at v2.6.39 597 lines 14 kB view raw
1/** 2 * @file buffer_sync.c 3 * 4 * @remark Copyright 2002-2009 OProfile authors 5 * @remark Read the file COPYING 6 * 7 * @author John Levon <levon@movementarian.org> 8 * @author Barry Kasindorf 9 * @author Robert Richter <robert.richter@amd.com> 10 * 11 * This is the core of the buffer management. Each 12 * CPU buffer is processed and entered into the 13 * global event buffer. Such processing is necessary 14 * in several circumstances, mentioned below. 15 * 16 * The processing does the job of converting the 17 * transitory EIP value into a persistent dentry/offset 18 * value that the profiler can record at its leisure. 19 * 20 * See fs/dcookies.c for a description of the dentry/offset 21 * objects. 22 */ 23 24#include <linux/mm.h> 25#include <linux/workqueue.h> 26#include <linux/notifier.h> 27#include <linux/dcookies.h> 28#include <linux/profile.h> 29#include <linux/module.h> 30#include <linux/fs.h> 31#include <linux/oprofile.h> 32#include <linux/sched.h> 33#include <linux/gfp.h> 34 35#include "oprofile_stats.h" 36#include "event_buffer.h" 37#include "cpu_buffer.h" 38#include "buffer_sync.h" 39 40static LIST_HEAD(dying_tasks); 41static LIST_HEAD(dead_tasks); 42static cpumask_var_t marked_cpus; 43static DEFINE_SPINLOCK(task_mortuary); 44static void process_task_mortuary(void); 45 46/* Take ownership of the task struct and place it on the 47 * list for processing. Only after two full buffer syncs 48 * does the task eventually get freed, because by then 49 * we are sure we will not reference it again. 50 * Can be invoked from softirq via RCU callback due to 51 * call_rcu() of the task struct, hence the _irqsave. 52 */ 53static int 54task_free_notify(struct notifier_block *self, unsigned long val, void *data) 55{ 56 unsigned long flags; 57 struct task_struct *task = data; 58 spin_lock_irqsave(&task_mortuary, flags); 59 list_add(&task->tasks, &dying_tasks); 60 spin_unlock_irqrestore(&task_mortuary, flags); 61 return NOTIFY_OK; 62} 63 64 65/* The task is on its way out. A sync of the buffer means we can catch 66 * any remaining samples for this task. 67 */ 68static int 69task_exit_notify(struct notifier_block *self, unsigned long val, void *data) 70{ 71 /* To avoid latency problems, we only process the current CPU, 72 * hoping that most samples for the task are on this CPU 73 */ 74 sync_buffer(raw_smp_processor_id()); 75 return 0; 76} 77 78 79/* The task is about to try a do_munmap(). We peek at what it's going to 80 * do, and if it's an executable region, process the samples first, so 81 * we don't lose any. This does not have to be exact, it's a QoI issue 82 * only. 83 */ 84static int 85munmap_notify(struct notifier_block *self, unsigned long val, void *data) 86{ 87 unsigned long addr = (unsigned long)data; 88 struct mm_struct *mm = current->mm; 89 struct vm_area_struct *mpnt; 90 91 down_read(&mm->mmap_sem); 92 93 mpnt = find_vma(mm, addr); 94 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) { 95 up_read(&mm->mmap_sem); 96 /* To avoid latency problems, we only process the current CPU, 97 * hoping that most samples for the task are on this CPU 98 */ 99 sync_buffer(raw_smp_processor_id()); 100 return 0; 101 } 102 103 up_read(&mm->mmap_sem); 104 return 0; 105} 106 107 108/* We need to be told about new modules so we don't attribute to a previously 109 * loaded module, or drop the samples on the floor. 110 */ 111static int 112module_load_notify(struct notifier_block *self, unsigned long val, void *data) 113{ 114#ifdef CONFIG_MODULES 115 if (val != MODULE_STATE_COMING) 116 return 0; 117 118 /* FIXME: should we process all CPU buffers ? */ 119 mutex_lock(&buffer_mutex); 120 add_event_entry(ESCAPE_CODE); 121 add_event_entry(MODULE_LOADED_CODE); 122 mutex_unlock(&buffer_mutex); 123#endif 124 return 0; 125} 126 127 128static struct notifier_block task_free_nb = { 129 .notifier_call = task_free_notify, 130}; 131 132static struct notifier_block task_exit_nb = { 133 .notifier_call = task_exit_notify, 134}; 135 136static struct notifier_block munmap_nb = { 137 .notifier_call = munmap_notify, 138}; 139 140static struct notifier_block module_load_nb = { 141 .notifier_call = module_load_notify, 142}; 143 144int sync_start(void) 145{ 146 int err; 147 148 if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL)) 149 return -ENOMEM; 150 151 mutex_lock(&buffer_mutex); 152 153 err = task_handoff_register(&task_free_nb); 154 if (err) 155 goto out1; 156 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb); 157 if (err) 158 goto out2; 159 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb); 160 if (err) 161 goto out3; 162 err = register_module_notifier(&module_load_nb); 163 if (err) 164 goto out4; 165 166 start_cpu_work(); 167 168out: 169 mutex_unlock(&buffer_mutex); 170 return err; 171out4: 172 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); 173out3: 174 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); 175out2: 176 task_handoff_unregister(&task_free_nb); 177out1: 178 free_cpumask_var(marked_cpus); 179 goto out; 180} 181 182 183void sync_stop(void) 184{ 185 /* flush buffers */ 186 mutex_lock(&buffer_mutex); 187 end_cpu_work(); 188 unregister_module_notifier(&module_load_nb); 189 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); 190 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); 191 task_handoff_unregister(&task_free_nb); 192 mutex_unlock(&buffer_mutex); 193 flush_cpu_work(); 194 195 /* make sure we don't leak task structs */ 196 process_task_mortuary(); 197 process_task_mortuary(); 198 199 free_cpumask_var(marked_cpus); 200} 201 202 203/* Optimisation. We can manage without taking the dcookie sem 204 * because we cannot reach this code without at least one 205 * dcookie user still being registered (namely, the reader 206 * of the event buffer). */ 207static inline unsigned long fast_get_dcookie(struct path *path) 208{ 209 unsigned long cookie; 210 211 if (path->dentry->d_flags & DCACHE_COOKIE) 212 return (unsigned long)path->dentry; 213 get_dcookie(path, &cookie); 214 return cookie; 215} 216 217 218/* Look up the dcookie for the task's first VM_EXECUTABLE mapping, 219 * which corresponds loosely to "application name". This is 220 * not strictly necessary but allows oprofile to associate 221 * shared-library samples with particular applications 222 */ 223static unsigned long get_exec_dcookie(struct mm_struct *mm) 224{ 225 unsigned long cookie = NO_COOKIE; 226 struct vm_area_struct *vma; 227 228 if (!mm) 229 goto out; 230 231 for (vma = mm->mmap; vma; vma = vma->vm_next) { 232 if (!vma->vm_file) 233 continue; 234 if (!(vma->vm_flags & VM_EXECUTABLE)) 235 continue; 236 cookie = fast_get_dcookie(&vma->vm_file->f_path); 237 break; 238 } 239 240out: 241 return cookie; 242} 243 244 245/* Convert the EIP value of a sample into a persistent dentry/offset 246 * pair that can then be added to the global event buffer. We make 247 * sure to do this lookup before a mm->mmap modification happens so 248 * we don't lose track. 249 */ 250static unsigned long 251lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset) 252{ 253 unsigned long cookie = NO_COOKIE; 254 struct vm_area_struct *vma; 255 256 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) { 257 258 if (addr < vma->vm_start || addr >= vma->vm_end) 259 continue; 260 261 if (vma->vm_file) { 262 cookie = fast_get_dcookie(&vma->vm_file->f_path); 263 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr - 264 vma->vm_start; 265 } else { 266 /* must be an anonymous map */ 267 *offset = addr; 268 } 269 270 break; 271 } 272 273 if (!vma) 274 cookie = INVALID_COOKIE; 275 276 return cookie; 277} 278 279static unsigned long last_cookie = INVALID_COOKIE; 280 281static void add_cpu_switch(int i) 282{ 283 add_event_entry(ESCAPE_CODE); 284 add_event_entry(CPU_SWITCH_CODE); 285 add_event_entry(i); 286 last_cookie = INVALID_COOKIE; 287} 288 289static void add_kernel_ctx_switch(unsigned int in_kernel) 290{ 291 add_event_entry(ESCAPE_CODE); 292 if (in_kernel) 293 add_event_entry(KERNEL_ENTER_SWITCH_CODE); 294 else 295 add_event_entry(KERNEL_EXIT_SWITCH_CODE); 296} 297 298static void 299add_user_ctx_switch(struct task_struct const *task, unsigned long cookie) 300{ 301 add_event_entry(ESCAPE_CODE); 302 add_event_entry(CTX_SWITCH_CODE); 303 add_event_entry(task->pid); 304 add_event_entry(cookie); 305 /* Another code for daemon back-compat */ 306 add_event_entry(ESCAPE_CODE); 307 add_event_entry(CTX_TGID_CODE); 308 add_event_entry(task->tgid); 309} 310 311 312static void add_cookie_switch(unsigned long cookie) 313{ 314 add_event_entry(ESCAPE_CODE); 315 add_event_entry(COOKIE_SWITCH_CODE); 316 add_event_entry(cookie); 317} 318 319 320static void add_trace_begin(void) 321{ 322 add_event_entry(ESCAPE_CODE); 323 add_event_entry(TRACE_BEGIN_CODE); 324} 325 326static void add_data(struct op_entry *entry, struct mm_struct *mm) 327{ 328 unsigned long code, pc, val; 329 unsigned long cookie; 330 off_t offset; 331 332 if (!op_cpu_buffer_get_data(entry, &code)) 333 return; 334 if (!op_cpu_buffer_get_data(entry, &pc)) 335 return; 336 if (!op_cpu_buffer_get_size(entry)) 337 return; 338 339 if (mm) { 340 cookie = lookup_dcookie(mm, pc, &offset); 341 342 if (cookie == NO_COOKIE) 343 offset = pc; 344 if (cookie == INVALID_COOKIE) { 345 atomic_inc(&oprofile_stats.sample_lost_no_mapping); 346 offset = pc; 347 } 348 if (cookie != last_cookie) { 349 add_cookie_switch(cookie); 350 last_cookie = cookie; 351 } 352 } else 353 offset = pc; 354 355 add_event_entry(ESCAPE_CODE); 356 add_event_entry(code); 357 add_event_entry(offset); /* Offset from Dcookie */ 358 359 while (op_cpu_buffer_get_data(entry, &val)) 360 add_event_entry(val); 361} 362 363static inline void add_sample_entry(unsigned long offset, unsigned long event) 364{ 365 add_event_entry(offset); 366 add_event_entry(event); 367} 368 369 370/* 371 * Add a sample to the global event buffer. If possible the 372 * sample is converted into a persistent dentry/offset pair 373 * for later lookup from userspace. Return 0 on failure. 374 */ 375static int 376add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel) 377{ 378 unsigned long cookie; 379 off_t offset; 380 381 if (in_kernel) { 382 add_sample_entry(s->eip, s->event); 383 return 1; 384 } 385 386 /* add userspace sample */ 387 388 if (!mm) { 389 atomic_inc(&oprofile_stats.sample_lost_no_mm); 390 return 0; 391 } 392 393 cookie = lookup_dcookie(mm, s->eip, &offset); 394 395 if (cookie == INVALID_COOKIE) { 396 atomic_inc(&oprofile_stats.sample_lost_no_mapping); 397 return 0; 398 } 399 400 if (cookie != last_cookie) { 401 add_cookie_switch(cookie); 402 last_cookie = cookie; 403 } 404 405 add_sample_entry(offset, s->event); 406 407 return 1; 408} 409 410 411static void release_mm(struct mm_struct *mm) 412{ 413 if (!mm) 414 return; 415 up_read(&mm->mmap_sem); 416 mmput(mm); 417} 418 419 420static struct mm_struct *take_tasks_mm(struct task_struct *task) 421{ 422 struct mm_struct *mm = get_task_mm(task); 423 if (mm) 424 down_read(&mm->mmap_sem); 425 return mm; 426} 427 428 429static inline int is_code(unsigned long val) 430{ 431 return val == ESCAPE_CODE; 432} 433 434 435/* Move tasks along towards death. Any tasks on dead_tasks 436 * will definitely have no remaining references in any 437 * CPU buffers at this point, because we use two lists, 438 * and to have reached the list, it must have gone through 439 * one full sync already. 440 */ 441static void process_task_mortuary(void) 442{ 443 unsigned long flags; 444 LIST_HEAD(local_dead_tasks); 445 struct task_struct *task; 446 struct task_struct *ttask; 447 448 spin_lock_irqsave(&task_mortuary, flags); 449 450 list_splice_init(&dead_tasks, &local_dead_tasks); 451 list_splice_init(&dying_tasks, &dead_tasks); 452 453 spin_unlock_irqrestore(&task_mortuary, flags); 454 455 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) { 456 list_del(&task->tasks); 457 free_task(task); 458 } 459} 460 461 462static void mark_done(int cpu) 463{ 464 int i; 465 466 cpumask_set_cpu(cpu, marked_cpus); 467 468 for_each_online_cpu(i) { 469 if (!cpumask_test_cpu(i, marked_cpus)) 470 return; 471 } 472 473 /* All CPUs have been processed at least once, 474 * we can process the mortuary once 475 */ 476 process_task_mortuary(); 477 478 cpumask_clear(marked_cpus); 479} 480 481 482/* FIXME: this is not sufficient if we implement syscall barrier backtrace 483 * traversal, the code switch to sb_sample_start at first kernel enter/exit 484 * switch so we need a fifth state and some special handling in sync_buffer() 485 */ 486typedef enum { 487 sb_bt_ignore = -2, 488 sb_buffer_start, 489 sb_bt_start, 490 sb_sample_start, 491} sync_buffer_state; 492 493/* Sync one of the CPU's buffers into the global event buffer. 494 * Here we need to go through each batch of samples punctuated 495 * by context switch notes, taking the task's mmap_sem and doing 496 * lookup in task->mm->mmap to convert EIP into dcookie/offset 497 * value. 498 */ 499void sync_buffer(int cpu) 500{ 501 struct mm_struct *mm = NULL; 502 struct mm_struct *oldmm; 503 unsigned long val; 504 struct task_struct *new; 505 unsigned long cookie = 0; 506 int in_kernel = 1; 507 sync_buffer_state state = sb_buffer_start; 508 unsigned int i; 509 unsigned long available; 510 unsigned long flags; 511 struct op_entry entry; 512 struct op_sample *sample; 513 514 mutex_lock(&buffer_mutex); 515 516 add_cpu_switch(cpu); 517 518 op_cpu_buffer_reset(cpu); 519 available = op_cpu_buffer_entries(cpu); 520 521 for (i = 0; i < available; ++i) { 522 sample = op_cpu_buffer_read_entry(&entry, cpu); 523 if (!sample) 524 break; 525 526 if (is_code(sample->eip)) { 527 flags = sample->event; 528 if (flags & TRACE_BEGIN) { 529 state = sb_bt_start; 530 add_trace_begin(); 531 } 532 if (flags & KERNEL_CTX_SWITCH) { 533 /* kernel/userspace switch */ 534 in_kernel = flags & IS_KERNEL; 535 if (state == sb_buffer_start) 536 state = sb_sample_start; 537 add_kernel_ctx_switch(flags & IS_KERNEL); 538 } 539 if (flags & USER_CTX_SWITCH 540 && op_cpu_buffer_get_data(&entry, &val)) { 541 /* userspace context switch */ 542 new = (struct task_struct *)val; 543 oldmm = mm; 544 release_mm(oldmm); 545 mm = take_tasks_mm(new); 546 if (mm != oldmm) 547 cookie = get_exec_dcookie(mm); 548 add_user_ctx_switch(new, cookie); 549 } 550 if (op_cpu_buffer_get_size(&entry)) 551 add_data(&entry, mm); 552 continue; 553 } 554 555 if (state < sb_bt_start) 556 /* ignore sample */ 557 continue; 558 559 if (add_sample(mm, sample, in_kernel)) 560 continue; 561 562 /* ignore backtraces if failed to add a sample */ 563 if (state == sb_bt_start) { 564 state = sb_bt_ignore; 565 atomic_inc(&oprofile_stats.bt_lost_no_mapping); 566 } 567 } 568 release_mm(mm); 569 570 mark_done(cpu); 571 572 mutex_unlock(&buffer_mutex); 573} 574 575/* The function can be used to add a buffer worth of data directly to 576 * the kernel buffer. The buffer is assumed to be a circular buffer. 577 * Take the entries from index start and end at index end, wrapping 578 * at max_entries. 579 */ 580void oprofile_put_buff(unsigned long *buf, unsigned int start, 581 unsigned int stop, unsigned int max) 582{ 583 int i; 584 585 i = start; 586 587 mutex_lock(&buffer_mutex); 588 while (i != stop) { 589 add_event_entry(buf[i++]); 590 591 if (i >= max) 592 i = 0; 593 } 594 595 mutex_unlock(&buffer_mutex); 596} 597