at v2.6.39-rc2 784 lines 22 kB view raw
1/* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * Copyright (C) 2010 Google, Inc. 8 * Rewritten by David Rientjes 9 * 10 * The routines in this file are used to kill a process when 11 * we're seriously out of memory. This gets called from __alloc_pages() 12 * in mm/page_alloc.c when we really run out of memory. 13 * 14 * Since we won't call these routines often (on a well-configured 15 * machine) this file will double as a 'coding guide' and a signpost 16 * for newbie kernel hackers. It features several pointers to major 17 * kernel subsystems and hints as to where to find out what things do. 18 */ 19 20#include <linux/oom.h> 21#include <linux/mm.h> 22#include <linux/err.h> 23#include <linux/gfp.h> 24#include <linux/sched.h> 25#include <linux/swap.h> 26#include <linux/timex.h> 27#include <linux/jiffies.h> 28#include <linux/cpuset.h> 29#include <linux/module.h> 30#include <linux/notifier.h> 31#include <linux/memcontrol.h> 32#include <linux/mempolicy.h> 33#include <linux/security.h> 34#include <linux/ptrace.h> 35 36int sysctl_panic_on_oom; 37int sysctl_oom_kill_allocating_task; 38int sysctl_oom_dump_tasks = 1; 39static DEFINE_SPINLOCK(zone_scan_lock); 40 41#ifdef CONFIG_NUMA 42/** 43 * has_intersects_mems_allowed() - check task eligiblity for kill 44 * @tsk: task struct of which task to consider 45 * @mask: nodemask passed to page allocator for mempolicy ooms 46 * 47 * Task eligibility is determined by whether or not a candidate task, @tsk, 48 * shares the same mempolicy nodes as current if it is bound by such a policy 49 * and whether or not it has the same set of allowed cpuset nodes. 50 */ 51static bool has_intersects_mems_allowed(struct task_struct *tsk, 52 const nodemask_t *mask) 53{ 54 struct task_struct *start = tsk; 55 56 do { 57 if (mask) { 58 /* 59 * If this is a mempolicy constrained oom, tsk's 60 * cpuset is irrelevant. Only return true if its 61 * mempolicy intersects current, otherwise it may be 62 * needlessly killed. 63 */ 64 if (mempolicy_nodemask_intersects(tsk, mask)) 65 return true; 66 } else { 67 /* 68 * This is not a mempolicy constrained oom, so only 69 * check the mems of tsk's cpuset. 70 */ 71 if (cpuset_mems_allowed_intersects(current, tsk)) 72 return true; 73 } 74 } while_each_thread(start, tsk); 75 76 return false; 77} 78#else 79static bool has_intersects_mems_allowed(struct task_struct *tsk, 80 const nodemask_t *mask) 81{ 82 return true; 83} 84#endif /* CONFIG_NUMA */ 85 86/* 87 * If this is a system OOM (not a memcg OOM) and the task selected to be 88 * killed is not already running at high (RT) priorities, speed up the 89 * recovery by boosting the dying task to the lowest FIFO priority. 90 * That helps with the recovery and avoids interfering with RT tasks. 91 */ 92static void boost_dying_task_prio(struct task_struct *p, 93 struct mem_cgroup *mem) 94{ 95 struct sched_param param = { .sched_priority = 1 }; 96 97 if (mem) 98 return; 99 100 if (!rt_task(p)) 101 sched_setscheduler_nocheck(p, SCHED_FIFO, &param); 102} 103 104/* 105 * The process p may have detached its own ->mm while exiting or through 106 * use_mm(), but one or more of its subthreads may still have a valid 107 * pointer. Return p, or any of its subthreads with a valid ->mm, with 108 * task_lock() held. 109 */ 110struct task_struct *find_lock_task_mm(struct task_struct *p) 111{ 112 struct task_struct *t = p; 113 114 do { 115 task_lock(t); 116 if (likely(t->mm)) 117 return t; 118 task_unlock(t); 119 } while_each_thread(p, t); 120 121 return NULL; 122} 123 124/* return true if the task is not adequate as candidate victim task. */ 125static bool oom_unkillable_task(struct task_struct *p, 126 const struct mem_cgroup *mem, const nodemask_t *nodemask) 127{ 128 if (is_global_init(p)) 129 return true; 130 if (p->flags & PF_KTHREAD) 131 return true; 132 133 /* When mem_cgroup_out_of_memory() and p is not member of the group */ 134 if (mem && !task_in_mem_cgroup(p, mem)) 135 return true; 136 137 /* p may not have freeable memory in nodemask */ 138 if (!has_intersects_mems_allowed(p, nodemask)) 139 return true; 140 141 return false; 142} 143 144/** 145 * oom_badness - heuristic function to determine which candidate task to kill 146 * @p: task struct of which task we should calculate 147 * @totalpages: total present RAM allowed for page allocation 148 * 149 * The heuristic for determining which task to kill is made to be as simple and 150 * predictable as possible. The goal is to return the highest value for the 151 * task consuming the most memory to avoid subsequent oom failures. 152 */ 153unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem, 154 const nodemask_t *nodemask, unsigned long totalpages) 155{ 156 int points; 157 158 if (oom_unkillable_task(p, mem, nodemask)) 159 return 0; 160 161 p = find_lock_task_mm(p); 162 if (!p) 163 return 0; 164 165 /* 166 * Shortcut check for a thread sharing p->mm that is OOM_SCORE_ADJ_MIN 167 * so the entire heuristic doesn't need to be executed for something 168 * that cannot be killed. 169 */ 170 if (atomic_read(&p->mm->oom_disable_count)) { 171 task_unlock(p); 172 return 0; 173 } 174 175 /* 176 * When the PF_OOM_ORIGIN bit is set, it indicates the task should have 177 * priority for oom killing. 178 */ 179 if (p->flags & PF_OOM_ORIGIN) { 180 task_unlock(p); 181 return 1000; 182 } 183 184 /* 185 * The memory controller may have a limit of 0 bytes, so avoid a divide 186 * by zero, if necessary. 187 */ 188 if (!totalpages) 189 totalpages = 1; 190 191 /* 192 * The baseline for the badness score is the proportion of RAM that each 193 * task's rss and swap space use. 194 */ 195 points = (get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS)) * 1000 / 196 totalpages; 197 task_unlock(p); 198 199 /* 200 * Root processes get 3% bonus, just like the __vm_enough_memory() 201 * implementation used by LSMs. 202 */ 203 if (has_capability_noaudit(p, CAP_SYS_ADMIN)) 204 points -= 30; 205 206 /* 207 * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may 208 * either completely disable oom killing or always prefer a certain 209 * task. 210 */ 211 points += p->signal->oom_score_adj; 212 213 /* 214 * Never return 0 for an eligible task that may be killed since it's 215 * possible that no single user task uses more than 0.1% of memory and 216 * no single admin tasks uses more than 3.0%. 217 */ 218 if (points <= 0) 219 return 1; 220 return (points < 1000) ? points : 1000; 221} 222 223/* 224 * Determine the type of allocation constraint. 225 */ 226#ifdef CONFIG_NUMA 227static enum oom_constraint constrained_alloc(struct zonelist *zonelist, 228 gfp_t gfp_mask, nodemask_t *nodemask, 229 unsigned long *totalpages) 230{ 231 struct zone *zone; 232 struct zoneref *z; 233 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 234 bool cpuset_limited = false; 235 int nid; 236 237 /* Default to all available memory */ 238 *totalpages = totalram_pages + total_swap_pages; 239 240 if (!zonelist) 241 return CONSTRAINT_NONE; 242 /* 243 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 244 * to kill current.We have to random task kill in this case. 245 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 246 */ 247 if (gfp_mask & __GFP_THISNODE) 248 return CONSTRAINT_NONE; 249 250 /* 251 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 252 * the page allocator means a mempolicy is in effect. Cpuset policy 253 * is enforced in get_page_from_freelist(). 254 */ 255 if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) { 256 *totalpages = total_swap_pages; 257 for_each_node_mask(nid, *nodemask) 258 *totalpages += node_spanned_pages(nid); 259 return CONSTRAINT_MEMORY_POLICY; 260 } 261 262 /* Check this allocation failure is caused by cpuset's wall function */ 263 for_each_zone_zonelist_nodemask(zone, z, zonelist, 264 high_zoneidx, nodemask) 265 if (!cpuset_zone_allowed_softwall(zone, gfp_mask)) 266 cpuset_limited = true; 267 268 if (cpuset_limited) { 269 *totalpages = total_swap_pages; 270 for_each_node_mask(nid, cpuset_current_mems_allowed) 271 *totalpages += node_spanned_pages(nid); 272 return CONSTRAINT_CPUSET; 273 } 274 return CONSTRAINT_NONE; 275} 276#else 277static enum oom_constraint constrained_alloc(struct zonelist *zonelist, 278 gfp_t gfp_mask, nodemask_t *nodemask, 279 unsigned long *totalpages) 280{ 281 *totalpages = totalram_pages + total_swap_pages; 282 return CONSTRAINT_NONE; 283} 284#endif 285 286/* 287 * Simple selection loop. We chose the process with the highest 288 * number of 'points'. We expect the caller will lock the tasklist. 289 * 290 * (not docbooked, we don't want this one cluttering up the manual) 291 */ 292static struct task_struct *select_bad_process(unsigned int *ppoints, 293 unsigned long totalpages, struct mem_cgroup *mem, 294 const nodemask_t *nodemask) 295{ 296 struct task_struct *g, *p; 297 struct task_struct *chosen = NULL; 298 *ppoints = 0; 299 300 do_each_thread(g, p) { 301 unsigned int points; 302 303 if (!p->mm) 304 continue; 305 if (oom_unkillable_task(p, mem, nodemask)) 306 continue; 307 308 /* 309 * This task already has access to memory reserves and is 310 * being killed. Don't allow any other task access to the 311 * memory reserve. 312 * 313 * Note: this may have a chance of deadlock if it gets 314 * blocked waiting for another task which itself is waiting 315 * for memory. Is there a better alternative? 316 */ 317 if (test_tsk_thread_flag(p, TIF_MEMDIE)) 318 return ERR_PTR(-1UL); 319 320 if (p->flags & PF_EXITING) { 321 /* 322 * If p is the current task and is in the process of 323 * releasing memory, we allow the "kill" to set 324 * TIF_MEMDIE, which will allow it to gain access to 325 * memory reserves. Otherwise, it may stall forever. 326 * 327 * The loop isn't broken here, however, in case other 328 * threads are found to have already been oom killed. 329 */ 330 if (p == current) { 331 chosen = p; 332 *ppoints = 1000; 333 } else { 334 /* 335 * If this task is not being ptraced on exit, 336 * then wait for it to finish before killing 337 * some other task unnecessarily. 338 */ 339 if (!(task_ptrace(p->group_leader) & 340 PT_TRACE_EXIT)) 341 return ERR_PTR(-1UL); 342 } 343 } 344 345 points = oom_badness(p, mem, nodemask, totalpages); 346 if (points > *ppoints) { 347 chosen = p; 348 *ppoints = points; 349 } 350 } while_each_thread(g, p); 351 352 return chosen; 353} 354 355/** 356 * dump_tasks - dump current memory state of all system tasks 357 * @mem: current's memory controller, if constrained 358 * @nodemask: nodemask passed to page allocator for mempolicy ooms 359 * 360 * Dumps the current memory state of all eligible tasks. Tasks not in the same 361 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 362 * are not shown. 363 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj 364 * value, oom_score_adj value, and name. 365 * 366 * Call with tasklist_lock read-locked. 367 */ 368static void dump_tasks(const struct mem_cgroup *mem, const nodemask_t *nodemask) 369{ 370 struct task_struct *p; 371 struct task_struct *task; 372 373 pr_info("[ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name\n"); 374 for_each_process(p) { 375 if (oom_unkillable_task(p, mem, nodemask)) 376 continue; 377 378 task = find_lock_task_mm(p); 379 if (!task) { 380 /* 381 * This is a kthread or all of p's threads have already 382 * detached their mm's. There's no need to report 383 * them; they can't be oom killed anyway. 384 */ 385 continue; 386 } 387 388 pr_info("[%5d] %5d %5d %8lu %8lu %3u %3d %5d %s\n", 389 task->pid, task_uid(task), task->tgid, 390 task->mm->total_vm, get_mm_rss(task->mm), 391 task_cpu(task), task->signal->oom_adj, 392 task->signal->oom_score_adj, task->comm); 393 task_unlock(task); 394 } 395} 396 397static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, 398 struct mem_cgroup *mem, const nodemask_t *nodemask) 399{ 400 task_lock(current); 401 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, " 402 "oom_adj=%d, oom_score_adj=%d\n", 403 current->comm, gfp_mask, order, current->signal->oom_adj, 404 current->signal->oom_score_adj); 405 cpuset_print_task_mems_allowed(current); 406 task_unlock(current); 407 dump_stack(); 408 mem_cgroup_print_oom_info(mem, p); 409 show_mem(SHOW_MEM_FILTER_NODES); 410 if (sysctl_oom_dump_tasks) 411 dump_tasks(mem, nodemask); 412} 413 414#define K(x) ((x) << (PAGE_SHIFT-10)) 415static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem) 416{ 417 struct task_struct *q; 418 struct mm_struct *mm; 419 420 p = find_lock_task_mm(p); 421 if (!p) 422 return 1; 423 424 /* mm cannot be safely dereferenced after task_unlock(p) */ 425 mm = p->mm; 426 427 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n", 428 task_pid_nr(p), p->comm, K(p->mm->total_vm), 429 K(get_mm_counter(p->mm, MM_ANONPAGES)), 430 K(get_mm_counter(p->mm, MM_FILEPAGES))); 431 task_unlock(p); 432 433 /* 434 * Kill all processes sharing p->mm in other thread groups, if any. 435 * They don't get access to memory reserves or a higher scheduler 436 * priority, though, to avoid depletion of all memory or task 437 * starvation. This prevents mm->mmap_sem livelock when an oom killed 438 * task cannot exit because it requires the semaphore and its contended 439 * by another thread trying to allocate memory itself. That thread will 440 * now get access to memory reserves since it has a pending fatal 441 * signal. 442 */ 443 for_each_process(q) 444 if (q->mm == mm && !same_thread_group(q, p)) { 445 task_lock(q); /* Protect ->comm from prctl() */ 446 pr_err("Kill process %d (%s) sharing same memory\n", 447 task_pid_nr(q), q->comm); 448 task_unlock(q); 449 force_sig(SIGKILL, q); 450 } 451 452 set_tsk_thread_flag(p, TIF_MEMDIE); 453 force_sig(SIGKILL, p); 454 455 /* 456 * We give our sacrificial lamb high priority and access to 457 * all the memory it needs. That way it should be able to 458 * exit() and clear out its resources quickly... 459 */ 460 boost_dying_task_prio(p, mem); 461 462 return 0; 463} 464#undef K 465 466static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, 467 unsigned int points, unsigned long totalpages, 468 struct mem_cgroup *mem, nodemask_t *nodemask, 469 const char *message) 470{ 471 struct task_struct *victim = p; 472 struct task_struct *child; 473 struct task_struct *t = p; 474 unsigned int victim_points = 0; 475 476 if (printk_ratelimit()) 477 dump_header(p, gfp_mask, order, mem, nodemask); 478 479 /* 480 * If the task is already exiting, don't alarm the sysadmin or kill 481 * its children or threads, just set TIF_MEMDIE so it can die quickly 482 */ 483 if (p->flags & PF_EXITING) { 484 set_tsk_thread_flag(p, TIF_MEMDIE); 485 boost_dying_task_prio(p, mem); 486 return 0; 487 } 488 489 task_lock(p); 490 pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n", 491 message, task_pid_nr(p), p->comm, points); 492 task_unlock(p); 493 494 /* 495 * If any of p's children has a different mm and is eligible for kill, 496 * the one with the highest badness() score is sacrificed for its 497 * parent. This attempts to lose the minimal amount of work done while 498 * still freeing memory. 499 */ 500 do { 501 list_for_each_entry(child, &t->children, sibling) { 502 unsigned int child_points; 503 504 if (child->mm == p->mm) 505 continue; 506 /* 507 * oom_badness() returns 0 if the thread is unkillable 508 */ 509 child_points = oom_badness(child, mem, nodemask, 510 totalpages); 511 if (child_points > victim_points) { 512 victim = child; 513 victim_points = child_points; 514 } 515 } 516 } while_each_thread(p, t); 517 518 return oom_kill_task(victim, mem); 519} 520 521/* 522 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 523 */ 524static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask, 525 int order, const nodemask_t *nodemask) 526{ 527 if (likely(!sysctl_panic_on_oom)) 528 return; 529 if (sysctl_panic_on_oom != 2) { 530 /* 531 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 532 * does not panic for cpuset, mempolicy, or memcg allocation 533 * failures. 534 */ 535 if (constraint != CONSTRAINT_NONE) 536 return; 537 } 538 read_lock(&tasklist_lock); 539 dump_header(NULL, gfp_mask, order, NULL, nodemask); 540 read_unlock(&tasklist_lock); 541 panic("Out of memory: %s panic_on_oom is enabled\n", 542 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 543} 544 545#ifdef CONFIG_CGROUP_MEM_RES_CTLR 546void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) 547{ 548 unsigned long limit; 549 unsigned int points = 0; 550 struct task_struct *p; 551 552 /* 553 * If current has a pending SIGKILL, then automatically select it. The 554 * goal is to allow it to allocate so that it may quickly exit and free 555 * its memory. 556 */ 557 if (fatal_signal_pending(current)) { 558 set_thread_flag(TIF_MEMDIE); 559 boost_dying_task_prio(current, NULL); 560 return; 561 } 562 563 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0, NULL); 564 limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT; 565 read_lock(&tasklist_lock); 566retry: 567 p = select_bad_process(&points, limit, mem, NULL); 568 if (!p || PTR_ERR(p) == -1UL) 569 goto out; 570 571 if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL, 572 "Memory cgroup out of memory")) 573 goto retry; 574out: 575 read_unlock(&tasklist_lock); 576} 577#endif 578 579static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 580 581int register_oom_notifier(struct notifier_block *nb) 582{ 583 return blocking_notifier_chain_register(&oom_notify_list, nb); 584} 585EXPORT_SYMBOL_GPL(register_oom_notifier); 586 587int unregister_oom_notifier(struct notifier_block *nb) 588{ 589 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 590} 591EXPORT_SYMBOL_GPL(unregister_oom_notifier); 592 593/* 594 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero 595 * if a parallel OOM killing is already taking place that includes a zone in 596 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. 597 */ 598int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 599{ 600 struct zoneref *z; 601 struct zone *zone; 602 int ret = 1; 603 604 spin_lock(&zone_scan_lock); 605 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 606 if (zone_is_oom_locked(zone)) { 607 ret = 0; 608 goto out; 609 } 610 } 611 612 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 613 /* 614 * Lock each zone in the zonelist under zone_scan_lock so a 615 * parallel invocation of try_set_zonelist_oom() doesn't succeed 616 * when it shouldn't. 617 */ 618 zone_set_flag(zone, ZONE_OOM_LOCKED); 619 } 620 621out: 622 spin_unlock(&zone_scan_lock); 623 return ret; 624} 625 626/* 627 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed 628 * allocation attempts with zonelists containing them may now recall the OOM 629 * killer, if necessary. 630 */ 631void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 632{ 633 struct zoneref *z; 634 struct zone *zone; 635 636 spin_lock(&zone_scan_lock); 637 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 638 zone_clear_flag(zone, ZONE_OOM_LOCKED); 639 } 640 spin_unlock(&zone_scan_lock); 641} 642 643/* 644 * Try to acquire the oom killer lock for all system zones. Returns zero if a 645 * parallel oom killing is taking place, otherwise locks all zones and returns 646 * non-zero. 647 */ 648static int try_set_system_oom(void) 649{ 650 struct zone *zone; 651 int ret = 1; 652 653 spin_lock(&zone_scan_lock); 654 for_each_populated_zone(zone) 655 if (zone_is_oom_locked(zone)) { 656 ret = 0; 657 goto out; 658 } 659 for_each_populated_zone(zone) 660 zone_set_flag(zone, ZONE_OOM_LOCKED); 661out: 662 spin_unlock(&zone_scan_lock); 663 return ret; 664} 665 666/* 667 * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation 668 * attempts or page faults may now recall the oom killer, if necessary. 669 */ 670static void clear_system_oom(void) 671{ 672 struct zone *zone; 673 674 spin_lock(&zone_scan_lock); 675 for_each_populated_zone(zone) 676 zone_clear_flag(zone, ZONE_OOM_LOCKED); 677 spin_unlock(&zone_scan_lock); 678} 679 680/** 681 * out_of_memory - kill the "best" process when we run out of memory 682 * @zonelist: zonelist pointer 683 * @gfp_mask: memory allocation flags 684 * @order: amount of memory being requested as a power of 2 685 * @nodemask: nodemask passed to page allocator 686 * 687 * If we run out of memory, we have the choice between either 688 * killing a random task (bad), letting the system crash (worse) 689 * OR try to be smart about which process to kill. Note that we 690 * don't have to be perfect here, we just have to be good. 691 */ 692void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, 693 int order, nodemask_t *nodemask) 694{ 695 const nodemask_t *mpol_mask; 696 struct task_struct *p; 697 unsigned long totalpages; 698 unsigned long freed = 0; 699 unsigned int points; 700 enum oom_constraint constraint = CONSTRAINT_NONE; 701 int killed = 0; 702 703 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 704 if (freed > 0) 705 /* Got some memory back in the last second. */ 706 return; 707 708 /* 709 * If current has a pending SIGKILL, then automatically select it. The 710 * goal is to allow it to allocate so that it may quickly exit and free 711 * its memory. 712 */ 713 if (fatal_signal_pending(current)) { 714 set_thread_flag(TIF_MEMDIE); 715 boost_dying_task_prio(current, NULL); 716 return; 717 } 718 719 /* 720 * Check if there were limitations on the allocation (only relevant for 721 * NUMA) that may require different handling. 722 */ 723 constraint = constrained_alloc(zonelist, gfp_mask, nodemask, 724 &totalpages); 725 mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL; 726 check_panic_on_oom(constraint, gfp_mask, order, mpol_mask); 727 728 read_lock(&tasklist_lock); 729 if (sysctl_oom_kill_allocating_task && 730 !oom_unkillable_task(current, NULL, nodemask) && 731 current->mm && !atomic_read(&current->mm->oom_disable_count)) { 732 /* 733 * oom_kill_process() needs tasklist_lock held. If it returns 734 * non-zero, current could not be killed so we must fallback to 735 * the tasklist scan. 736 */ 737 if (!oom_kill_process(current, gfp_mask, order, 0, totalpages, 738 NULL, nodemask, 739 "Out of memory (oom_kill_allocating_task)")) 740 goto out; 741 } 742 743retry: 744 p = select_bad_process(&points, totalpages, NULL, mpol_mask); 745 if (PTR_ERR(p) == -1UL) 746 goto out; 747 748 /* Found nothing?!?! Either we hang forever, or we panic. */ 749 if (!p) { 750 dump_header(NULL, gfp_mask, order, NULL, mpol_mask); 751 read_unlock(&tasklist_lock); 752 panic("Out of memory and no killable processes...\n"); 753 } 754 755 if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL, 756 nodemask, "Out of memory")) 757 goto retry; 758 killed = 1; 759out: 760 read_unlock(&tasklist_lock); 761 762 /* 763 * Give "p" a good chance of killing itself before we 764 * retry to allocate memory unless "p" is current 765 */ 766 if (killed && !test_thread_flag(TIF_MEMDIE)) 767 schedule_timeout_uninterruptible(1); 768} 769 770/* 771 * The pagefault handler calls here because it is out of memory, so kill a 772 * memory-hogging task. If a populated zone has ZONE_OOM_LOCKED set, a parallel 773 * oom killing is already in progress so do nothing. If a task is found with 774 * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit. 775 */ 776void pagefault_out_of_memory(void) 777{ 778 if (try_set_system_oom()) { 779 out_of_memory(NULL, 0, 0, NULL); 780 clear_system_oom(); 781 } 782 if (!test_thread_flag(TIF_MEMDIE)) 783 schedule_timeout_uninterruptible(1); 784}