at v2.6.39 41 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/module.h> 18#include <linux/blkpg.h> 19#include <linux/buffer_head.h> 20#include <linux/pagevec.h> 21#include <linux/writeback.h> 22#include <linux/mpage.h> 23#include <linux/mount.h> 24#include <linux/uio.h> 25#include <linux/namei.h> 26#include <linux/log2.h> 27#include <linux/kmemleak.h> 28#include <asm/uaccess.h> 29#include "internal.h" 30 31struct bdev_inode { 32 struct block_device bdev; 33 struct inode vfs_inode; 34}; 35 36static const struct address_space_operations def_blk_aops; 37 38static inline struct bdev_inode *BDEV_I(struct inode *inode) 39{ 40 return container_of(inode, struct bdev_inode, vfs_inode); 41} 42 43inline struct block_device *I_BDEV(struct inode *inode) 44{ 45 return &BDEV_I(inode)->bdev; 46} 47 48EXPORT_SYMBOL(I_BDEV); 49 50/* 51 * move the inode from it's current bdi to the a new bdi. if the inode is dirty 52 * we need to move it onto the dirty list of @dst so that the inode is always 53 * on the right list. 54 */ 55static void bdev_inode_switch_bdi(struct inode *inode, 56 struct backing_dev_info *dst) 57{ 58 spin_lock(&inode_wb_list_lock); 59 spin_lock(&inode->i_lock); 60 inode->i_data.backing_dev_info = dst; 61 if (inode->i_state & I_DIRTY) 62 list_move(&inode->i_wb_list, &dst->wb.b_dirty); 63 spin_unlock(&inode->i_lock); 64 spin_unlock(&inode_wb_list_lock); 65} 66 67static sector_t max_block(struct block_device *bdev) 68{ 69 sector_t retval = ~((sector_t)0); 70 loff_t sz = i_size_read(bdev->bd_inode); 71 72 if (sz) { 73 unsigned int size = block_size(bdev); 74 unsigned int sizebits = blksize_bits(size); 75 retval = (sz >> sizebits); 76 } 77 return retval; 78} 79 80/* Kill _all_ buffers and pagecache , dirty or not.. */ 81static void kill_bdev(struct block_device *bdev) 82{ 83 if (bdev->bd_inode->i_mapping->nrpages == 0) 84 return; 85 invalidate_bh_lrus(); 86 truncate_inode_pages(bdev->bd_inode->i_mapping, 0); 87} 88 89int set_blocksize(struct block_device *bdev, int size) 90{ 91 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 92 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 93 return -EINVAL; 94 95 /* Size cannot be smaller than the size supported by the device */ 96 if (size < bdev_logical_block_size(bdev)) 97 return -EINVAL; 98 99 /* Don't change the size if it is same as current */ 100 if (bdev->bd_block_size != size) { 101 sync_blockdev(bdev); 102 bdev->bd_block_size = size; 103 bdev->bd_inode->i_blkbits = blksize_bits(size); 104 kill_bdev(bdev); 105 } 106 return 0; 107} 108 109EXPORT_SYMBOL(set_blocksize); 110 111int sb_set_blocksize(struct super_block *sb, int size) 112{ 113 if (set_blocksize(sb->s_bdev, size)) 114 return 0; 115 /* If we get here, we know size is power of two 116 * and it's value is between 512 and PAGE_SIZE */ 117 sb->s_blocksize = size; 118 sb->s_blocksize_bits = blksize_bits(size); 119 return sb->s_blocksize; 120} 121 122EXPORT_SYMBOL(sb_set_blocksize); 123 124int sb_min_blocksize(struct super_block *sb, int size) 125{ 126 int minsize = bdev_logical_block_size(sb->s_bdev); 127 if (size < minsize) 128 size = minsize; 129 return sb_set_blocksize(sb, size); 130} 131 132EXPORT_SYMBOL(sb_min_blocksize); 133 134static int 135blkdev_get_block(struct inode *inode, sector_t iblock, 136 struct buffer_head *bh, int create) 137{ 138 if (iblock >= max_block(I_BDEV(inode))) { 139 if (create) 140 return -EIO; 141 142 /* 143 * for reads, we're just trying to fill a partial page. 144 * return a hole, they will have to call get_block again 145 * before they can fill it, and they will get -EIO at that 146 * time 147 */ 148 return 0; 149 } 150 bh->b_bdev = I_BDEV(inode); 151 bh->b_blocknr = iblock; 152 set_buffer_mapped(bh); 153 return 0; 154} 155 156static int 157blkdev_get_blocks(struct inode *inode, sector_t iblock, 158 struct buffer_head *bh, int create) 159{ 160 sector_t end_block = max_block(I_BDEV(inode)); 161 unsigned long max_blocks = bh->b_size >> inode->i_blkbits; 162 163 if ((iblock + max_blocks) > end_block) { 164 max_blocks = end_block - iblock; 165 if ((long)max_blocks <= 0) { 166 if (create) 167 return -EIO; /* write fully beyond EOF */ 168 /* 169 * It is a read which is fully beyond EOF. We return 170 * a !buffer_mapped buffer 171 */ 172 max_blocks = 0; 173 } 174 } 175 176 bh->b_bdev = I_BDEV(inode); 177 bh->b_blocknr = iblock; 178 bh->b_size = max_blocks << inode->i_blkbits; 179 if (max_blocks) 180 set_buffer_mapped(bh); 181 return 0; 182} 183 184static ssize_t 185blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 186 loff_t offset, unsigned long nr_segs) 187{ 188 struct file *file = iocb->ki_filp; 189 struct inode *inode = file->f_mapping->host; 190 191 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iov, offset, 192 nr_segs, blkdev_get_blocks, NULL, NULL, 0); 193} 194 195int __sync_blockdev(struct block_device *bdev, int wait) 196{ 197 if (!bdev) 198 return 0; 199 if (!wait) 200 return filemap_flush(bdev->bd_inode->i_mapping); 201 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 202} 203 204/* 205 * Write out and wait upon all the dirty data associated with a block 206 * device via its mapping. Does not take the superblock lock. 207 */ 208int sync_blockdev(struct block_device *bdev) 209{ 210 return __sync_blockdev(bdev, 1); 211} 212EXPORT_SYMBOL(sync_blockdev); 213 214/* 215 * Write out and wait upon all dirty data associated with this 216 * device. Filesystem data as well as the underlying block 217 * device. Takes the superblock lock. 218 */ 219int fsync_bdev(struct block_device *bdev) 220{ 221 struct super_block *sb = get_super(bdev); 222 if (sb) { 223 int res = sync_filesystem(sb); 224 drop_super(sb); 225 return res; 226 } 227 return sync_blockdev(bdev); 228} 229EXPORT_SYMBOL(fsync_bdev); 230 231/** 232 * freeze_bdev -- lock a filesystem and force it into a consistent state 233 * @bdev: blockdevice to lock 234 * 235 * If a superblock is found on this device, we take the s_umount semaphore 236 * on it to make sure nobody unmounts until the snapshot creation is done. 237 * The reference counter (bd_fsfreeze_count) guarantees that only the last 238 * unfreeze process can unfreeze the frozen filesystem actually when multiple 239 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 240 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 241 * actually. 242 */ 243struct super_block *freeze_bdev(struct block_device *bdev) 244{ 245 struct super_block *sb; 246 int error = 0; 247 248 mutex_lock(&bdev->bd_fsfreeze_mutex); 249 if (++bdev->bd_fsfreeze_count > 1) { 250 /* 251 * We don't even need to grab a reference - the first call 252 * to freeze_bdev grab an active reference and only the last 253 * thaw_bdev drops it. 254 */ 255 sb = get_super(bdev); 256 drop_super(sb); 257 mutex_unlock(&bdev->bd_fsfreeze_mutex); 258 return sb; 259 } 260 261 sb = get_active_super(bdev); 262 if (!sb) 263 goto out; 264 error = freeze_super(sb); 265 if (error) { 266 deactivate_super(sb); 267 bdev->bd_fsfreeze_count--; 268 mutex_unlock(&bdev->bd_fsfreeze_mutex); 269 return ERR_PTR(error); 270 } 271 deactivate_super(sb); 272 out: 273 sync_blockdev(bdev); 274 mutex_unlock(&bdev->bd_fsfreeze_mutex); 275 return sb; /* thaw_bdev releases s->s_umount */ 276} 277EXPORT_SYMBOL(freeze_bdev); 278 279/** 280 * thaw_bdev -- unlock filesystem 281 * @bdev: blockdevice to unlock 282 * @sb: associated superblock 283 * 284 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 285 */ 286int thaw_bdev(struct block_device *bdev, struct super_block *sb) 287{ 288 int error = -EINVAL; 289 290 mutex_lock(&bdev->bd_fsfreeze_mutex); 291 if (!bdev->bd_fsfreeze_count) 292 goto out; 293 294 error = 0; 295 if (--bdev->bd_fsfreeze_count > 0) 296 goto out; 297 298 if (!sb) 299 goto out; 300 301 error = thaw_super(sb); 302 if (error) { 303 bdev->bd_fsfreeze_count++; 304 mutex_unlock(&bdev->bd_fsfreeze_mutex); 305 return error; 306 } 307out: 308 mutex_unlock(&bdev->bd_fsfreeze_mutex); 309 return 0; 310} 311EXPORT_SYMBOL(thaw_bdev); 312 313static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 314{ 315 return block_write_full_page(page, blkdev_get_block, wbc); 316} 317 318static int blkdev_readpage(struct file * file, struct page * page) 319{ 320 return block_read_full_page(page, blkdev_get_block); 321} 322 323static int blkdev_write_begin(struct file *file, struct address_space *mapping, 324 loff_t pos, unsigned len, unsigned flags, 325 struct page **pagep, void **fsdata) 326{ 327 return block_write_begin(mapping, pos, len, flags, pagep, 328 blkdev_get_block); 329} 330 331static int blkdev_write_end(struct file *file, struct address_space *mapping, 332 loff_t pos, unsigned len, unsigned copied, 333 struct page *page, void *fsdata) 334{ 335 int ret; 336 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 337 338 unlock_page(page); 339 page_cache_release(page); 340 341 return ret; 342} 343 344/* 345 * private llseek: 346 * for a block special file file->f_path.dentry->d_inode->i_size is zero 347 * so we compute the size by hand (just as in block_read/write above) 348 */ 349static loff_t block_llseek(struct file *file, loff_t offset, int origin) 350{ 351 struct inode *bd_inode = file->f_mapping->host; 352 loff_t size; 353 loff_t retval; 354 355 mutex_lock(&bd_inode->i_mutex); 356 size = i_size_read(bd_inode); 357 358 switch (origin) { 359 case 2: 360 offset += size; 361 break; 362 case 1: 363 offset += file->f_pos; 364 } 365 retval = -EINVAL; 366 if (offset >= 0 && offset <= size) { 367 if (offset != file->f_pos) { 368 file->f_pos = offset; 369 } 370 retval = offset; 371 } 372 mutex_unlock(&bd_inode->i_mutex); 373 return retval; 374} 375 376int blkdev_fsync(struct file *filp, int datasync) 377{ 378 struct inode *bd_inode = filp->f_mapping->host; 379 struct block_device *bdev = I_BDEV(bd_inode); 380 int error; 381 382 /* 383 * There is no need to serialise calls to blkdev_issue_flush with 384 * i_mutex and doing so causes performance issues with concurrent 385 * O_SYNC writers to a block device. 386 */ 387 mutex_unlock(&bd_inode->i_mutex); 388 389 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 390 if (error == -EOPNOTSUPP) 391 error = 0; 392 393 mutex_lock(&bd_inode->i_mutex); 394 395 return error; 396} 397EXPORT_SYMBOL(blkdev_fsync); 398 399/* 400 * pseudo-fs 401 */ 402 403static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 404static struct kmem_cache * bdev_cachep __read_mostly; 405 406static struct inode *bdev_alloc_inode(struct super_block *sb) 407{ 408 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 409 if (!ei) 410 return NULL; 411 return &ei->vfs_inode; 412} 413 414static void bdev_i_callback(struct rcu_head *head) 415{ 416 struct inode *inode = container_of(head, struct inode, i_rcu); 417 struct bdev_inode *bdi = BDEV_I(inode); 418 419 INIT_LIST_HEAD(&inode->i_dentry); 420 kmem_cache_free(bdev_cachep, bdi); 421} 422 423static void bdev_destroy_inode(struct inode *inode) 424{ 425 call_rcu(&inode->i_rcu, bdev_i_callback); 426} 427 428static void init_once(void *foo) 429{ 430 struct bdev_inode *ei = (struct bdev_inode *) foo; 431 struct block_device *bdev = &ei->bdev; 432 433 memset(bdev, 0, sizeof(*bdev)); 434 mutex_init(&bdev->bd_mutex); 435 INIT_LIST_HEAD(&bdev->bd_inodes); 436 INIT_LIST_HEAD(&bdev->bd_list); 437#ifdef CONFIG_SYSFS 438 INIT_LIST_HEAD(&bdev->bd_holder_disks); 439#endif 440 inode_init_once(&ei->vfs_inode); 441 /* Initialize mutex for freeze. */ 442 mutex_init(&bdev->bd_fsfreeze_mutex); 443} 444 445static inline void __bd_forget(struct inode *inode) 446{ 447 list_del_init(&inode->i_devices); 448 inode->i_bdev = NULL; 449 inode->i_mapping = &inode->i_data; 450} 451 452static void bdev_evict_inode(struct inode *inode) 453{ 454 struct block_device *bdev = &BDEV_I(inode)->bdev; 455 struct list_head *p; 456 truncate_inode_pages(&inode->i_data, 0); 457 invalidate_inode_buffers(inode); /* is it needed here? */ 458 end_writeback(inode); 459 spin_lock(&bdev_lock); 460 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) { 461 __bd_forget(list_entry(p, struct inode, i_devices)); 462 } 463 list_del_init(&bdev->bd_list); 464 spin_unlock(&bdev_lock); 465} 466 467static const struct super_operations bdev_sops = { 468 .statfs = simple_statfs, 469 .alloc_inode = bdev_alloc_inode, 470 .destroy_inode = bdev_destroy_inode, 471 .drop_inode = generic_delete_inode, 472 .evict_inode = bdev_evict_inode, 473}; 474 475static struct dentry *bd_mount(struct file_system_type *fs_type, 476 int flags, const char *dev_name, void *data) 477{ 478 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, 0x62646576); 479} 480 481static struct file_system_type bd_type = { 482 .name = "bdev", 483 .mount = bd_mount, 484 .kill_sb = kill_anon_super, 485}; 486 487struct super_block *blockdev_superblock __read_mostly; 488 489void __init bdev_cache_init(void) 490{ 491 int err; 492 struct vfsmount *bd_mnt; 493 494 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 495 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 496 SLAB_MEM_SPREAD|SLAB_PANIC), 497 init_once); 498 err = register_filesystem(&bd_type); 499 if (err) 500 panic("Cannot register bdev pseudo-fs"); 501 bd_mnt = kern_mount(&bd_type); 502 if (IS_ERR(bd_mnt)) 503 panic("Cannot create bdev pseudo-fs"); 504 /* 505 * This vfsmount structure is only used to obtain the 506 * blockdev_superblock, so tell kmemleak not to report it. 507 */ 508 kmemleak_not_leak(bd_mnt); 509 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 510} 511 512/* 513 * Most likely _very_ bad one - but then it's hardly critical for small 514 * /dev and can be fixed when somebody will need really large one. 515 * Keep in mind that it will be fed through icache hash function too. 516 */ 517static inline unsigned long hash(dev_t dev) 518{ 519 return MAJOR(dev)+MINOR(dev); 520} 521 522static int bdev_test(struct inode *inode, void *data) 523{ 524 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 525} 526 527static int bdev_set(struct inode *inode, void *data) 528{ 529 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 530 return 0; 531} 532 533static LIST_HEAD(all_bdevs); 534 535struct block_device *bdget(dev_t dev) 536{ 537 struct block_device *bdev; 538 struct inode *inode; 539 540 inode = iget5_locked(blockdev_superblock, hash(dev), 541 bdev_test, bdev_set, &dev); 542 543 if (!inode) 544 return NULL; 545 546 bdev = &BDEV_I(inode)->bdev; 547 548 if (inode->i_state & I_NEW) { 549 bdev->bd_contains = NULL; 550 bdev->bd_inode = inode; 551 bdev->bd_block_size = (1 << inode->i_blkbits); 552 bdev->bd_part_count = 0; 553 bdev->bd_invalidated = 0; 554 inode->i_mode = S_IFBLK; 555 inode->i_rdev = dev; 556 inode->i_bdev = bdev; 557 inode->i_data.a_ops = &def_blk_aops; 558 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 559 inode->i_data.backing_dev_info = &default_backing_dev_info; 560 spin_lock(&bdev_lock); 561 list_add(&bdev->bd_list, &all_bdevs); 562 spin_unlock(&bdev_lock); 563 unlock_new_inode(inode); 564 } 565 return bdev; 566} 567 568EXPORT_SYMBOL(bdget); 569 570/** 571 * bdgrab -- Grab a reference to an already referenced block device 572 * @bdev: Block device to grab a reference to. 573 */ 574struct block_device *bdgrab(struct block_device *bdev) 575{ 576 ihold(bdev->bd_inode); 577 return bdev; 578} 579 580long nr_blockdev_pages(void) 581{ 582 struct block_device *bdev; 583 long ret = 0; 584 spin_lock(&bdev_lock); 585 list_for_each_entry(bdev, &all_bdevs, bd_list) { 586 ret += bdev->bd_inode->i_mapping->nrpages; 587 } 588 spin_unlock(&bdev_lock); 589 return ret; 590} 591 592void bdput(struct block_device *bdev) 593{ 594 iput(bdev->bd_inode); 595} 596 597EXPORT_SYMBOL(bdput); 598 599static struct block_device *bd_acquire(struct inode *inode) 600{ 601 struct block_device *bdev; 602 603 spin_lock(&bdev_lock); 604 bdev = inode->i_bdev; 605 if (bdev) { 606 ihold(bdev->bd_inode); 607 spin_unlock(&bdev_lock); 608 return bdev; 609 } 610 spin_unlock(&bdev_lock); 611 612 bdev = bdget(inode->i_rdev); 613 if (bdev) { 614 spin_lock(&bdev_lock); 615 if (!inode->i_bdev) { 616 /* 617 * We take an additional reference to bd_inode, 618 * and it's released in clear_inode() of inode. 619 * So, we can access it via ->i_mapping always 620 * without igrab(). 621 */ 622 ihold(bdev->bd_inode); 623 inode->i_bdev = bdev; 624 inode->i_mapping = bdev->bd_inode->i_mapping; 625 list_add(&inode->i_devices, &bdev->bd_inodes); 626 } 627 spin_unlock(&bdev_lock); 628 } 629 return bdev; 630} 631 632/* Call when you free inode */ 633 634void bd_forget(struct inode *inode) 635{ 636 struct block_device *bdev = NULL; 637 638 spin_lock(&bdev_lock); 639 if (inode->i_bdev) { 640 if (!sb_is_blkdev_sb(inode->i_sb)) 641 bdev = inode->i_bdev; 642 __bd_forget(inode); 643 } 644 spin_unlock(&bdev_lock); 645 646 if (bdev) 647 iput(bdev->bd_inode); 648} 649 650/** 651 * bd_may_claim - test whether a block device can be claimed 652 * @bdev: block device of interest 653 * @whole: whole block device containing @bdev, may equal @bdev 654 * @holder: holder trying to claim @bdev 655 * 656 * Test whether @bdev can be claimed by @holder. 657 * 658 * CONTEXT: 659 * spin_lock(&bdev_lock). 660 * 661 * RETURNS: 662 * %true if @bdev can be claimed, %false otherwise. 663 */ 664static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 665 void *holder) 666{ 667 if (bdev->bd_holder == holder) 668 return true; /* already a holder */ 669 else if (bdev->bd_holder != NULL) 670 return false; /* held by someone else */ 671 else if (bdev->bd_contains == bdev) 672 return true; /* is a whole device which isn't held */ 673 674 else if (whole->bd_holder == bd_may_claim) 675 return true; /* is a partition of a device that is being partitioned */ 676 else if (whole->bd_holder != NULL) 677 return false; /* is a partition of a held device */ 678 else 679 return true; /* is a partition of an un-held device */ 680} 681 682/** 683 * bd_prepare_to_claim - prepare to claim a block device 684 * @bdev: block device of interest 685 * @whole: the whole device containing @bdev, may equal @bdev 686 * @holder: holder trying to claim @bdev 687 * 688 * Prepare to claim @bdev. This function fails if @bdev is already 689 * claimed by another holder and waits if another claiming is in 690 * progress. This function doesn't actually claim. On successful 691 * return, the caller has ownership of bd_claiming and bd_holder[s]. 692 * 693 * CONTEXT: 694 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 695 * it multiple times. 696 * 697 * RETURNS: 698 * 0 if @bdev can be claimed, -EBUSY otherwise. 699 */ 700static int bd_prepare_to_claim(struct block_device *bdev, 701 struct block_device *whole, void *holder) 702{ 703retry: 704 /* if someone else claimed, fail */ 705 if (!bd_may_claim(bdev, whole, holder)) 706 return -EBUSY; 707 708 /* if claiming is already in progress, wait for it to finish */ 709 if (whole->bd_claiming) { 710 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 711 DEFINE_WAIT(wait); 712 713 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 714 spin_unlock(&bdev_lock); 715 schedule(); 716 finish_wait(wq, &wait); 717 spin_lock(&bdev_lock); 718 goto retry; 719 } 720 721 /* yay, all mine */ 722 return 0; 723} 724 725/** 726 * bd_start_claiming - start claiming a block device 727 * @bdev: block device of interest 728 * @holder: holder trying to claim @bdev 729 * 730 * @bdev is about to be opened exclusively. Check @bdev can be opened 731 * exclusively and mark that an exclusive open is in progress. Each 732 * successful call to this function must be matched with a call to 733 * either bd_finish_claiming() or bd_abort_claiming() (which do not 734 * fail). 735 * 736 * This function is used to gain exclusive access to the block device 737 * without actually causing other exclusive open attempts to fail. It 738 * should be used when the open sequence itself requires exclusive 739 * access but may subsequently fail. 740 * 741 * CONTEXT: 742 * Might sleep. 743 * 744 * RETURNS: 745 * Pointer to the block device containing @bdev on success, ERR_PTR() 746 * value on failure. 747 */ 748static struct block_device *bd_start_claiming(struct block_device *bdev, 749 void *holder) 750{ 751 struct gendisk *disk; 752 struct block_device *whole; 753 int partno, err; 754 755 might_sleep(); 756 757 /* 758 * @bdev might not have been initialized properly yet, look up 759 * and grab the outer block device the hard way. 760 */ 761 disk = get_gendisk(bdev->bd_dev, &partno); 762 if (!disk) 763 return ERR_PTR(-ENXIO); 764 765 whole = bdget_disk(disk, 0); 766 module_put(disk->fops->owner); 767 put_disk(disk); 768 if (!whole) 769 return ERR_PTR(-ENOMEM); 770 771 /* prepare to claim, if successful, mark claiming in progress */ 772 spin_lock(&bdev_lock); 773 774 err = bd_prepare_to_claim(bdev, whole, holder); 775 if (err == 0) { 776 whole->bd_claiming = holder; 777 spin_unlock(&bdev_lock); 778 return whole; 779 } else { 780 spin_unlock(&bdev_lock); 781 bdput(whole); 782 return ERR_PTR(err); 783 } 784} 785 786#ifdef CONFIG_SYSFS 787struct bd_holder_disk { 788 struct list_head list; 789 struct gendisk *disk; 790 int refcnt; 791}; 792 793static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 794 struct gendisk *disk) 795{ 796 struct bd_holder_disk *holder; 797 798 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 799 if (holder->disk == disk) 800 return holder; 801 return NULL; 802} 803 804static int add_symlink(struct kobject *from, struct kobject *to) 805{ 806 return sysfs_create_link(from, to, kobject_name(to)); 807} 808 809static void del_symlink(struct kobject *from, struct kobject *to) 810{ 811 sysfs_remove_link(from, kobject_name(to)); 812} 813 814/** 815 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 816 * @bdev: the claimed slave bdev 817 * @disk: the holding disk 818 * 819 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 820 * 821 * This functions creates the following sysfs symlinks. 822 * 823 * - from "slaves" directory of the holder @disk to the claimed @bdev 824 * - from "holders" directory of the @bdev to the holder @disk 825 * 826 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 827 * passed to bd_link_disk_holder(), then: 828 * 829 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 830 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 831 * 832 * The caller must have claimed @bdev before calling this function and 833 * ensure that both @bdev and @disk are valid during the creation and 834 * lifetime of these symlinks. 835 * 836 * CONTEXT: 837 * Might sleep. 838 * 839 * RETURNS: 840 * 0 on success, -errno on failure. 841 */ 842int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 843{ 844 struct bd_holder_disk *holder; 845 int ret = 0; 846 847 mutex_lock(&bdev->bd_mutex); 848 849 WARN_ON_ONCE(!bdev->bd_holder); 850 851 /* FIXME: remove the following once add_disk() handles errors */ 852 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 853 goto out_unlock; 854 855 holder = bd_find_holder_disk(bdev, disk); 856 if (holder) { 857 holder->refcnt++; 858 goto out_unlock; 859 } 860 861 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 862 if (!holder) { 863 ret = -ENOMEM; 864 goto out_unlock; 865 } 866 867 INIT_LIST_HEAD(&holder->list); 868 holder->disk = disk; 869 holder->refcnt = 1; 870 871 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 872 if (ret) 873 goto out_free; 874 875 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 876 if (ret) 877 goto out_del; 878 /* 879 * bdev could be deleted beneath us which would implicitly destroy 880 * the holder directory. Hold on to it. 881 */ 882 kobject_get(bdev->bd_part->holder_dir); 883 884 list_add(&holder->list, &bdev->bd_holder_disks); 885 goto out_unlock; 886 887out_del: 888 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 889out_free: 890 kfree(holder); 891out_unlock: 892 mutex_unlock(&bdev->bd_mutex); 893 return ret; 894} 895EXPORT_SYMBOL_GPL(bd_link_disk_holder); 896 897/** 898 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 899 * @bdev: the calimed slave bdev 900 * @disk: the holding disk 901 * 902 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 903 * 904 * CONTEXT: 905 * Might sleep. 906 */ 907void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 908{ 909 struct bd_holder_disk *holder; 910 911 mutex_lock(&bdev->bd_mutex); 912 913 holder = bd_find_holder_disk(bdev, disk); 914 915 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 916 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 917 del_symlink(bdev->bd_part->holder_dir, 918 &disk_to_dev(disk)->kobj); 919 kobject_put(bdev->bd_part->holder_dir); 920 list_del_init(&holder->list); 921 kfree(holder); 922 } 923 924 mutex_unlock(&bdev->bd_mutex); 925} 926EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 927#endif 928 929/** 930 * flush_disk - invalidates all buffer-cache entries on a disk 931 * 932 * @bdev: struct block device to be flushed 933 * @kill_dirty: flag to guide handling of dirty inodes 934 * 935 * Invalidates all buffer-cache entries on a disk. It should be called 936 * when a disk has been changed -- either by a media change or online 937 * resize. 938 */ 939static void flush_disk(struct block_device *bdev, bool kill_dirty) 940{ 941 if (__invalidate_device(bdev, kill_dirty)) { 942 char name[BDEVNAME_SIZE] = ""; 943 944 if (bdev->bd_disk) 945 disk_name(bdev->bd_disk, 0, name); 946 printk(KERN_WARNING "VFS: busy inodes on changed media or " 947 "resized disk %s\n", name); 948 } 949 950 if (!bdev->bd_disk) 951 return; 952 if (disk_partitionable(bdev->bd_disk)) 953 bdev->bd_invalidated = 1; 954} 955 956/** 957 * check_disk_size_change - checks for disk size change and adjusts bdev size. 958 * @disk: struct gendisk to check 959 * @bdev: struct bdev to adjust. 960 * 961 * This routine checks to see if the bdev size does not match the disk size 962 * and adjusts it if it differs. 963 */ 964void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 965{ 966 loff_t disk_size, bdev_size; 967 968 disk_size = (loff_t)get_capacity(disk) << 9; 969 bdev_size = i_size_read(bdev->bd_inode); 970 if (disk_size != bdev_size) { 971 char name[BDEVNAME_SIZE]; 972 973 disk_name(disk, 0, name); 974 printk(KERN_INFO 975 "%s: detected capacity change from %lld to %lld\n", 976 name, bdev_size, disk_size); 977 i_size_write(bdev->bd_inode, disk_size); 978 flush_disk(bdev, false); 979 } 980} 981EXPORT_SYMBOL(check_disk_size_change); 982 983/** 984 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 985 * @disk: struct gendisk to be revalidated 986 * 987 * This routine is a wrapper for lower-level driver's revalidate_disk 988 * call-backs. It is used to do common pre and post operations needed 989 * for all revalidate_disk operations. 990 */ 991int revalidate_disk(struct gendisk *disk) 992{ 993 struct block_device *bdev; 994 int ret = 0; 995 996 if (disk->fops->revalidate_disk) 997 ret = disk->fops->revalidate_disk(disk); 998 999 bdev = bdget_disk(disk, 0); 1000 if (!bdev) 1001 return ret; 1002 1003 mutex_lock(&bdev->bd_mutex); 1004 check_disk_size_change(disk, bdev); 1005 mutex_unlock(&bdev->bd_mutex); 1006 bdput(bdev); 1007 return ret; 1008} 1009EXPORT_SYMBOL(revalidate_disk); 1010 1011/* 1012 * This routine checks whether a removable media has been changed, 1013 * and invalidates all buffer-cache-entries in that case. This 1014 * is a relatively slow routine, so we have to try to minimize using 1015 * it. Thus it is called only upon a 'mount' or 'open'. This 1016 * is the best way of combining speed and utility, I think. 1017 * People changing diskettes in the middle of an operation deserve 1018 * to lose :-) 1019 */ 1020int check_disk_change(struct block_device *bdev) 1021{ 1022 struct gendisk *disk = bdev->bd_disk; 1023 const struct block_device_operations *bdops = disk->fops; 1024 unsigned int events; 1025 1026 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1027 DISK_EVENT_EJECT_REQUEST); 1028 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1029 return 0; 1030 1031 flush_disk(bdev, true); 1032 if (bdops->revalidate_disk) 1033 bdops->revalidate_disk(bdev->bd_disk); 1034 return 1; 1035} 1036 1037EXPORT_SYMBOL(check_disk_change); 1038 1039void bd_set_size(struct block_device *bdev, loff_t size) 1040{ 1041 unsigned bsize = bdev_logical_block_size(bdev); 1042 1043 bdev->bd_inode->i_size = size; 1044 while (bsize < PAGE_CACHE_SIZE) { 1045 if (size & bsize) 1046 break; 1047 bsize <<= 1; 1048 } 1049 bdev->bd_block_size = bsize; 1050 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1051} 1052EXPORT_SYMBOL(bd_set_size); 1053 1054static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1055 1056/* 1057 * bd_mutex locking: 1058 * 1059 * mutex_lock(part->bd_mutex) 1060 * mutex_lock_nested(whole->bd_mutex, 1) 1061 */ 1062 1063static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1064{ 1065 struct gendisk *disk; 1066 int ret; 1067 int partno; 1068 int perm = 0; 1069 1070 if (mode & FMODE_READ) 1071 perm |= MAY_READ; 1072 if (mode & FMODE_WRITE) 1073 perm |= MAY_WRITE; 1074 /* 1075 * hooks: /n/, see "layering violations". 1076 */ 1077 if (!for_part) { 1078 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1079 if (ret != 0) { 1080 bdput(bdev); 1081 return ret; 1082 } 1083 } 1084 1085 restart: 1086 1087 ret = -ENXIO; 1088 disk = get_gendisk(bdev->bd_dev, &partno); 1089 if (!disk) 1090 goto out; 1091 1092 disk_block_events(disk); 1093 mutex_lock_nested(&bdev->bd_mutex, for_part); 1094 if (!bdev->bd_openers) { 1095 bdev->bd_disk = disk; 1096 bdev->bd_contains = bdev; 1097 if (!partno) { 1098 struct backing_dev_info *bdi; 1099 1100 ret = -ENXIO; 1101 bdev->bd_part = disk_get_part(disk, partno); 1102 if (!bdev->bd_part) 1103 goto out_clear; 1104 1105 ret = 0; 1106 if (disk->fops->open) { 1107 ret = disk->fops->open(bdev, mode); 1108 if (ret == -ERESTARTSYS) { 1109 /* Lost a race with 'disk' being 1110 * deleted, try again. 1111 * See md.c 1112 */ 1113 disk_put_part(bdev->bd_part); 1114 bdev->bd_part = NULL; 1115 bdev->bd_disk = NULL; 1116 mutex_unlock(&bdev->bd_mutex); 1117 disk_unblock_events(disk); 1118 module_put(disk->fops->owner); 1119 put_disk(disk); 1120 goto restart; 1121 } 1122 } 1123 /* 1124 * If the device is invalidated, rescan partition 1125 * if open succeeded or failed with -ENOMEDIUM. 1126 * The latter is necessary to prevent ghost 1127 * partitions on a removed medium. 1128 */ 1129 if (bdev->bd_invalidated && (!ret || ret == -ENOMEDIUM)) 1130 rescan_partitions(disk, bdev); 1131 if (ret) 1132 goto out_clear; 1133 1134 if (!bdev->bd_openers) { 1135 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1136 bdi = blk_get_backing_dev_info(bdev); 1137 if (bdi == NULL) 1138 bdi = &default_backing_dev_info; 1139 bdev_inode_switch_bdi(bdev->bd_inode, bdi); 1140 } 1141 } else { 1142 struct block_device *whole; 1143 whole = bdget_disk(disk, 0); 1144 ret = -ENOMEM; 1145 if (!whole) 1146 goto out_clear; 1147 BUG_ON(for_part); 1148 ret = __blkdev_get(whole, mode, 1); 1149 if (ret) 1150 goto out_clear; 1151 bdev->bd_contains = whole; 1152 bdev_inode_switch_bdi(bdev->bd_inode, 1153 whole->bd_inode->i_data.backing_dev_info); 1154 bdev->bd_part = disk_get_part(disk, partno); 1155 if (!(disk->flags & GENHD_FL_UP) || 1156 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1157 ret = -ENXIO; 1158 goto out_clear; 1159 } 1160 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1161 } 1162 } else { 1163 if (bdev->bd_contains == bdev) { 1164 ret = 0; 1165 if (bdev->bd_disk->fops->open) 1166 ret = bdev->bd_disk->fops->open(bdev, mode); 1167 /* the same as first opener case, read comment there */ 1168 if (bdev->bd_invalidated && (!ret || ret == -ENOMEDIUM)) 1169 rescan_partitions(bdev->bd_disk, bdev); 1170 if (ret) 1171 goto out_unlock_bdev; 1172 } 1173 /* only one opener holds refs to the module and disk */ 1174 module_put(disk->fops->owner); 1175 put_disk(disk); 1176 } 1177 bdev->bd_openers++; 1178 if (for_part) 1179 bdev->bd_part_count++; 1180 mutex_unlock(&bdev->bd_mutex); 1181 disk_unblock_events(disk); 1182 return 0; 1183 1184 out_clear: 1185 disk_put_part(bdev->bd_part); 1186 bdev->bd_disk = NULL; 1187 bdev->bd_part = NULL; 1188 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info); 1189 if (bdev != bdev->bd_contains) 1190 __blkdev_put(bdev->bd_contains, mode, 1); 1191 bdev->bd_contains = NULL; 1192 out_unlock_bdev: 1193 mutex_unlock(&bdev->bd_mutex); 1194 disk_unblock_events(disk); 1195 module_put(disk->fops->owner); 1196 put_disk(disk); 1197 out: 1198 bdput(bdev); 1199 1200 return ret; 1201} 1202 1203/** 1204 * blkdev_get - open a block device 1205 * @bdev: block_device to open 1206 * @mode: FMODE_* mask 1207 * @holder: exclusive holder identifier 1208 * 1209 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1210 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1211 * @holder is invalid. Exclusive opens may nest for the same @holder. 1212 * 1213 * On success, the reference count of @bdev is unchanged. On failure, 1214 * @bdev is put. 1215 * 1216 * CONTEXT: 1217 * Might sleep. 1218 * 1219 * RETURNS: 1220 * 0 on success, -errno on failure. 1221 */ 1222int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1223{ 1224 struct block_device *whole = NULL; 1225 int res; 1226 1227 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1228 1229 if ((mode & FMODE_EXCL) && holder) { 1230 whole = bd_start_claiming(bdev, holder); 1231 if (IS_ERR(whole)) { 1232 bdput(bdev); 1233 return PTR_ERR(whole); 1234 } 1235 } 1236 1237 res = __blkdev_get(bdev, mode, 0); 1238 1239 if (whole) { 1240 /* finish claiming */ 1241 mutex_lock(&bdev->bd_mutex); 1242 spin_lock(&bdev_lock); 1243 1244 if (!res) { 1245 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1246 /* 1247 * Note that for a whole device bd_holders 1248 * will be incremented twice, and bd_holder 1249 * will be set to bd_may_claim before being 1250 * set to holder 1251 */ 1252 whole->bd_holders++; 1253 whole->bd_holder = bd_may_claim; 1254 bdev->bd_holders++; 1255 bdev->bd_holder = holder; 1256 } 1257 1258 /* tell others that we're done */ 1259 BUG_ON(whole->bd_claiming != holder); 1260 whole->bd_claiming = NULL; 1261 wake_up_bit(&whole->bd_claiming, 0); 1262 1263 spin_unlock(&bdev_lock); 1264 1265 /* 1266 * Block event polling for write claims. Any write 1267 * holder makes the write_holder state stick until all 1268 * are released. This is good enough and tracking 1269 * individual writeable reference is too fragile given 1270 * the way @mode is used in blkdev_get/put(). 1271 */ 1272 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder) { 1273 bdev->bd_write_holder = true; 1274 disk_block_events(bdev->bd_disk); 1275 } 1276 1277 mutex_unlock(&bdev->bd_mutex); 1278 bdput(whole); 1279 } 1280 1281 return res; 1282} 1283EXPORT_SYMBOL(blkdev_get); 1284 1285/** 1286 * blkdev_get_by_path - open a block device by name 1287 * @path: path to the block device to open 1288 * @mode: FMODE_* mask 1289 * @holder: exclusive holder identifier 1290 * 1291 * Open the blockdevice described by the device file at @path. @mode 1292 * and @holder are identical to blkdev_get(). 1293 * 1294 * On success, the returned block_device has reference count of one. 1295 * 1296 * CONTEXT: 1297 * Might sleep. 1298 * 1299 * RETURNS: 1300 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1301 */ 1302struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1303 void *holder) 1304{ 1305 struct block_device *bdev; 1306 int err; 1307 1308 bdev = lookup_bdev(path); 1309 if (IS_ERR(bdev)) 1310 return bdev; 1311 1312 err = blkdev_get(bdev, mode, holder); 1313 if (err) 1314 return ERR_PTR(err); 1315 1316 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1317 blkdev_put(bdev, mode); 1318 return ERR_PTR(-EACCES); 1319 } 1320 1321 return bdev; 1322} 1323EXPORT_SYMBOL(blkdev_get_by_path); 1324 1325/** 1326 * blkdev_get_by_dev - open a block device by device number 1327 * @dev: device number of block device to open 1328 * @mode: FMODE_* mask 1329 * @holder: exclusive holder identifier 1330 * 1331 * Open the blockdevice described by device number @dev. @mode and 1332 * @holder are identical to blkdev_get(). 1333 * 1334 * Use it ONLY if you really do not have anything better - i.e. when 1335 * you are behind a truly sucky interface and all you are given is a 1336 * device number. _Never_ to be used for internal purposes. If you 1337 * ever need it - reconsider your API. 1338 * 1339 * On success, the returned block_device has reference count of one. 1340 * 1341 * CONTEXT: 1342 * Might sleep. 1343 * 1344 * RETURNS: 1345 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1346 */ 1347struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1348{ 1349 struct block_device *bdev; 1350 int err; 1351 1352 bdev = bdget(dev); 1353 if (!bdev) 1354 return ERR_PTR(-ENOMEM); 1355 1356 err = blkdev_get(bdev, mode, holder); 1357 if (err) 1358 return ERR_PTR(err); 1359 1360 return bdev; 1361} 1362EXPORT_SYMBOL(blkdev_get_by_dev); 1363 1364static int blkdev_open(struct inode * inode, struct file * filp) 1365{ 1366 struct block_device *bdev; 1367 1368 /* 1369 * Preserve backwards compatibility and allow large file access 1370 * even if userspace doesn't ask for it explicitly. Some mkfs 1371 * binary needs it. We might want to drop this workaround 1372 * during an unstable branch. 1373 */ 1374 filp->f_flags |= O_LARGEFILE; 1375 1376 if (filp->f_flags & O_NDELAY) 1377 filp->f_mode |= FMODE_NDELAY; 1378 if (filp->f_flags & O_EXCL) 1379 filp->f_mode |= FMODE_EXCL; 1380 if ((filp->f_flags & O_ACCMODE) == 3) 1381 filp->f_mode |= FMODE_WRITE_IOCTL; 1382 1383 bdev = bd_acquire(inode); 1384 if (bdev == NULL) 1385 return -ENOMEM; 1386 1387 filp->f_mapping = bdev->bd_inode->i_mapping; 1388 1389 return blkdev_get(bdev, filp->f_mode, filp); 1390} 1391 1392static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1393{ 1394 int ret = 0; 1395 struct gendisk *disk = bdev->bd_disk; 1396 struct block_device *victim = NULL; 1397 1398 mutex_lock_nested(&bdev->bd_mutex, for_part); 1399 if (for_part) 1400 bdev->bd_part_count--; 1401 1402 if (!--bdev->bd_openers) { 1403 WARN_ON_ONCE(bdev->bd_holders); 1404 sync_blockdev(bdev); 1405 kill_bdev(bdev); 1406 } 1407 if (bdev->bd_contains == bdev) { 1408 if (disk->fops->release) 1409 ret = disk->fops->release(disk, mode); 1410 } 1411 if (!bdev->bd_openers) { 1412 struct module *owner = disk->fops->owner; 1413 1414 put_disk(disk); 1415 module_put(owner); 1416 disk_put_part(bdev->bd_part); 1417 bdev->bd_part = NULL; 1418 bdev->bd_disk = NULL; 1419 bdev_inode_switch_bdi(bdev->bd_inode, 1420 &default_backing_dev_info); 1421 if (bdev != bdev->bd_contains) 1422 victim = bdev->bd_contains; 1423 bdev->bd_contains = NULL; 1424 } 1425 mutex_unlock(&bdev->bd_mutex); 1426 bdput(bdev); 1427 if (victim) 1428 __blkdev_put(victim, mode, 1); 1429 return ret; 1430} 1431 1432int blkdev_put(struct block_device *bdev, fmode_t mode) 1433{ 1434 if (mode & FMODE_EXCL) { 1435 bool bdev_free; 1436 1437 /* 1438 * Release a claim on the device. The holder fields 1439 * are protected with bdev_lock. bd_mutex is to 1440 * synchronize disk_holder unlinking. 1441 */ 1442 mutex_lock(&bdev->bd_mutex); 1443 spin_lock(&bdev_lock); 1444 1445 WARN_ON_ONCE(--bdev->bd_holders < 0); 1446 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1447 1448 /* bd_contains might point to self, check in a separate step */ 1449 if ((bdev_free = !bdev->bd_holders)) 1450 bdev->bd_holder = NULL; 1451 if (!bdev->bd_contains->bd_holders) 1452 bdev->bd_contains->bd_holder = NULL; 1453 1454 spin_unlock(&bdev_lock); 1455 1456 /* 1457 * If this was the last claim, remove holder link and 1458 * unblock evpoll if it was a write holder. 1459 */ 1460 if (bdev_free) { 1461 if (bdev->bd_write_holder) { 1462 disk_unblock_events(bdev->bd_disk); 1463 disk_check_events(bdev->bd_disk); 1464 bdev->bd_write_holder = false; 1465 } 1466 } 1467 1468 mutex_unlock(&bdev->bd_mutex); 1469 } 1470 1471 return __blkdev_put(bdev, mode, 0); 1472} 1473EXPORT_SYMBOL(blkdev_put); 1474 1475static int blkdev_close(struct inode * inode, struct file * filp) 1476{ 1477 struct block_device *bdev = I_BDEV(filp->f_mapping->host); 1478 1479 return blkdev_put(bdev, filp->f_mode); 1480} 1481 1482static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1483{ 1484 struct block_device *bdev = I_BDEV(file->f_mapping->host); 1485 fmode_t mode = file->f_mode; 1486 1487 /* 1488 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1489 * to updated it before every ioctl. 1490 */ 1491 if (file->f_flags & O_NDELAY) 1492 mode |= FMODE_NDELAY; 1493 else 1494 mode &= ~FMODE_NDELAY; 1495 1496 return blkdev_ioctl(bdev, mode, cmd, arg); 1497} 1498 1499/* 1500 * Write data to the block device. Only intended for the block device itself 1501 * and the raw driver which basically is a fake block device. 1502 * 1503 * Does not take i_mutex for the write and thus is not for general purpose 1504 * use. 1505 */ 1506ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov, 1507 unsigned long nr_segs, loff_t pos) 1508{ 1509 struct file *file = iocb->ki_filp; 1510 ssize_t ret; 1511 1512 BUG_ON(iocb->ki_pos != pos); 1513 1514 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 1515 if (ret > 0 || ret == -EIOCBQUEUED) { 1516 ssize_t err; 1517 1518 err = generic_write_sync(file, pos, ret); 1519 if (err < 0 && ret > 0) 1520 ret = err; 1521 } 1522 return ret; 1523} 1524EXPORT_SYMBOL_GPL(blkdev_aio_write); 1525 1526/* 1527 * Try to release a page associated with block device when the system 1528 * is under memory pressure. 1529 */ 1530static int blkdev_releasepage(struct page *page, gfp_t wait) 1531{ 1532 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1533 1534 if (super && super->s_op->bdev_try_to_free_page) 1535 return super->s_op->bdev_try_to_free_page(super, page, wait); 1536 1537 return try_to_free_buffers(page); 1538} 1539 1540static const struct address_space_operations def_blk_aops = { 1541 .readpage = blkdev_readpage, 1542 .writepage = blkdev_writepage, 1543 .write_begin = blkdev_write_begin, 1544 .write_end = blkdev_write_end, 1545 .writepages = generic_writepages, 1546 .releasepage = blkdev_releasepage, 1547 .direct_IO = blkdev_direct_IO, 1548}; 1549 1550const struct file_operations def_blk_fops = { 1551 .open = blkdev_open, 1552 .release = blkdev_close, 1553 .llseek = block_llseek, 1554 .read = do_sync_read, 1555 .write = do_sync_write, 1556 .aio_read = generic_file_aio_read, 1557 .aio_write = blkdev_aio_write, 1558 .mmap = generic_file_mmap, 1559 .fsync = blkdev_fsync, 1560 .unlocked_ioctl = block_ioctl, 1561#ifdef CONFIG_COMPAT 1562 .compat_ioctl = compat_blkdev_ioctl, 1563#endif 1564 .splice_read = generic_file_splice_read, 1565 .splice_write = generic_file_splice_write, 1566}; 1567 1568int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 1569{ 1570 int res; 1571 mm_segment_t old_fs = get_fs(); 1572 set_fs(KERNEL_DS); 1573 res = blkdev_ioctl(bdev, 0, cmd, arg); 1574 set_fs(old_fs); 1575 return res; 1576} 1577 1578EXPORT_SYMBOL(ioctl_by_bdev); 1579 1580/** 1581 * lookup_bdev - lookup a struct block_device by name 1582 * @pathname: special file representing the block device 1583 * 1584 * Get a reference to the blockdevice at @pathname in the current 1585 * namespace if possible and return it. Return ERR_PTR(error) 1586 * otherwise. 1587 */ 1588struct block_device *lookup_bdev(const char *pathname) 1589{ 1590 struct block_device *bdev; 1591 struct inode *inode; 1592 struct path path; 1593 int error; 1594 1595 if (!pathname || !*pathname) 1596 return ERR_PTR(-EINVAL); 1597 1598 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 1599 if (error) 1600 return ERR_PTR(error); 1601 1602 inode = path.dentry->d_inode; 1603 error = -ENOTBLK; 1604 if (!S_ISBLK(inode->i_mode)) 1605 goto fail; 1606 error = -EACCES; 1607 if (path.mnt->mnt_flags & MNT_NODEV) 1608 goto fail; 1609 error = -ENOMEM; 1610 bdev = bd_acquire(inode); 1611 if (!bdev) 1612 goto fail; 1613out: 1614 path_put(&path); 1615 return bdev; 1616fail: 1617 bdev = ERR_PTR(error); 1618 goto out; 1619} 1620EXPORT_SYMBOL(lookup_bdev); 1621 1622int __invalidate_device(struct block_device *bdev, bool kill_dirty) 1623{ 1624 struct super_block *sb = get_super(bdev); 1625 int res = 0; 1626 1627 if (sb) { 1628 /* 1629 * no need to lock the super, get_super holds the 1630 * read mutex so the filesystem cannot go away 1631 * under us (->put_super runs with the write lock 1632 * hold). 1633 */ 1634 shrink_dcache_sb(sb); 1635 res = invalidate_inodes(sb, kill_dirty); 1636 drop_super(sb); 1637 } 1638 invalidate_bdev(bdev); 1639 return res; 1640} 1641EXPORT_SYMBOL(__invalidate_device);