at v2.6.39 2693 lines 72 kB view raw
1/******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2011 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27*******************************************************************************/ 28 29#include "e1000.h" 30 31enum e1000_mng_mode { 32 e1000_mng_mode_none = 0, 33 e1000_mng_mode_asf, 34 e1000_mng_mode_pt, 35 e1000_mng_mode_ipmi, 36 e1000_mng_mode_host_if_only 37}; 38 39#define E1000_FACTPS_MNGCG 0x20000000 40 41/* Intel(R) Active Management Technology signature */ 42#define E1000_IAMT_SIGNATURE 0x544D4149 43 44/** 45 * e1000e_get_bus_info_pcie - Get PCIe bus information 46 * @hw: pointer to the HW structure 47 * 48 * Determines and stores the system bus information for a particular 49 * network interface. The following bus information is determined and stored: 50 * bus speed, bus width, type (PCIe), and PCIe function. 51 **/ 52s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) 53{ 54 struct e1000_mac_info *mac = &hw->mac; 55 struct e1000_bus_info *bus = &hw->bus; 56 struct e1000_adapter *adapter = hw->adapter; 57 u16 pcie_link_status, cap_offset; 58 59 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); 60 if (!cap_offset) { 61 bus->width = e1000_bus_width_unknown; 62 } else { 63 pci_read_config_word(adapter->pdev, 64 cap_offset + PCIE_LINK_STATUS, 65 &pcie_link_status); 66 bus->width = (enum e1000_bus_width)((pcie_link_status & 67 PCIE_LINK_WIDTH_MASK) >> 68 PCIE_LINK_WIDTH_SHIFT); 69 } 70 71 mac->ops.set_lan_id(hw); 72 73 return 0; 74} 75 76/** 77 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices 78 * 79 * @hw: pointer to the HW structure 80 * 81 * Determines the LAN function id by reading memory-mapped registers 82 * and swaps the port value if requested. 83 **/ 84void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) 85{ 86 struct e1000_bus_info *bus = &hw->bus; 87 u32 reg; 88 89 /* 90 * The status register reports the correct function number 91 * for the device regardless of function swap state. 92 */ 93 reg = er32(STATUS); 94 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; 95} 96 97/** 98 * e1000_set_lan_id_single_port - Set LAN id for a single port device 99 * @hw: pointer to the HW structure 100 * 101 * Sets the LAN function id to zero for a single port device. 102 **/ 103void e1000_set_lan_id_single_port(struct e1000_hw *hw) 104{ 105 struct e1000_bus_info *bus = &hw->bus; 106 107 bus->func = 0; 108} 109 110/** 111 * e1000_clear_vfta_generic - Clear VLAN filter table 112 * @hw: pointer to the HW structure 113 * 114 * Clears the register array which contains the VLAN filter table by 115 * setting all the values to 0. 116 **/ 117void e1000_clear_vfta_generic(struct e1000_hw *hw) 118{ 119 u32 offset; 120 121 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { 122 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); 123 e1e_flush(); 124 } 125} 126 127/** 128 * e1000_write_vfta_generic - Write value to VLAN filter table 129 * @hw: pointer to the HW structure 130 * @offset: register offset in VLAN filter table 131 * @value: register value written to VLAN filter table 132 * 133 * Writes value at the given offset in the register array which stores 134 * the VLAN filter table. 135 **/ 136void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) 137{ 138 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); 139 e1e_flush(); 140} 141 142/** 143 * e1000e_init_rx_addrs - Initialize receive address's 144 * @hw: pointer to the HW structure 145 * @rar_count: receive address registers 146 * 147 * Setups the receive address registers by setting the base receive address 148 * register to the devices MAC address and clearing all the other receive 149 * address registers to 0. 150 **/ 151void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) 152{ 153 u32 i; 154 u8 mac_addr[ETH_ALEN] = {0}; 155 156 /* Setup the receive address */ 157 e_dbg("Programming MAC Address into RAR[0]\n"); 158 159 e1000e_rar_set(hw, hw->mac.addr, 0); 160 161 /* Zero out the other (rar_entry_count - 1) receive addresses */ 162 e_dbg("Clearing RAR[1-%u]\n", rar_count-1); 163 for (i = 1; i < rar_count; i++) 164 e1000e_rar_set(hw, mac_addr, i); 165} 166 167/** 168 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr 169 * @hw: pointer to the HW structure 170 * 171 * Checks the nvm for an alternate MAC address. An alternate MAC address 172 * can be setup by pre-boot software and must be treated like a permanent 173 * address and must override the actual permanent MAC address. If an 174 * alternate MAC address is found it is programmed into RAR0, replacing 175 * the permanent address that was installed into RAR0 by the Si on reset. 176 * This function will return SUCCESS unless it encounters an error while 177 * reading the EEPROM. 178 **/ 179s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) 180{ 181 u32 i; 182 s32 ret_val = 0; 183 u16 offset, nvm_alt_mac_addr_offset, nvm_data; 184 u8 alt_mac_addr[ETH_ALEN]; 185 186 ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data); 187 if (ret_val) 188 goto out; 189 190 /* Check for LOM (vs. NIC) or one of two valid mezzanine cards */ 191 if (!((nvm_data & NVM_COMPAT_LOM) || 192 (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_DUAL) || 193 (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD))) 194 goto out; 195 196 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, 197 &nvm_alt_mac_addr_offset); 198 if (ret_val) { 199 e_dbg("NVM Read Error\n"); 200 goto out; 201 } 202 203 if (nvm_alt_mac_addr_offset == 0xFFFF) { 204 /* There is no Alternate MAC Address */ 205 goto out; 206 } 207 208 if (hw->bus.func == E1000_FUNC_1) 209 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; 210 for (i = 0; i < ETH_ALEN; i += 2) { 211 offset = nvm_alt_mac_addr_offset + (i >> 1); 212 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); 213 if (ret_val) { 214 e_dbg("NVM Read Error\n"); 215 goto out; 216 } 217 218 alt_mac_addr[i] = (u8)(nvm_data & 0xFF); 219 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); 220 } 221 222 /* if multicast bit is set, the alternate address will not be used */ 223 if (alt_mac_addr[0] & 0x01) { 224 e_dbg("Ignoring Alternate Mac Address with MC bit set\n"); 225 goto out; 226 } 227 228 /* 229 * We have a valid alternate MAC address, and we want to treat it the 230 * same as the normal permanent MAC address stored by the HW into the 231 * RAR. Do this by mapping this address into RAR0. 232 */ 233 e1000e_rar_set(hw, alt_mac_addr, 0); 234 235out: 236 return ret_val; 237} 238 239/** 240 * e1000e_rar_set - Set receive address register 241 * @hw: pointer to the HW structure 242 * @addr: pointer to the receive address 243 * @index: receive address array register 244 * 245 * Sets the receive address array register at index to the address passed 246 * in by addr. 247 **/ 248void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 249{ 250 u32 rar_low, rar_high; 251 252 /* 253 * HW expects these in little endian so we reverse the byte order 254 * from network order (big endian) to little endian 255 */ 256 rar_low = ((u32) addr[0] | 257 ((u32) addr[1] << 8) | 258 ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); 259 260 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); 261 262 /* If MAC address zero, no need to set the AV bit */ 263 if (rar_low || rar_high) 264 rar_high |= E1000_RAH_AV; 265 266 /* 267 * Some bridges will combine consecutive 32-bit writes into 268 * a single burst write, which will malfunction on some parts. 269 * The flushes avoid this. 270 */ 271 ew32(RAL(index), rar_low); 272 e1e_flush(); 273 ew32(RAH(index), rar_high); 274 e1e_flush(); 275} 276 277/** 278 * e1000_hash_mc_addr - Generate a multicast hash value 279 * @hw: pointer to the HW structure 280 * @mc_addr: pointer to a multicast address 281 * 282 * Generates a multicast address hash value which is used to determine 283 * the multicast filter table array address and new table value. See 284 * e1000_mta_set_generic() 285 **/ 286static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 287{ 288 u32 hash_value, hash_mask; 289 u8 bit_shift = 0; 290 291 /* Register count multiplied by bits per register */ 292 hash_mask = (hw->mac.mta_reg_count * 32) - 1; 293 294 /* 295 * For a mc_filter_type of 0, bit_shift is the number of left-shifts 296 * where 0xFF would still fall within the hash mask. 297 */ 298 while (hash_mask >> bit_shift != 0xFF) 299 bit_shift++; 300 301 /* 302 * The portion of the address that is used for the hash table 303 * is determined by the mc_filter_type setting. 304 * The algorithm is such that there is a total of 8 bits of shifting. 305 * The bit_shift for a mc_filter_type of 0 represents the number of 306 * left-shifts where the MSB of mc_addr[5] would still fall within 307 * the hash_mask. Case 0 does this exactly. Since there are a total 308 * of 8 bits of shifting, then mc_addr[4] will shift right the 309 * remaining number of bits. Thus 8 - bit_shift. The rest of the 310 * cases are a variation of this algorithm...essentially raising the 311 * number of bits to shift mc_addr[5] left, while still keeping the 312 * 8-bit shifting total. 313 * 314 * For example, given the following Destination MAC Address and an 315 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), 316 * we can see that the bit_shift for case 0 is 4. These are the hash 317 * values resulting from each mc_filter_type... 318 * [0] [1] [2] [3] [4] [5] 319 * 01 AA 00 12 34 56 320 * LSB MSB 321 * 322 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 323 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 324 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 325 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 326 */ 327 switch (hw->mac.mc_filter_type) { 328 default: 329 case 0: 330 break; 331 case 1: 332 bit_shift += 1; 333 break; 334 case 2: 335 bit_shift += 2; 336 break; 337 case 3: 338 bit_shift += 4; 339 break; 340 } 341 342 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | 343 (((u16) mc_addr[5]) << bit_shift))); 344 345 return hash_value; 346} 347 348/** 349 * e1000e_update_mc_addr_list_generic - Update Multicast addresses 350 * @hw: pointer to the HW structure 351 * @mc_addr_list: array of multicast addresses to program 352 * @mc_addr_count: number of multicast addresses to program 353 * 354 * Updates entire Multicast Table Array. 355 * The caller must have a packed mc_addr_list of multicast addresses. 356 **/ 357void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw, 358 u8 *mc_addr_list, u32 mc_addr_count) 359{ 360 u32 hash_value, hash_bit, hash_reg; 361 int i; 362 363 /* clear mta_shadow */ 364 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); 365 366 /* update mta_shadow from mc_addr_list */ 367 for (i = 0; (u32) i < mc_addr_count; i++) { 368 hash_value = e1000_hash_mc_addr(hw, mc_addr_list); 369 370 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); 371 hash_bit = hash_value & 0x1F; 372 373 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); 374 mc_addr_list += (ETH_ALEN); 375 } 376 377 /* replace the entire MTA table */ 378 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) 379 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); 380 e1e_flush(); 381} 382 383/** 384 * e1000e_clear_hw_cntrs_base - Clear base hardware counters 385 * @hw: pointer to the HW structure 386 * 387 * Clears the base hardware counters by reading the counter registers. 388 **/ 389void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) 390{ 391 er32(CRCERRS); 392 er32(SYMERRS); 393 er32(MPC); 394 er32(SCC); 395 er32(ECOL); 396 er32(MCC); 397 er32(LATECOL); 398 er32(COLC); 399 er32(DC); 400 er32(SEC); 401 er32(RLEC); 402 er32(XONRXC); 403 er32(XONTXC); 404 er32(XOFFRXC); 405 er32(XOFFTXC); 406 er32(FCRUC); 407 er32(GPRC); 408 er32(BPRC); 409 er32(MPRC); 410 er32(GPTC); 411 er32(GORCL); 412 er32(GORCH); 413 er32(GOTCL); 414 er32(GOTCH); 415 er32(RNBC); 416 er32(RUC); 417 er32(RFC); 418 er32(ROC); 419 er32(RJC); 420 er32(TORL); 421 er32(TORH); 422 er32(TOTL); 423 er32(TOTH); 424 er32(TPR); 425 er32(TPT); 426 er32(MPTC); 427 er32(BPTC); 428} 429 430/** 431 * e1000e_check_for_copper_link - Check for link (Copper) 432 * @hw: pointer to the HW structure 433 * 434 * Checks to see of the link status of the hardware has changed. If a 435 * change in link status has been detected, then we read the PHY registers 436 * to get the current speed/duplex if link exists. 437 **/ 438s32 e1000e_check_for_copper_link(struct e1000_hw *hw) 439{ 440 struct e1000_mac_info *mac = &hw->mac; 441 s32 ret_val; 442 bool link; 443 444 /* 445 * We only want to go out to the PHY registers to see if Auto-Neg 446 * has completed and/or if our link status has changed. The 447 * get_link_status flag is set upon receiving a Link Status 448 * Change or Rx Sequence Error interrupt. 449 */ 450 if (!mac->get_link_status) 451 return 0; 452 453 /* 454 * First we want to see if the MII Status Register reports 455 * link. If so, then we want to get the current speed/duplex 456 * of the PHY. 457 */ 458 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 459 if (ret_val) 460 return ret_val; 461 462 if (!link) 463 return ret_val; /* No link detected */ 464 465 mac->get_link_status = false; 466 467 /* 468 * Check if there was DownShift, must be checked 469 * immediately after link-up 470 */ 471 e1000e_check_downshift(hw); 472 473 /* 474 * If we are forcing speed/duplex, then we simply return since 475 * we have already determined whether we have link or not. 476 */ 477 if (!mac->autoneg) { 478 ret_val = -E1000_ERR_CONFIG; 479 return ret_val; 480 } 481 482 /* 483 * Auto-Neg is enabled. Auto Speed Detection takes care 484 * of MAC speed/duplex configuration. So we only need to 485 * configure Collision Distance in the MAC. 486 */ 487 e1000e_config_collision_dist(hw); 488 489 /* 490 * Configure Flow Control now that Auto-Neg has completed. 491 * First, we need to restore the desired flow control 492 * settings because we may have had to re-autoneg with a 493 * different link partner. 494 */ 495 ret_val = e1000e_config_fc_after_link_up(hw); 496 if (ret_val) 497 e_dbg("Error configuring flow control\n"); 498 499 return ret_val; 500} 501 502/** 503 * e1000e_check_for_fiber_link - Check for link (Fiber) 504 * @hw: pointer to the HW structure 505 * 506 * Checks for link up on the hardware. If link is not up and we have 507 * a signal, then we need to force link up. 508 **/ 509s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) 510{ 511 struct e1000_mac_info *mac = &hw->mac; 512 u32 rxcw; 513 u32 ctrl; 514 u32 status; 515 s32 ret_val; 516 517 ctrl = er32(CTRL); 518 status = er32(STATUS); 519 rxcw = er32(RXCW); 520 521 /* 522 * If we don't have link (auto-negotiation failed or link partner 523 * cannot auto-negotiate), the cable is plugged in (we have signal), 524 * and our link partner is not trying to auto-negotiate with us (we 525 * are receiving idles or data), we need to force link up. We also 526 * need to give auto-negotiation time to complete, in case the cable 527 * was just plugged in. The autoneg_failed flag does this. 528 */ 529 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ 530 if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) && 531 (!(rxcw & E1000_RXCW_C))) { 532 if (mac->autoneg_failed == 0) { 533 mac->autoneg_failed = 1; 534 return 0; 535 } 536 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); 537 538 /* Disable auto-negotiation in the TXCW register */ 539 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); 540 541 /* Force link-up and also force full-duplex. */ 542 ctrl = er32(CTRL); 543 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); 544 ew32(CTRL, ctrl); 545 546 /* Configure Flow Control after forcing link up. */ 547 ret_val = e1000e_config_fc_after_link_up(hw); 548 if (ret_val) { 549 e_dbg("Error configuring flow control\n"); 550 return ret_val; 551 } 552 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { 553 /* 554 * If we are forcing link and we are receiving /C/ ordered 555 * sets, re-enable auto-negotiation in the TXCW register 556 * and disable forced link in the Device Control register 557 * in an attempt to auto-negotiate with our link partner. 558 */ 559 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); 560 ew32(TXCW, mac->txcw); 561 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 562 563 mac->serdes_has_link = true; 564 } 565 566 return 0; 567} 568 569/** 570 * e1000e_check_for_serdes_link - Check for link (Serdes) 571 * @hw: pointer to the HW structure 572 * 573 * Checks for link up on the hardware. If link is not up and we have 574 * a signal, then we need to force link up. 575 **/ 576s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) 577{ 578 struct e1000_mac_info *mac = &hw->mac; 579 u32 rxcw; 580 u32 ctrl; 581 u32 status; 582 s32 ret_val; 583 584 ctrl = er32(CTRL); 585 status = er32(STATUS); 586 rxcw = er32(RXCW); 587 588 /* 589 * If we don't have link (auto-negotiation failed or link partner 590 * cannot auto-negotiate), and our link partner is not trying to 591 * auto-negotiate with us (we are receiving idles or data), 592 * we need to force link up. We also need to give auto-negotiation 593 * time to complete. 594 */ 595 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ 596 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { 597 if (mac->autoneg_failed == 0) { 598 mac->autoneg_failed = 1; 599 return 0; 600 } 601 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); 602 603 /* Disable auto-negotiation in the TXCW register */ 604 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); 605 606 /* Force link-up and also force full-duplex. */ 607 ctrl = er32(CTRL); 608 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); 609 ew32(CTRL, ctrl); 610 611 /* Configure Flow Control after forcing link up. */ 612 ret_val = e1000e_config_fc_after_link_up(hw); 613 if (ret_val) { 614 e_dbg("Error configuring flow control\n"); 615 return ret_val; 616 } 617 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { 618 /* 619 * If we are forcing link and we are receiving /C/ ordered 620 * sets, re-enable auto-negotiation in the TXCW register 621 * and disable forced link in the Device Control register 622 * in an attempt to auto-negotiate with our link partner. 623 */ 624 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); 625 ew32(TXCW, mac->txcw); 626 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 627 628 mac->serdes_has_link = true; 629 } else if (!(E1000_TXCW_ANE & er32(TXCW))) { 630 /* 631 * If we force link for non-auto-negotiation switch, check 632 * link status based on MAC synchronization for internal 633 * serdes media type. 634 */ 635 /* SYNCH bit and IV bit are sticky. */ 636 udelay(10); 637 rxcw = er32(RXCW); 638 if (rxcw & E1000_RXCW_SYNCH) { 639 if (!(rxcw & E1000_RXCW_IV)) { 640 mac->serdes_has_link = true; 641 e_dbg("SERDES: Link up - forced.\n"); 642 } 643 } else { 644 mac->serdes_has_link = false; 645 e_dbg("SERDES: Link down - force failed.\n"); 646 } 647 } 648 649 if (E1000_TXCW_ANE & er32(TXCW)) { 650 status = er32(STATUS); 651 if (status & E1000_STATUS_LU) { 652 /* SYNCH bit and IV bit are sticky, so reread rxcw. */ 653 udelay(10); 654 rxcw = er32(RXCW); 655 if (rxcw & E1000_RXCW_SYNCH) { 656 if (!(rxcw & E1000_RXCW_IV)) { 657 mac->serdes_has_link = true; 658 e_dbg("SERDES: Link up - autoneg " 659 "completed successfully.\n"); 660 } else { 661 mac->serdes_has_link = false; 662 e_dbg("SERDES: Link down - invalid" 663 "codewords detected in autoneg.\n"); 664 } 665 } else { 666 mac->serdes_has_link = false; 667 e_dbg("SERDES: Link down - no sync.\n"); 668 } 669 } else { 670 mac->serdes_has_link = false; 671 e_dbg("SERDES: Link down - autoneg failed\n"); 672 } 673 } 674 675 return 0; 676} 677 678/** 679 * e1000_set_default_fc_generic - Set flow control default values 680 * @hw: pointer to the HW structure 681 * 682 * Read the EEPROM for the default values for flow control and store the 683 * values. 684 **/ 685static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) 686{ 687 s32 ret_val; 688 u16 nvm_data; 689 690 /* 691 * Read and store word 0x0F of the EEPROM. This word contains bits 692 * that determine the hardware's default PAUSE (flow control) mode, 693 * a bit that determines whether the HW defaults to enabling or 694 * disabling auto-negotiation, and the direction of the 695 * SW defined pins. If there is no SW over-ride of the flow 696 * control setting, then the variable hw->fc will 697 * be initialized based on a value in the EEPROM. 698 */ 699 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); 700 701 if (ret_val) { 702 e_dbg("NVM Read Error\n"); 703 return ret_val; 704 } 705 706 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) 707 hw->fc.requested_mode = e1000_fc_none; 708 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 709 NVM_WORD0F_ASM_DIR) 710 hw->fc.requested_mode = e1000_fc_tx_pause; 711 else 712 hw->fc.requested_mode = e1000_fc_full; 713 714 return 0; 715} 716 717/** 718 * e1000e_setup_link - Setup flow control and link settings 719 * @hw: pointer to the HW structure 720 * 721 * Determines which flow control settings to use, then configures flow 722 * control. Calls the appropriate media-specific link configuration 723 * function. Assuming the adapter has a valid link partner, a valid link 724 * should be established. Assumes the hardware has previously been reset 725 * and the transmitter and receiver are not enabled. 726 **/ 727s32 e1000e_setup_link(struct e1000_hw *hw) 728{ 729 struct e1000_mac_info *mac = &hw->mac; 730 s32 ret_val; 731 732 /* 733 * In the case of the phy reset being blocked, we already have a link. 734 * We do not need to set it up again. 735 */ 736 if (e1000_check_reset_block(hw)) 737 return 0; 738 739 /* 740 * If requested flow control is set to default, set flow control 741 * based on the EEPROM flow control settings. 742 */ 743 if (hw->fc.requested_mode == e1000_fc_default) { 744 ret_val = e1000_set_default_fc_generic(hw); 745 if (ret_val) 746 return ret_val; 747 } 748 749 /* 750 * Save off the requested flow control mode for use later. Depending 751 * on the link partner's capabilities, we may or may not use this mode. 752 */ 753 hw->fc.current_mode = hw->fc.requested_mode; 754 755 e_dbg("After fix-ups FlowControl is now = %x\n", 756 hw->fc.current_mode); 757 758 /* Call the necessary media_type subroutine to configure the link. */ 759 ret_val = mac->ops.setup_physical_interface(hw); 760 if (ret_val) 761 return ret_val; 762 763 /* 764 * Initialize the flow control address, type, and PAUSE timer 765 * registers to their default values. This is done even if flow 766 * control is disabled, because it does not hurt anything to 767 * initialize these registers. 768 */ 769 e_dbg("Initializing the Flow Control address, type and timer regs\n"); 770 ew32(FCT, FLOW_CONTROL_TYPE); 771 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); 772 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); 773 774 ew32(FCTTV, hw->fc.pause_time); 775 776 return e1000e_set_fc_watermarks(hw); 777} 778 779/** 780 * e1000_commit_fc_settings_generic - Configure flow control 781 * @hw: pointer to the HW structure 782 * 783 * Write the flow control settings to the Transmit Config Word Register (TXCW) 784 * base on the flow control settings in e1000_mac_info. 785 **/ 786static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) 787{ 788 struct e1000_mac_info *mac = &hw->mac; 789 u32 txcw; 790 791 /* 792 * Check for a software override of the flow control settings, and 793 * setup the device accordingly. If auto-negotiation is enabled, then 794 * software will have to set the "PAUSE" bits to the correct value in 795 * the Transmit Config Word Register (TXCW) and re-start auto- 796 * negotiation. However, if auto-negotiation is disabled, then 797 * software will have to manually configure the two flow control enable 798 * bits in the CTRL register. 799 * 800 * The possible values of the "fc" parameter are: 801 * 0: Flow control is completely disabled 802 * 1: Rx flow control is enabled (we can receive pause frames, 803 * but not send pause frames). 804 * 2: Tx flow control is enabled (we can send pause frames but we 805 * do not support receiving pause frames). 806 * 3: Both Rx and Tx flow control (symmetric) are enabled. 807 */ 808 switch (hw->fc.current_mode) { 809 case e1000_fc_none: 810 /* Flow control completely disabled by a software over-ride. */ 811 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); 812 break; 813 case e1000_fc_rx_pause: 814 /* 815 * Rx Flow control is enabled and Tx Flow control is disabled 816 * by a software over-ride. Since there really isn't a way to 817 * advertise that we are capable of Rx Pause ONLY, we will 818 * advertise that we support both symmetric and asymmetric Rx 819 * PAUSE. Later, we will disable the adapter's ability to send 820 * PAUSE frames. 821 */ 822 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); 823 break; 824 case e1000_fc_tx_pause: 825 /* 826 * Tx Flow control is enabled, and Rx Flow control is disabled, 827 * by a software over-ride. 828 */ 829 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); 830 break; 831 case e1000_fc_full: 832 /* 833 * Flow control (both Rx and Tx) is enabled by a software 834 * over-ride. 835 */ 836 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); 837 break; 838 default: 839 e_dbg("Flow control param set incorrectly\n"); 840 return -E1000_ERR_CONFIG; 841 break; 842 } 843 844 ew32(TXCW, txcw); 845 mac->txcw = txcw; 846 847 return 0; 848} 849 850/** 851 * e1000_poll_fiber_serdes_link_generic - Poll for link up 852 * @hw: pointer to the HW structure 853 * 854 * Polls for link up by reading the status register, if link fails to come 855 * up with auto-negotiation, then the link is forced if a signal is detected. 856 **/ 857static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) 858{ 859 struct e1000_mac_info *mac = &hw->mac; 860 u32 i, status; 861 s32 ret_val; 862 863 /* 864 * If we have a signal (the cable is plugged in, or assumed true for 865 * serdes media) then poll for a "Link-Up" indication in the Device 866 * Status Register. Time-out if a link isn't seen in 500 milliseconds 867 * seconds (Auto-negotiation should complete in less than 500 868 * milliseconds even if the other end is doing it in SW). 869 */ 870 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { 871 msleep(10); 872 status = er32(STATUS); 873 if (status & E1000_STATUS_LU) 874 break; 875 } 876 if (i == FIBER_LINK_UP_LIMIT) { 877 e_dbg("Never got a valid link from auto-neg!!!\n"); 878 mac->autoneg_failed = 1; 879 /* 880 * AutoNeg failed to achieve a link, so we'll call 881 * mac->check_for_link. This routine will force the 882 * link up if we detect a signal. This will allow us to 883 * communicate with non-autonegotiating link partners. 884 */ 885 ret_val = mac->ops.check_for_link(hw); 886 if (ret_val) { 887 e_dbg("Error while checking for link\n"); 888 return ret_val; 889 } 890 mac->autoneg_failed = 0; 891 } else { 892 mac->autoneg_failed = 0; 893 e_dbg("Valid Link Found\n"); 894 } 895 896 return 0; 897} 898 899/** 900 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes 901 * @hw: pointer to the HW structure 902 * 903 * Configures collision distance and flow control for fiber and serdes 904 * links. Upon successful setup, poll for link. 905 **/ 906s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) 907{ 908 u32 ctrl; 909 s32 ret_val; 910 911 ctrl = er32(CTRL); 912 913 /* Take the link out of reset */ 914 ctrl &= ~E1000_CTRL_LRST; 915 916 e1000e_config_collision_dist(hw); 917 918 ret_val = e1000_commit_fc_settings_generic(hw); 919 if (ret_val) 920 return ret_val; 921 922 /* 923 * Since auto-negotiation is enabled, take the link out of reset (the 924 * link will be in reset, because we previously reset the chip). This 925 * will restart auto-negotiation. If auto-negotiation is successful 926 * then the link-up status bit will be set and the flow control enable 927 * bits (RFCE and TFCE) will be set according to their negotiated value. 928 */ 929 e_dbg("Auto-negotiation enabled\n"); 930 931 ew32(CTRL, ctrl); 932 e1e_flush(); 933 msleep(1); 934 935 /* 936 * For these adapters, the SW definable pin 1 is set when the optics 937 * detect a signal. If we have a signal, then poll for a "Link-Up" 938 * indication. 939 */ 940 if (hw->phy.media_type == e1000_media_type_internal_serdes || 941 (er32(CTRL) & E1000_CTRL_SWDPIN1)) { 942 ret_val = e1000_poll_fiber_serdes_link_generic(hw); 943 } else { 944 e_dbg("No signal detected\n"); 945 } 946 947 return 0; 948} 949 950/** 951 * e1000e_config_collision_dist - Configure collision distance 952 * @hw: pointer to the HW structure 953 * 954 * Configures the collision distance to the default value and is used 955 * during link setup. Currently no func pointer exists and all 956 * implementations are handled in the generic version of this function. 957 **/ 958void e1000e_config_collision_dist(struct e1000_hw *hw) 959{ 960 u32 tctl; 961 962 tctl = er32(TCTL); 963 964 tctl &= ~E1000_TCTL_COLD; 965 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; 966 967 ew32(TCTL, tctl); 968 e1e_flush(); 969} 970 971/** 972 * e1000e_set_fc_watermarks - Set flow control high/low watermarks 973 * @hw: pointer to the HW structure 974 * 975 * Sets the flow control high/low threshold (watermark) registers. If 976 * flow control XON frame transmission is enabled, then set XON frame 977 * transmission as well. 978 **/ 979s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) 980{ 981 u32 fcrtl = 0, fcrth = 0; 982 983 /* 984 * Set the flow control receive threshold registers. Normally, 985 * these registers will be set to a default threshold that may be 986 * adjusted later by the driver's runtime code. However, if the 987 * ability to transmit pause frames is not enabled, then these 988 * registers will be set to 0. 989 */ 990 if (hw->fc.current_mode & e1000_fc_tx_pause) { 991 /* 992 * We need to set up the Receive Threshold high and low water 993 * marks as well as (optionally) enabling the transmission of 994 * XON frames. 995 */ 996 fcrtl = hw->fc.low_water; 997 fcrtl |= E1000_FCRTL_XONE; 998 fcrth = hw->fc.high_water; 999 } 1000 ew32(FCRTL, fcrtl); 1001 ew32(FCRTH, fcrth); 1002 1003 return 0; 1004} 1005 1006/** 1007 * e1000e_force_mac_fc - Force the MAC's flow control settings 1008 * @hw: pointer to the HW structure 1009 * 1010 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the 1011 * device control register to reflect the adapter settings. TFCE and RFCE 1012 * need to be explicitly set by software when a copper PHY is used because 1013 * autonegotiation is managed by the PHY rather than the MAC. Software must 1014 * also configure these bits when link is forced on a fiber connection. 1015 **/ 1016s32 e1000e_force_mac_fc(struct e1000_hw *hw) 1017{ 1018 u32 ctrl; 1019 1020 ctrl = er32(CTRL); 1021 1022 /* 1023 * Because we didn't get link via the internal auto-negotiation 1024 * mechanism (we either forced link or we got link via PHY 1025 * auto-neg), we have to manually enable/disable transmit an 1026 * receive flow control. 1027 * 1028 * The "Case" statement below enables/disable flow control 1029 * according to the "hw->fc.current_mode" parameter. 1030 * 1031 * The possible values of the "fc" parameter are: 1032 * 0: Flow control is completely disabled 1033 * 1: Rx flow control is enabled (we can receive pause 1034 * frames but not send pause frames). 1035 * 2: Tx flow control is enabled (we can send pause frames 1036 * frames but we do not receive pause frames). 1037 * 3: Both Rx and Tx flow control (symmetric) is enabled. 1038 * other: No other values should be possible at this point. 1039 */ 1040 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); 1041 1042 switch (hw->fc.current_mode) { 1043 case e1000_fc_none: 1044 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); 1045 break; 1046 case e1000_fc_rx_pause: 1047 ctrl &= (~E1000_CTRL_TFCE); 1048 ctrl |= E1000_CTRL_RFCE; 1049 break; 1050 case e1000_fc_tx_pause: 1051 ctrl &= (~E1000_CTRL_RFCE); 1052 ctrl |= E1000_CTRL_TFCE; 1053 break; 1054 case e1000_fc_full: 1055 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); 1056 break; 1057 default: 1058 e_dbg("Flow control param set incorrectly\n"); 1059 return -E1000_ERR_CONFIG; 1060 } 1061 1062 ew32(CTRL, ctrl); 1063 1064 return 0; 1065} 1066 1067/** 1068 * e1000e_config_fc_after_link_up - Configures flow control after link 1069 * @hw: pointer to the HW structure 1070 * 1071 * Checks the status of auto-negotiation after link up to ensure that the 1072 * speed and duplex were not forced. If the link needed to be forced, then 1073 * flow control needs to be forced also. If auto-negotiation is enabled 1074 * and did not fail, then we configure flow control based on our link 1075 * partner. 1076 **/ 1077s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) 1078{ 1079 struct e1000_mac_info *mac = &hw->mac; 1080 s32 ret_val = 0; 1081 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; 1082 u16 speed, duplex; 1083 1084 /* 1085 * Check for the case where we have fiber media and auto-neg failed 1086 * so we had to force link. In this case, we need to force the 1087 * configuration of the MAC to match the "fc" parameter. 1088 */ 1089 if (mac->autoneg_failed) { 1090 if (hw->phy.media_type == e1000_media_type_fiber || 1091 hw->phy.media_type == e1000_media_type_internal_serdes) 1092 ret_val = e1000e_force_mac_fc(hw); 1093 } else { 1094 if (hw->phy.media_type == e1000_media_type_copper) 1095 ret_val = e1000e_force_mac_fc(hw); 1096 } 1097 1098 if (ret_val) { 1099 e_dbg("Error forcing flow control settings\n"); 1100 return ret_val; 1101 } 1102 1103 /* 1104 * Check for the case where we have copper media and auto-neg is 1105 * enabled. In this case, we need to check and see if Auto-Neg 1106 * has completed, and if so, how the PHY and link partner has 1107 * flow control configured. 1108 */ 1109 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { 1110 /* 1111 * Read the MII Status Register and check to see if AutoNeg 1112 * has completed. We read this twice because this reg has 1113 * some "sticky" (latched) bits. 1114 */ 1115 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); 1116 if (ret_val) 1117 return ret_val; 1118 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); 1119 if (ret_val) 1120 return ret_val; 1121 1122 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { 1123 e_dbg("Copper PHY and Auto Neg " 1124 "has not completed.\n"); 1125 return ret_val; 1126 } 1127 1128 /* 1129 * The AutoNeg process has completed, so we now need to 1130 * read both the Auto Negotiation Advertisement 1131 * Register (Address 4) and the Auto_Negotiation Base 1132 * Page Ability Register (Address 5) to determine how 1133 * flow control was negotiated. 1134 */ 1135 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); 1136 if (ret_val) 1137 return ret_val; 1138 ret_val = 1139 e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); 1140 if (ret_val) 1141 return ret_val; 1142 1143 /* 1144 * Two bits in the Auto Negotiation Advertisement Register 1145 * (Address 4) and two bits in the Auto Negotiation Base 1146 * Page Ability Register (Address 5) determine flow control 1147 * for both the PHY and the link partner. The following 1148 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, 1149 * 1999, describes these PAUSE resolution bits and how flow 1150 * control is determined based upon these settings. 1151 * NOTE: DC = Don't Care 1152 * 1153 * LOCAL DEVICE | LINK PARTNER 1154 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution 1155 *-------|---------|-------|---------|-------------------- 1156 * 0 | 0 | DC | DC | e1000_fc_none 1157 * 0 | 1 | 0 | DC | e1000_fc_none 1158 * 0 | 1 | 1 | 0 | e1000_fc_none 1159 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1160 * 1 | 0 | 0 | DC | e1000_fc_none 1161 * 1 | DC | 1 | DC | e1000_fc_full 1162 * 1 | 1 | 0 | 0 | e1000_fc_none 1163 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1164 * 1165 * Are both PAUSE bits set to 1? If so, this implies 1166 * Symmetric Flow Control is enabled at both ends. The 1167 * ASM_DIR bits are irrelevant per the spec. 1168 * 1169 * For Symmetric Flow Control: 1170 * 1171 * LOCAL DEVICE | LINK PARTNER 1172 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1173 *-------|---------|-------|---------|-------------------- 1174 * 1 | DC | 1 | DC | E1000_fc_full 1175 * 1176 */ 1177 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && 1178 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { 1179 /* 1180 * Now we need to check if the user selected Rx ONLY 1181 * of pause frames. In this case, we had to advertise 1182 * FULL flow control because we could not advertise Rx 1183 * ONLY. Hence, we must now check to see if we need to 1184 * turn OFF the TRANSMISSION of PAUSE frames. 1185 */ 1186 if (hw->fc.requested_mode == e1000_fc_full) { 1187 hw->fc.current_mode = e1000_fc_full; 1188 e_dbg("Flow Control = FULL.\r\n"); 1189 } else { 1190 hw->fc.current_mode = e1000_fc_rx_pause; 1191 e_dbg("Flow Control = " 1192 "Rx PAUSE frames only.\r\n"); 1193 } 1194 } 1195 /* 1196 * For receiving PAUSE frames ONLY. 1197 * 1198 * LOCAL DEVICE | LINK PARTNER 1199 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1200 *-------|---------|-------|---------|-------------------- 1201 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1202 */ 1203 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && 1204 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && 1205 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 1206 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { 1207 hw->fc.current_mode = e1000_fc_tx_pause; 1208 e_dbg("Flow Control = Tx PAUSE frames only.\r\n"); 1209 } 1210 /* 1211 * For transmitting PAUSE frames ONLY. 1212 * 1213 * LOCAL DEVICE | LINK PARTNER 1214 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1215 *-------|---------|-------|---------|-------------------- 1216 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1217 */ 1218 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && 1219 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && 1220 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 1221 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { 1222 hw->fc.current_mode = e1000_fc_rx_pause; 1223 e_dbg("Flow Control = Rx PAUSE frames only.\r\n"); 1224 } else { 1225 /* 1226 * Per the IEEE spec, at this point flow control 1227 * should be disabled. 1228 */ 1229 hw->fc.current_mode = e1000_fc_none; 1230 e_dbg("Flow Control = NONE.\r\n"); 1231 } 1232 1233 /* 1234 * Now we need to do one last check... If we auto- 1235 * negotiated to HALF DUPLEX, flow control should not be 1236 * enabled per IEEE 802.3 spec. 1237 */ 1238 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); 1239 if (ret_val) { 1240 e_dbg("Error getting link speed and duplex\n"); 1241 return ret_val; 1242 } 1243 1244 if (duplex == HALF_DUPLEX) 1245 hw->fc.current_mode = e1000_fc_none; 1246 1247 /* 1248 * Now we call a subroutine to actually force the MAC 1249 * controller to use the correct flow control settings. 1250 */ 1251 ret_val = e1000e_force_mac_fc(hw); 1252 if (ret_val) { 1253 e_dbg("Error forcing flow control settings\n"); 1254 return ret_val; 1255 } 1256 } 1257 1258 return 0; 1259} 1260 1261/** 1262 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex 1263 * @hw: pointer to the HW structure 1264 * @speed: stores the current speed 1265 * @duplex: stores the current duplex 1266 * 1267 * Read the status register for the current speed/duplex and store the current 1268 * speed and duplex for copper connections. 1269 **/ 1270s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex) 1271{ 1272 u32 status; 1273 1274 status = er32(STATUS); 1275 if (status & E1000_STATUS_SPEED_1000) 1276 *speed = SPEED_1000; 1277 else if (status & E1000_STATUS_SPEED_100) 1278 *speed = SPEED_100; 1279 else 1280 *speed = SPEED_10; 1281 1282 if (status & E1000_STATUS_FD) 1283 *duplex = FULL_DUPLEX; 1284 else 1285 *duplex = HALF_DUPLEX; 1286 1287 e_dbg("%u Mbps, %s Duplex\n", 1288 *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10, 1289 *duplex == FULL_DUPLEX ? "Full" : "Half"); 1290 1291 return 0; 1292} 1293 1294/** 1295 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex 1296 * @hw: pointer to the HW structure 1297 * @speed: stores the current speed 1298 * @duplex: stores the current duplex 1299 * 1300 * Sets the speed and duplex to gigabit full duplex (the only possible option) 1301 * for fiber/serdes links. 1302 **/ 1303s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex) 1304{ 1305 *speed = SPEED_1000; 1306 *duplex = FULL_DUPLEX; 1307 1308 return 0; 1309} 1310 1311/** 1312 * e1000e_get_hw_semaphore - Acquire hardware semaphore 1313 * @hw: pointer to the HW structure 1314 * 1315 * Acquire the HW semaphore to access the PHY or NVM 1316 **/ 1317s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) 1318{ 1319 u32 swsm; 1320 s32 timeout = hw->nvm.word_size + 1; 1321 s32 i = 0; 1322 1323 /* Get the SW semaphore */ 1324 while (i < timeout) { 1325 swsm = er32(SWSM); 1326 if (!(swsm & E1000_SWSM_SMBI)) 1327 break; 1328 1329 udelay(50); 1330 i++; 1331 } 1332 1333 if (i == timeout) { 1334 e_dbg("Driver can't access device - SMBI bit is set.\n"); 1335 return -E1000_ERR_NVM; 1336 } 1337 1338 /* Get the FW semaphore. */ 1339 for (i = 0; i < timeout; i++) { 1340 swsm = er32(SWSM); 1341 ew32(SWSM, swsm | E1000_SWSM_SWESMBI); 1342 1343 /* Semaphore acquired if bit latched */ 1344 if (er32(SWSM) & E1000_SWSM_SWESMBI) 1345 break; 1346 1347 udelay(50); 1348 } 1349 1350 if (i == timeout) { 1351 /* Release semaphores */ 1352 e1000e_put_hw_semaphore(hw); 1353 e_dbg("Driver can't access the NVM\n"); 1354 return -E1000_ERR_NVM; 1355 } 1356 1357 return 0; 1358} 1359 1360/** 1361 * e1000e_put_hw_semaphore - Release hardware semaphore 1362 * @hw: pointer to the HW structure 1363 * 1364 * Release hardware semaphore used to access the PHY or NVM 1365 **/ 1366void e1000e_put_hw_semaphore(struct e1000_hw *hw) 1367{ 1368 u32 swsm; 1369 1370 swsm = er32(SWSM); 1371 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); 1372 ew32(SWSM, swsm); 1373} 1374 1375/** 1376 * e1000e_get_auto_rd_done - Check for auto read completion 1377 * @hw: pointer to the HW structure 1378 * 1379 * Check EEPROM for Auto Read done bit. 1380 **/ 1381s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) 1382{ 1383 s32 i = 0; 1384 1385 while (i < AUTO_READ_DONE_TIMEOUT) { 1386 if (er32(EECD) & E1000_EECD_AUTO_RD) 1387 break; 1388 msleep(1); 1389 i++; 1390 } 1391 1392 if (i == AUTO_READ_DONE_TIMEOUT) { 1393 e_dbg("Auto read by HW from NVM has not completed.\n"); 1394 return -E1000_ERR_RESET; 1395 } 1396 1397 return 0; 1398} 1399 1400/** 1401 * e1000e_valid_led_default - Verify a valid default LED config 1402 * @hw: pointer to the HW structure 1403 * @data: pointer to the NVM (EEPROM) 1404 * 1405 * Read the EEPROM for the current default LED configuration. If the 1406 * LED configuration is not valid, set to a valid LED configuration. 1407 **/ 1408s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) 1409{ 1410 s32 ret_val; 1411 1412 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 1413 if (ret_val) { 1414 e_dbg("NVM Read Error\n"); 1415 return ret_val; 1416 } 1417 1418 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) 1419 *data = ID_LED_DEFAULT; 1420 1421 return 0; 1422} 1423 1424/** 1425 * e1000e_id_led_init - 1426 * @hw: pointer to the HW structure 1427 * 1428 **/ 1429s32 e1000e_id_led_init(struct e1000_hw *hw) 1430{ 1431 struct e1000_mac_info *mac = &hw->mac; 1432 s32 ret_val; 1433 const u32 ledctl_mask = 0x000000FF; 1434 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; 1435 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; 1436 u16 data, i, temp; 1437 const u16 led_mask = 0x0F; 1438 1439 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 1440 if (ret_val) 1441 return ret_val; 1442 1443 mac->ledctl_default = er32(LEDCTL); 1444 mac->ledctl_mode1 = mac->ledctl_default; 1445 mac->ledctl_mode2 = mac->ledctl_default; 1446 1447 for (i = 0; i < 4; i++) { 1448 temp = (data >> (i << 2)) & led_mask; 1449 switch (temp) { 1450 case ID_LED_ON1_DEF2: 1451 case ID_LED_ON1_ON2: 1452 case ID_LED_ON1_OFF2: 1453 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); 1454 mac->ledctl_mode1 |= ledctl_on << (i << 3); 1455 break; 1456 case ID_LED_OFF1_DEF2: 1457 case ID_LED_OFF1_ON2: 1458 case ID_LED_OFF1_OFF2: 1459 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); 1460 mac->ledctl_mode1 |= ledctl_off << (i << 3); 1461 break; 1462 default: 1463 /* Do nothing */ 1464 break; 1465 } 1466 switch (temp) { 1467 case ID_LED_DEF1_ON2: 1468 case ID_LED_ON1_ON2: 1469 case ID_LED_OFF1_ON2: 1470 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); 1471 mac->ledctl_mode2 |= ledctl_on << (i << 3); 1472 break; 1473 case ID_LED_DEF1_OFF2: 1474 case ID_LED_ON1_OFF2: 1475 case ID_LED_OFF1_OFF2: 1476 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); 1477 mac->ledctl_mode2 |= ledctl_off << (i << 3); 1478 break; 1479 default: 1480 /* Do nothing */ 1481 break; 1482 } 1483 } 1484 1485 return 0; 1486} 1487 1488/** 1489 * e1000e_setup_led_generic - Configures SW controllable LED 1490 * @hw: pointer to the HW structure 1491 * 1492 * This prepares the SW controllable LED for use and saves the current state 1493 * of the LED so it can be later restored. 1494 **/ 1495s32 e1000e_setup_led_generic(struct e1000_hw *hw) 1496{ 1497 u32 ledctl; 1498 1499 if (hw->mac.ops.setup_led != e1000e_setup_led_generic) 1500 return -E1000_ERR_CONFIG; 1501 1502 if (hw->phy.media_type == e1000_media_type_fiber) { 1503 ledctl = er32(LEDCTL); 1504 hw->mac.ledctl_default = ledctl; 1505 /* Turn off LED0 */ 1506 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | 1507 E1000_LEDCTL_LED0_BLINK | 1508 E1000_LEDCTL_LED0_MODE_MASK); 1509 ledctl |= (E1000_LEDCTL_MODE_LED_OFF << 1510 E1000_LEDCTL_LED0_MODE_SHIFT); 1511 ew32(LEDCTL, ledctl); 1512 } else if (hw->phy.media_type == e1000_media_type_copper) { 1513 ew32(LEDCTL, hw->mac.ledctl_mode1); 1514 } 1515 1516 return 0; 1517} 1518 1519/** 1520 * e1000e_cleanup_led_generic - Set LED config to default operation 1521 * @hw: pointer to the HW structure 1522 * 1523 * Remove the current LED configuration and set the LED configuration 1524 * to the default value, saved from the EEPROM. 1525 **/ 1526s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) 1527{ 1528 ew32(LEDCTL, hw->mac.ledctl_default); 1529 return 0; 1530} 1531 1532/** 1533 * e1000e_blink_led - Blink LED 1534 * @hw: pointer to the HW structure 1535 * 1536 * Blink the LEDs which are set to be on. 1537 **/ 1538s32 e1000e_blink_led(struct e1000_hw *hw) 1539{ 1540 u32 ledctl_blink = 0; 1541 u32 i; 1542 1543 if (hw->phy.media_type == e1000_media_type_fiber) { 1544 /* always blink LED0 for PCI-E fiber */ 1545 ledctl_blink = E1000_LEDCTL_LED0_BLINK | 1546 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); 1547 } else { 1548 /* 1549 * set the blink bit for each LED that's "on" (0x0E) 1550 * in ledctl_mode2 1551 */ 1552 ledctl_blink = hw->mac.ledctl_mode2; 1553 for (i = 0; i < 4; i++) 1554 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == 1555 E1000_LEDCTL_MODE_LED_ON) 1556 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << 1557 (i * 8)); 1558 } 1559 1560 ew32(LEDCTL, ledctl_blink); 1561 1562 return 0; 1563} 1564 1565/** 1566 * e1000e_led_on_generic - Turn LED on 1567 * @hw: pointer to the HW structure 1568 * 1569 * Turn LED on. 1570 **/ 1571s32 e1000e_led_on_generic(struct e1000_hw *hw) 1572{ 1573 u32 ctrl; 1574 1575 switch (hw->phy.media_type) { 1576 case e1000_media_type_fiber: 1577 ctrl = er32(CTRL); 1578 ctrl &= ~E1000_CTRL_SWDPIN0; 1579 ctrl |= E1000_CTRL_SWDPIO0; 1580 ew32(CTRL, ctrl); 1581 break; 1582 case e1000_media_type_copper: 1583 ew32(LEDCTL, hw->mac.ledctl_mode2); 1584 break; 1585 default: 1586 break; 1587 } 1588 1589 return 0; 1590} 1591 1592/** 1593 * e1000e_led_off_generic - Turn LED off 1594 * @hw: pointer to the HW structure 1595 * 1596 * Turn LED off. 1597 **/ 1598s32 e1000e_led_off_generic(struct e1000_hw *hw) 1599{ 1600 u32 ctrl; 1601 1602 switch (hw->phy.media_type) { 1603 case e1000_media_type_fiber: 1604 ctrl = er32(CTRL); 1605 ctrl |= E1000_CTRL_SWDPIN0; 1606 ctrl |= E1000_CTRL_SWDPIO0; 1607 ew32(CTRL, ctrl); 1608 break; 1609 case e1000_media_type_copper: 1610 ew32(LEDCTL, hw->mac.ledctl_mode1); 1611 break; 1612 default: 1613 break; 1614 } 1615 1616 return 0; 1617} 1618 1619/** 1620 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities 1621 * @hw: pointer to the HW structure 1622 * @no_snoop: bitmap of snoop events 1623 * 1624 * Set the PCI-express register to snoop for events enabled in 'no_snoop'. 1625 **/ 1626void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) 1627{ 1628 u32 gcr; 1629 1630 if (no_snoop) { 1631 gcr = er32(GCR); 1632 gcr &= ~(PCIE_NO_SNOOP_ALL); 1633 gcr |= no_snoop; 1634 ew32(GCR, gcr); 1635 } 1636} 1637 1638/** 1639 * e1000e_disable_pcie_master - Disables PCI-express master access 1640 * @hw: pointer to the HW structure 1641 * 1642 * Returns 0 if successful, else returns -10 1643 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused 1644 * the master requests to be disabled. 1645 * 1646 * Disables PCI-Express master access and verifies there are no pending 1647 * requests. 1648 **/ 1649s32 e1000e_disable_pcie_master(struct e1000_hw *hw) 1650{ 1651 u32 ctrl; 1652 s32 timeout = MASTER_DISABLE_TIMEOUT; 1653 1654 ctrl = er32(CTRL); 1655 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; 1656 ew32(CTRL, ctrl); 1657 1658 while (timeout) { 1659 if (!(er32(STATUS) & 1660 E1000_STATUS_GIO_MASTER_ENABLE)) 1661 break; 1662 udelay(100); 1663 timeout--; 1664 } 1665 1666 if (!timeout) { 1667 e_dbg("Master requests are pending.\n"); 1668 return -E1000_ERR_MASTER_REQUESTS_PENDING; 1669 } 1670 1671 return 0; 1672} 1673 1674/** 1675 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing 1676 * @hw: pointer to the HW structure 1677 * 1678 * Reset the Adaptive Interframe Spacing throttle to default values. 1679 **/ 1680void e1000e_reset_adaptive(struct e1000_hw *hw) 1681{ 1682 struct e1000_mac_info *mac = &hw->mac; 1683 1684 if (!mac->adaptive_ifs) { 1685 e_dbg("Not in Adaptive IFS mode!\n"); 1686 goto out; 1687 } 1688 1689 mac->current_ifs_val = 0; 1690 mac->ifs_min_val = IFS_MIN; 1691 mac->ifs_max_val = IFS_MAX; 1692 mac->ifs_step_size = IFS_STEP; 1693 mac->ifs_ratio = IFS_RATIO; 1694 1695 mac->in_ifs_mode = false; 1696 ew32(AIT, 0); 1697out: 1698 return; 1699} 1700 1701/** 1702 * e1000e_update_adaptive - Update Adaptive Interframe Spacing 1703 * @hw: pointer to the HW structure 1704 * 1705 * Update the Adaptive Interframe Spacing Throttle value based on the 1706 * time between transmitted packets and time between collisions. 1707 **/ 1708void e1000e_update_adaptive(struct e1000_hw *hw) 1709{ 1710 struct e1000_mac_info *mac = &hw->mac; 1711 1712 if (!mac->adaptive_ifs) { 1713 e_dbg("Not in Adaptive IFS mode!\n"); 1714 goto out; 1715 } 1716 1717 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { 1718 if (mac->tx_packet_delta > MIN_NUM_XMITS) { 1719 mac->in_ifs_mode = true; 1720 if (mac->current_ifs_val < mac->ifs_max_val) { 1721 if (!mac->current_ifs_val) 1722 mac->current_ifs_val = mac->ifs_min_val; 1723 else 1724 mac->current_ifs_val += 1725 mac->ifs_step_size; 1726 ew32(AIT, mac->current_ifs_val); 1727 } 1728 } 1729 } else { 1730 if (mac->in_ifs_mode && 1731 (mac->tx_packet_delta <= MIN_NUM_XMITS)) { 1732 mac->current_ifs_val = 0; 1733 mac->in_ifs_mode = false; 1734 ew32(AIT, 0); 1735 } 1736 } 1737out: 1738 return; 1739} 1740 1741/** 1742 * e1000_raise_eec_clk - Raise EEPROM clock 1743 * @hw: pointer to the HW structure 1744 * @eecd: pointer to the EEPROM 1745 * 1746 * Enable/Raise the EEPROM clock bit. 1747 **/ 1748static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) 1749{ 1750 *eecd = *eecd | E1000_EECD_SK; 1751 ew32(EECD, *eecd); 1752 e1e_flush(); 1753 udelay(hw->nvm.delay_usec); 1754} 1755 1756/** 1757 * e1000_lower_eec_clk - Lower EEPROM clock 1758 * @hw: pointer to the HW structure 1759 * @eecd: pointer to the EEPROM 1760 * 1761 * Clear/Lower the EEPROM clock bit. 1762 **/ 1763static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) 1764{ 1765 *eecd = *eecd & ~E1000_EECD_SK; 1766 ew32(EECD, *eecd); 1767 e1e_flush(); 1768 udelay(hw->nvm.delay_usec); 1769} 1770 1771/** 1772 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM 1773 * @hw: pointer to the HW structure 1774 * @data: data to send to the EEPROM 1775 * @count: number of bits to shift out 1776 * 1777 * We need to shift 'count' bits out to the EEPROM. So, the value in the 1778 * "data" parameter will be shifted out to the EEPROM one bit at a time. 1779 * In order to do this, "data" must be broken down into bits. 1780 **/ 1781static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) 1782{ 1783 struct e1000_nvm_info *nvm = &hw->nvm; 1784 u32 eecd = er32(EECD); 1785 u32 mask; 1786 1787 mask = 0x01 << (count - 1); 1788 if (nvm->type == e1000_nvm_eeprom_spi) 1789 eecd |= E1000_EECD_DO; 1790 1791 do { 1792 eecd &= ~E1000_EECD_DI; 1793 1794 if (data & mask) 1795 eecd |= E1000_EECD_DI; 1796 1797 ew32(EECD, eecd); 1798 e1e_flush(); 1799 1800 udelay(nvm->delay_usec); 1801 1802 e1000_raise_eec_clk(hw, &eecd); 1803 e1000_lower_eec_clk(hw, &eecd); 1804 1805 mask >>= 1; 1806 } while (mask); 1807 1808 eecd &= ~E1000_EECD_DI; 1809 ew32(EECD, eecd); 1810} 1811 1812/** 1813 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM 1814 * @hw: pointer to the HW structure 1815 * @count: number of bits to shift in 1816 * 1817 * In order to read a register from the EEPROM, we need to shift 'count' bits 1818 * in from the EEPROM. Bits are "shifted in" by raising the clock input to 1819 * the EEPROM (setting the SK bit), and then reading the value of the data out 1820 * "DO" bit. During this "shifting in" process the data in "DI" bit should 1821 * always be clear. 1822 **/ 1823static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) 1824{ 1825 u32 eecd; 1826 u32 i; 1827 u16 data; 1828 1829 eecd = er32(EECD); 1830 1831 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); 1832 data = 0; 1833 1834 for (i = 0; i < count; i++) { 1835 data <<= 1; 1836 e1000_raise_eec_clk(hw, &eecd); 1837 1838 eecd = er32(EECD); 1839 1840 eecd &= ~E1000_EECD_DI; 1841 if (eecd & E1000_EECD_DO) 1842 data |= 1; 1843 1844 e1000_lower_eec_clk(hw, &eecd); 1845 } 1846 1847 return data; 1848} 1849 1850/** 1851 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion 1852 * @hw: pointer to the HW structure 1853 * @ee_reg: EEPROM flag for polling 1854 * 1855 * Polls the EEPROM status bit for either read or write completion based 1856 * upon the value of 'ee_reg'. 1857 **/ 1858s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) 1859{ 1860 u32 attempts = 100000; 1861 u32 i, reg = 0; 1862 1863 for (i = 0; i < attempts; i++) { 1864 if (ee_reg == E1000_NVM_POLL_READ) 1865 reg = er32(EERD); 1866 else 1867 reg = er32(EEWR); 1868 1869 if (reg & E1000_NVM_RW_REG_DONE) 1870 return 0; 1871 1872 udelay(5); 1873 } 1874 1875 return -E1000_ERR_NVM; 1876} 1877 1878/** 1879 * e1000e_acquire_nvm - Generic request for access to EEPROM 1880 * @hw: pointer to the HW structure 1881 * 1882 * Set the EEPROM access request bit and wait for EEPROM access grant bit. 1883 * Return successful if access grant bit set, else clear the request for 1884 * EEPROM access and return -E1000_ERR_NVM (-1). 1885 **/ 1886s32 e1000e_acquire_nvm(struct e1000_hw *hw) 1887{ 1888 u32 eecd = er32(EECD); 1889 s32 timeout = E1000_NVM_GRANT_ATTEMPTS; 1890 1891 ew32(EECD, eecd | E1000_EECD_REQ); 1892 eecd = er32(EECD); 1893 1894 while (timeout) { 1895 if (eecd & E1000_EECD_GNT) 1896 break; 1897 udelay(5); 1898 eecd = er32(EECD); 1899 timeout--; 1900 } 1901 1902 if (!timeout) { 1903 eecd &= ~E1000_EECD_REQ; 1904 ew32(EECD, eecd); 1905 e_dbg("Could not acquire NVM grant\n"); 1906 return -E1000_ERR_NVM; 1907 } 1908 1909 return 0; 1910} 1911 1912/** 1913 * e1000_standby_nvm - Return EEPROM to standby state 1914 * @hw: pointer to the HW structure 1915 * 1916 * Return the EEPROM to a standby state. 1917 **/ 1918static void e1000_standby_nvm(struct e1000_hw *hw) 1919{ 1920 struct e1000_nvm_info *nvm = &hw->nvm; 1921 u32 eecd = er32(EECD); 1922 1923 if (nvm->type == e1000_nvm_eeprom_spi) { 1924 /* Toggle CS to flush commands */ 1925 eecd |= E1000_EECD_CS; 1926 ew32(EECD, eecd); 1927 e1e_flush(); 1928 udelay(nvm->delay_usec); 1929 eecd &= ~E1000_EECD_CS; 1930 ew32(EECD, eecd); 1931 e1e_flush(); 1932 udelay(nvm->delay_usec); 1933 } 1934} 1935 1936/** 1937 * e1000_stop_nvm - Terminate EEPROM command 1938 * @hw: pointer to the HW structure 1939 * 1940 * Terminates the current command by inverting the EEPROM's chip select pin. 1941 **/ 1942static void e1000_stop_nvm(struct e1000_hw *hw) 1943{ 1944 u32 eecd; 1945 1946 eecd = er32(EECD); 1947 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 1948 /* Pull CS high */ 1949 eecd |= E1000_EECD_CS; 1950 e1000_lower_eec_clk(hw, &eecd); 1951 } 1952} 1953 1954/** 1955 * e1000e_release_nvm - Release exclusive access to EEPROM 1956 * @hw: pointer to the HW structure 1957 * 1958 * Stop any current commands to the EEPROM and clear the EEPROM request bit. 1959 **/ 1960void e1000e_release_nvm(struct e1000_hw *hw) 1961{ 1962 u32 eecd; 1963 1964 e1000_stop_nvm(hw); 1965 1966 eecd = er32(EECD); 1967 eecd &= ~E1000_EECD_REQ; 1968 ew32(EECD, eecd); 1969} 1970 1971/** 1972 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write 1973 * @hw: pointer to the HW structure 1974 * 1975 * Setups the EEPROM for reading and writing. 1976 **/ 1977static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) 1978{ 1979 struct e1000_nvm_info *nvm = &hw->nvm; 1980 u32 eecd = er32(EECD); 1981 u8 spi_stat_reg; 1982 1983 if (nvm->type == e1000_nvm_eeprom_spi) { 1984 u16 timeout = NVM_MAX_RETRY_SPI; 1985 1986 /* Clear SK and CS */ 1987 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); 1988 ew32(EECD, eecd); 1989 udelay(1); 1990 1991 /* 1992 * Read "Status Register" repeatedly until the LSB is cleared. 1993 * The EEPROM will signal that the command has been completed 1994 * by clearing bit 0 of the internal status register. If it's 1995 * not cleared within 'timeout', then error out. 1996 */ 1997 while (timeout) { 1998 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, 1999 hw->nvm.opcode_bits); 2000 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); 2001 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) 2002 break; 2003 2004 udelay(5); 2005 e1000_standby_nvm(hw); 2006 timeout--; 2007 } 2008 2009 if (!timeout) { 2010 e_dbg("SPI NVM Status error\n"); 2011 return -E1000_ERR_NVM; 2012 } 2013 } 2014 2015 return 0; 2016} 2017 2018/** 2019 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register 2020 * @hw: pointer to the HW structure 2021 * @offset: offset of word in the EEPROM to read 2022 * @words: number of words to read 2023 * @data: word read from the EEPROM 2024 * 2025 * Reads a 16 bit word from the EEPROM using the EERD register. 2026 **/ 2027s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 2028{ 2029 struct e1000_nvm_info *nvm = &hw->nvm; 2030 u32 i, eerd = 0; 2031 s32 ret_val = 0; 2032 2033 /* 2034 * A check for invalid values: offset too large, too many words, 2035 * too many words for the offset, and not enough words. 2036 */ 2037 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 2038 (words == 0)) { 2039 e_dbg("nvm parameter(s) out of bounds\n"); 2040 return -E1000_ERR_NVM; 2041 } 2042 2043 for (i = 0; i < words; i++) { 2044 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + 2045 E1000_NVM_RW_REG_START; 2046 2047 ew32(EERD, eerd); 2048 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); 2049 if (ret_val) 2050 break; 2051 2052 data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA); 2053 } 2054 2055 return ret_val; 2056} 2057 2058/** 2059 * e1000e_write_nvm_spi - Write to EEPROM using SPI 2060 * @hw: pointer to the HW structure 2061 * @offset: offset within the EEPROM to be written to 2062 * @words: number of words to write 2063 * @data: 16 bit word(s) to be written to the EEPROM 2064 * 2065 * Writes data to EEPROM at offset using SPI interface. 2066 * 2067 * If e1000e_update_nvm_checksum is not called after this function , the 2068 * EEPROM will most likely contain an invalid checksum. 2069 **/ 2070s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 2071{ 2072 struct e1000_nvm_info *nvm = &hw->nvm; 2073 s32 ret_val; 2074 u16 widx = 0; 2075 2076 /* 2077 * A check for invalid values: offset too large, too many words, 2078 * and not enough words. 2079 */ 2080 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 2081 (words == 0)) { 2082 e_dbg("nvm parameter(s) out of bounds\n"); 2083 return -E1000_ERR_NVM; 2084 } 2085 2086 ret_val = nvm->ops.acquire(hw); 2087 if (ret_val) 2088 return ret_val; 2089 2090 msleep(10); 2091 2092 while (widx < words) { 2093 u8 write_opcode = NVM_WRITE_OPCODE_SPI; 2094 2095 ret_val = e1000_ready_nvm_eeprom(hw); 2096 if (ret_val) { 2097 nvm->ops.release(hw); 2098 return ret_val; 2099 } 2100 2101 e1000_standby_nvm(hw); 2102 2103 /* Send the WRITE ENABLE command (8 bit opcode) */ 2104 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, 2105 nvm->opcode_bits); 2106 2107 e1000_standby_nvm(hw); 2108 2109 /* 2110 * Some SPI eeproms use the 8th address bit embedded in the 2111 * opcode 2112 */ 2113 if ((nvm->address_bits == 8) && (offset >= 128)) 2114 write_opcode |= NVM_A8_OPCODE_SPI; 2115 2116 /* Send the Write command (8-bit opcode + addr) */ 2117 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); 2118 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), 2119 nvm->address_bits); 2120 2121 /* Loop to allow for up to whole page write of eeprom */ 2122 while (widx < words) { 2123 u16 word_out = data[widx]; 2124 word_out = (word_out >> 8) | (word_out << 8); 2125 e1000_shift_out_eec_bits(hw, word_out, 16); 2126 widx++; 2127 2128 if ((((offset + widx) * 2) % nvm->page_size) == 0) { 2129 e1000_standby_nvm(hw); 2130 break; 2131 } 2132 } 2133 } 2134 2135 msleep(10); 2136 nvm->ops.release(hw); 2137 return 0; 2138} 2139 2140/** 2141 * e1000_read_pba_string_generic - Read device part number 2142 * @hw: pointer to the HW structure 2143 * @pba_num: pointer to device part number 2144 * @pba_num_size: size of part number buffer 2145 * 2146 * Reads the product board assembly (PBA) number from the EEPROM and stores 2147 * the value in pba_num. 2148 **/ 2149s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, 2150 u32 pba_num_size) 2151{ 2152 s32 ret_val; 2153 u16 nvm_data; 2154 u16 pba_ptr; 2155 u16 offset; 2156 u16 length; 2157 2158 if (pba_num == NULL) { 2159 e_dbg("PBA string buffer was null\n"); 2160 ret_val = E1000_ERR_INVALID_ARGUMENT; 2161 goto out; 2162 } 2163 2164 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); 2165 if (ret_val) { 2166 e_dbg("NVM Read Error\n"); 2167 goto out; 2168 } 2169 2170 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); 2171 if (ret_val) { 2172 e_dbg("NVM Read Error\n"); 2173 goto out; 2174 } 2175 2176 /* 2177 * if nvm_data is not ptr guard the PBA must be in legacy format which 2178 * means pba_ptr is actually our second data word for the PBA number 2179 * and we can decode it into an ascii string 2180 */ 2181 if (nvm_data != NVM_PBA_PTR_GUARD) { 2182 e_dbg("NVM PBA number is not stored as string\n"); 2183 2184 /* we will need 11 characters to store the PBA */ 2185 if (pba_num_size < 11) { 2186 e_dbg("PBA string buffer too small\n"); 2187 return E1000_ERR_NO_SPACE; 2188 } 2189 2190 /* extract hex string from data and pba_ptr */ 2191 pba_num[0] = (nvm_data >> 12) & 0xF; 2192 pba_num[1] = (nvm_data >> 8) & 0xF; 2193 pba_num[2] = (nvm_data >> 4) & 0xF; 2194 pba_num[3] = nvm_data & 0xF; 2195 pba_num[4] = (pba_ptr >> 12) & 0xF; 2196 pba_num[5] = (pba_ptr >> 8) & 0xF; 2197 pba_num[6] = '-'; 2198 pba_num[7] = 0; 2199 pba_num[8] = (pba_ptr >> 4) & 0xF; 2200 pba_num[9] = pba_ptr & 0xF; 2201 2202 /* put a null character on the end of our string */ 2203 pba_num[10] = '\0'; 2204 2205 /* switch all the data but the '-' to hex char */ 2206 for (offset = 0; offset < 10; offset++) { 2207 if (pba_num[offset] < 0xA) 2208 pba_num[offset] += '0'; 2209 else if (pba_num[offset] < 0x10) 2210 pba_num[offset] += 'A' - 0xA; 2211 } 2212 2213 goto out; 2214 } 2215 2216 ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length); 2217 if (ret_val) { 2218 e_dbg("NVM Read Error\n"); 2219 goto out; 2220 } 2221 2222 if (length == 0xFFFF || length == 0) { 2223 e_dbg("NVM PBA number section invalid length\n"); 2224 ret_val = E1000_ERR_NVM_PBA_SECTION; 2225 goto out; 2226 } 2227 /* check if pba_num buffer is big enough */ 2228 if (pba_num_size < (((u32)length * 2) - 1)) { 2229 e_dbg("PBA string buffer too small\n"); 2230 ret_val = E1000_ERR_NO_SPACE; 2231 goto out; 2232 } 2233 2234 /* trim pba length from start of string */ 2235 pba_ptr++; 2236 length--; 2237 2238 for (offset = 0; offset < length; offset++) { 2239 ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data); 2240 if (ret_val) { 2241 e_dbg("NVM Read Error\n"); 2242 goto out; 2243 } 2244 pba_num[offset * 2] = (u8)(nvm_data >> 8); 2245 pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); 2246 } 2247 pba_num[offset * 2] = '\0'; 2248 2249out: 2250 return ret_val; 2251} 2252 2253/** 2254 * e1000_read_mac_addr_generic - Read device MAC address 2255 * @hw: pointer to the HW structure 2256 * 2257 * Reads the device MAC address from the EEPROM and stores the value. 2258 * Since devices with two ports use the same EEPROM, we increment the 2259 * last bit in the MAC address for the second port. 2260 **/ 2261s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) 2262{ 2263 u32 rar_high; 2264 u32 rar_low; 2265 u16 i; 2266 2267 rar_high = er32(RAH(0)); 2268 rar_low = er32(RAL(0)); 2269 2270 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) 2271 hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); 2272 2273 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) 2274 hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); 2275 2276 for (i = 0; i < ETH_ALEN; i++) 2277 hw->mac.addr[i] = hw->mac.perm_addr[i]; 2278 2279 return 0; 2280} 2281 2282/** 2283 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum 2284 * @hw: pointer to the HW structure 2285 * 2286 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 2287 * and then verifies that the sum of the EEPROM is equal to 0xBABA. 2288 **/ 2289s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw) 2290{ 2291 s32 ret_val; 2292 u16 checksum = 0; 2293 u16 i, nvm_data; 2294 2295 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 2296 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); 2297 if (ret_val) { 2298 e_dbg("NVM Read Error\n"); 2299 return ret_val; 2300 } 2301 checksum += nvm_data; 2302 } 2303 2304 if (checksum != (u16) NVM_SUM) { 2305 e_dbg("NVM Checksum Invalid\n"); 2306 return -E1000_ERR_NVM; 2307 } 2308 2309 return 0; 2310} 2311 2312/** 2313 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum 2314 * @hw: pointer to the HW structure 2315 * 2316 * Updates the EEPROM checksum by reading/adding each word of the EEPROM 2317 * up to the checksum. Then calculates the EEPROM checksum and writes the 2318 * value to the EEPROM. 2319 **/ 2320s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw) 2321{ 2322 s32 ret_val; 2323 u16 checksum = 0; 2324 u16 i, nvm_data; 2325 2326 for (i = 0; i < NVM_CHECKSUM_REG; i++) { 2327 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); 2328 if (ret_val) { 2329 e_dbg("NVM Read Error while updating checksum.\n"); 2330 return ret_val; 2331 } 2332 checksum += nvm_data; 2333 } 2334 checksum = (u16) NVM_SUM - checksum; 2335 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); 2336 if (ret_val) 2337 e_dbg("NVM Write Error while updating checksum.\n"); 2338 2339 return ret_val; 2340} 2341 2342/** 2343 * e1000e_reload_nvm - Reloads EEPROM 2344 * @hw: pointer to the HW structure 2345 * 2346 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 2347 * extended control register. 2348 **/ 2349void e1000e_reload_nvm(struct e1000_hw *hw) 2350{ 2351 u32 ctrl_ext; 2352 2353 udelay(10); 2354 ctrl_ext = er32(CTRL_EXT); 2355 ctrl_ext |= E1000_CTRL_EXT_EE_RST; 2356 ew32(CTRL_EXT, ctrl_ext); 2357 e1e_flush(); 2358} 2359 2360/** 2361 * e1000_calculate_checksum - Calculate checksum for buffer 2362 * @buffer: pointer to EEPROM 2363 * @length: size of EEPROM to calculate a checksum for 2364 * 2365 * Calculates the checksum for some buffer on a specified length. The 2366 * checksum calculated is returned. 2367 **/ 2368static u8 e1000_calculate_checksum(u8 *buffer, u32 length) 2369{ 2370 u32 i; 2371 u8 sum = 0; 2372 2373 if (!buffer) 2374 return 0; 2375 2376 for (i = 0; i < length; i++) 2377 sum += buffer[i]; 2378 2379 return (u8) (0 - sum); 2380} 2381 2382/** 2383 * e1000_mng_enable_host_if - Checks host interface is enabled 2384 * @hw: pointer to the HW structure 2385 * 2386 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 2387 * 2388 * This function checks whether the HOST IF is enabled for command operation 2389 * and also checks whether the previous command is completed. It busy waits 2390 * in case of previous command is not completed. 2391 **/ 2392static s32 e1000_mng_enable_host_if(struct e1000_hw *hw) 2393{ 2394 u32 hicr; 2395 u8 i; 2396 2397 if (!(hw->mac.arc_subsystem_valid)) { 2398 e_dbg("ARC subsystem not valid.\n"); 2399 return -E1000_ERR_HOST_INTERFACE_COMMAND; 2400 } 2401 2402 /* Check that the host interface is enabled. */ 2403 hicr = er32(HICR); 2404 if ((hicr & E1000_HICR_EN) == 0) { 2405 e_dbg("E1000_HOST_EN bit disabled.\n"); 2406 return -E1000_ERR_HOST_INTERFACE_COMMAND; 2407 } 2408 /* check the previous command is completed */ 2409 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { 2410 hicr = er32(HICR); 2411 if (!(hicr & E1000_HICR_C)) 2412 break; 2413 mdelay(1); 2414 } 2415 2416 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { 2417 e_dbg("Previous command timeout failed .\n"); 2418 return -E1000_ERR_HOST_INTERFACE_COMMAND; 2419 } 2420 2421 return 0; 2422} 2423 2424/** 2425 * e1000e_check_mng_mode_generic - check management mode 2426 * @hw: pointer to the HW structure 2427 * 2428 * Reads the firmware semaphore register and returns true (>0) if 2429 * manageability is enabled, else false (0). 2430 **/ 2431bool e1000e_check_mng_mode_generic(struct e1000_hw *hw) 2432{ 2433 u32 fwsm = er32(FWSM); 2434 2435 return (fwsm & E1000_FWSM_MODE_MASK) == 2436 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT); 2437} 2438 2439/** 2440 * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx 2441 * @hw: pointer to the HW structure 2442 * 2443 * Enables packet filtering on transmit packets if manageability is enabled 2444 * and host interface is enabled. 2445 **/ 2446bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw) 2447{ 2448 struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; 2449 u32 *buffer = (u32 *)&hw->mng_cookie; 2450 u32 offset; 2451 s32 ret_val, hdr_csum, csum; 2452 u8 i, len; 2453 2454 hw->mac.tx_pkt_filtering = true; 2455 2456 /* No manageability, no filtering */ 2457 if (!e1000e_check_mng_mode(hw)) { 2458 hw->mac.tx_pkt_filtering = false; 2459 goto out; 2460 } 2461 2462 /* 2463 * If we can't read from the host interface for whatever 2464 * reason, disable filtering. 2465 */ 2466 ret_val = e1000_mng_enable_host_if(hw); 2467 if (ret_val) { 2468 hw->mac.tx_pkt_filtering = false; 2469 goto out; 2470 } 2471 2472 /* Read in the header. Length and offset are in dwords. */ 2473 len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; 2474 offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; 2475 for (i = 0; i < len; i++) 2476 *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i); 2477 hdr_csum = hdr->checksum; 2478 hdr->checksum = 0; 2479 csum = e1000_calculate_checksum((u8 *)hdr, 2480 E1000_MNG_DHCP_COOKIE_LENGTH); 2481 /* 2482 * If either the checksums or signature don't match, then 2483 * the cookie area isn't considered valid, in which case we 2484 * take the safe route of assuming Tx filtering is enabled. 2485 */ 2486 if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) { 2487 hw->mac.tx_pkt_filtering = true; 2488 goto out; 2489 } 2490 2491 /* Cookie area is valid, make the final check for filtering. */ 2492 if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) { 2493 hw->mac.tx_pkt_filtering = false; 2494 goto out; 2495 } 2496 2497out: 2498 return hw->mac.tx_pkt_filtering; 2499} 2500 2501/** 2502 * e1000_mng_write_cmd_header - Writes manageability command header 2503 * @hw: pointer to the HW structure 2504 * @hdr: pointer to the host interface command header 2505 * 2506 * Writes the command header after does the checksum calculation. 2507 **/ 2508static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 2509 struct e1000_host_mng_command_header *hdr) 2510{ 2511 u16 i, length = sizeof(struct e1000_host_mng_command_header); 2512 2513 /* Write the whole command header structure with new checksum. */ 2514 2515 hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); 2516 2517 length >>= 2; 2518 /* Write the relevant command block into the ram area. */ 2519 for (i = 0; i < length; i++) { 2520 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i, 2521 *((u32 *) hdr + i)); 2522 e1e_flush(); 2523 } 2524 2525 return 0; 2526} 2527 2528/** 2529 * e1000_mng_host_if_write - Write to the manageability host interface 2530 * @hw: pointer to the HW structure 2531 * @buffer: pointer to the host interface buffer 2532 * @length: size of the buffer 2533 * @offset: location in the buffer to write to 2534 * @sum: sum of the data (not checksum) 2535 * 2536 * This function writes the buffer content at the offset given on the host if. 2537 * It also does alignment considerations to do the writes in most efficient 2538 * way. Also fills up the sum of the buffer in *buffer parameter. 2539 **/ 2540static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, 2541 u16 length, u16 offset, u8 *sum) 2542{ 2543 u8 *tmp; 2544 u8 *bufptr = buffer; 2545 u32 data = 0; 2546 u16 remaining, i, j, prev_bytes; 2547 2548 /* sum = only sum of the data and it is not checksum */ 2549 2550 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) 2551 return -E1000_ERR_PARAM; 2552 2553 tmp = (u8 *)&data; 2554 prev_bytes = offset & 0x3; 2555 offset >>= 2; 2556 2557 if (prev_bytes) { 2558 data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset); 2559 for (j = prev_bytes; j < sizeof(u32); j++) { 2560 *(tmp + j) = *bufptr++; 2561 *sum += *(tmp + j); 2562 } 2563 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data); 2564 length -= j - prev_bytes; 2565 offset++; 2566 } 2567 2568 remaining = length & 0x3; 2569 length -= remaining; 2570 2571 /* Calculate length in DWORDs */ 2572 length >>= 2; 2573 2574 /* 2575 * The device driver writes the relevant command block into the 2576 * ram area. 2577 */ 2578 for (i = 0; i < length; i++) { 2579 for (j = 0; j < sizeof(u32); j++) { 2580 *(tmp + j) = *bufptr++; 2581 *sum += *(tmp + j); 2582 } 2583 2584 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); 2585 } 2586 if (remaining) { 2587 for (j = 0; j < sizeof(u32); j++) { 2588 if (j < remaining) 2589 *(tmp + j) = *bufptr++; 2590 else 2591 *(tmp + j) = 0; 2592 2593 *sum += *(tmp + j); 2594 } 2595 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); 2596 } 2597 2598 return 0; 2599} 2600 2601/** 2602 * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface 2603 * @hw: pointer to the HW structure 2604 * @buffer: pointer to the host interface 2605 * @length: size of the buffer 2606 * 2607 * Writes the DHCP information to the host interface. 2608 **/ 2609s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 2610{ 2611 struct e1000_host_mng_command_header hdr; 2612 s32 ret_val; 2613 u32 hicr; 2614 2615 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; 2616 hdr.command_length = length; 2617 hdr.reserved1 = 0; 2618 hdr.reserved2 = 0; 2619 hdr.checksum = 0; 2620 2621 /* Enable the host interface */ 2622 ret_val = e1000_mng_enable_host_if(hw); 2623 if (ret_val) 2624 return ret_val; 2625 2626 /* Populate the host interface with the contents of "buffer". */ 2627 ret_val = e1000_mng_host_if_write(hw, buffer, length, 2628 sizeof(hdr), &(hdr.checksum)); 2629 if (ret_val) 2630 return ret_val; 2631 2632 /* Write the manageability command header */ 2633 ret_val = e1000_mng_write_cmd_header(hw, &hdr); 2634 if (ret_val) 2635 return ret_val; 2636 2637 /* Tell the ARC a new command is pending. */ 2638 hicr = er32(HICR); 2639 ew32(HICR, hicr | E1000_HICR_C); 2640 2641 return 0; 2642} 2643 2644/** 2645 * e1000e_enable_mng_pass_thru - Check if management passthrough is needed 2646 * @hw: pointer to the HW structure 2647 * 2648 * Verifies the hardware needs to leave interface enabled so that frames can 2649 * be directed to and from the management interface. 2650 **/ 2651bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw) 2652{ 2653 u32 manc; 2654 u32 fwsm, factps; 2655 bool ret_val = false; 2656 2657 manc = er32(MANC); 2658 2659 if (!(manc & E1000_MANC_RCV_TCO_EN)) 2660 goto out; 2661 2662 if (hw->mac.has_fwsm) { 2663 fwsm = er32(FWSM); 2664 factps = er32(FACTPS); 2665 2666 if (!(factps & E1000_FACTPS_MNGCG) && 2667 ((fwsm & E1000_FWSM_MODE_MASK) == 2668 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { 2669 ret_val = true; 2670 goto out; 2671 } 2672 } else if ((hw->mac.type == e1000_82574) || 2673 (hw->mac.type == e1000_82583)) { 2674 u16 data; 2675 2676 factps = er32(FACTPS); 2677 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); 2678 2679 if (!(factps & E1000_FACTPS_MNGCG) && 2680 ((data & E1000_NVM_INIT_CTRL2_MNGM) == 2681 (e1000_mng_mode_pt << 13))) { 2682 ret_val = true; 2683 goto out; 2684 } 2685 } else if ((manc & E1000_MANC_SMBUS_EN) && 2686 !(manc & E1000_MANC_ASF_EN)) { 2687 ret_val = true; 2688 goto out; 2689 } 2690 2691out: 2692 return ret_val; 2693}