at v2.6.39 376 lines 10 kB view raw
1/*P:400 2 * This contains run_guest() which actually calls into the Host<->Guest 3 * Switcher and analyzes the return, such as determining if the Guest wants the 4 * Host to do something. This file also contains useful helper routines. 5:*/ 6#include <linux/module.h> 7#include <linux/stringify.h> 8#include <linux/stddef.h> 9#include <linux/io.h> 10#include <linux/mm.h> 11#include <linux/vmalloc.h> 12#include <linux/cpu.h> 13#include <linux/freezer.h> 14#include <linux/highmem.h> 15#include <linux/slab.h> 16#include <asm/paravirt.h> 17#include <asm/pgtable.h> 18#include <asm/uaccess.h> 19#include <asm/poll.h> 20#include <asm/asm-offsets.h> 21#include "lg.h" 22 23 24static struct vm_struct *switcher_vma; 25static struct page **switcher_page; 26 27/* This One Big lock protects all inter-guest data structures. */ 28DEFINE_MUTEX(lguest_lock); 29 30/*H:010 31 * We need to set up the Switcher at a high virtual address. Remember the 32 * Switcher is a few hundred bytes of assembler code which actually changes the 33 * CPU to run the Guest, and then changes back to the Host when a trap or 34 * interrupt happens. 35 * 36 * The Switcher code must be at the same virtual address in the Guest as the 37 * Host since it will be running as the switchover occurs. 38 * 39 * Trying to map memory at a particular address is an unusual thing to do, so 40 * it's not a simple one-liner. 41 */ 42static __init int map_switcher(void) 43{ 44 int i, err; 45 struct page **pagep; 46 47 /* 48 * Map the Switcher in to high memory. 49 * 50 * It turns out that if we choose the address 0xFFC00000 (4MB under the 51 * top virtual address), it makes setting up the page tables really 52 * easy. 53 */ 54 55 /* 56 * We allocate an array of struct page pointers. map_vm_area() wants 57 * this, rather than just an array of pages. 58 */ 59 switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES, 60 GFP_KERNEL); 61 if (!switcher_page) { 62 err = -ENOMEM; 63 goto out; 64 } 65 66 /* 67 * Now we actually allocate the pages. The Guest will see these pages, 68 * so we make sure they're zeroed. 69 */ 70 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) { 71 switcher_page[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 72 if (!switcher_page[i]) { 73 err = -ENOMEM; 74 goto free_some_pages; 75 } 76 } 77 78 /* 79 * First we check that the Switcher won't overlap the fixmap area at 80 * the top of memory. It's currently nowhere near, but it could have 81 * very strange effects if it ever happened. 82 */ 83 if (SWITCHER_ADDR + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){ 84 err = -ENOMEM; 85 printk("lguest: mapping switcher would thwack fixmap\n"); 86 goto free_pages; 87 } 88 89 /* 90 * Now we reserve the "virtual memory area" we want: 0xFFC00000 91 * (SWITCHER_ADDR). We might not get it in theory, but in practice 92 * it's worked so far. The end address needs +1 because __get_vm_area 93 * allocates an extra guard page, so we need space for that. 94 */ 95 switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE, 96 VM_ALLOC, SWITCHER_ADDR, SWITCHER_ADDR 97 + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE); 98 if (!switcher_vma) { 99 err = -ENOMEM; 100 printk("lguest: could not map switcher pages high\n"); 101 goto free_pages; 102 } 103 104 /* 105 * This code actually sets up the pages we've allocated to appear at 106 * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the 107 * kind of pages we're mapping (kernel pages), and a pointer to our 108 * array of struct pages. It increments that pointer, but we don't 109 * care. 110 */ 111 pagep = switcher_page; 112 err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep); 113 if (err) { 114 printk("lguest: map_vm_area failed: %i\n", err); 115 goto free_vma; 116 } 117 118 /* 119 * Now the Switcher is mapped at the right address, we can't fail! 120 * Copy in the compiled-in Switcher code (from <arch>_switcher.S). 121 */ 122 memcpy(switcher_vma->addr, start_switcher_text, 123 end_switcher_text - start_switcher_text); 124 125 printk(KERN_INFO "lguest: mapped switcher at %p\n", 126 switcher_vma->addr); 127 /* And we succeeded... */ 128 return 0; 129 130free_vma: 131 vunmap(switcher_vma->addr); 132free_pages: 133 i = TOTAL_SWITCHER_PAGES; 134free_some_pages: 135 for (--i; i >= 0; i--) 136 __free_pages(switcher_page[i], 0); 137 kfree(switcher_page); 138out: 139 return err; 140} 141/*:*/ 142 143/* Cleaning up the mapping when the module is unloaded is almost... too easy. */ 144static void unmap_switcher(void) 145{ 146 unsigned int i; 147 148 /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */ 149 vunmap(switcher_vma->addr); 150 /* Now we just need to free the pages we copied the switcher into */ 151 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) 152 __free_pages(switcher_page[i], 0); 153 kfree(switcher_page); 154} 155 156/*H:032 157 * Dealing With Guest Memory. 158 * 159 * Before we go too much further into the Host, we need to grok the routines 160 * we use to deal with Guest memory. 161 * 162 * When the Guest gives us (what it thinks is) a physical address, we can use 163 * the normal copy_from_user() & copy_to_user() on the corresponding place in 164 * the memory region allocated by the Launcher. 165 * 166 * But we can't trust the Guest: it might be trying to access the Launcher 167 * code. We have to check that the range is below the pfn_limit the Launcher 168 * gave us. We have to make sure that addr + len doesn't give us a false 169 * positive by overflowing, too. 170 */ 171bool lguest_address_ok(const struct lguest *lg, 172 unsigned long addr, unsigned long len) 173{ 174 return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr); 175} 176 177/* 178 * This routine copies memory from the Guest. Here we can see how useful the 179 * kill_lguest() routine we met in the Launcher can be: we return a random 180 * value (all zeroes) instead of needing to return an error. 181 */ 182void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes) 183{ 184 if (!lguest_address_ok(cpu->lg, addr, bytes) 185 || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) { 186 /* copy_from_user should do this, but as we rely on it... */ 187 memset(b, 0, bytes); 188 kill_guest(cpu, "bad read address %#lx len %u", addr, bytes); 189 } 190} 191 192/* This is the write (copy into Guest) version. */ 193void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b, 194 unsigned bytes) 195{ 196 if (!lguest_address_ok(cpu->lg, addr, bytes) 197 || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0) 198 kill_guest(cpu, "bad write address %#lx len %u", addr, bytes); 199} 200/*:*/ 201 202/*H:030 203 * Let's jump straight to the the main loop which runs the Guest. 204 * Remember, this is called by the Launcher reading /dev/lguest, and we keep 205 * going around and around until something interesting happens. 206 */ 207int run_guest(struct lg_cpu *cpu, unsigned long __user *user) 208{ 209 /* We stop running once the Guest is dead. */ 210 while (!cpu->lg->dead) { 211 unsigned int irq; 212 bool more; 213 214 /* First we run any hypercalls the Guest wants done. */ 215 if (cpu->hcall) 216 do_hypercalls(cpu); 217 218 /* 219 * It's possible the Guest did a NOTIFY hypercall to the 220 * Launcher. 221 */ 222 if (cpu->pending_notify) { 223 /* 224 * Does it just needs to write to a registered 225 * eventfd (ie. the appropriate virtqueue thread)? 226 */ 227 if (!send_notify_to_eventfd(cpu)) { 228 /* OK, we tell the main Laucher. */ 229 if (put_user(cpu->pending_notify, user)) 230 return -EFAULT; 231 return sizeof(cpu->pending_notify); 232 } 233 } 234 235 /* Check for signals */ 236 if (signal_pending(current)) 237 return -ERESTARTSYS; 238 239 /* 240 * Check if there are any interrupts which can be delivered now: 241 * if so, this sets up the hander to be executed when we next 242 * run the Guest. 243 */ 244 irq = interrupt_pending(cpu, &more); 245 if (irq < LGUEST_IRQS) 246 try_deliver_interrupt(cpu, irq, more); 247 248 /* 249 * All long-lived kernel loops need to check with this horrible 250 * thing called the freezer. If the Host is trying to suspend, 251 * it stops us. 252 */ 253 try_to_freeze(); 254 255 /* 256 * Just make absolutely sure the Guest is still alive. One of 257 * those hypercalls could have been fatal, for example. 258 */ 259 if (cpu->lg->dead) 260 break; 261 262 /* 263 * If the Guest asked to be stopped, we sleep. The Guest's 264 * clock timer will wake us. 265 */ 266 if (cpu->halted) { 267 set_current_state(TASK_INTERRUPTIBLE); 268 /* 269 * Just before we sleep, make sure no interrupt snuck in 270 * which we should be doing. 271 */ 272 if (interrupt_pending(cpu, &more) < LGUEST_IRQS) 273 set_current_state(TASK_RUNNING); 274 else 275 schedule(); 276 continue; 277 } 278 279 /* 280 * OK, now we're ready to jump into the Guest. First we put up 281 * the "Do Not Disturb" sign: 282 */ 283 local_irq_disable(); 284 285 /* Actually run the Guest until something happens. */ 286 lguest_arch_run_guest(cpu); 287 288 /* Now we're ready to be interrupted or moved to other CPUs */ 289 local_irq_enable(); 290 291 /* Now we deal with whatever happened to the Guest. */ 292 lguest_arch_handle_trap(cpu); 293 } 294 295 /* Special case: Guest is 'dead' but wants a reboot. */ 296 if (cpu->lg->dead == ERR_PTR(-ERESTART)) 297 return -ERESTART; 298 299 /* The Guest is dead => "No such file or directory" */ 300 return -ENOENT; 301} 302 303/*H:000 304 * Welcome to the Host! 305 * 306 * By this point your brain has been tickled by the Guest code and numbed by 307 * the Launcher code; prepare for it to be stretched by the Host code. This is 308 * the heart. Let's begin at the initialization routine for the Host's lg 309 * module. 310 */ 311static int __init init(void) 312{ 313 int err; 314 315 /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */ 316 if (paravirt_enabled()) { 317 printk("lguest is afraid of being a guest\n"); 318 return -EPERM; 319 } 320 321 /* First we put the Switcher up in very high virtual memory. */ 322 err = map_switcher(); 323 if (err) 324 goto out; 325 326 /* Now we set up the pagetable implementation for the Guests. */ 327 err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES); 328 if (err) 329 goto unmap; 330 331 /* We might need to reserve an interrupt vector. */ 332 err = init_interrupts(); 333 if (err) 334 goto free_pgtables; 335 336 /* /dev/lguest needs to be registered. */ 337 err = lguest_device_init(); 338 if (err) 339 goto free_interrupts; 340 341 /* Finally we do some architecture-specific setup. */ 342 lguest_arch_host_init(); 343 344 /* All good! */ 345 return 0; 346 347free_interrupts: 348 free_interrupts(); 349free_pgtables: 350 free_pagetables(); 351unmap: 352 unmap_switcher(); 353out: 354 return err; 355} 356 357/* Cleaning up is just the same code, backwards. With a little French. */ 358static void __exit fini(void) 359{ 360 lguest_device_remove(); 361 free_interrupts(); 362 free_pagetables(); 363 unmap_switcher(); 364 365 lguest_arch_host_fini(); 366} 367/*:*/ 368 369/* 370 * The Host side of lguest can be a module. This is a nice way for people to 371 * play with it. 372 */ 373module_init(init); 374module_exit(fini); 375MODULE_LICENSE("GPL"); 376MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");