at v2.6.39 36 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <generated/bounds.h> 19#include <asm/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coelesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38#define MIGRATE_UNMOVABLE 0 39#define MIGRATE_RECLAIMABLE 1 40#define MIGRATE_MOVABLE 2 41#define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */ 42#define MIGRATE_RESERVE 3 43#define MIGRATE_ISOLATE 4 /* can't allocate from here */ 44#define MIGRATE_TYPES 5 45 46#define for_each_migratetype_order(order, type) \ 47 for (order = 0; order < MAX_ORDER; order++) \ 48 for (type = 0; type < MIGRATE_TYPES; type++) 49 50extern int page_group_by_mobility_disabled; 51 52static inline int get_pageblock_migratetype(struct page *page) 53{ 54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 55} 56 57struct free_area { 58 struct list_head free_list[MIGRATE_TYPES]; 59 unsigned long nr_free; 60}; 61 62struct pglist_data; 63 64/* 65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 66 * So add a wild amount of padding here to ensure that they fall into separate 67 * cachelines. There are very few zone structures in the machine, so space 68 * consumption is not a concern here. 69 */ 70#if defined(CONFIG_SMP) 71struct zone_padding { 72 char x[0]; 73} ____cacheline_internodealigned_in_smp; 74#define ZONE_PADDING(name) struct zone_padding name; 75#else 76#define ZONE_PADDING(name) 77#endif 78 79enum zone_stat_item { 80 /* First 128 byte cacheline (assuming 64 bit words) */ 81 NR_FREE_PAGES, 82 NR_LRU_BASE, 83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 84 NR_ACTIVE_ANON, /* " " " " " */ 85 NR_INACTIVE_FILE, /* " " " " " */ 86 NR_ACTIVE_FILE, /* " " " " " */ 87 NR_UNEVICTABLE, /* " " " " " */ 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 89 NR_ANON_PAGES, /* Mapped anonymous pages */ 90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 91 only modified from process context */ 92 NR_FILE_PAGES, 93 NR_FILE_DIRTY, 94 NR_WRITEBACK, 95 NR_SLAB_RECLAIMABLE, 96 NR_SLAB_UNRECLAIMABLE, 97 NR_PAGETABLE, /* used for pagetables */ 98 NR_KERNEL_STACK, 99 /* Second 128 byte cacheline */ 100 NR_UNSTABLE_NFS, /* NFS unstable pages */ 101 NR_BOUNCE, 102 NR_VMSCAN_WRITE, 103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 107 NR_DIRTIED, /* page dirtyings since bootup */ 108 NR_WRITTEN, /* page writings since bootup */ 109#ifdef CONFIG_NUMA 110 NUMA_HIT, /* allocated in intended node */ 111 NUMA_MISS, /* allocated in non intended node */ 112 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 113 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 114 NUMA_LOCAL, /* allocation from local node */ 115 NUMA_OTHER, /* allocation from other node */ 116#endif 117 NR_ANON_TRANSPARENT_HUGEPAGES, 118 NR_VM_ZONE_STAT_ITEMS }; 119 120/* 121 * We do arithmetic on the LRU lists in various places in the code, 122 * so it is important to keep the active lists LRU_ACTIVE higher in 123 * the array than the corresponding inactive lists, and to keep 124 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 125 * 126 * This has to be kept in sync with the statistics in zone_stat_item 127 * above and the descriptions in vmstat_text in mm/vmstat.c 128 */ 129#define LRU_BASE 0 130#define LRU_ACTIVE 1 131#define LRU_FILE 2 132 133enum lru_list { 134 LRU_INACTIVE_ANON = LRU_BASE, 135 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 136 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 137 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 138 LRU_UNEVICTABLE, 139 NR_LRU_LISTS 140}; 141 142#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++) 143 144#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++) 145 146static inline int is_file_lru(enum lru_list l) 147{ 148 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE); 149} 150 151static inline int is_active_lru(enum lru_list l) 152{ 153 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE); 154} 155 156static inline int is_unevictable_lru(enum lru_list l) 157{ 158 return (l == LRU_UNEVICTABLE); 159} 160 161enum zone_watermarks { 162 WMARK_MIN, 163 WMARK_LOW, 164 WMARK_HIGH, 165 NR_WMARK 166}; 167 168#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 169#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 170#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 171 172struct per_cpu_pages { 173 int count; /* number of pages in the list */ 174 int high; /* high watermark, emptying needed */ 175 int batch; /* chunk size for buddy add/remove */ 176 177 /* Lists of pages, one per migrate type stored on the pcp-lists */ 178 struct list_head lists[MIGRATE_PCPTYPES]; 179}; 180 181struct per_cpu_pageset { 182 struct per_cpu_pages pcp; 183#ifdef CONFIG_NUMA 184 s8 expire; 185#endif 186#ifdef CONFIG_SMP 187 s8 stat_threshold; 188 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 189#endif 190}; 191 192#endif /* !__GENERATING_BOUNDS.H */ 193 194enum zone_type { 195#ifdef CONFIG_ZONE_DMA 196 /* 197 * ZONE_DMA is used when there are devices that are not able 198 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 199 * carve out the portion of memory that is needed for these devices. 200 * The range is arch specific. 201 * 202 * Some examples 203 * 204 * Architecture Limit 205 * --------------------------- 206 * parisc, ia64, sparc <4G 207 * s390 <2G 208 * arm Various 209 * alpha Unlimited or 0-16MB. 210 * 211 * i386, x86_64 and multiple other arches 212 * <16M. 213 */ 214 ZONE_DMA, 215#endif 216#ifdef CONFIG_ZONE_DMA32 217 /* 218 * x86_64 needs two ZONE_DMAs because it supports devices that are 219 * only able to do DMA to the lower 16M but also 32 bit devices that 220 * can only do DMA areas below 4G. 221 */ 222 ZONE_DMA32, 223#endif 224 /* 225 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 226 * performed on pages in ZONE_NORMAL if the DMA devices support 227 * transfers to all addressable memory. 228 */ 229 ZONE_NORMAL, 230#ifdef CONFIG_HIGHMEM 231 /* 232 * A memory area that is only addressable by the kernel through 233 * mapping portions into its own address space. This is for example 234 * used by i386 to allow the kernel to address the memory beyond 235 * 900MB. The kernel will set up special mappings (page 236 * table entries on i386) for each page that the kernel needs to 237 * access. 238 */ 239 ZONE_HIGHMEM, 240#endif 241 ZONE_MOVABLE, 242 __MAX_NR_ZONES 243}; 244 245#ifndef __GENERATING_BOUNDS_H 246 247/* 248 * When a memory allocation must conform to specific limitations (such 249 * as being suitable for DMA) the caller will pass in hints to the 250 * allocator in the gfp_mask, in the zone modifier bits. These bits 251 * are used to select a priority ordered list of memory zones which 252 * match the requested limits. See gfp_zone() in include/linux/gfp.h 253 */ 254 255#if MAX_NR_ZONES < 2 256#define ZONES_SHIFT 0 257#elif MAX_NR_ZONES <= 2 258#define ZONES_SHIFT 1 259#elif MAX_NR_ZONES <= 4 260#define ZONES_SHIFT 2 261#else 262#error ZONES_SHIFT -- too many zones configured adjust calculation 263#endif 264 265struct zone_reclaim_stat { 266 /* 267 * The pageout code in vmscan.c keeps track of how many of the 268 * mem/swap backed and file backed pages are refeferenced. 269 * The higher the rotated/scanned ratio, the more valuable 270 * that cache is. 271 * 272 * The anon LRU stats live in [0], file LRU stats in [1] 273 */ 274 unsigned long recent_rotated[2]; 275 unsigned long recent_scanned[2]; 276 277 /* 278 * accumulated for batching 279 */ 280 unsigned long nr_saved_scan[NR_LRU_LISTS]; 281}; 282 283struct zone { 284 /* Fields commonly accessed by the page allocator */ 285 286 /* zone watermarks, access with *_wmark_pages(zone) macros */ 287 unsigned long watermark[NR_WMARK]; 288 289 /* 290 * When free pages are below this point, additional steps are taken 291 * when reading the number of free pages to avoid per-cpu counter 292 * drift allowing watermarks to be breached 293 */ 294 unsigned long percpu_drift_mark; 295 296 /* 297 * We don't know if the memory that we're going to allocate will be freeable 298 * or/and it will be released eventually, so to avoid totally wasting several 299 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 300 * to run OOM on the lower zones despite there's tons of freeable ram 301 * on the higher zones). This array is recalculated at runtime if the 302 * sysctl_lowmem_reserve_ratio sysctl changes. 303 */ 304 unsigned long lowmem_reserve[MAX_NR_ZONES]; 305 306#ifdef CONFIG_NUMA 307 int node; 308 /* 309 * zone reclaim becomes active if more unmapped pages exist. 310 */ 311 unsigned long min_unmapped_pages; 312 unsigned long min_slab_pages; 313#endif 314 struct per_cpu_pageset __percpu *pageset; 315 /* 316 * free areas of different sizes 317 */ 318 spinlock_t lock; 319 int all_unreclaimable; /* All pages pinned */ 320#ifdef CONFIG_MEMORY_HOTPLUG 321 /* see spanned/present_pages for more description */ 322 seqlock_t span_seqlock; 323#endif 324 struct free_area free_area[MAX_ORDER]; 325 326#ifndef CONFIG_SPARSEMEM 327 /* 328 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 329 * In SPARSEMEM, this map is stored in struct mem_section 330 */ 331 unsigned long *pageblock_flags; 332#endif /* CONFIG_SPARSEMEM */ 333 334#ifdef CONFIG_COMPACTION 335 /* 336 * On compaction failure, 1<<compact_defer_shift compactions 337 * are skipped before trying again. The number attempted since 338 * last failure is tracked with compact_considered. 339 */ 340 unsigned int compact_considered; 341 unsigned int compact_defer_shift; 342#endif 343 344 ZONE_PADDING(_pad1_) 345 346 /* Fields commonly accessed by the page reclaim scanner */ 347 spinlock_t lru_lock; 348 struct zone_lru { 349 struct list_head list; 350 } lru[NR_LRU_LISTS]; 351 352 struct zone_reclaim_stat reclaim_stat; 353 354 unsigned long pages_scanned; /* since last reclaim */ 355 unsigned long flags; /* zone flags, see below */ 356 357 /* Zone statistics */ 358 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 359 360 /* 361 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 362 * this zone's LRU. Maintained by the pageout code. 363 */ 364 unsigned int inactive_ratio; 365 366 367 ZONE_PADDING(_pad2_) 368 /* Rarely used or read-mostly fields */ 369 370 /* 371 * wait_table -- the array holding the hash table 372 * wait_table_hash_nr_entries -- the size of the hash table array 373 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 374 * 375 * The purpose of all these is to keep track of the people 376 * waiting for a page to become available and make them 377 * runnable again when possible. The trouble is that this 378 * consumes a lot of space, especially when so few things 379 * wait on pages at a given time. So instead of using 380 * per-page waitqueues, we use a waitqueue hash table. 381 * 382 * The bucket discipline is to sleep on the same queue when 383 * colliding and wake all in that wait queue when removing. 384 * When something wakes, it must check to be sure its page is 385 * truly available, a la thundering herd. The cost of a 386 * collision is great, but given the expected load of the 387 * table, they should be so rare as to be outweighed by the 388 * benefits from the saved space. 389 * 390 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 391 * primary users of these fields, and in mm/page_alloc.c 392 * free_area_init_core() performs the initialization of them. 393 */ 394 wait_queue_head_t * wait_table; 395 unsigned long wait_table_hash_nr_entries; 396 unsigned long wait_table_bits; 397 398 /* 399 * Discontig memory support fields. 400 */ 401 struct pglist_data *zone_pgdat; 402 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 403 unsigned long zone_start_pfn; 404 405 /* 406 * zone_start_pfn, spanned_pages and present_pages are all 407 * protected by span_seqlock. It is a seqlock because it has 408 * to be read outside of zone->lock, and it is done in the main 409 * allocator path. But, it is written quite infrequently. 410 * 411 * The lock is declared along with zone->lock because it is 412 * frequently read in proximity to zone->lock. It's good to 413 * give them a chance of being in the same cacheline. 414 */ 415 unsigned long spanned_pages; /* total size, including holes */ 416 unsigned long present_pages; /* amount of memory (excluding holes) */ 417 418 /* 419 * rarely used fields: 420 */ 421 const char *name; 422} ____cacheline_internodealigned_in_smp; 423 424typedef enum { 425 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 426 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 427 ZONE_CONGESTED, /* zone has many dirty pages backed by 428 * a congested BDI 429 */ 430} zone_flags_t; 431 432static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 433{ 434 set_bit(flag, &zone->flags); 435} 436 437static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 438{ 439 return test_and_set_bit(flag, &zone->flags); 440} 441 442static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 443{ 444 clear_bit(flag, &zone->flags); 445} 446 447static inline int zone_is_reclaim_congested(const struct zone *zone) 448{ 449 return test_bit(ZONE_CONGESTED, &zone->flags); 450} 451 452static inline int zone_is_reclaim_locked(const struct zone *zone) 453{ 454 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 455} 456 457static inline int zone_is_oom_locked(const struct zone *zone) 458{ 459 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 460} 461 462/* 463 * The "priority" of VM scanning is how much of the queues we will scan in one 464 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 465 * queues ("queue_length >> 12") during an aging round. 466 */ 467#define DEF_PRIORITY 12 468 469/* Maximum number of zones on a zonelist */ 470#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 471 472#ifdef CONFIG_NUMA 473 474/* 475 * The NUMA zonelists are doubled because we need zonelists that restrict the 476 * allocations to a single node for GFP_THISNODE. 477 * 478 * [0] : Zonelist with fallback 479 * [1] : No fallback (GFP_THISNODE) 480 */ 481#define MAX_ZONELISTS 2 482 483 484/* 485 * We cache key information from each zonelist for smaller cache 486 * footprint when scanning for free pages in get_page_from_freelist(). 487 * 488 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 489 * up short of free memory since the last time (last_fullzone_zap) 490 * we zero'd fullzones. 491 * 2) The array z_to_n[] maps each zone in the zonelist to its node 492 * id, so that we can efficiently evaluate whether that node is 493 * set in the current tasks mems_allowed. 494 * 495 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 496 * indexed by a zones offset in the zonelist zones[] array. 497 * 498 * The get_page_from_freelist() routine does two scans. During the 499 * first scan, we skip zones whose corresponding bit in 'fullzones' 500 * is set or whose corresponding node in current->mems_allowed (which 501 * comes from cpusets) is not set. During the second scan, we bypass 502 * this zonelist_cache, to ensure we look methodically at each zone. 503 * 504 * Once per second, we zero out (zap) fullzones, forcing us to 505 * reconsider nodes that might have regained more free memory. 506 * The field last_full_zap is the time we last zapped fullzones. 507 * 508 * This mechanism reduces the amount of time we waste repeatedly 509 * reexaming zones for free memory when they just came up low on 510 * memory momentarilly ago. 511 * 512 * The zonelist_cache struct members logically belong in struct 513 * zonelist. However, the mempolicy zonelists constructed for 514 * MPOL_BIND are intentionally variable length (and usually much 515 * shorter). A general purpose mechanism for handling structs with 516 * multiple variable length members is more mechanism than we want 517 * here. We resort to some special case hackery instead. 518 * 519 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 520 * part because they are shorter), so we put the fixed length stuff 521 * at the front of the zonelist struct, ending in a variable length 522 * zones[], as is needed by MPOL_BIND. 523 * 524 * Then we put the optional zonelist cache on the end of the zonelist 525 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 526 * the fixed length portion at the front of the struct. This pointer 527 * both enables us to find the zonelist cache, and in the case of 528 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 529 * to know that the zonelist cache is not there. 530 * 531 * The end result is that struct zonelists come in two flavors: 532 * 1) The full, fixed length version, shown below, and 533 * 2) The custom zonelists for MPOL_BIND. 534 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 535 * 536 * Even though there may be multiple CPU cores on a node modifying 537 * fullzones or last_full_zap in the same zonelist_cache at the same 538 * time, we don't lock it. This is just hint data - if it is wrong now 539 * and then, the allocator will still function, perhaps a bit slower. 540 */ 541 542 543struct zonelist_cache { 544 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 545 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 546 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 547}; 548#else 549#define MAX_ZONELISTS 1 550struct zonelist_cache; 551#endif 552 553/* 554 * This struct contains information about a zone in a zonelist. It is stored 555 * here to avoid dereferences into large structures and lookups of tables 556 */ 557struct zoneref { 558 struct zone *zone; /* Pointer to actual zone */ 559 int zone_idx; /* zone_idx(zoneref->zone) */ 560}; 561 562/* 563 * One allocation request operates on a zonelist. A zonelist 564 * is a list of zones, the first one is the 'goal' of the 565 * allocation, the other zones are fallback zones, in decreasing 566 * priority. 567 * 568 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 569 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 570 * * 571 * To speed the reading of the zonelist, the zonerefs contain the zone index 572 * of the entry being read. Helper functions to access information given 573 * a struct zoneref are 574 * 575 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 576 * zonelist_zone_idx() - Return the index of the zone for an entry 577 * zonelist_node_idx() - Return the index of the node for an entry 578 */ 579struct zonelist { 580 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 581 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 582#ifdef CONFIG_NUMA 583 struct zonelist_cache zlcache; // optional ... 584#endif 585}; 586 587#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 588struct node_active_region { 589 unsigned long start_pfn; 590 unsigned long end_pfn; 591 int nid; 592}; 593#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 594 595#ifndef CONFIG_DISCONTIGMEM 596/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 597extern struct page *mem_map; 598#endif 599 600/* 601 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 602 * (mostly NUMA machines?) to denote a higher-level memory zone than the 603 * zone denotes. 604 * 605 * On NUMA machines, each NUMA node would have a pg_data_t to describe 606 * it's memory layout. 607 * 608 * Memory statistics and page replacement data structures are maintained on a 609 * per-zone basis. 610 */ 611struct bootmem_data; 612typedef struct pglist_data { 613 struct zone node_zones[MAX_NR_ZONES]; 614 struct zonelist node_zonelists[MAX_ZONELISTS]; 615 int nr_zones; 616#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 617 struct page *node_mem_map; 618#ifdef CONFIG_CGROUP_MEM_RES_CTLR 619 struct page_cgroup *node_page_cgroup; 620#endif 621#endif 622#ifndef CONFIG_NO_BOOTMEM 623 struct bootmem_data *bdata; 624#endif 625#ifdef CONFIG_MEMORY_HOTPLUG 626 /* 627 * Must be held any time you expect node_start_pfn, node_present_pages 628 * or node_spanned_pages stay constant. Holding this will also 629 * guarantee that any pfn_valid() stays that way. 630 * 631 * Nests above zone->lock and zone->size_seqlock. 632 */ 633 spinlock_t node_size_lock; 634#endif 635 unsigned long node_start_pfn; 636 unsigned long node_present_pages; /* total number of physical pages */ 637 unsigned long node_spanned_pages; /* total size of physical page 638 range, including holes */ 639 int node_id; 640 wait_queue_head_t kswapd_wait; 641 struct task_struct *kswapd; 642 int kswapd_max_order; 643 enum zone_type classzone_idx; 644} pg_data_t; 645 646#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 647#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 648#ifdef CONFIG_FLAT_NODE_MEM_MAP 649#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 650#else 651#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 652#endif 653#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 654 655#include <linux/memory_hotplug.h> 656 657extern struct mutex zonelists_mutex; 658void build_all_zonelists(void *data); 659void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 660bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 661 int classzone_idx, int alloc_flags); 662bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 663 int classzone_idx, int alloc_flags); 664enum memmap_context { 665 MEMMAP_EARLY, 666 MEMMAP_HOTPLUG, 667}; 668extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 669 unsigned long size, 670 enum memmap_context context); 671 672#ifdef CONFIG_HAVE_MEMORY_PRESENT 673void memory_present(int nid, unsigned long start, unsigned long end); 674#else 675static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 676#endif 677 678#ifdef CONFIG_HAVE_MEMORYLESS_NODES 679int local_memory_node(int node_id); 680#else 681static inline int local_memory_node(int node_id) { return node_id; }; 682#endif 683 684#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 685unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 686#endif 687 688/* 689 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 690 */ 691#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 692 693static inline int populated_zone(struct zone *zone) 694{ 695 return (!!zone->present_pages); 696} 697 698extern int movable_zone; 699 700static inline int zone_movable_is_highmem(void) 701{ 702#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) 703 return movable_zone == ZONE_HIGHMEM; 704#else 705 return 0; 706#endif 707} 708 709static inline int is_highmem_idx(enum zone_type idx) 710{ 711#ifdef CONFIG_HIGHMEM 712 return (idx == ZONE_HIGHMEM || 713 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 714#else 715 return 0; 716#endif 717} 718 719static inline int is_normal_idx(enum zone_type idx) 720{ 721 return (idx == ZONE_NORMAL); 722} 723 724/** 725 * is_highmem - helper function to quickly check if a struct zone is a 726 * highmem zone or not. This is an attempt to keep references 727 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 728 * @zone - pointer to struct zone variable 729 */ 730static inline int is_highmem(struct zone *zone) 731{ 732#ifdef CONFIG_HIGHMEM 733 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 734 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 735 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 736 zone_movable_is_highmem()); 737#else 738 return 0; 739#endif 740} 741 742static inline int is_normal(struct zone *zone) 743{ 744 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 745} 746 747static inline int is_dma32(struct zone *zone) 748{ 749#ifdef CONFIG_ZONE_DMA32 750 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 751#else 752 return 0; 753#endif 754} 755 756static inline int is_dma(struct zone *zone) 757{ 758#ifdef CONFIG_ZONE_DMA 759 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 760#else 761 return 0; 762#endif 763} 764 765/* These two functions are used to setup the per zone pages min values */ 766struct ctl_table; 767int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 768 void __user *, size_t *, loff_t *); 769extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 770int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 771 void __user *, size_t *, loff_t *); 772int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 773 void __user *, size_t *, loff_t *); 774int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 775 void __user *, size_t *, loff_t *); 776int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 777 void __user *, size_t *, loff_t *); 778 779extern int numa_zonelist_order_handler(struct ctl_table *, int, 780 void __user *, size_t *, loff_t *); 781extern char numa_zonelist_order[]; 782#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 783 784#ifndef CONFIG_NEED_MULTIPLE_NODES 785 786extern struct pglist_data contig_page_data; 787#define NODE_DATA(nid) (&contig_page_data) 788#define NODE_MEM_MAP(nid) mem_map 789 790#else /* CONFIG_NEED_MULTIPLE_NODES */ 791 792#include <asm/mmzone.h> 793 794#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 795 796extern struct pglist_data *first_online_pgdat(void); 797extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 798extern struct zone *next_zone(struct zone *zone); 799 800/** 801 * for_each_online_pgdat - helper macro to iterate over all online nodes 802 * @pgdat - pointer to a pg_data_t variable 803 */ 804#define for_each_online_pgdat(pgdat) \ 805 for (pgdat = first_online_pgdat(); \ 806 pgdat; \ 807 pgdat = next_online_pgdat(pgdat)) 808/** 809 * for_each_zone - helper macro to iterate over all memory zones 810 * @zone - pointer to struct zone variable 811 * 812 * The user only needs to declare the zone variable, for_each_zone 813 * fills it in. 814 */ 815#define for_each_zone(zone) \ 816 for (zone = (first_online_pgdat())->node_zones; \ 817 zone; \ 818 zone = next_zone(zone)) 819 820#define for_each_populated_zone(zone) \ 821 for (zone = (first_online_pgdat())->node_zones; \ 822 zone; \ 823 zone = next_zone(zone)) \ 824 if (!populated_zone(zone)) \ 825 ; /* do nothing */ \ 826 else 827 828static inline struct zone *zonelist_zone(struct zoneref *zoneref) 829{ 830 return zoneref->zone; 831} 832 833static inline int zonelist_zone_idx(struct zoneref *zoneref) 834{ 835 return zoneref->zone_idx; 836} 837 838static inline int zonelist_node_idx(struct zoneref *zoneref) 839{ 840#ifdef CONFIG_NUMA 841 /* zone_to_nid not available in this context */ 842 return zoneref->zone->node; 843#else 844 return 0; 845#endif /* CONFIG_NUMA */ 846} 847 848/** 849 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 850 * @z - The cursor used as a starting point for the search 851 * @highest_zoneidx - The zone index of the highest zone to return 852 * @nodes - An optional nodemask to filter the zonelist with 853 * @zone - The first suitable zone found is returned via this parameter 854 * 855 * This function returns the next zone at or below a given zone index that is 856 * within the allowed nodemask using a cursor as the starting point for the 857 * search. The zoneref returned is a cursor that represents the current zone 858 * being examined. It should be advanced by one before calling 859 * next_zones_zonelist again. 860 */ 861struct zoneref *next_zones_zonelist(struct zoneref *z, 862 enum zone_type highest_zoneidx, 863 nodemask_t *nodes, 864 struct zone **zone); 865 866/** 867 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 868 * @zonelist - The zonelist to search for a suitable zone 869 * @highest_zoneidx - The zone index of the highest zone to return 870 * @nodes - An optional nodemask to filter the zonelist with 871 * @zone - The first suitable zone found is returned via this parameter 872 * 873 * This function returns the first zone at or below a given zone index that is 874 * within the allowed nodemask. The zoneref returned is a cursor that can be 875 * used to iterate the zonelist with next_zones_zonelist by advancing it by 876 * one before calling. 877 */ 878static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 879 enum zone_type highest_zoneidx, 880 nodemask_t *nodes, 881 struct zone **zone) 882{ 883 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 884 zone); 885} 886 887/** 888 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 889 * @zone - The current zone in the iterator 890 * @z - The current pointer within zonelist->zones being iterated 891 * @zlist - The zonelist being iterated 892 * @highidx - The zone index of the highest zone to return 893 * @nodemask - Nodemask allowed by the allocator 894 * 895 * This iterator iterates though all zones at or below a given zone index and 896 * within a given nodemask 897 */ 898#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 899 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 900 zone; \ 901 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 902 903/** 904 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 905 * @zone - The current zone in the iterator 906 * @z - The current pointer within zonelist->zones being iterated 907 * @zlist - The zonelist being iterated 908 * @highidx - The zone index of the highest zone to return 909 * 910 * This iterator iterates though all zones at or below a given zone index. 911 */ 912#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 913 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 914 915#ifdef CONFIG_SPARSEMEM 916#include <asm/sparsemem.h> 917#endif 918 919#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 920 !defined(CONFIG_ARCH_POPULATES_NODE_MAP) 921static inline unsigned long early_pfn_to_nid(unsigned long pfn) 922{ 923 return 0; 924} 925#endif 926 927#ifdef CONFIG_FLATMEM 928#define pfn_to_nid(pfn) (0) 929#endif 930 931#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 932#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 933 934#ifdef CONFIG_SPARSEMEM 935 936/* 937 * SECTION_SHIFT #bits space required to store a section # 938 * 939 * PA_SECTION_SHIFT physical address to/from section number 940 * PFN_SECTION_SHIFT pfn to/from section number 941 */ 942#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 943 944#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 945#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 946 947#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 948 949#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 950#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 951 952#define SECTION_BLOCKFLAGS_BITS \ 953 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 954 955#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 956#error Allocator MAX_ORDER exceeds SECTION_SIZE 957#endif 958 959struct page; 960struct page_cgroup; 961struct mem_section { 962 /* 963 * This is, logically, a pointer to an array of struct 964 * pages. However, it is stored with some other magic. 965 * (see sparse.c::sparse_init_one_section()) 966 * 967 * Additionally during early boot we encode node id of 968 * the location of the section here to guide allocation. 969 * (see sparse.c::memory_present()) 970 * 971 * Making it a UL at least makes someone do a cast 972 * before using it wrong. 973 */ 974 unsigned long section_mem_map; 975 976 /* See declaration of similar field in struct zone */ 977 unsigned long *pageblock_flags; 978#ifdef CONFIG_CGROUP_MEM_RES_CTLR 979 /* 980 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 981 * section. (see memcontrol.h/page_cgroup.h about this.) 982 */ 983 struct page_cgroup *page_cgroup; 984 unsigned long pad; 985#endif 986}; 987 988#ifdef CONFIG_SPARSEMEM_EXTREME 989#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 990#else 991#define SECTIONS_PER_ROOT 1 992#endif 993 994#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 995#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 996#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 997 998#ifdef CONFIG_SPARSEMEM_EXTREME 999extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1000#else 1001extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1002#endif 1003 1004static inline struct mem_section *__nr_to_section(unsigned long nr) 1005{ 1006 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1007 return NULL; 1008 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1009} 1010extern int __section_nr(struct mem_section* ms); 1011extern unsigned long usemap_size(void); 1012 1013/* 1014 * We use the lower bits of the mem_map pointer to store 1015 * a little bit of information. There should be at least 1016 * 3 bits here due to 32-bit alignment. 1017 */ 1018#define SECTION_MARKED_PRESENT (1UL<<0) 1019#define SECTION_HAS_MEM_MAP (1UL<<1) 1020#define SECTION_MAP_LAST_BIT (1UL<<2) 1021#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1022#define SECTION_NID_SHIFT 2 1023 1024static inline struct page *__section_mem_map_addr(struct mem_section *section) 1025{ 1026 unsigned long map = section->section_mem_map; 1027 map &= SECTION_MAP_MASK; 1028 return (struct page *)map; 1029} 1030 1031static inline int present_section(struct mem_section *section) 1032{ 1033 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1034} 1035 1036static inline int present_section_nr(unsigned long nr) 1037{ 1038 return present_section(__nr_to_section(nr)); 1039} 1040 1041static inline int valid_section(struct mem_section *section) 1042{ 1043 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1044} 1045 1046static inline int valid_section_nr(unsigned long nr) 1047{ 1048 return valid_section(__nr_to_section(nr)); 1049} 1050 1051static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1052{ 1053 return __nr_to_section(pfn_to_section_nr(pfn)); 1054} 1055 1056static inline int pfn_valid(unsigned long pfn) 1057{ 1058 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1059 return 0; 1060 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1061} 1062 1063static inline int pfn_present(unsigned long pfn) 1064{ 1065 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1066 return 0; 1067 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1068} 1069 1070/* 1071 * These are _only_ used during initialisation, therefore they 1072 * can use __initdata ... They could have names to indicate 1073 * this restriction. 1074 */ 1075#ifdef CONFIG_NUMA 1076#define pfn_to_nid(pfn) \ 1077({ \ 1078 unsigned long __pfn_to_nid_pfn = (pfn); \ 1079 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1080}) 1081#else 1082#define pfn_to_nid(pfn) (0) 1083#endif 1084 1085#define early_pfn_valid(pfn) pfn_valid(pfn) 1086void sparse_init(void); 1087#else 1088#define sparse_init() do {} while (0) 1089#define sparse_index_init(_sec, _nid) do {} while (0) 1090#endif /* CONFIG_SPARSEMEM */ 1091 1092#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1093bool early_pfn_in_nid(unsigned long pfn, int nid); 1094#else 1095#define early_pfn_in_nid(pfn, nid) (1) 1096#endif 1097 1098#ifndef early_pfn_valid 1099#define early_pfn_valid(pfn) (1) 1100#endif 1101 1102void memory_present(int nid, unsigned long start, unsigned long end); 1103unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1104 1105/* 1106 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1107 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1108 * pfn_valid_within() should be used in this case; we optimise this away 1109 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1110 */ 1111#ifdef CONFIG_HOLES_IN_ZONE 1112#define pfn_valid_within(pfn) pfn_valid(pfn) 1113#else 1114#define pfn_valid_within(pfn) (1) 1115#endif 1116 1117#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1118/* 1119 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1120 * associated with it or not. In FLATMEM, it is expected that holes always 1121 * have valid memmap as long as there is valid PFNs either side of the hole. 1122 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1123 * entire section. 1124 * 1125 * However, an ARM, and maybe other embedded architectures in the future 1126 * free memmap backing holes to save memory on the assumption the memmap is 1127 * never used. The page_zone linkages are then broken even though pfn_valid() 1128 * returns true. A walker of the full memmap must then do this additional 1129 * check to ensure the memmap they are looking at is sane by making sure 1130 * the zone and PFN linkages are still valid. This is expensive, but walkers 1131 * of the full memmap are extremely rare. 1132 */ 1133int memmap_valid_within(unsigned long pfn, 1134 struct page *page, struct zone *zone); 1135#else 1136static inline int memmap_valid_within(unsigned long pfn, 1137 struct page *page, struct zone *zone) 1138{ 1139 return 1; 1140} 1141#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1142 1143#endif /* !__GENERATING_BOUNDS.H */ 1144#endif /* !__ASSEMBLY__ */ 1145#endif /* _LINUX_MMZONE_H */