at v2.6.39 57 kB view raw
1/* 2 * fs/logfs/readwrite.c 3 * 4 * As should be obvious for Linux kernel code, license is GPLv2 5 * 6 * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org> 7 * 8 * 9 * Actually contains five sets of very similar functions: 10 * read read blocks from a file 11 * seek_hole find next hole 12 * seek_data find next data block 13 * valid check whether a block still belongs to a file 14 * write write blocks to a file 15 * delete delete a block (for directories and ifile) 16 * rewrite move existing blocks of a file to a new location (gc helper) 17 * truncate truncate a file 18 */ 19#include "logfs.h" 20#include <linux/sched.h> 21#include <linux/slab.h> 22 23static u64 adjust_bix(u64 bix, level_t level) 24{ 25 switch (level) { 26 case 0: 27 return bix; 28 case LEVEL(1): 29 return max_t(u64, bix, I0_BLOCKS); 30 case LEVEL(2): 31 return max_t(u64, bix, I1_BLOCKS); 32 case LEVEL(3): 33 return max_t(u64, bix, I2_BLOCKS); 34 case LEVEL(4): 35 return max_t(u64, bix, I3_BLOCKS); 36 case LEVEL(5): 37 return max_t(u64, bix, I4_BLOCKS); 38 default: 39 WARN_ON(1); 40 return bix; 41 } 42} 43 44static inline u64 maxbix(u8 height) 45{ 46 return 1ULL << (LOGFS_BLOCK_BITS * height); 47} 48 49/** 50 * The inode address space is cut in two halves. Lower half belongs to data 51 * pages, upper half to indirect blocks. If the high bit (INDIRECT_BIT) is 52 * set, the actual block index (bix) and level can be derived from the page 53 * index. 54 * 55 * The lowest three bits of the block index are set to 0 after packing and 56 * unpacking. Since the lowest n bits (9 for 4KiB blocksize) are ignored 57 * anyway this is harmless. 58 */ 59#define ARCH_SHIFT (BITS_PER_LONG - 32) 60#define INDIRECT_BIT (0x80000000UL << ARCH_SHIFT) 61#define LEVEL_SHIFT (28 + ARCH_SHIFT) 62static inline pgoff_t first_indirect_block(void) 63{ 64 return INDIRECT_BIT | (1ULL << LEVEL_SHIFT); 65} 66 67pgoff_t logfs_pack_index(u64 bix, level_t level) 68{ 69 pgoff_t index; 70 71 BUG_ON(bix >= INDIRECT_BIT); 72 if (level == 0) 73 return bix; 74 75 index = INDIRECT_BIT; 76 index |= (__force long)level << LEVEL_SHIFT; 77 index |= bix >> ((__force u8)level * LOGFS_BLOCK_BITS); 78 return index; 79} 80 81void logfs_unpack_index(pgoff_t index, u64 *bix, level_t *level) 82{ 83 u8 __level; 84 85 if (!(index & INDIRECT_BIT)) { 86 *bix = index; 87 *level = 0; 88 return; 89 } 90 91 __level = (index & ~INDIRECT_BIT) >> LEVEL_SHIFT; 92 *level = LEVEL(__level); 93 *bix = (index << (__level * LOGFS_BLOCK_BITS)) & ~INDIRECT_BIT; 94 *bix = adjust_bix(*bix, *level); 95 return; 96} 97#undef ARCH_SHIFT 98#undef INDIRECT_BIT 99#undef LEVEL_SHIFT 100 101/* 102 * Time is stored as nanoseconds since the epoch. 103 */ 104static struct timespec be64_to_timespec(__be64 betime) 105{ 106 return ns_to_timespec(be64_to_cpu(betime)); 107} 108 109static __be64 timespec_to_be64(struct timespec tsp) 110{ 111 return cpu_to_be64((u64)tsp.tv_sec * NSEC_PER_SEC + tsp.tv_nsec); 112} 113 114static void logfs_disk_to_inode(struct logfs_disk_inode *di, struct inode*inode) 115{ 116 struct logfs_inode *li = logfs_inode(inode); 117 int i; 118 119 inode->i_mode = be16_to_cpu(di->di_mode); 120 li->li_height = di->di_height; 121 li->li_flags = be32_to_cpu(di->di_flags); 122 inode->i_uid = be32_to_cpu(di->di_uid); 123 inode->i_gid = be32_to_cpu(di->di_gid); 124 inode->i_size = be64_to_cpu(di->di_size); 125 logfs_set_blocks(inode, be64_to_cpu(di->di_used_bytes)); 126 inode->i_atime = be64_to_timespec(di->di_atime); 127 inode->i_ctime = be64_to_timespec(di->di_ctime); 128 inode->i_mtime = be64_to_timespec(di->di_mtime); 129 inode->i_nlink = be32_to_cpu(di->di_refcount); 130 inode->i_generation = be32_to_cpu(di->di_generation); 131 132 switch (inode->i_mode & S_IFMT) { 133 case S_IFSOCK: /* fall through */ 134 case S_IFBLK: /* fall through */ 135 case S_IFCHR: /* fall through */ 136 case S_IFIFO: 137 inode->i_rdev = be64_to_cpu(di->di_data[0]); 138 break; 139 case S_IFDIR: /* fall through */ 140 case S_IFREG: /* fall through */ 141 case S_IFLNK: 142 for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++) 143 li->li_data[i] = be64_to_cpu(di->di_data[i]); 144 break; 145 default: 146 BUG(); 147 } 148} 149 150static void logfs_inode_to_disk(struct inode *inode, struct logfs_disk_inode*di) 151{ 152 struct logfs_inode *li = logfs_inode(inode); 153 int i; 154 155 di->di_mode = cpu_to_be16(inode->i_mode); 156 di->di_height = li->li_height; 157 di->di_pad = 0; 158 di->di_flags = cpu_to_be32(li->li_flags); 159 di->di_uid = cpu_to_be32(inode->i_uid); 160 di->di_gid = cpu_to_be32(inode->i_gid); 161 di->di_size = cpu_to_be64(i_size_read(inode)); 162 di->di_used_bytes = cpu_to_be64(li->li_used_bytes); 163 di->di_atime = timespec_to_be64(inode->i_atime); 164 di->di_ctime = timespec_to_be64(inode->i_ctime); 165 di->di_mtime = timespec_to_be64(inode->i_mtime); 166 di->di_refcount = cpu_to_be32(inode->i_nlink); 167 di->di_generation = cpu_to_be32(inode->i_generation); 168 169 switch (inode->i_mode & S_IFMT) { 170 case S_IFSOCK: /* fall through */ 171 case S_IFBLK: /* fall through */ 172 case S_IFCHR: /* fall through */ 173 case S_IFIFO: 174 di->di_data[0] = cpu_to_be64(inode->i_rdev); 175 break; 176 case S_IFDIR: /* fall through */ 177 case S_IFREG: /* fall through */ 178 case S_IFLNK: 179 for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++) 180 di->di_data[i] = cpu_to_be64(li->li_data[i]); 181 break; 182 default: 183 BUG(); 184 } 185} 186 187static void __logfs_set_blocks(struct inode *inode) 188{ 189 struct super_block *sb = inode->i_sb; 190 struct logfs_inode *li = logfs_inode(inode); 191 192 inode->i_blocks = ULONG_MAX; 193 if (li->li_used_bytes >> sb->s_blocksize_bits < ULONG_MAX) 194 inode->i_blocks = ALIGN(li->li_used_bytes, 512) >> 9; 195} 196 197void logfs_set_blocks(struct inode *inode, u64 bytes) 198{ 199 struct logfs_inode *li = logfs_inode(inode); 200 201 li->li_used_bytes = bytes; 202 __logfs_set_blocks(inode); 203} 204 205static void prelock_page(struct super_block *sb, struct page *page, int lock) 206{ 207 struct logfs_super *super = logfs_super(sb); 208 209 BUG_ON(!PageLocked(page)); 210 if (lock) { 211 BUG_ON(PagePreLocked(page)); 212 SetPagePreLocked(page); 213 } else { 214 /* We are in GC path. */ 215 if (PagePreLocked(page)) 216 super->s_lock_count++; 217 else 218 SetPagePreLocked(page); 219 } 220} 221 222static void preunlock_page(struct super_block *sb, struct page *page, int lock) 223{ 224 struct logfs_super *super = logfs_super(sb); 225 226 BUG_ON(!PageLocked(page)); 227 if (lock) 228 ClearPagePreLocked(page); 229 else { 230 /* We are in GC path. */ 231 BUG_ON(!PagePreLocked(page)); 232 if (super->s_lock_count) 233 super->s_lock_count--; 234 else 235 ClearPagePreLocked(page); 236 } 237} 238 239/* 240 * Logfs is prone to an AB-BA deadlock where one task tries to acquire 241 * s_write_mutex with a locked page and GC tries to get that page while holding 242 * s_write_mutex. 243 * To solve this issue logfs will ignore the page lock iff the page in question 244 * is waiting for s_write_mutex. We annotate this fact by setting PG_pre_locked 245 * in addition to PG_locked. 246 */ 247static void logfs_get_wblocks(struct super_block *sb, struct page *page, 248 int lock) 249{ 250 struct logfs_super *super = logfs_super(sb); 251 252 if (page) 253 prelock_page(sb, page, lock); 254 255 if (lock) { 256 mutex_lock(&super->s_write_mutex); 257 logfs_gc_pass(sb); 258 /* FIXME: We also have to check for shadowed space 259 * and mempool fill grade */ 260 } 261} 262 263static void logfs_put_wblocks(struct super_block *sb, struct page *page, 264 int lock) 265{ 266 struct logfs_super *super = logfs_super(sb); 267 268 if (page) 269 preunlock_page(sb, page, lock); 270 /* Order matters - we must clear PG_pre_locked before releasing 271 * s_write_mutex or we could race against another task. */ 272 if (lock) 273 mutex_unlock(&super->s_write_mutex); 274} 275 276static struct page *logfs_get_read_page(struct inode *inode, u64 bix, 277 level_t level) 278{ 279 return find_or_create_page(inode->i_mapping, 280 logfs_pack_index(bix, level), GFP_NOFS); 281} 282 283static void logfs_put_read_page(struct page *page) 284{ 285 unlock_page(page); 286 page_cache_release(page); 287} 288 289static void logfs_lock_write_page(struct page *page) 290{ 291 int loop = 0; 292 293 while (unlikely(!trylock_page(page))) { 294 if (loop++ > 0x1000) { 295 /* Has been observed once so far... */ 296 printk(KERN_ERR "stack at %p\n", &loop); 297 BUG(); 298 } 299 if (PagePreLocked(page)) { 300 /* Holder of page lock is waiting for us, it 301 * is safe to use this page. */ 302 break; 303 } 304 /* Some other process has this page locked and has 305 * nothing to do with us. Wait for it to finish. 306 */ 307 schedule(); 308 } 309 BUG_ON(!PageLocked(page)); 310} 311 312static struct page *logfs_get_write_page(struct inode *inode, u64 bix, 313 level_t level) 314{ 315 struct address_space *mapping = inode->i_mapping; 316 pgoff_t index = logfs_pack_index(bix, level); 317 struct page *page; 318 int err; 319 320repeat: 321 page = find_get_page(mapping, index); 322 if (!page) { 323 page = __page_cache_alloc(GFP_NOFS); 324 if (!page) 325 return NULL; 326 err = add_to_page_cache_lru(page, mapping, index, GFP_NOFS); 327 if (unlikely(err)) { 328 page_cache_release(page); 329 if (err == -EEXIST) 330 goto repeat; 331 return NULL; 332 } 333 } else logfs_lock_write_page(page); 334 BUG_ON(!PageLocked(page)); 335 return page; 336} 337 338static void logfs_unlock_write_page(struct page *page) 339{ 340 if (!PagePreLocked(page)) 341 unlock_page(page); 342} 343 344static void logfs_put_write_page(struct page *page) 345{ 346 logfs_unlock_write_page(page); 347 page_cache_release(page); 348} 349 350static struct page *logfs_get_page(struct inode *inode, u64 bix, level_t level, 351 int rw) 352{ 353 if (rw == READ) 354 return logfs_get_read_page(inode, bix, level); 355 else 356 return logfs_get_write_page(inode, bix, level); 357} 358 359static void logfs_put_page(struct page *page, int rw) 360{ 361 if (rw == READ) 362 logfs_put_read_page(page); 363 else 364 logfs_put_write_page(page); 365} 366 367static unsigned long __get_bits(u64 val, int skip, int no) 368{ 369 u64 ret = val; 370 371 ret >>= skip * no; 372 ret <<= 64 - no; 373 ret >>= 64 - no; 374 return ret; 375} 376 377static unsigned long get_bits(u64 val, level_t skip) 378{ 379 return __get_bits(val, (__force int)skip, LOGFS_BLOCK_BITS); 380} 381 382static inline void init_shadow_tree(struct super_block *sb, 383 struct shadow_tree *tree) 384{ 385 struct logfs_super *super = logfs_super(sb); 386 387 btree_init_mempool64(&tree->new, super->s_btree_pool); 388 btree_init_mempool64(&tree->old, super->s_btree_pool); 389} 390 391static void indirect_write_block(struct logfs_block *block) 392{ 393 struct page *page; 394 struct inode *inode; 395 int ret; 396 397 page = block->page; 398 inode = page->mapping->host; 399 logfs_lock_write_page(page); 400 ret = logfs_write_buf(inode, page, 0); 401 logfs_unlock_write_page(page); 402 /* 403 * This needs some rework. Unless you want your filesystem to run 404 * completely synchronously (you don't), the filesystem will always 405 * report writes as 'successful' before the actual work has been 406 * done. The actual work gets done here and this is where any errors 407 * will show up. And there isn't much we can do about it, really. 408 * 409 * Some attempts to fix the errors (move from bad blocks, retry io,...) 410 * have already been done, so anything left should be either a broken 411 * device or a bug somewhere in logfs itself. Being relatively new, 412 * the odds currently favor a bug, so for now the line below isn't 413 * entirely tasteles. 414 */ 415 BUG_ON(ret); 416} 417 418static void inode_write_block(struct logfs_block *block) 419{ 420 struct inode *inode; 421 int ret; 422 423 inode = block->inode; 424 if (inode->i_ino == LOGFS_INO_MASTER) 425 logfs_write_anchor(inode->i_sb); 426 else { 427 ret = __logfs_write_inode(inode, 0); 428 /* see indirect_write_block comment */ 429 BUG_ON(ret); 430 } 431} 432 433/* 434 * This silences a false, yet annoying gcc warning. I hate it when my editor 435 * jumps into bitops.h each time I recompile this file. 436 * TODO: Complain to gcc folks about this and upgrade compiler. 437 */ 438static unsigned long fnb(const unsigned long *addr, 439 unsigned long size, unsigned long offset) 440{ 441 return find_next_bit(addr, size, offset); 442} 443 444static __be64 inode_val0(struct inode *inode) 445{ 446 struct logfs_inode *li = logfs_inode(inode); 447 u64 val; 448 449 /* 450 * Explicit shifting generates good code, but must match the format 451 * of the structure. Add some paranoia just in case. 452 */ 453 BUILD_BUG_ON(offsetof(struct logfs_disk_inode, di_mode) != 0); 454 BUILD_BUG_ON(offsetof(struct logfs_disk_inode, di_height) != 2); 455 BUILD_BUG_ON(offsetof(struct logfs_disk_inode, di_flags) != 4); 456 457 val = (u64)inode->i_mode << 48 | 458 (u64)li->li_height << 40 | 459 (u64)li->li_flags; 460 return cpu_to_be64(val); 461} 462 463static int inode_write_alias(struct super_block *sb, 464 struct logfs_block *block, write_alias_t *write_one_alias) 465{ 466 struct inode *inode = block->inode; 467 struct logfs_inode *li = logfs_inode(inode); 468 unsigned long pos; 469 u64 ino , bix; 470 __be64 val; 471 level_t level; 472 int err; 473 474 for (pos = 0; ; pos++) { 475 pos = fnb(block->alias_map, LOGFS_BLOCK_FACTOR, pos); 476 if (pos >= LOGFS_EMBEDDED_FIELDS + INODE_POINTER_OFS) 477 return 0; 478 479 switch (pos) { 480 case INODE_HEIGHT_OFS: 481 val = inode_val0(inode); 482 break; 483 case INODE_USED_OFS: 484 val = cpu_to_be64(li->li_used_bytes);; 485 break; 486 case INODE_SIZE_OFS: 487 val = cpu_to_be64(i_size_read(inode)); 488 break; 489 case INODE_POINTER_OFS ... INODE_POINTER_OFS + LOGFS_EMBEDDED_FIELDS - 1: 490 val = cpu_to_be64(li->li_data[pos - INODE_POINTER_OFS]); 491 break; 492 default: 493 BUG(); 494 } 495 496 ino = LOGFS_INO_MASTER; 497 bix = inode->i_ino; 498 level = LEVEL(0); 499 err = write_one_alias(sb, ino, bix, level, pos, val); 500 if (err) 501 return err; 502 } 503} 504 505static int indirect_write_alias(struct super_block *sb, 506 struct logfs_block *block, write_alias_t *write_one_alias) 507{ 508 unsigned long pos; 509 struct page *page = block->page; 510 u64 ino , bix; 511 __be64 *child, val; 512 level_t level; 513 int err; 514 515 for (pos = 0; ; pos++) { 516 pos = fnb(block->alias_map, LOGFS_BLOCK_FACTOR, pos); 517 if (pos >= LOGFS_BLOCK_FACTOR) 518 return 0; 519 520 ino = page->mapping->host->i_ino; 521 logfs_unpack_index(page->index, &bix, &level); 522 child = kmap_atomic(page, KM_USER0); 523 val = child[pos]; 524 kunmap_atomic(child, KM_USER0); 525 err = write_one_alias(sb, ino, bix, level, pos, val); 526 if (err) 527 return err; 528 } 529} 530 531int logfs_write_obj_aliases_pagecache(struct super_block *sb) 532{ 533 struct logfs_super *super = logfs_super(sb); 534 struct logfs_block *block; 535 int err; 536 537 list_for_each_entry(block, &super->s_object_alias, alias_list) { 538 err = block->ops->write_alias(sb, block, write_alias_journal); 539 if (err) 540 return err; 541 } 542 return 0; 543} 544 545void __free_block(struct super_block *sb, struct logfs_block *block) 546{ 547 BUG_ON(!list_empty(&block->item_list)); 548 list_del(&block->alias_list); 549 mempool_free(block, logfs_super(sb)->s_block_pool); 550} 551 552static void inode_free_block(struct super_block *sb, struct logfs_block *block) 553{ 554 struct inode *inode = block->inode; 555 556 logfs_inode(inode)->li_block = NULL; 557 __free_block(sb, block); 558} 559 560static void indirect_free_block(struct super_block *sb, 561 struct logfs_block *block) 562{ 563 ClearPagePrivate(block->page); 564 block->page->private = 0; 565 __free_block(sb, block); 566} 567 568 569static struct logfs_block_ops inode_block_ops = { 570 .write_block = inode_write_block, 571 .free_block = inode_free_block, 572 .write_alias = inode_write_alias, 573}; 574 575struct logfs_block_ops indirect_block_ops = { 576 .write_block = indirect_write_block, 577 .free_block = indirect_free_block, 578 .write_alias = indirect_write_alias, 579}; 580 581struct logfs_block *__alloc_block(struct super_block *sb, 582 u64 ino, u64 bix, level_t level) 583{ 584 struct logfs_super *super = logfs_super(sb); 585 struct logfs_block *block; 586 587 block = mempool_alloc(super->s_block_pool, GFP_NOFS); 588 memset(block, 0, sizeof(*block)); 589 INIT_LIST_HEAD(&block->alias_list); 590 INIT_LIST_HEAD(&block->item_list); 591 block->sb = sb; 592 block->ino = ino; 593 block->bix = bix; 594 block->level = level; 595 return block; 596} 597 598static void alloc_inode_block(struct inode *inode) 599{ 600 struct logfs_inode *li = logfs_inode(inode); 601 struct logfs_block *block; 602 603 if (li->li_block) 604 return; 605 606 block = __alloc_block(inode->i_sb, LOGFS_INO_MASTER, inode->i_ino, 0); 607 block->inode = inode; 608 li->li_block = block; 609 block->ops = &inode_block_ops; 610} 611 612void initialize_block_counters(struct page *page, struct logfs_block *block, 613 __be64 *array, int page_is_empty) 614{ 615 u64 ptr; 616 int i, start; 617 618 block->partial = 0; 619 block->full = 0; 620 start = 0; 621 if (page->index < first_indirect_block()) { 622 /* Counters are pointless on level 0 */ 623 return; 624 } 625 if (page->index == first_indirect_block()) { 626 /* Skip unused pointers */ 627 start = I0_BLOCKS; 628 block->full = I0_BLOCKS; 629 } 630 if (!page_is_empty) { 631 for (i = start; i < LOGFS_BLOCK_FACTOR; i++) { 632 ptr = be64_to_cpu(array[i]); 633 if (ptr) 634 block->partial++; 635 if (ptr & LOGFS_FULLY_POPULATED) 636 block->full++; 637 } 638 } 639} 640 641static void alloc_data_block(struct inode *inode, struct page *page) 642{ 643 struct logfs_block *block; 644 u64 bix; 645 level_t level; 646 647 if (PagePrivate(page)) 648 return; 649 650 logfs_unpack_index(page->index, &bix, &level); 651 block = __alloc_block(inode->i_sb, inode->i_ino, bix, level); 652 block->page = page; 653 SetPagePrivate(page); 654 page->private = (unsigned long)block; 655 block->ops = &indirect_block_ops; 656} 657 658static void alloc_indirect_block(struct inode *inode, struct page *page, 659 int page_is_empty) 660{ 661 struct logfs_block *block; 662 __be64 *array; 663 664 if (PagePrivate(page)) 665 return; 666 667 alloc_data_block(inode, page); 668 669 block = logfs_block(page); 670 array = kmap_atomic(page, KM_USER0); 671 initialize_block_counters(page, block, array, page_is_empty); 672 kunmap_atomic(array, KM_USER0); 673} 674 675static void block_set_pointer(struct page *page, int index, u64 ptr) 676{ 677 struct logfs_block *block = logfs_block(page); 678 __be64 *array; 679 u64 oldptr; 680 681 BUG_ON(!block); 682 array = kmap_atomic(page, KM_USER0); 683 oldptr = be64_to_cpu(array[index]); 684 array[index] = cpu_to_be64(ptr); 685 kunmap_atomic(array, KM_USER0); 686 SetPageUptodate(page); 687 688 block->full += !!(ptr & LOGFS_FULLY_POPULATED) 689 - !!(oldptr & LOGFS_FULLY_POPULATED); 690 block->partial += !!ptr - !!oldptr; 691} 692 693static u64 block_get_pointer(struct page *page, int index) 694{ 695 __be64 *block; 696 u64 ptr; 697 698 block = kmap_atomic(page, KM_USER0); 699 ptr = be64_to_cpu(block[index]); 700 kunmap_atomic(block, KM_USER0); 701 return ptr; 702} 703 704static int logfs_read_empty(struct page *page) 705{ 706 zero_user_segment(page, 0, PAGE_CACHE_SIZE); 707 return 0; 708} 709 710static int logfs_read_direct(struct inode *inode, struct page *page) 711{ 712 struct logfs_inode *li = logfs_inode(inode); 713 pgoff_t index = page->index; 714 u64 block; 715 716 block = li->li_data[index]; 717 if (!block) 718 return logfs_read_empty(page); 719 720 return logfs_segment_read(inode, page, block, index, 0); 721} 722 723static int logfs_read_loop(struct inode *inode, struct page *page, 724 int rw_context) 725{ 726 struct logfs_inode *li = logfs_inode(inode); 727 u64 bix, bofs = li->li_data[INDIRECT_INDEX]; 728 level_t level, target_level; 729 int ret; 730 struct page *ipage; 731 732 logfs_unpack_index(page->index, &bix, &target_level); 733 if (!bofs) 734 return logfs_read_empty(page); 735 736 if (bix >= maxbix(li->li_height)) 737 return logfs_read_empty(page); 738 739 for (level = LEVEL(li->li_height); 740 (__force u8)level > (__force u8)target_level; 741 level = SUBLEVEL(level)){ 742 ipage = logfs_get_page(inode, bix, level, rw_context); 743 if (!ipage) 744 return -ENOMEM; 745 746 ret = logfs_segment_read(inode, ipage, bofs, bix, level); 747 if (ret) { 748 logfs_put_read_page(ipage); 749 return ret; 750 } 751 752 bofs = block_get_pointer(ipage, get_bits(bix, SUBLEVEL(level))); 753 logfs_put_page(ipage, rw_context); 754 if (!bofs) 755 return logfs_read_empty(page); 756 } 757 758 return logfs_segment_read(inode, page, bofs, bix, 0); 759} 760 761static int logfs_read_block(struct inode *inode, struct page *page, 762 int rw_context) 763{ 764 pgoff_t index = page->index; 765 766 if (index < I0_BLOCKS) 767 return logfs_read_direct(inode, page); 768 return logfs_read_loop(inode, page, rw_context); 769} 770 771static int logfs_exist_loop(struct inode *inode, u64 bix) 772{ 773 struct logfs_inode *li = logfs_inode(inode); 774 u64 bofs = li->li_data[INDIRECT_INDEX]; 775 level_t level; 776 int ret; 777 struct page *ipage; 778 779 if (!bofs) 780 return 0; 781 if (bix >= maxbix(li->li_height)) 782 return 0; 783 784 for (level = LEVEL(li->li_height); level != 0; level = SUBLEVEL(level)) { 785 ipage = logfs_get_read_page(inode, bix, level); 786 if (!ipage) 787 return -ENOMEM; 788 789 ret = logfs_segment_read(inode, ipage, bofs, bix, level); 790 if (ret) { 791 logfs_put_read_page(ipage); 792 return ret; 793 } 794 795 bofs = block_get_pointer(ipage, get_bits(bix, SUBLEVEL(level))); 796 logfs_put_read_page(ipage); 797 if (!bofs) 798 return 0; 799 } 800 801 return 1; 802} 803 804int logfs_exist_block(struct inode *inode, u64 bix) 805{ 806 struct logfs_inode *li = logfs_inode(inode); 807 808 if (bix < I0_BLOCKS) 809 return !!li->li_data[bix]; 810 return logfs_exist_loop(inode, bix); 811} 812 813static u64 seek_holedata_direct(struct inode *inode, u64 bix, int data) 814{ 815 struct logfs_inode *li = logfs_inode(inode); 816 817 for (; bix < I0_BLOCKS; bix++) 818 if (data ^ (li->li_data[bix] == 0)) 819 return bix; 820 return I0_BLOCKS; 821} 822 823static u64 seek_holedata_loop(struct inode *inode, u64 bix, int data) 824{ 825 struct logfs_inode *li = logfs_inode(inode); 826 __be64 *rblock; 827 u64 increment, bofs = li->li_data[INDIRECT_INDEX]; 828 level_t level; 829 int ret, slot; 830 struct page *page; 831 832 BUG_ON(!bofs); 833 834 for (level = LEVEL(li->li_height); level != 0; level = SUBLEVEL(level)) { 835 increment = 1 << (LOGFS_BLOCK_BITS * ((__force u8)level-1)); 836 page = logfs_get_read_page(inode, bix, level); 837 if (!page) 838 return bix; 839 840 ret = logfs_segment_read(inode, page, bofs, bix, level); 841 if (ret) { 842 logfs_put_read_page(page); 843 return bix; 844 } 845 846 slot = get_bits(bix, SUBLEVEL(level)); 847 rblock = kmap_atomic(page, KM_USER0); 848 while (slot < LOGFS_BLOCK_FACTOR) { 849 if (data && (rblock[slot] != 0)) 850 break; 851 if (!data && !(be64_to_cpu(rblock[slot]) & LOGFS_FULLY_POPULATED)) 852 break; 853 slot++; 854 bix += increment; 855 bix &= ~(increment - 1); 856 } 857 if (slot >= LOGFS_BLOCK_FACTOR) { 858 kunmap_atomic(rblock, KM_USER0); 859 logfs_put_read_page(page); 860 return bix; 861 } 862 bofs = be64_to_cpu(rblock[slot]); 863 kunmap_atomic(rblock, KM_USER0); 864 logfs_put_read_page(page); 865 if (!bofs) { 866 BUG_ON(data); 867 return bix; 868 } 869 } 870 return bix; 871} 872 873/** 874 * logfs_seek_hole - find next hole starting at a given block index 875 * @inode: inode to search in 876 * @bix: block index to start searching 877 * 878 * Returns next hole. If the file doesn't contain any further holes, the 879 * block address next to eof is returned instead. 880 */ 881u64 logfs_seek_hole(struct inode *inode, u64 bix) 882{ 883 struct logfs_inode *li = logfs_inode(inode); 884 885 if (bix < I0_BLOCKS) { 886 bix = seek_holedata_direct(inode, bix, 0); 887 if (bix < I0_BLOCKS) 888 return bix; 889 } 890 891 if (!li->li_data[INDIRECT_INDEX]) 892 return bix; 893 else if (li->li_data[INDIRECT_INDEX] & LOGFS_FULLY_POPULATED) 894 bix = maxbix(li->li_height); 895 else if (bix >= maxbix(li->li_height)) 896 return bix; 897 else { 898 bix = seek_holedata_loop(inode, bix, 0); 899 if (bix < maxbix(li->li_height)) 900 return bix; 901 /* Should not happen anymore. But if some port writes semi- 902 * corrupt images (as this one used to) we might run into it. 903 */ 904 WARN_ON_ONCE(bix == maxbix(li->li_height)); 905 } 906 907 return bix; 908} 909 910static u64 __logfs_seek_data(struct inode *inode, u64 bix) 911{ 912 struct logfs_inode *li = logfs_inode(inode); 913 914 if (bix < I0_BLOCKS) { 915 bix = seek_holedata_direct(inode, bix, 1); 916 if (bix < I0_BLOCKS) 917 return bix; 918 } 919 920 if (bix < maxbix(li->li_height)) { 921 if (!li->li_data[INDIRECT_INDEX]) 922 bix = maxbix(li->li_height); 923 else 924 return seek_holedata_loop(inode, bix, 1); 925 } 926 927 return bix; 928} 929 930/** 931 * logfs_seek_data - find next data block after a given block index 932 * @inode: inode to search in 933 * @bix: block index to start searching 934 * 935 * Returns next data block. If the file doesn't contain any further data 936 * blocks, the last block in the file is returned instead. 937 */ 938u64 logfs_seek_data(struct inode *inode, u64 bix) 939{ 940 struct super_block *sb = inode->i_sb; 941 u64 ret, end; 942 943 ret = __logfs_seek_data(inode, bix); 944 end = i_size_read(inode) >> sb->s_blocksize_bits; 945 if (ret >= end) 946 ret = max(bix, end); 947 return ret; 948} 949 950static int logfs_is_valid_direct(struct logfs_inode *li, u64 bix, u64 ofs) 951{ 952 return pure_ofs(li->li_data[bix]) == ofs; 953} 954 955static int __logfs_is_valid_loop(struct inode *inode, u64 bix, 956 u64 ofs, u64 bofs) 957{ 958 struct logfs_inode *li = logfs_inode(inode); 959 level_t level; 960 int ret; 961 struct page *page; 962 963 for (level = LEVEL(li->li_height); level != 0; level = SUBLEVEL(level)){ 964 page = logfs_get_write_page(inode, bix, level); 965 BUG_ON(!page); 966 967 ret = logfs_segment_read(inode, page, bofs, bix, level); 968 if (ret) { 969 logfs_put_write_page(page); 970 return 0; 971 } 972 973 bofs = block_get_pointer(page, get_bits(bix, SUBLEVEL(level))); 974 logfs_put_write_page(page); 975 if (!bofs) 976 return 0; 977 978 if (pure_ofs(bofs) == ofs) 979 return 1; 980 } 981 return 0; 982} 983 984static int logfs_is_valid_loop(struct inode *inode, u64 bix, u64 ofs) 985{ 986 struct logfs_inode *li = logfs_inode(inode); 987 u64 bofs = li->li_data[INDIRECT_INDEX]; 988 989 if (!bofs) 990 return 0; 991 992 if (bix >= maxbix(li->li_height)) 993 return 0; 994 995 if (pure_ofs(bofs) == ofs) 996 return 1; 997 998 return __logfs_is_valid_loop(inode, bix, ofs, bofs); 999} 1000 1001static int __logfs_is_valid_block(struct inode *inode, u64 bix, u64 ofs) 1002{ 1003 struct logfs_inode *li = logfs_inode(inode); 1004 1005 if ((inode->i_nlink == 0) && atomic_read(&inode->i_count) == 1) 1006 return 0; 1007 1008 if (bix < I0_BLOCKS) 1009 return logfs_is_valid_direct(li, bix, ofs); 1010 return logfs_is_valid_loop(inode, bix, ofs); 1011} 1012 1013/** 1014 * logfs_is_valid_block - check whether this block is still valid 1015 * 1016 * @sb - superblock 1017 * @ofs - block physical offset 1018 * @ino - block inode number 1019 * @bix - block index 1020 * @level - block level 1021 * 1022 * Returns 0 if the block is invalid, 1 if it is valid and 2 if it will 1023 * become invalid once the journal is written. 1024 */ 1025int logfs_is_valid_block(struct super_block *sb, u64 ofs, u64 ino, u64 bix, 1026 gc_level_t gc_level) 1027{ 1028 struct logfs_super *super = logfs_super(sb); 1029 struct inode *inode; 1030 int ret, cookie; 1031 1032 /* Umount closes a segment with free blocks remaining. Those 1033 * blocks are by definition invalid. */ 1034 if (ino == -1) 1035 return 0; 1036 1037 LOGFS_BUG_ON((u64)(u_long)ino != ino, sb); 1038 1039 inode = logfs_safe_iget(sb, ino, &cookie); 1040 if (IS_ERR(inode)) 1041 goto invalid; 1042 1043 ret = __logfs_is_valid_block(inode, bix, ofs); 1044 logfs_safe_iput(inode, cookie); 1045 if (ret) 1046 return ret; 1047 1048invalid: 1049 /* Block is nominally invalid, but may still sit in the shadow tree, 1050 * waiting for a journal commit. 1051 */ 1052 if (btree_lookup64(&super->s_shadow_tree.old, ofs)) 1053 return 2; 1054 return 0; 1055} 1056 1057int logfs_readpage_nolock(struct page *page) 1058{ 1059 struct inode *inode = page->mapping->host; 1060 int ret = -EIO; 1061 1062 ret = logfs_read_block(inode, page, READ); 1063 1064 if (ret) { 1065 ClearPageUptodate(page); 1066 SetPageError(page); 1067 } else { 1068 SetPageUptodate(page); 1069 ClearPageError(page); 1070 } 1071 flush_dcache_page(page); 1072 1073 return ret; 1074} 1075 1076static int logfs_reserve_bytes(struct inode *inode, int bytes) 1077{ 1078 struct logfs_super *super = logfs_super(inode->i_sb); 1079 u64 available = super->s_free_bytes + super->s_dirty_free_bytes 1080 - super->s_dirty_used_bytes - super->s_dirty_pages; 1081 1082 if (!bytes) 1083 return 0; 1084 1085 if (available < bytes) 1086 return -ENOSPC; 1087 1088 if (available < bytes + super->s_root_reserve && 1089 !capable(CAP_SYS_RESOURCE)) 1090 return -ENOSPC; 1091 1092 return 0; 1093} 1094 1095int get_page_reserve(struct inode *inode, struct page *page) 1096{ 1097 struct logfs_super *super = logfs_super(inode->i_sb); 1098 struct logfs_block *block = logfs_block(page); 1099 int ret; 1100 1101 if (block && block->reserved_bytes) 1102 return 0; 1103 1104 logfs_get_wblocks(inode->i_sb, page, WF_LOCK); 1105 while ((ret = logfs_reserve_bytes(inode, 6 * LOGFS_MAX_OBJECTSIZE)) && 1106 !list_empty(&super->s_writeback_list)) { 1107 block = list_entry(super->s_writeback_list.next, 1108 struct logfs_block, alias_list); 1109 block->ops->write_block(block); 1110 } 1111 if (!ret) { 1112 alloc_data_block(inode, page); 1113 block = logfs_block(page); 1114 block->reserved_bytes += 6 * LOGFS_MAX_OBJECTSIZE; 1115 super->s_dirty_pages += 6 * LOGFS_MAX_OBJECTSIZE; 1116 list_move_tail(&block->alias_list, &super->s_writeback_list); 1117 } 1118 logfs_put_wblocks(inode->i_sb, page, WF_LOCK); 1119 return ret; 1120} 1121 1122/* 1123 * We are protected by write lock. Push victims up to superblock level 1124 * and release transaction when appropriate. 1125 */ 1126/* FIXME: This is currently called from the wrong spots. */ 1127static void logfs_handle_transaction(struct inode *inode, 1128 struct logfs_transaction *ta) 1129{ 1130 struct logfs_super *super = logfs_super(inode->i_sb); 1131 1132 if (!ta) 1133 return; 1134 logfs_inode(inode)->li_block->ta = NULL; 1135 1136 if (inode->i_ino != LOGFS_INO_MASTER) { 1137 BUG(); /* FIXME: Yes, this needs more thought */ 1138 /* just remember the transaction until inode is written */ 1139 //BUG_ON(logfs_inode(inode)->li_transaction); 1140 //logfs_inode(inode)->li_transaction = ta; 1141 return; 1142 } 1143 1144 switch (ta->state) { 1145 case CREATE_1: /* fall through */ 1146 case UNLINK_1: 1147 BUG_ON(super->s_victim_ino); 1148 super->s_victim_ino = ta->ino; 1149 break; 1150 case CREATE_2: /* fall through */ 1151 case UNLINK_2: 1152 BUG_ON(super->s_victim_ino != ta->ino); 1153 super->s_victim_ino = 0; 1154 /* transaction ends here - free it */ 1155 kfree(ta); 1156 break; 1157 case CROSS_RENAME_1: 1158 BUG_ON(super->s_rename_dir); 1159 BUG_ON(super->s_rename_pos); 1160 super->s_rename_dir = ta->dir; 1161 super->s_rename_pos = ta->pos; 1162 break; 1163 case CROSS_RENAME_2: 1164 BUG_ON(super->s_rename_dir != ta->dir); 1165 BUG_ON(super->s_rename_pos != ta->pos); 1166 super->s_rename_dir = 0; 1167 super->s_rename_pos = 0; 1168 kfree(ta); 1169 break; 1170 case TARGET_RENAME_1: 1171 BUG_ON(super->s_rename_dir); 1172 BUG_ON(super->s_rename_pos); 1173 BUG_ON(super->s_victim_ino); 1174 super->s_rename_dir = ta->dir; 1175 super->s_rename_pos = ta->pos; 1176 super->s_victim_ino = ta->ino; 1177 break; 1178 case TARGET_RENAME_2: 1179 BUG_ON(super->s_rename_dir != ta->dir); 1180 BUG_ON(super->s_rename_pos != ta->pos); 1181 BUG_ON(super->s_victim_ino != ta->ino); 1182 super->s_rename_dir = 0; 1183 super->s_rename_pos = 0; 1184 break; 1185 case TARGET_RENAME_3: 1186 BUG_ON(super->s_rename_dir); 1187 BUG_ON(super->s_rename_pos); 1188 BUG_ON(super->s_victim_ino != ta->ino); 1189 super->s_victim_ino = 0; 1190 kfree(ta); 1191 break; 1192 default: 1193 BUG(); 1194 } 1195} 1196 1197/* 1198 * Not strictly a reservation, but rather a check that we still have enough 1199 * space to satisfy the write. 1200 */ 1201static int logfs_reserve_blocks(struct inode *inode, int blocks) 1202{ 1203 return logfs_reserve_bytes(inode, blocks * LOGFS_MAX_OBJECTSIZE); 1204} 1205 1206struct write_control { 1207 u64 ofs; 1208 long flags; 1209}; 1210 1211static struct logfs_shadow *alloc_shadow(struct inode *inode, u64 bix, 1212 level_t level, u64 old_ofs) 1213{ 1214 struct logfs_super *super = logfs_super(inode->i_sb); 1215 struct logfs_shadow *shadow; 1216 1217 shadow = mempool_alloc(super->s_shadow_pool, GFP_NOFS); 1218 memset(shadow, 0, sizeof(*shadow)); 1219 shadow->ino = inode->i_ino; 1220 shadow->bix = bix; 1221 shadow->gc_level = expand_level(inode->i_ino, level); 1222 shadow->old_ofs = old_ofs & ~LOGFS_FULLY_POPULATED; 1223 return shadow; 1224} 1225 1226static void free_shadow(struct inode *inode, struct logfs_shadow *shadow) 1227{ 1228 struct logfs_super *super = logfs_super(inode->i_sb); 1229 1230 mempool_free(shadow, super->s_shadow_pool); 1231} 1232 1233static void mark_segment(struct shadow_tree *tree, u32 segno) 1234{ 1235 int err; 1236 1237 if (!btree_lookup32(&tree->segment_map, segno)) { 1238 err = btree_insert32(&tree->segment_map, segno, (void *)1, 1239 GFP_NOFS); 1240 BUG_ON(err); 1241 tree->no_shadowed_segments++; 1242 } 1243} 1244 1245/** 1246 * fill_shadow_tree - Propagate shadow tree changes due to a write 1247 * @inode: Inode owning the page 1248 * @page: Struct page that was written 1249 * @shadow: Shadow for the current write 1250 * 1251 * Writes in logfs can result in two semi-valid objects. The old object 1252 * is still valid as long as it can be reached by following pointers on 1253 * the medium. Only when writes propagate all the way up to the journal 1254 * has the new object safely replaced the old one. 1255 * 1256 * To handle this problem, a struct logfs_shadow is used to represent 1257 * every single write. It is attached to the indirect block, which is 1258 * marked dirty. When the indirect block is written, its shadows are 1259 * handed up to the next indirect block (or inode). Untimately they 1260 * will reach the master inode and be freed upon journal commit. 1261 * 1262 * This function handles a single step in the propagation. It adds the 1263 * shadow for the current write to the tree, along with any shadows in 1264 * the page's tree, in case it was an indirect block. If a page is 1265 * written, the inode parameter is left NULL, if an inode is written, 1266 * the page parameter is left NULL. 1267 */ 1268static void fill_shadow_tree(struct inode *inode, struct page *page, 1269 struct logfs_shadow *shadow) 1270{ 1271 struct logfs_super *super = logfs_super(inode->i_sb); 1272 struct logfs_block *block = logfs_block(page); 1273 struct shadow_tree *tree = &super->s_shadow_tree; 1274 1275 if (PagePrivate(page)) { 1276 if (block->alias_map) 1277 super->s_no_object_aliases -= bitmap_weight( 1278 block->alias_map, LOGFS_BLOCK_FACTOR); 1279 logfs_handle_transaction(inode, block->ta); 1280 block->ops->free_block(inode->i_sb, block); 1281 } 1282 if (shadow) { 1283 if (shadow->old_ofs) 1284 btree_insert64(&tree->old, shadow->old_ofs, shadow, 1285 GFP_NOFS); 1286 else 1287 btree_insert64(&tree->new, shadow->new_ofs, shadow, 1288 GFP_NOFS); 1289 1290 super->s_dirty_used_bytes += shadow->new_len; 1291 super->s_dirty_free_bytes += shadow->old_len; 1292 mark_segment(tree, shadow->old_ofs >> super->s_segshift); 1293 mark_segment(tree, shadow->new_ofs >> super->s_segshift); 1294 } 1295} 1296 1297static void logfs_set_alias(struct super_block *sb, struct logfs_block *block, 1298 long child_no) 1299{ 1300 struct logfs_super *super = logfs_super(sb); 1301 1302 if (block->inode && block->inode->i_ino == LOGFS_INO_MASTER) { 1303 /* Aliases in the master inode are pointless. */ 1304 return; 1305 } 1306 1307 if (!test_bit(child_no, block->alias_map)) { 1308 set_bit(child_no, block->alias_map); 1309 super->s_no_object_aliases++; 1310 } 1311 list_move_tail(&block->alias_list, &super->s_object_alias); 1312} 1313 1314/* 1315 * Object aliases can and often do change the size and occupied space of a 1316 * file. So not only do we have to change the pointers, we also have to 1317 * change inode->i_size and li->li_used_bytes. Which is done by setting 1318 * another two object aliases for the inode itself. 1319 */ 1320static void set_iused(struct inode *inode, struct logfs_shadow *shadow) 1321{ 1322 struct logfs_inode *li = logfs_inode(inode); 1323 1324 if (shadow->new_len == shadow->old_len) 1325 return; 1326 1327 alloc_inode_block(inode); 1328 li->li_used_bytes += shadow->new_len - shadow->old_len; 1329 __logfs_set_blocks(inode); 1330 logfs_set_alias(inode->i_sb, li->li_block, INODE_USED_OFS); 1331 logfs_set_alias(inode->i_sb, li->li_block, INODE_SIZE_OFS); 1332} 1333 1334static int logfs_write_i0(struct inode *inode, struct page *page, 1335 struct write_control *wc) 1336{ 1337 struct logfs_shadow *shadow; 1338 u64 bix; 1339 level_t level; 1340 int full, err = 0; 1341 1342 logfs_unpack_index(page->index, &bix, &level); 1343 if (wc->ofs == 0) 1344 if (logfs_reserve_blocks(inode, 1)) 1345 return -ENOSPC; 1346 1347 shadow = alloc_shadow(inode, bix, level, wc->ofs); 1348 if (wc->flags & WF_WRITE) 1349 err = logfs_segment_write(inode, page, shadow); 1350 if (wc->flags & WF_DELETE) 1351 logfs_segment_delete(inode, shadow); 1352 if (err) { 1353 free_shadow(inode, shadow); 1354 return err; 1355 } 1356 1357 set_iused(inode, shadow); 1358 full = 1; 1359 if (level != 0) { 1360 alloc_indirect_block(inode, page, 0); 1361 full = logfs_block(page)->full == LOGFS_BLOCK_FACTOR; 1362 } 1363 fill_shadow_tree(inode, page, shadow); 1364 wc->ofs = shadow->new_ofs; 1365 if (wc->ofs && full) 1366 wc->ofs |= LOGFS_FULLY_POPULATED; 1367 return 0; 1368} 1369 1370static int logfs_write_direct(struct inode *inode, struct page *page, 1371 long flags) 1372{ 1373 struct logfs_inode *li = logfs_inode(inode); 1374 struct write_control wc = { 1375 .ofs = li->li_data[page->index], 1376 .flags = flags, 1377 }; 1378 int err; 1379 1380 alloc_inode_block(inode); 1381 1382 err = logfs_write_i0(inode, page, &wc); 1383 if (err) 1384 return err; 1385 1386 li->li_data[page->index] = wc.ofs; 1387 logfs_set_alias(inode->i_sb, li->li_block, 1388 page->index + INODE_POINTER_OFS); 1389 return 0; 1390} 1391 1392static int ptr_change(u64 ofs, struct page *page) 1393{ 1394 struct logfs_block *block = logfs_block(page); 1395 int empty0, empty1, full0, full1; 1396 1397 empty0 = ofs == 0; 1398 empty1 = block->partial == 0; 1399 if (empty0 != empty1) 1400 return 1; 1401 1402 /* The !! is necessary to shrink result to int */ 1403 full0 = !!(ofs & LOGFS_FULLY_POPULATED); 1404 full1 = block->full == LOGFS_BLOCK_FACTOR; 1405 if (full0 != full1) 1406 return 1; 1407 return 0; 1408} 1409 1410static int __logfs_write_rec(struct inode *inode, struct page *page, 1411 struct write_control *this_wc, 1412 pgoff_t bix, level_t target_level, level_t level) 1413{ 1414 int ret, page_empty = 0; 1415 int child_no = get_bits(bix, SUBLEVEL(level)); 1416 struct page *ipage; 1417 struct write_control child_wc = { 1418 .flags = this_wc->flags, 1419 }; 1420 1421 ipage = logfs_get_write_page(inode, bix, level); 1422 if (!ipage) 1423 return -ENOMEM; 1424 1425 if (this_wc->ofs) { 1426 ret = logfs_segment_read(inode, ipage, this_wc->ofs, bix, level); 1427 if (ret) 1428 goto out; 1429 } else if (!PageUptodate(ipage)) { 1430 page_empty = 1; 1431 logfs_read_empty(ipage); 1432 } 1433 1434 child_wc.ofs = block_get_pointer(ipage, child_no); 1435 1436 if ((__force u8)level-1 > (__force u8)target_level) 1437 ret = __logfs_write_rec(inode, page, &child_wc, bix, 1438 target_level, SUBLEVEL(level)); 1439 else 1440 ret = logfs_write_i0(inode, page, &child_wc); 1441 1442 if (ret) 1443 goto out; 1444 1445 alloc_indirect_block(inode, ipage, page_empty); 1446 block_set_pointer(ipage, child_no, child_wc.ofs); 1447 /* FIXME: first condition seems superfluous */ 1448 if (child_wc.ofs || logfs_block(ipage)->partial) 1449 this_wc->flags |= WF_WRITE; 1450 /* the condition on this_wc->ofs ensures that we won't consume extra 1451 * space for indirect blocks in the future, which we cannot reserve */ 1452 if (!this_wc->ofs || ptr_change(this_wc->ofs, ipage)) 1453 ret = logfs_write_i0(inode, ipage, this_wc); 1454 else 1455 logfs_set_alias(inode->i_sb, logfs_block(ipage), child_no); 1456out: 1457 logfs_put_write_page(ipage); 1458 return ret; 1459} 1460 1461static int logfs_write_rec(struct inode *inode, struct page *page, 1462 pgoff_t bix, level_t target_level, long flags) 1463{ 1464 struct logfs_inode *li = logfs_inode(inode); 1465 struct write_control wc = { 1466 .ofs = li->li_data[INDIRECT_INDEX], 1467 .flags = flags, 1468 }; 1469 int ret; 1470 1471 alloc_inode_block(inode); 1472 1473 if (li->li_height > (__force u8)target_level) 1474 ret = __logfs_write_rec(inode, page, &wc, bix, target_level, 1475 LEVEL(li->li_height)); 1476 else 1477 ret = logfs_write_i0(inode, page, &wc); 1478 if (ret) 1479 return ret; 1480 1481 if (li->li_data[INDIRECT_INDEX] != wc.ofs) { 1482 li->li_data[INDIRECT_INDEX] = wc.ofs; 1483 logfs_set_alias(inode->i_sb, li->li_block, 1484 INDIRECT_INDEX + INODE_POINTER_OFS); 1485 } 1486 return ret; 1487} 1488 1489void logfs_add_transaction(struct inode *inode, struct logfs_transaction *ta) 1490{ 1491 alloc_inode_block(inode); 1492 logfs_inode(inode)->li_block->ta = ta; 1493} 1494 1495void logfs_del_transaction(struct inode *inode, struct logfs_transaction *ta) 1496{ 1497 struct logfs_block *block = logfs_inode(inode)->li_block; 1498 1499 if (block && block->ta) 1500 block->ta = NULL; 1501} 1502 1503static int grow_inode(struct inode *inode, u64 bix, level_t level) 1504{ 1505 struct logfs_inode *li = logfs_inode(inode); 1506 u8 height = (__force u8)level; 1507 struct page *page; 1508 struct write_control wc = { 1509 .flags = WF_WRITE, 1510 }; 1511 int err; 1512 1513 BUG_ON(height > 5 || li->li_height > 5); 1514 while (height > li->li_height || bix >= maxbix(li->li_height)) { 1515 page = logfs_get_write_page(inode, I0_BLOCKS + 1, 1516 LEVEL(li->li_height + 1)); 1517 if (!page) 1518 return -ENOMEM; 1519 logfs_read_empty(page); 1520 alloc_indirect_block(inode, page, 1); 1521 block_set_pointer(page, 0, li->li_data[INDIRECT_INDEX]); 1522 err = logfs_write_i0(inode, page, &wc); 1523 logfs_put_write_page(page); 1524 if (err) 1525 return err; 1526 li->li_data[INDIRECT_INDEX] = wc.ofs; 1527 wc.ofs = 0; 1528 li->li_height++; 1529 logfs_set_alias(inode->i_sb, li->li_block, INODE_HEIGHT_OFS); 1530 } 1531 return 0; 1532} 1533 1534static int __logfs_write_buf(struct inode *inode, struct page *page, long flags) 1535{ 1536 struct logfs_super *super = logfs_super(inode->i_sb); 1537 pgoff_t index = page->index; 1538 u64 bix; 1539 level_t level; 1540 int err; 1541 1542 flags |= WF_WRITE | WF_DELETE; 1543 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 1544 1545 logfs_unpack_index(index, &bix, &level); 1546 if (logfs_block(page) && logfs_block(page)->reserved_bytes) 1547 super->s_dirty_pages -= logfs_block(page)->reserved_bytes; 1548 1549 if (index < I0_BLOCKS) 1550 return logfs_write_direct(inode, page, flags); 1551 1552 bix = adjust_bix(bix, level); 1553 err = grow_inode(inode, bix, level); 1554 if (err) 1555 return err; 1556 return logfs_write_rec(inode, page, bix, level, flags); 1557} 1558 1559int logfs_write_buf(struct inode *inode, struct page *page, long flags) 1560{ 1561 struct super_block *sb = inode->i_sb; 1562 int ret; 1563 1564 logfs_get_wblocks(sb, page, flags & WF_LOCK); 1565 ret = __logfs_write_buf(inode, page, flags); 1566 logfs_put_wblocks(sb, page, flags & WF_LOCK); 1567 return ret; 1568} 1569 1570static int __logfs_delete(struct inode *inode, struct page *page) 1571{ 1572 long flags = WF_DELETE; 1573 1574 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 1575 1576 if (page->index < I0_BLOCKS) 1577 return logfs_write_direct(inode, page, flags); 1578 return logfs_write_rec(inode, page, page->index, 0, flags); 1579} 1580 1581int logfs_delete(struct inode *inode, pgoff_t index, 1582 struct shadow_tree *shadow_tree) 1583{ 1584 struct super_block *sb = inode->i_sb; 1585 struct page *page; 1586 int ret; 1587 1588 page = logfs_get_read_page(inode, index, 0); 1589 if (!page) 1590 return -ENOMEM; 1591 1592 logfs_get_wblocks(sb, page, 1); 1593 ret = __logfs_delete(inode, page); 1594 logfs_put_wblocks(sb, page, 1); 1595 1596 logfs_put_read_page(page); 1597 1598 return ret; 1599} 1600 1601int logfs_rewrite_block(struct inode *inode, u64 bix, u64 ofs, 1602 gc_level_t gc_level, long flags) 1603{ 1604 level_t level = shrink_level(gc_level); 1605 struct page *page; 1606 int err; 1607 1608 page = logfs_get_write_page(inode, bix, level); 1609 if (!page) 1610 return -ENOMEM; 1611 1612 err = logfs_segment_read(inode, page, ofs, bix, level); 1613 if (!err) { 1614 if (level != 0) 1615 alloc_indirect_block(inode, page, 0); 1616 err = logfs_write_buf(inode, page, flags); 1617 if (!err && shrink_level(gc_level) == 0) { 1618 /* Rewrite cannot mark the inode dirty but has to 1619 * write it immediately. 1620 * Q: Can't we just create an alias for the inode 1621 * instead? And if not, why not? 1622 */ 1623 if (inode->i_ino == LOGFS_INO_MASTER) 1624 logfs_write_anchor(inode->i_sb); 1625 else { 1626 err = __logfs_write_inode(inode, flags); 1627 } 1628 } 1629 } 1630 logfs_put_write_page(page); 1631 return err; 1632} 1633 1634static int truncate_data_block(struct inode *inode, struct page *page, 1635 u64 ofs, struct logfs_shadow *shadow, u64 size) 1636{ 1637 loff_t pageofs = page->index << inode->i_sb->s_blocksize_bits; 1638 u64 bix; 1639 level_t level; 1640 int err; 1641 1642 /* Does truncation happen within this page? */ 1643 if (size <= pageofs || size - pageofs >= PAGE_SIZE) 1644 return 0; 1645 1646 logfs_unpack_index(page->index, &bix, &level); 1647 BUG_ON(level != 0); 1648 1649 err = logfs_segment_read(inode, page, ofs, bix, level); 1650 if (err) 1651 return err; 1652 1653 zero_user_segment(page, size - pageofs, PAGE_CACHE_SIZE); 1654 return logfs_segment_write(inode, page, shadow); 1655} 1656 1657static int logfs_truncate_i0(struct inode *inode, struct page *page, 1658 struct write_control *wc, u64 size) 1659{ 1660 struct logfs_shadow *shadow; 1661 u64 bix; 1662 level_t level; 1663 int err = 0; 1664 1665 logfs_unpack_index(page->index, &bix, &level); 1666 BUG_ON(level != 0); 1667 shadow = alloc_shadow(inode, bix, level, wc->ofs); 1668 1669 err = truncate_data_block(inode, page, wc->ofs, shadow, size); 1670 if (err) { 1671 free_shadow(inode, shadow); 1672 return err; 1673 } 1674 1675 logfs_segment_delete(inode, shadow); 1676 set_iused(inode, shadow); 1677 fill_shadow_tree(inode, page, shadow); 1678 wc->ofs = shadow->new_ofs; 1679 return 0; 1680} 1681 1682static int logfs_truncate_direct(struct inode *inode, u64 size) 1683{ 1684 struct logfs_inode *li = logfs_inode(inode); 1685 struct write_control wc; 1686 struct page *page; 1687 int e; 1688 int err; 1689 1690 alloc_inode_block(inode); 1691 1692 for (e = I0_BLOCKS - 1; e >= 0; e--) { 1693 if (size > (e+1) * LOGFS_BLOCKSIZE) 1694 break; 1695 1696 wc.ofs = li->li_data[e]; 1697 if (!wc.ofs) 1698 continue; 1699 1700 page = logfs_get_write_page(inode, e, 0); 1701 if (!page) 1702 return -ENOMEM; 1703 err = logfs_segment_read(inode, page, wc.ofs, e, 0); 1704 if (err) { 1705 logfs_put_write_page(page); 1706 return err; 1707 } 1708 err = logfs_truncate_i0(inode, page, &wc, size); 1709 logfs_put_write_page(page); 1710 if (err) 1711 return err; 1712 1713 li->li_data[e] = wc.ofs; 1714 } 1715 return 0; 1716} 1717 1718/* FIXME: these need to become per-sb once we support different blocksizes */ 1719static u64 __logfs_step[] = { 1720 1, 1721 I1_BLOCKS, 1722 I2_BLOCKS, 1723 I3_BLOCKS, 1724}; 1725 1726static u64 __logfs_start_index[] = { 1727 I0_BLOCKS, 1728 I1_BLOCKS, 1729 I2_BLOCKS, 1730 I3_BLOCKS 1731}; 1732 1733static inline u64 logfs_step(level_t level) 1734{ 1735 return __logfs_step[(__force u8)level]; 1736} 1737 1738static inline u64 logfs_factor(u8 level) 1739{ 1740 return __logfs_step[level] * LOGFS_BLOCKSIZE; 1741} 1742 1743static inline u64 logfs_start_index(level_t level) 1744{ 1745 return __logfs_start_index[(__force u8)level]; 1746} 1747 1748static void logfs_unpack_raw_index(pgoff_t index, u64 *bix, level_t *level) 1749{ 1750 logfs_unpack_index(index, bix, level); 1751 if (*bix <= logfs_start_index(SUBLEVEL(*level))) 1752 *bix = 0; 1753} 1754 1755static int __logfs_truncate_rec(struct inode *inode, struct page *ipage, 1756 struct write_control *this_wc, u64 size) 1757{ 1758 int truncate_happened = 0; 1759 int e, err = 0; 1760 u64 bix, child_bix, next_bix; 1761 level_t level; 1762 struct page *page; 1763 struct write_control child_wc = { /* FIXME: flags */ }; 1764 1765 logfs_unpack_raw_index(ipage->index, &bix, &level); 1766 err = logfs_segment_read(inode, ipage, this_wc->ofs, bix, level); 1767 if (err) 1768 return err; 1769 1770 for (e = LOGFS_BLOCK_FACTOR - 1; e >= 0; e--) { 1771 child_bix = bix + e * logfs_step(SUBLEVEL(level)); 1772 next_bix = child_bix + logfs_step(SUBLEVEL(level)); 1773 if (size > next_bix * LOGFS_BLOCKSIZE) 1774 break; 1775 1776 child_wc.ofs = pure_ofs(block_get_pointer(ipage, e)); 1777 if (!child_wc.ofs) 1778 continue; 1779 1780 page = logfs_get_write_page(inode, child_bix, SUBLEVEL(level)); 1781 if (!page) 1782 return -ENOMEM; 1783 1784 if ((__force u8)level > 1) 1785 err = __logfs_truncate_rec(inode, page, &child_wc, size); 1786 else 1787 err = logfs_truncate_i0(inode, page, &child_wc, size); 1788 logfs_put_write_page(page); 1789 if (err) 1790 return err; 1791 1792 truncate_happened = 1; 1793 alloc_indirect_block(inode, ipage, 0); 1794 block_set_pointer(ipage, e, child_wc.ofs); 1795 } 1796 1797 if (!truncate_happened) { 1798 printk("ineffectual truncate (%lx, %lx, %llx)\n", inode->i_ino, ipage->index, size); 1799 return 0; 1800 } 1801 1802 this_wc->flags = WF_DELETE; 1803 if (logfs_block(ipage)->partial) 1804 this_wc->flags |= WF_WRITE; 1805 1806 return logfs_write_i0(inode, ipage, this_wc); 1807} 1808 1809static int logfs_truncate_rec(struct inode *inode, u64 size) 1810{ 1811 struct logfs_inode *li = logfs_inode(inode); 1812 struct write_control wc = { 1813 .ofs = li->li_data[INDIRECT_INDEX], 1814 }; 1815 struct page *page; 1816 int err; 1817 1818 alloc_inode_block(inode); 1819 1820 if (!wc.ofs) 1821 return 0; 1822 1823 page = logfs_get_write_page(inode, 0, LEVEL(li->li_height)); 1824 if (!page) 1825 return -ENOMEM; 1826 1827 err = __logfs_truncate_rec(inode, page, &wc, size); 1828 logfs_put_write_page(page); 1829 if (err) 1830 return err; 1831 1832 if (li->li_data[INDIRECT_INDEX] != wc.ofs) 1833 li->li_data[INDIRECT_INDEX] = wc.ofs; 1834 return 0; 1835} 1836 1837static int __logfs_truncate(struct inode *inode, u64 size) 1838{ 1839 int ret; 1840 1841 if (size >= logfs_factor(logfs_inode(inode)->li_height)) 1842 return 0; 1843 1844 ret = logfs_truncate_rec(inode, size); 1845 if (ret) 1846 return ret; 1847 1848 return logfs_truncate_direct(inode, size); 1849} 1850 1851/* 1852 * Truncate, by changing the segment file, can consume a fair amount 1853 * of resources. So back off from time to time and do some GC. 1854 * 8 or 2048 blocks should be well within safety limits even if 1855 * every single block resided in a different segment. 1856 */ 1857#define TRUNCATE_STEP (8 * 1024 * 1024) 1858int logfs_truncate(struct inode *inode, u64 target) 1859{ 1860 struct super_block *sb = inode->i_sb; 1861 u64 size = i_size_read(inode); 1862 int err = 0; 1863 1864 size = ALIGN(size, TRUNCATE_STEP); 1865 while (size > target) { 1866 if (size > TRUNCATE_STEP) 1867 size -= TRUNCATE_STEP; 1868 else 1869 size = 0; 1870 if (size < target) 1871 size = target; 1872 1873 logfs_get_wblocks(sb, NULL, 1); 1874 err = __logfs_truncate(inode, size); 1875 if (!err) 1876 err = __logfs_write_inode(inode, 0); 1877 logfs_put_wblocks(sb, NULL, 1); 1878 } 1879 1880 if (!err) 1881 err = vmtruncate(inode, target); 1882 1883 /* I don't trust error recovery yet. */ 1884 WARN_ON(err); 1885 return err; 1886} 1887 1888static void move_page_to_inode(struct inode *inode, struct page *page) 1889{ 1890 struct logfs_inode *li = logfs_inode(inode); 1891 struct logfs_block *block = logfs_block(page); 1892 1893 if (!block) 1894 return; 1895 1896 log_blockmove("move_page_to_inode(%llx, %llx, %x)\n", 1897 block->ino, block->bix, block->level); 1898 BUG_ON(li->li_block); 1899 block->ops = &inode_block_ops; 1900 block->inode = inode; 1901 li->li_block = block; 1902 1903 block->page = NULL; 1904 page->private = 0; 1905 ClearPagePrivate(page); 1906} 1907 1908static void move_inode_to_page(struct page *page, struct inode *inode) 1909{ 1910 struct logfs_inode *li = logfs_inode(inode); 1911 struct logfs_block *block = li->li_block; 1912 1913 if (!block) 1914 return; 1915 1916 log_blockmove("move_inode_to_page(%llx, %llx, %x)\n", 1917 block->ino, block->bix, block->level); 1918 BUG_ON(PagePrivate(page)); 1919 block->ops = &indirect_block_ops; 1920 block->page = page; 1921 page->private = (unsigned long)block; 1922 SetPagePrivate(page); 1923 1924 block->inode = NULL; 1925 li->li_block = NULL; 1926} 1927 1928int logfs_read_inode(struct inode *inode) 1929{ 1930 struct super_block *sb = inode->i_sb; 1931 struct logfs_super *super = logfs_super(sb); 1932 struct inode *master_inode = super->s_master_inode; 1933 struct page *page; 1934 struct logfs_disk_inode *di; 1935 u64 ino = inode->i_ino; 1936 1937 if (ino << sb->s_blocksize_bits > i_size_read(master_inode)) 1938 return -ENODATA; 1939 if (!logfs_exist_block(master_inode, ino)) 1940 return -ENODATA; 1941 1942 page = read_cache_page(master_inode->i_mapping, ino, 1943 (filler_t *)logfs_readpage, NULL); 1944 if (IS_ERR(page)) 1945 return PTR_ERR(page); 1946 1947 di = kmap_atomic(page, KM_USER0); 1948 logfs_disk_to_inode(di, inode); 1949 kunmap_atomic(di, KM_USER0); 1950 move_page_to_inode(inode, page); 1951 page_cache_release(page); 1952 return 0; 1953} 1954 1955/* Caller must logfs_put_write_page(page); */ 1956static struct page *inode_to_page(struct inode *inode) 1957{ 1958 struct inode *master_inode = logfs_super(inode->i_sb)->s_master_inode; 1959 struct logfs_disk_inode *di; 1960 struct page *page; 1961 1962 BUG_ON(inode->i_ino == LOGFS_INO_MASTER); 1963 1964 page = logfs_get_write_page(master_inode, inode->i_ino, 0); 1965 if (!page) 1966 return NULL; 1967 1968 di = kmap_atomic(page, KM_USER0); 1969 logfs_inode_to_disk(inode, di); 1970 kunmap_atomic(di, KM_USER0); 1971 move_inode_to_page(page, inode); 1972 return page; 1973} 1974 1975static int do_write_inode(struct inode *inode) 1976{ 1977 struct super_block *sb = inode->i_sb; 1978 struct inode *master_inode = logfs_super(sb)->s_master_inode; 1979 loff_t size = (inode->i_ino + 1) << inode->i_sb->s_blocksize_bits; 1980 struct page *page; 1981 int err; 1982 1983 BUG_ON(inode->i_ino == LOGFS_INO_MASTER); 1984 /* FIXME: lock inode */ 1985 1986 if (i_size_read(master_inode) < size) 1987 i_size_write(master_inode, size); 1988 1989 /* TODO: Tell vfs this inode is clean now */ 1990 1991 page = inode_to_page(inode); 1992 if (!page) 1993 return -ENOMEM; 1994 1995 /* FIXME: transaction is part of logfs_block now. Is that enough? */ 1996 err = logfs_write_buf(master_inode, page, 0); 1997 if (err) 1998 move_page_to_inode(inode, page); 1999 2000 logfs_put_write_page(page); 2001 return err; 2002} 2003 2004static void logfs_mod_segment_entry(struct super_block *sb, u32 segno, 2005 int write, 2006 void (*change_se)(struct logfs_segment_entry *, long), 2007 long arg) 2008{ 2009 struct logfs_super *super = logfs_super(sb); 2010 struct inode *inode; 2011 struct page *page; 2012 struct logfs_segment_entry *se; 2013 pgoff_t page_no; 2014 int child_no; 2015 2016 page_no = segno >> (sb->s_blocksize_bits - 3); 2017 child_no = segno & ((sb->s_blocksize >> 3) - 1); 2018 2019 inode = super->s_segfile_inode; 2020 page = logfs_get_write_page(inode, page_no, 0); 2021 BUG_ON(!page); /* FIXME: We need some reserve page for this case */ 2022 if (!PageUptodate(page)) 2023 logfs_read_block(inode, page, WRITE); 2024 2025 if (write) 2026 alloc_indirect_block(inode, page, 0); 2027 se = kmap_atomic(page, KM_USER0); 2028 change_se(se + child_no, arg); 2029 if (write) { 2030 logfs_set_alias(sb, logfs_block(page), child_no); 2031 BUG_ON((int)be32_to_cpu(se[child_no].valid) > super->s_segsize); 2032 } 2033 kunmap_atomic(se, KM_USER0); 2034 2035 logfs_put_write_page(page); 2036} 2037 2038static void __get_segment_entry(struct logfs_segment_entry *se, long _target) 2039{ 2040 struct logfs_segment_entry *target = (void *)_target; 2041 2042 *target = *se; 2043} 2044 2045void logfs_get_segment_entry(struct super_block *sb, u32 segno, 2046 struct logfs_segment_entry *se) 2047{ 2048 logfs_mod_segment_entry(sb, segno, 0, __get_segment_entry, (long)se); 2049} 2050 2051static void __set_segment_used(struct logfs_segment_entry *se, long increment) 2052{ 2053 u32 valid; 2054 2055 valid = be32_to_cpu(se->valid); 2056 valid += increment; 2057 se->valid = cpu_to_be32(valid); 2058} 2059 2060void logfs_set_segment_used(struct super_block *sb, u64 ofs, int increment) 2061{ 2062 struct logfs_super *super = logfs_super(sb); 2063 u32 segno = ofs >> super->s_segshift; 2064 2065 if (!increment) 2066 return; 2067 2068 logfs_mod_segment_entry(sb, segno, 1, __set_segment_used, increment); 2069} 2070 2071static void __set_segment_erased(struct logfs_segment_entry *se, long ec_level) 2072{ 2073 se->ec_level = cpu_to_be32(ec_level); 2074} 2075 2076void logfs_set_segment_erased(struct super_block *sb, u32 segno, u32 ec, 2077 gc_level_t gc_level) 2078{ 2079 u32 ec_level = ec << 4 | (__force u8)gc_level; 2080 2081 logfs_mod_segment_entry(sb, segno, 1, __set_segment_erased, ec_level); 2082} 2083 2084static void __set_segment_reserved(struct logfs_segment_entry *se, long ignore) 2085{ 2086 se->valid = cpu_to_be32(RESERVED); 2087} 2088 2089void logfs_set_segment_reserved(struct super_block *sb, u32 segno) 2090{ 2091 logfs_mod_segment_entry(sb, segno, 1, __set_segment_reserved, 0); 2092} 2093 2094static void __set_segment_unreserved(struct logfs_segment_entry *se, 2095 long ec_level) 2096{ 2097 se->valid = 0; 2098 se->ec_level = cpu_to_be32(ec_level); 2099} 2100 2101void logfs_set_segment_unreserved(struct super_block *sb, u32 segno, u32 ec) 2102{ 2103 u32 ec_level = ec << 4; 2104 2105 logfs_mod_segment_entry(sb, segno, 1, __set_segment_unreserved, 2106 ec_level); 2107} 2108 2109int __logfs_write_inode(struct inode *inode, long flags) 2110{ 2111 struct super_block *sb = inode->i_sb; 2112 int ret; 2113 2114 logfs_get_wblocks(sb, NULL, flags & WF_LOCK); 2115 ret = do_write_inode(inode); 2116 logfs_put_wblocks(sb, NULL, flags & WF_LOCK); 2117 return ret; 2118} 2119 2120static int do_delete_inode(struct inode *inode) 2121{ 2122 struct super_block *sb = inode->i_sb; 2123 struct inode *master_inode = logfs_super(sb)->s_master_inode; 2124 struct page *page; 2125 int ret; 2126 2127 page = logfs_get_write_page(master_inode, inode->i_ino, 0); 2128 if (!page) 2129 return -ENOMEM; 2130 2131 move_inode_to_page(page, inode); 2132 2133 logfs_get_wblocks(sb, page, 1); 2134 ret = __logfs_delete(master_inode, page); 2135 logfs_put_wblocks(sb, page, 1); 2136 2137 logfs_put_write_page(page); 2138 return ret; 2139} 2140 2141/* 2142 * ZOMBIE inodes have already been deleted before and should remain dead, 2143 * if it weren't for valid checking. No need to kill them again here. 2144 */ 2145void logfs_evict_inode(struct inode *inode) 2146{ 2147 struct super_block *sb = inode->i_sb; 2148 struct logfs_inode *li = logfs_inode(inode); 2149 struct logfs_block *block = li->li_block; 2150 struct page *page; 2151 2152 if (!inode->i_nlink) { 2153 if (!(li->li_flags & LOGFS_IF_ZOMBIE)) { 2154 li->li_flags |= LOGFS_IF_ZOMBIE; 2155 if (i_size_read(inode) > 0) 2156 logfs_truncate(inode, 0); 2157 do_delete_inode(inode); 2158 } 2159 } 2160 truncate_inode_pages(&inode->i_data, 0); 2161 end_writeback(inode); 2162 2163 /* Cheaper version of write_inode. All changes are concealed in 2164 * aliases, which are moved back. No write to the medium happens. 2165 */ 2166 /* Only deleted files may be dirty at this point */ 2167 BUG_ON(inode->i_state & I_DIRTY && inode->i_nlink); 2168 if (!block) 2169 return; 2170 if ((logfs_super(sb)->s_flags & LOGFS_SB_FLAG_SHUTDOWN)) { 2171 block->ops->free_block(inode->i_sb, block); 2172 return; 2173 } 2174 2175 BUG_ON(inode->i_ino < LOGFS_RESERVED_INOS); 2176 page = inode_to_page(inode); 2177 BUG_ON(!page); /* FIXME: Use emergency page */ 2178 logfs_put_write_page(page); 2179} 2180 2181void btree_write_block(struct logfs_block *block) 2182{ 2183 struct inode *inode; 2184 struct page *page; 2185 int err, cookie; 2186 2187 inode = logfs_safe_iget(block->sb, block->ino, &cookie); 2188 page = logfs_get_write_page(inode, block->bix, block->level); 2189 2190 err = logfs_readpage_nolock(page); 2191 BUG_ON(err); 2192 BUG_ON(!PagePrivate(page)); 2193 BUG_ON(logfs_block(page) != block); 2194 err = __logfs_write_buf(inode, page, 0); 2195 BUG_ON(err); 2196 BUG_ON(PagePrivate(page) || page->private); 2197 2198 logfs_put_write_page(page); 2199 logfs_safe_iput(inode, cookie); 2200} 2201 2202/** 2203 * logfs_inode_write - write inode or dentry objects 2204 * 2205 * @inode: parent inode (ifile or directory) 2206 * @buf: object to write (inode or dentry) 2207 * @n: object size 2208 * @_pos: object number (file position in blocks/objects) 2209 * @flags: write flags 2210 * @lock: 0 if write lock is already taken, 1 otherwise 2211 * @shadow_tree: shadow below this inode 2212 * 2213 * FIXME: All caller of this put a 200-300 byte variable on the stack, 2214 * only to call here and do a memcpy from that stack variable. A good 2215 * example of wasted performance and stack space. 2216 */ 2217int logfs_inode_write(struct inode *inode, const void *buf, size_t count, 2218 loff_t bix, long flags, struct shadow_tree *shadow_tree) 2219{ 2220 loff_t pos = bix << inode->i_sb->s_blocksize_bits; 2221 int err; 2222 struct page *page; 2223 void *pagebuf; 2224 2225 BUG_ON(pos & (LOGFS_BLOCKSIZE-1)); 2226 BUG_ON(count > LOGFS_BLOCKSIZE); 2227 page = logfs_get_write_page(inode, bix, 0); 2228 if (!page) 2229 return -ENOMEM; 2230 2231 pagebuf = kmap_atomic(page, KM_USER0); 2232 memcpy(pagebuf, buf, count); 2233 flush_dcache_page(page); 2234 kunmap_atomic(pagebuf, KM_USER0); 2235 2236 if (i_size_read(inode) < pos + LOGFS_BLOCKSIZE) 2237 i_size_write(inode, pos + LOGFS_BLOCKSIZE); 2238 2239 err = logfs_write_buf(inode, page, flags); 2240 logfs_put_write_page(page); 2241 return err; 2242} 2243 2244int logfs_open_segfile(struct super_block *sb) 2245{ 2246 struct logfs_super *super = logfs_super(sb); 2247 struct inode *inode; 2248 2249 inode = logfs_read_meta_inode(sb, LOGFS_INO_SEGFILE); 2250 if (IS_ERR(inode)) 2251 return PTR_ERR(inode); 2252 super->s_segfile_inode = inode; 2253 return 0; 2254} 2255 2256int logfs_init_rw(struct super_block *sb) 2257{ 2258 struct logfs_super *super = logfs_super(sb); 2259 int min_fill = 3 * super->s_no_blocks; 2260 2261 INIT_LIST_HEAD(&super->s_object_alias); 2262 INIT_LIST_HEAD(&super->s_writeback_list); 2263 mutex_init(&super->s_write_mutex); 2264 super->s_block_pool = mempool_create_kmalloc_pool(min_fill, 2265 sizeof(struct logfs_block)); 2266 super->s_shadow_pool = mempool_create_kmalloc_pool(min_fill, 2267 sizeof(struct logfs_shadow)); 2268 return 0; 2269} 2270 2271void logfs_cleanup_rw(struct super_block *sb) 2272{ 2273 struct logfs_super *super = logfs_super(sb); 2274 2275 logfs_mempool_destroy(super->s_block_pool); 2276 logfs_mempool_destroy(super->s_shadow_pool); 2277}