg(__dev, format, args...) \ 2652do { \ 2653 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \ 2654 netdev_name(__dev), ##args); \ 2655} while (0) 2656#else 2657#define netdev_dbg(__dev, format, args...) \ 2658({ \ 2659 if (0) \ 2660 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2661 0; \ 2662}) 2663#endif 2664 2665#if defined(VERBOSE_DEBUG) 2666#define netdev_vdbg netdev_dbg 2667#else 2668 2669#define netdev_vdbg(dev, format, args...) \ 2670({ \ 2671 if (0) \ 2672 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2673 0; \ 2674}) 2675#endif 2676 2677/* 2678 * netdev_WARN() acts like dev_printk(), but with the key difference 2679 * of using a WARN/WARN_ON to get the message out, including the 2680 * file/line information and a backtrace. 2681 */ 2682#define netdev_WARN(dev, format, args...) \ 2683 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2684 2685/* netif printk helpers, similar to netdev_printk */ 2686 2687#define netif_printk(priv, type, level, dev, fmt, args...) \ 2688do { \ 2689 if (netif_msg_##type(priv)) \ 2690 netdev_printk(level, (dev), fmt, ##args); \ 2691} while (0) 2692 2693#define netif_level(level, priv, type, dev, fmt, args...) \ 2694do { \ 2695 if (netif_msg_##type(priv)) \ 2696 netdev_##level(dev, fmt, ##args); \ 2697} while (0) 2698 2699#define netif_emerg(priv, type, dev, fmt, args...) \ 2700 netif_level(emerg, priv, type, dev, fmt, ##args) 2701#define netif_alert(priv, type, dev, fmt, args...) \ 2702 netif_level(alert, priv, type, dev, fmt, ##args) 2703#define netif_crit(priv, type, dev, fmt, args...) \ 2704 netif_level(crit, priv, type, dev, fmt, ##args) 2705#define netif_err(priv, type, dev, fmt, args...) \ 2706 netif_level(err, priv, type, dev, fmt, ##args) 2707#define netif_warn(priv, type, dev, fmt, args...) \ 2708 netif_level(warn, priv, type, dev, fmt, ##args) 2709#define netif_notice(priv, type, dev, fmt, args...) \ 2710 netif_level(notice, priv, type, dev, fmt, ##args) 2711#define netif_info(priv, type, dev, fmt, args...) \ 2712 netif_level(info, priv, type, dev, fmt, ##args) 2713 2714#if defined(DEBUG) 2715#define netif_dbg(priv, type, dev, format, args...) \ 2716 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2717#elif defined(CONFIG_DYNAMIC_DEBUG) 2718#define netif_dbg(priv, type, netdev, format, args...) \ 2719do { \ 2720 if (netif_msg_##type(priv)) \ 2721 dynamic_dev_dbg((netdev)->dev.parent, \ 2722 "%s: " format, \ 2723 netdev_name(netdev), ##args); \ 2724} while (0) 2725#else 2726#define netif_dbg(priv, type, dev, format, args...) \ 2727({ \ 2728 if (0) \ 2729 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2730 0; \ 2731}) 2732#endif 2733 2734#if defined(VERBOSE_DEBUG) 2735#define netif_vdbg netif_dbg 2736#else 2737#define netif_vdbg(priv, type, dev, format, args...) \ 2738({ \ 2739 if (0) \ 2740 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2741 0; \ 2742}) 2743#endif 2744 2745#endif /* __KERNEL__ */ 2746 2747#endif /* _LINUX_NETDEVICE_H */