at v2.6.38 33 kB view raw
1/* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14#include <linux/capability.h> 15#include <linux/module.h> 16#include <linux/init.h> 17#include <linux/kernel.h> 18#include <linux/security.h> 19#include <linux/ima.h> 20 21/* Boot-time LSM user choice */ 22static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 23 CONFIG_DEFAULT_SECURITY; 24 25/* things that live in capability.c */ 26extern void __init security_fixup_ops(struct security_operations *ops); 27 28static struct security_operations *security_ops; 29static struct security_operations default_security_ops = { 30 .name = "default", 31}; 32 33static inline int __init verify(struct security_operations *ops) 34{ 35 /* verify the security_operations structure exists */ 36 if (!ops) 37 return -EINVAL; 38 security_fixup_ops(ops); 39 return 0; 40} 41 42static void __init do_security_initcalls(void) 43{ 44 initcall_t *call; 45 call = __security_initcall_start; 46 while (call < __security_initcall_end) { 47 (*call) (); 48 call++; 49 } 50} 51 52/** 53 * security_init - initializes the security framework 54 * 55 * This should be called early in the kernel initialization sequence. 56 */ 57int __init security_init(void) 58{ 59 printk(KERN_INFO "Security Framework initialized\n"); 60 61 security_fixup_ops(&default_security_ops); 62 security_ops = &default_security_ops; 63 do_security_initcalls(); 64 65 return 0; 66} 67 68void reset_security_ops(void) 69{ 70 security_ops = &default_security_ops; 71} 72 73/* Save user chosen LSM */ 74static int __init choose_lsm(char *str) 75{ 76 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 77 return 1; 78} 79__setup("security=", choose_lsm); 80 81/** 82 * security_module_enable - Load given security module on boot ? 83 * @ops: a pointer to the struct security_operations that is to be checked. 84 * 85 * Each LSM must pass this method before registering its own operations 86 * to avoid security registration races. This method may also be used 87 * to check if your LSM is currently loaded during kernel initialization. 88 * 89 * Return true if: 90 * -The passed LSM is the one chosen by user at boot time, 91 * -or the passed LSM is configured as the default and the user did not 92 * choose an alternate LSM at boot time. 93 * Otherwise, return false. 94 */ 95int __init security_module_enable(struct security_operations *ops) 96{ 97 return !strcmp(ops->name, chosen_lsm); 98} 99 100/** 101 * register_security - registers a security framework with the kernel 102 * @ops: a pointer to the struct security_options that is to be registered 103 * 104 * This function allows a security module to register itself with the 105 * kernel security subsystem. Some rudimentary checking is done on the @ops 106 * value passed to this function. You'll need to check first if your LSM 107 * is allowed to register its @ops by calling security_module_enable(@ops). 108 * 109 * If there is already a security module registered with the kernel, 110 * an error will be returned. Otherwise %0 is returned on success. 111 */ 112int __init register_security(struct security_operations *ops) 113{ 114 if (verify(ops)) { 115 printk(KERN_DEBUG "%s could not verify " 116 "security_operations structure.\n", __func__); 117 return -EINVAL; 118 } 119 120 if (security_ops != &default_security_ops) 121 return -EAGAIN; 122 123 security_ops = ops; 124 125 return 0; 126} 127 128/* Security operations */ 129 130int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 131{ 132 return security_ops->ptrace_access_check(child, mode); 133} 134 135int security_ptrace_traceme(struct task_struct *parent) 136{ 137 return security_ops->ptrace_traceme(parent); 138} 139 140int security_capget(struct task_struct *target, 141 kernel_cap_t *effective, 142 kernel_cap_t *inheritable, 143 kernel_cap_t *permitted) 144{ 145 return security_ops->capget(target, effective, inheritable, permitted); 146} 147 148int security_capset(struct cred *new, const struct cred *old, 149 const kernel_cap_t *effective, 150 const kernel_cap_t *inheritable, 151 const kernel_cap_t *permitted) 152{ 153 return security_ops->capset(new, old, 154 effective, inheritable, permitted); 155} 156 157int security_capable(const struct cred *cred, int cap) 158{ 159 return security_ops->capable(current, cred, cap, SECURITY_CAP_AUDIT); 160} 161 162int security_real_capable(struct task_struct *tsk, int cap) 163{ 164 const struct cred *cred; 165 int ret; 166 167 cred = get_task_cred(tsk); 168 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT); 169 put_cred(cred); 170 return ret; 171} 172 173int security_real_capable_noaudit(struct task_struct *tsk, int cap) 174{ 175 const struct cred *cred; 176 int ret; 177 178 cred = get_task_cred(tsk); 179 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT); 180 put_cred(cred); 181 return ret; 182} 183 184int security_sysctl(struct ctl_table *table, int op) 185{ 186 return security_ops->sysctl(table, op); 187} 188 189int security_quotactl(int cmds, int type, int id, struct super_block *sb) 190{ 191 return security_ops->quotactl(cmds, type, id, sb); 192} 193 194int security_quota_on(struct dentry *dentry) 195{ 196 return security_ops->quota_on(dentry); 197} 198 199int security_syslog(int type) 200{ 201 return security_ops->syslog(type); 202} 203 204int security_settime(struct timespec *ts, struct timezone *tz) 205{ 206 return security_ops->settime(ts, tz); 207} 208 209int security_vm_enough_memory(long pages) 210{ 211 WARN_ON(current->mm == NULL); 212 return security_ops->vm_enough_memory(current->mm, pages); 213} 214 215int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 216{ 217 WARN_ON(mm == NULL); 218 return security_ops->vm_enough_memory(mm, pages); 219} 220 221int security_vm_enough_memory_kern(long pages) 222{ 223 /* If current->mm is a kernel thread then we will pass NULL, 224 for this specific case that is fine */ 225 return security_ops->vm_enough_memory(current->mm, pages); 226} 227 228int security_bprm_set_creds(struct linux_binprm *bprm) 229{ 230 return security_ops->bprm_set_creds(bprm); 231} 232 233int security_bprm_check(struct linux_binprm *bprm) 234{ 235 int ret; 236 237 ret = security_ops->bprm_check_security(bprm); 238 if (ret) 239 return ret; 240 return ima_bprm_check(bprm); 241} 242 243void security_bprm_committing_creds(struct linux_binprm *bprm) 244{ 245 security_ops->bprm_committing_creds(bprm); 246} 247 248void security_bprm_committed_creds(struct linux_binprm *bprm) 249{ 250 security_ops->bprm_committed_creds(bprm); 251} 252 253int security_bprm_secureexec(struct linux_binprm *bprm) 254{ 255 return security_ops->bprm_secureexec(bprm); 256} 257 258int security_sb_alloc(struct super_block *sb) 259{ 260 return security_ops->sb_alloc_security(sb); 261} 262 263void security_sb_free(struct super_block *sb) 264{ 265 security_ops->sb_free_security(sb); 266} 267 268int security_sb_copy_data(char *orig, char *copy) 269{ 270 return security_ops->sb_copy_data(orig, copy); 271} 272EXPORT_SYMBOL(security_sb_copy_data); 273 274int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 275{ 276 return security_ops->sb_kern_mount(sb, flags, data); 277} 278 279int security_sb_show_options(struct seq_file *m, struct super_block *sb) 280{ 281 return security_ops->sb_show_options(m, sb); 282} 283 284int security_sb_statfs(struct dentry *dentry) 285{ 286 return security_ops->sb_statfs(dentry); 287} 288 289int security_sb_mount(char *dev_name, struct path *path, 290 char *type, unsigned long flags, void *data) 291{ 292 return security_ops->sb_mount(dev_name, path, type, flags, data); 293} 294 295int security_sb_umount(struct vfsmount *mnt, int flags) 296{ 297 return security_ops->sb_umount(mnt, flags); 298} 299 300int security_sb_pivotroot(struct path *old_path, struct path *new_path) 301{ 302 return security_ops->sb_pivotroot(old_path, new_path); 303} 304 305int security_sb_set_mnt_opts(struct super_block *sb, 306 struct security_mnt_opts *opts) 307{ 308 return security_ops->sb_set_mnt_opts(sb, opts); 309} 310EXPORT_SYMBOL(security_sb_set_mnt_opts); 311 312void security_sb_clone_mnt_opts(const struct super_block *oldsb, 313 struct super_block *newsb) 314{ 315 security_ops->sb_clone_mnt_opts(oldsb, newsb); 316} 317EXPORT_SYMBOL(security_sb_clone_mnt_opts); 318 319int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 320{ 321 return security_ops->sb_parse_opts_str(options, opts); 322} 323EXPORT_SYMBOL(security_sb_parse_opts_str); 324 325int security_inode_alloc(struct inode *inode) 326{ 327 inode->i_security = NULL; 328 return security_ops->inode_alloc_security(inode); 329} 330 331void security_inode_free(struct inode *inode) 332{ 333 ima_inode_free(inode); 334 security_ops->inode_free_security(inode); 335} 336 337int security_inode_init_security(struct inode *inode, struct inode *dir, 338 char **name, void **value, size_t *len) 339{ 340 if (unlikely(IS_PRIVATE(inode))) 341 return -EOPNOTSUPP; 342 return security_ops->inode_init_security(inode, dir, name, value, len); 343} 344EXPORT_SYMBOL(security_inode_init_security); 345 346#ifdef CONFIG_SECURITY_PATH 347int security_path_mknod(struct path *dir, struct dentry *dentry, int mode, 348 unsigned int dev) 349{ 350 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 351 return 0; 352 return security_ops->path_mknod(dir, dentry, mode, dev); 353} 354EXPORT_SYMBOL(security_path_mknod); 355 356int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode) 357{ 358 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 359 return 0; 360 return security_ops->path_mkdir(dir, dentry, mode); 361} 362 363int security_path_rmdir(struct path *dir, struct dentry *dentry) 364{ 365 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 366 return 0; 367 return security_ops->path_rmdir(dir, dentry); 368} 369 370int security_path_unlink(struct path *dir, struct dentry *dentry) 371{ 372 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 373 return 0; 374 return security_ops->path_unlink(dir, dentry); 375} 376 377int security_path_symlink(struct path *dir, struct dentry *dentry, 378 const char *old_name) 379{ 380 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 381 return 0; 382 return security_ops->path_symlink(dir, dentry, old_name); 383} 384 385int security_path_link(struct dentry *old_dentry, struct path *new_dir, 386 struct dentry *new_dentry) 387{ 388 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 389 return 0; 390 return security_ops->path_link(old_dentry, new_dir, new_dentry); 391} 392 393int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 394 struct path *new_dir, struct dentry *new_dentry) 395{ 396 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 397 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 398 return 0; 399 return security_ops->path_rename(old_dir, old_dentry, new_dir, 400 new_dentry); 401} 402 403int security_path_truncate(struct path *path) 404{ 405 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 406 return 0; 407 return security_ops->path_truncate(path); 408} 409 410int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt, 411 mode_t mode) 412{ 413 if (unlikely(IS_PRIVATE(dentry->d_inode))) 414 return 0; 415 return security_ops->path_chmod(dentry, mnt, mode); 416} 417 418int security_path_chown(struct path *path, uid_t uid, gid_t gid) 419{ 420 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 421 return 0; 422 return security_ops->path_chown(path, uid, gid); 423} 424 425int security_path_chroot(struct path *path) 426{ 427 return security_ops->path_chroot(path); 428} 429#endif 430 431int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 432{ 433 if (unlikely(IS_PRIVATE(dir))) 434 return 0; 435 return security_ops->inode_create(dir, dentry, mode); 436} 437EXPORT_SYMBOL_GPL(security_inode_create); 438 439int security_inode_link(struct dentry *old_dentry, struct inode *dir, 440 struct dentry *new_dentry) 441{ 442 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 443 return 0; 444 return security_ops->inode_link(old_dentry, dir, new_dentry); 445} 446 447int security_inode_unlink(struct inode *dir, struct dentry *dentry) 448{ 449 if (unlikely(IS_PRIVATE(dentry->d_inode))) 450 return 0; 451 return security_ops->inode_unlink(dir, dentry); 452} 453 454int security_inode_symlink(struct inode *dir, struct dentry *dentry, 455 const char *old_name) 456{ 457 if (unlikely(IS_PRIVATE(dir))) 458 return 0; 459 return security_ops->inode_symlink(dir, dentry, old_name); 460} 461 462int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 463{ 464 if (unlikely(IS_PRIVATE(dir))) 465 return 0; 466 return security_ops->inode_mkdir(dir, dentry, mode); 467} 468EXPORT_SYMBOL_GPL(security_inode_mkdir); 469 470int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 471{ 472 if (unlikely(IS_PRIVATE(dentry->d_inode))) 473 return 0; 474 return security_ops->inode_rmdir(dir, dentry); 475} 476 477int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 478{ 479 if (unlikely(IS_PRIVATE(dir))) 480 return 0; 481 return security_ops->inode_mknod(dir, dentry, mode, dev); 482} 483 484int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 485 struct inode *new_dir, struct dentry *new_dentry) 486{ 487 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 488 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 489 return 0; 490 return security_ops->inode_rename(old_dir, old_dentry, 491 new_dir, new_dentry); 492} 493 494int security_inode_readlink(struct dentry *dentry) 495{ 496 if (unlikely(IS_PRIVATE(dentry->d_inode))) 497 return 0; 498 return security_ops->inode_readlink(dentry); 499} 500 501int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 502{ 503 if (unlikely(IS_PRIVATE(dentry->d_inode))) 504 return 0; 505 return security_ops->inode_follow_link(dentry, nd); 506} 507 508int security_inode_permission(struct inode *inode, int mask) 509{ 510 if (unlikely(IS_PRIVATE(inode))) 511 return 0; 512 return security_ops->inode_permission(inode, mask); 513} 514 515int security_inode_exec_permission(struct inode *inode, unsigned int flags) 516{ 517 if (unlikely(IS_PRIVATE(inode))) 518 return 0; 519 if (flags) 520 return -ECHILD; 521 return security_ops->inode_permission(inode, MAY_EXEC); 522} 523 524int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 525{ 526 if (unlikely(IS_PRIVATE(dentry->d_inode))) 527 return 0; 528 return security_ops->inode_setattr(dentry, attr); 529} 530EXPORT_SYMBOL_GPL(security_inode_setattr); 531 532int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 533{ 534 if (unlikely(IS_PRIVATE(dentry->d_inode))) 535 return 0; 536 return security_ops->inode_getattr(mnt, dentry); 537} 538 539int security_inode_setxattr(struct dentry *dentry, const char *name, 540 const void *value, size_t size, int flags) 541{ 542 if (unlikely(IS_PRIVATE(dentry->d_inode))) 543 return 0; 544 return security_ops->inode_setxattr(dentry, name, value, size, flags); 545} 546 547void security_inode_post_setxattr(struct dentry *dentry, const char *name, 548 const void *value, size_t size, int flags) 549{ 550 if (unlikely(IS_PRIVATE(dentry->d_inode))) 551 return; 552 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 553} 554 555int security_inode_getxattr(struct dentry *dentry, const char *name) 556{ 557 if (unlikely(IS_PRIVATE(dentry->d_inode))) 558 return 0; 559 return security_ops->inode_getxattr(dentry, name); 560} 561 562int security_inode_listxattr(struct dentry *dentry) 563{ 564 if (unlikely(IS_PRIVATE(dentry->d_inode))) 565 return 0; 566 return security_ops->inode_listxattr(dentry); 567} 568 569int security_inode_removexattr(struct dentry *dentry, const char *name) 570{ 571 if (unlikely(IS_PRIVATE(dentry->d_inode))) 572 return 0; 573 return security_ops->inode_removexattr(dentry, name); 574} 575 576int security_inode_need_killpriv(struct dentry *dentry) 577{ 578 return security_ops->inode_need_killpriv(dentry); 579} 580 581int security_inode_killpriv(struct dentry *dentry) 582{ 583 return security_ops->inode_killpriv(dentry); 584} 585 586int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 587{ 588 if (unlikely(IS_PRIVATE(inode))) 589 return -EOPNOTSUPP; 590 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 591} 592 593int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 594{ 595 if (unlikely(IS_PRIVATE(inode))) 596 return -EOPNOTSUPP; 597 return security_ops->inode_setsecurity(inode, name, value, size, flags); 598} 599 600int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 601{ 602 if (unlikely(IS_PRIVATE(inode))) 603 return 0; 604 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 605} 606 607void security_inode_getsecid(const struct inode *inode, u32 *secid) 608{ 609 security_ops->inode_getsecid(inode, secid); 610} 611 612int security_file_permission(struct file *file, int mask) 613{ 614 int ret; 615 616 ret = security_ops->file_permission(file, mask); 617 if (ret) 618 return ret; 619 620 return fsnotify_perm(file, mask); 621} 622 623int security_file_alloc(struct file *file) 624{ 625 return security_ops->file_alloc_security(file); 626} 627 628void security_file_free(struct file *file) 629{ 630 security_ops->file_free_security(file); 631} 632 633int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 634{ 635 return security_ops->file_ioctl(file, cmd, arg); 636} 637 638int security_file_mmap(struct file *file, unsigned long reqprot, 639 unsigned long prot, unsigned long flags, 640 unsigned long addr, unsigned long addr_only) 641{ 642 int ret; 643 644 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 645 if (ret) 646 return ret; 647 return ima_file_mmap(file, prot); 648} 649 650int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 651 unsigned long prot) 652{ 653 return security_ops->file_mprotect(vma, reqprot, prot); 654} 655 656int security_file_lock(struct file *file, unsigned int cmd) 657{ 658 return security_ops->file_lock(file, cmd); 659} 660 661int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 662{ 663 return security_ops->file_fcntl(file, cmd, arg); 664} 665 666int security_file_set_fowner(struct file *file) 667{ 668 return security_ops->file_set_fowner(file); 669} 670 671int security_file_send_sigiotask(struct task_struct *tsk, 672 struct fown_struct *fown, int sig) 673{ 674 return security_ops->file_send_sigiotask(tsk, fown, sig); 675} 676 677int security_file_receive(struct file *file) 678{ 679 return security_ops->file_receive(file); 680} 681 682int security_dentry_open(struct file *file, const struct cred *cred) 683{ 684 int ret; 685 686 ret = security_ops->dentry_open(file, cred); 687 if (ret) 688 return ret; 689 690 return fsnotify_perm(file, MAY_OPEN); 691} 692 693int security_task_create(unsigned long clone_flags) 694{ 695 return security_ops->task_create(clone_flags); 696} 697 698int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 699{ 700 return security_ops->cred_alloc_blank(cred, gfp); 701} 702 703void security_cred_free(struct cred *cred) 704{ 705 security_ops->cred_free(cred); 706} 707 708int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 709{ 710 return security_ops->cred_prepare(new, old, gfp); 711} 712 713void security_transfer_creds(struct cred *new, const struct cred *old) 714{ 715 security_ops->cred_transfer(new, old); 716} 717 718int security_kernel_act_as(struct cred *new, u32 secid) 719{ 720 return security_ops->kernel_act_as(new, secid); 721} 722 723int security_kernel_create_files_as(struct cred *new, struct inode *inode) 724{ 725 return security_ops->kernel_create_files_as(new, inode); 726} 727 728int security_kernel_module_request(char *kmod_name) 729{ 730 return security_ops->kernel_module_request(kmod_name); 731} 732 733int security_task_fix_setuid(struct cred *new, const struct cred *old, 734 int flags) 735{ 736 return security_ops->task_fix_setuid(new, old, flags); 737} 738 739int security_task_setpgid(struct task_struct *p, pid_t pgid) 740{ 741 return security_ops->task_setpgid(p, pgid); 742} 743 744int security_task_getpgid(struct task_struct *p) 745{ 746 return security_ops->task_getpgid(p); 747} 748 749int security_task_getsid(struct task_struct *p) 750{ 751 return security_ops->task_getsid(p); 752} 753 754void security_task_getsecid(struct task_struct *p, u32 *secid) 755{ 756 security_ops->task_getsecid(p, secid); 757} 758EXPORT_SYMBOL(security_task_getsecid); 759 760int security_task_setnice(struct task_struct *p, int nice) 761{ 762 return security_ops->task_setnice(p, nice); 763} 764 765int security_task_setioprio(struct task_struct *p, int ioprio) 766{ 767 return security_ops->task_setioprio(p, ioprio); 768} 769 770int security_task_getioprio(struct task_struct *p) 771{ 772 return security_ops->task_getioprio(p); 773} 774 775int security_task_setrlimit(struct task_struct *p, unsigned int resource, 776 struct rlimit *new_rlim) 777{ 778 return security_ops->task_setrlimit(p, resource, new_rlim); 779} 780 781int security_task_setscheduler(struct task_struct *p) 782{ 783 return security_ops->task_setscheduler(p); 784} 785 786int security_task_getscheduler(struct task_struct *p) 787{ 788 return security_ops->task_getscheduler(p); 789} 790 791int security_task_movememory(struct task_struct *p) 792{ 793 return security_ops->task_movememory(p); 794} 795 796int security_task_kill(struct task_struct *p, struct siginfo *info, 797 int sig, u32 secid) 798{ 799 return security_ops->task_kill(p, info, sig, secid); 800} 801 802int security_task_wait(struct task_struct *p) 803{ 804 return security_ops->task_wait(p); 805} 806 807int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 808 unsigned long arg4, unsigned long arg5) 809{ 810 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 811} 812 813void security_task_to_inode(struct task_struct *p, struct inode *inode) 814{ 815 security_ops->task_to_inode(p, inode); 816} 817 818int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 819{ 820 return security_ops->ipc_permission(ipcp, flag); 821} 822 823void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 824{ 825 security_ops->ipc_getsecid(ipcp, secid); 826} 827 828int security_msg_msg_alloc(struct msg_msg *msg) 829{ 830 return security_ops->msg_msg_alloc_security(msg); 831} 832 833void security_msg_msg_free(struct msg_msg *msg) 834{ 835 security_ops->msg_msg_free_security(msg); 836} 837 838int security_msg_queue_alloc(struct msg_queue *msq) 839{ 840 return security_ops->msg_queue_alloc_security(msq); 841} 842 843void security_msg_queue_free(struct msg_queue *msq) 844{ 845 security_ops->msg_queue_free_security(msq); 846} 847 848int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 849{ 850 return security_ops->msg_queue_associate(msq, msqflg); 851} 852 853int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 854{ 855 return security_ops->msg_queue_msgctl(msq, cmd); 856} 857 858int security_msg_queue_msgsnd(struct msg_queue *msq, 859 struct msg_msg *msg, int msqflg) 860{ 861 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 862} 863 864int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 865 struct task_struct *target, long type, int mode) 866{ 867 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 868} 869 870int security_shm_alloc(struct shmid_kernel *shp) 871{ 872 return security_ops->shm_alloc_security(shp); 873} 874 875void security_shm_free(struct shmid_kernel *shp) 876{ 877 security_ops->shm_free_security(shp); 878} 879 880int security_shm_associate(struct shmid_kernel *shp, int shmflg) 881{ 882 return security_ops->shm_associate(shp, shmflg); 883} 884 885int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 886{ 887 return security_ops->shm_shmctl(shp, cmd); 888} 889 890int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 891{ 892 return security_ops->shm_shmat(shp, shmaddr, shmflg); 893} 894 895int security_sem_alloc(struct sem_array *sma) 896{ 897 return security_ops->sem_alloc_security(sma); 898} 899 900void security_sem_free(struct sem_array *sma) 901{ 902 security_ops->sem_free_security(sma); 903} 904 905int security_sem_associate(struct sem_array *sma, int semflg) 906{ 907 return security_ops->sem_associate(sma, semflg); 908} 909 910int security_sem_semctl(struct sem_array *sma, int cmd) 911{ 912 return security_ops->sem_semctl(sma, cmd); 913} 914 915int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 916 unsigned nsops, int alter) 917{ 918 return security_ops->sem_semop(sma, sops, nsops, alter); 919} 920 921void security_d_instantiate(struct dentry *dentry, struct inode *inode) 922{ 923 if (unlikely(inode && IS_PRIVATE(inode))) 924 return; 925 security_ops->d_instantiate(dentry, inode); 926} 927EXPORT_SYMBOL(security_d_instantiate); 928 929int security_getprocattr(struct task_struct *p, char *name, char **value) 930{ 931 return security_ops->getprocattr(p, name, value); 932} 933 934int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 935{ 936 return security_ops->setprocattr(p, name, value, size); 937} 938 939int security_netlink_send(struct sock *sk, struct sk_buff *skb) 940{ 941 return security_ops->netlink_send(sk, skb); 942} 943 944int security_netlink_recv(struct sk_buff *skb, int cap) 945{ 946 return security_ops->netlink_recv(skb, cap); 947} 948EXPORT_SYMBOL(security_netlink_recv); 949 950int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 951{ 952 return security_ops->secid_to_secctx(secid, secdata, seclen); 953} 954EXPORT_SYMBOL(security_secid_to_secctx); 955 956int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 957{ 958 return security_ops->secctx_to_secid(secdata, seclen, secid); 959} 960EXPORT_SYMBOL(security_secctx_to_secid); 961 962void security_release_secctx(char *secdata, u32 seclen) 963{ 964 security_ops->release_secctx(secdata, seclen); 965} 966EXPORT_SYMBOL(security_release_secctx); 967 968int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 969{ 970 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 971} 972EXPORT_SYMBOL(security_inode_notifysecctx); 973 974int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 975{ 976 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 977} 978EXPORT_SYMBOL(security_inode_setsecctx); 979 980int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 981{ 982 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 983} 984EXPORT_SYMBOL(security_inode_getsecctx); 985 986#ifdef CONFIG_SECURITY_NETWORK 987 988int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 989{ 990 return security_ops->unix_stream_connect(sock, other, newsk); 991} 992EXPORT_SYMBOL(security_unix_stream_connect); 993 994int security_unix_may_send(struct socket *sock, struct socket *other) 995{ 996 return security_ops->unix_may_send(sock, other); 997} 998EXPORT_SYMBOL(security_unix_may_send); 999 1000int security_socket_create(int family, int type, int protocol, int kern) 1001{ 1002 return security_ops->socket_create(family, type, protocol, kern); 1003} 1004 1005int security_socket_post_create(struct socket *sock, int family, 1006 int type, int protocol, int kern) 1007{ 1008 return security_ops->socket_post_create(sock, family, type, 1009 protocol, kern); 1010} 1011 1012int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1013{ 1014 return security_ops->socket_bind(sock, address, addrlen); 1015} 1016 1017int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1018{ 1019 return security_ops->socket_connect(sock, address, addrlen); 1020} 1021 1022int security_socket_listen(struct socket *sock, int backlog) 1023{ 1024 return security_ops->socket_listen(sock, backlog); 1025} 1026 1027int security_socket_accept(struct socket *sock, struct socket *newsock) 1028{ 1029 return security_ops->socket_accept(sock, newsock); 1030} 1031 1032int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1033{ 1034 return security_ops->socket_sendmsg(sock, msg, size); 1035} 1036 1037int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1038 int size, int flags) 1039{ 1040 return security_ops->socket_recvmsg(sock, msg, size, flags); 1041} 1042 1043int security_socket_getsockname(struct socket *sock) 1044{ 1045 return security_ops->socket_getsockname(sock); 1046} 1047 1048int security_socket_getpeername(struct socket *sock) 1049{ 1050 return security_ops->socket_getpeername(sock); 1051} 1052 1053int security_socket_getsockopt(struct socket *sock, int level, int optname) 1054{ 1055 return security_ops->socket_getsockopt(sock, level, optname); 1056} 1057 1058int security_socket_setsockopt(struct socket *sock, int level, int optname) 1059{ 1060 return security_ops->socket_setsockopt(sock, level, optname); 1061} 1062 1063int security_socket_shutdown(struct socket *sock, int how) 1064{ 1065 return security_ops->socket_shutdown(sock, how); 1066} 1067 1068int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1069{ 1070 return security_ops->socket_sock_rcv_skb(sk, skb); 1071} 1072EXPORT_SYMBOL(security_sock_rcv_skb); 1073 1074int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1075 int __user *optlen, unsigned len) 1076{ 1077 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1078} 1079 1080int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1081{ 1082 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1083} 1084EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1085 1086int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1087{ 1088 return security_ops->sk_alloc_security(sk, family, priority); 1089} 1090 1091void security_sk_free(struct sock *sk) 1092{ 1093 security_ops->sk_free_security(sk); 1094} 1095 1096void security_sk_clone(const struct sock *sk, struct sock *newsk) 1097{ 1098 security_ops->sk_clone_security(sk, newsk); 1099} 1100 1101void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1102{ 1103 security_ops->sk_getsecid(sk, &fl->secid); 1104} 1105EXPORT_SYMBOL(security_sk_classify_flow); 1106 1107void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1108{ 1109 security_ops->req_classify_flow(req, fl); 1110} 1111EXPORT_SYMBOL(security_req_classify_flow); 1112 1113void security_sock_graft(struct sock *sk, struct socket *parent) 1114{ 1115 security_ops->sock_graft(sk, parent); 1116} 1117EXPORT_SYMBOL(security_sock_graft); 1118 1119int security_inet_conn_request(struct sock *sk, 1120 struct sk_buff *skb, struct request_sock *req) 1121{ 1122 return security_ops->inet_conn_request(sk, skb, req); 1123} 1124EXPORT_SYMBOL(security_inet_conn_request); 1125 1126void security_inet_csk_clone(struct sock *newsk, 1127 const struct request_sock *req) 1128{ 1129 security_ops->inet_csk_clone(newsk, req); 1130} 1131 1132void security_inet_conn_established(struct sock *sk, 1133 struct sk_buff *skb) 1134{ 1135 security_ops->inet_conn_established(sk, skb); 1136} 1137 1138int security_secmark_relabel_packet(u32 secid) 1139{ 1140 return security_ops->secmark_relabel_packet(secid); 1141} 1142EXPORT_SYMBOL(security_secmark_relabel_packet); 1143 1144void security_secmark_refcount_inc(void) 1145{ 1146 security_ops->secmark_refcount_inc(); 1147} 1148EXPORT_SYMBOL(security_secmark_refcount_inc); 1149 1150void security_secmark_refcount_dec(void) 1151{ 1152 security_ops->secmark_refcount_dec(); 1153} 1154EXPORT_SYMBOL(security_secmark_refcount_dec); 1155 1156int security_tun_dev_create(void) 1157{ 1158 return security_ops->tun_dev_create(); 1159} 1160EXPORT_SYMBOL(security_tun_dev_create); 1161 1162void security_tun_dev_post_create(struct sock *sk) 1163{ 1164 return security_ops->tun_dev_post_create(sk); 1165} 1166EXPORT_SYMBOL(security_tun_dev_post_create); 1167 1168int security_tun_dev_attach(struct sock *sk) 1169{ 1170 return security_ops->tun_dev_attach(sk); 1171} 1172EXPORT_SYMBOL(security_tun_dev_attach); 1173 1174#endif /* CONFIG_SECURITY_NETWORK */ 1175 1176#ifdef CONFIG_SECURITY_NETWORK_XFRM 1177 1178int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1179{ 1180 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1181} 1182EXPORT_SYMBOL(security_xfrm_policy_alloc); 1183 1184int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1185 struct xfrm_sec_ctx **new_ctxp) 1186{ 1187 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1188} 1189 1190void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1191{ 1192 security_ops->xfrm_policy_free_security(ctx); 1193} 1194EXPORT_SYMBOL(security_xfrm_policy_free); 1195 1196int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1197{ 1198 return security_ops->xfrm_policy_delete_security(ctx); 1199} 1200 1201int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1202{ 1203 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1204} 1205EXPORT_SYMBOL(security_xfrm_state_alloc); 1206 1207int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1208 struct xfrm_sec_ctx *polsec, u32 secid) 1209{ 1210 if (!polsec) 1211 return 0; 1212 /* 1213 * We want the context to be taken from secid which is usually 1214 * from the sock. 1215 */ 1216 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1217} 1218 1219int security_xfrm_state_delete(struct xfrm_state *x) 1220{ 1221 return security_ops->xfrm_state_delete_security(x); 1222} 1223EXPORT_SYMBOL(security_xfrm_state_delete); 1224 1225void security_xfrm_state_free(struct xfrm_state *x) 1226{ 1227 security_ops->xfrm_state_free_security(x); 1228} 1229 1230int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1231{ 1232 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1233} 1234 1235int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1236 struct xfrm_policy *xp, struct flowi *fl) 1237{ 1238 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1239} 1240 1241int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1242{ 1243 return security_ops->xfrm_decode_session(skb, secid, 1); 1244} 1245 1246void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1247{ 1248 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1249 1250 BUG_ON(rc); 1251} 1252EXPORT_SYMBOL(security_skb_classify_flow); 1253 1254#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1255 1256#ifdef CONFIG_KEYS 1257 1258int security_key_alloc(struct key *key, const struct cred *cred, 1259 unsigned long flags) 1260{ 1261 return security_ops->key_alloc(key, cred, flags); 1262} 1263 1264void security_key_free(struct key *key) 1265{ 1266 security_ops->key_free(key); 1267} 1268 1269int security_key_permission(key_ref_t key_ref, 1270 const struct cred *cred, key_perm_t perm) 1271{ 1272 return security_ops->key_permission(key_ref, cred, perm); 1273} 1274 1275int security_key_getsecurity(struct key *key, char **_buffer) 1276{ 1277 return security_ops->key_getsecurity(key, _buffer); 1278} 1279 1280#endif /* CONFIG_KEYS */ 1281 1282#ifdef CONFIG_AUDIT 1283 1284int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1285{ 1286 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1287} 1288 1289int security_audit_rule_known(struct audit_krule *krule) 1290{ 1291 return security_ops->audit_rule_known(krule); 1292} 1293 1294void security_audit_rule_free(void *lsmrule) 1295{ 1296 security_ops->audit_rule_free(lsmrule); 1297} 1298 1299int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1300 struct audit_context *actx) 1301{ 1302 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1303} 1304 1305#endif /* CONFIG_AUDIT */