at v2.6.38 63 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/cache.h> 22 23#include <asm/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <linux/net.h> 27#include <linux/textsearch.h> 28#include <net/checksum.h> 29#include <linux/rcupdate.h> 30#include <linux/dmaengine.h> 31#include <linux/hrtimer.h> 32 33/* Don't change this without changing skb_csum_unnecessary! */ 34#define CHECKSUM_NONE 0 35#define CHECKSUM_UNNECESSARY 1 36#define CHECKSUM_COMPLETE 2 37#define CHECKSUM_PARTIAL 3 38 39#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 40 ~(SMP_CACHE_BYTES - 1)) 41#define SKB_WITH_OVERHEAD(X) \ 42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 43#define SKB_MAX_ORDER(X, ORDER) \ 44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 45#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 46#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 47 48/* A. Checksumming of received packets by device. 49 * 50 * NONE: device failed to checksum this packet. 51 * skb->csum is undefined. 52 * 53 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 54 * skb->csum is undefined. 55 * It is bad option, but, unfortunately, many of vendors do this. 56 * Apparently with secret goal to sell you new device, when you 57 * will add new protocol to your host. F.e. IPv6. 8) 58 * 59 * COMPLETE: the most generic way. Device supplied checksum of _all_ 60 * the packet as seen by netif_rx in skb->csum. 61 * NOTE: Even if device supports only some protocols, but 62 * is able to produce some skb->csum, it MUST use COMPLETE, 63 * not UNNECESSARY. 64 * 65 * PARTIAL: identical to the case for output below. This may occur 66 * on a packet received directly from another Linux OS, e.g., 67 * a virtualised Linux kernel on the same host. The packet can 68 * be treated in the same way as UNNECESSARY except that on 69 * output (i.e., forwarding) the checksum must be filled in 70 * by the OS or the hardware. 71 * 72 * B. Checksumming on output. 73 * 74 * NONE: skb is checksummed by protocol or csum is not required. 75 * 76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 77 * from skb->csum_start to the end and to record the checksum 78 * at skb->csum_start + skb->csum_offset. 79 * 80 * Device must show its capabilities in dev->features, set 81 * at device setup time. 82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 83 * everything. 84 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 86 * TCP/UDP over IPv4. Sigh. Vendors like this 87 * way by an unknown reason. Though, see comment above 88 * about CHECKSUM_UNNECESSARY. 8) 89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 90 * 91 * Any questions? No questions, good. --ANK 92 */ 93 94struct net_device; 95struct scatterlist; 96struct pipe_inode_info; 97 98#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 99struct nf_conntrack { 100 atomic_t use; 101}; 102#endif 103 104#ifdef CONFIG_BRIDGE_NETFILTER 105struct nf_bridge_info { 106 atomic_t use; 107 struct net_device *physindev; 108 struct net_device *physoutdev; 109 unsigned int mask; 110 unsigned long data[32 / sizeof(unsigned long)]; 111}; 112#endif 113 114struct sk_buff_head { 115 /* These two members must be first. */ 116 struct sk_buff *next; 117 struct sk_buff *prev; 118 119 __u32 qlen; 120 spinlock_t lock; 121}; 122 123struct sk_buff; 124 125/* To allow 64K frame to be packed as single skb without frag_list */ 126#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 127 128typedef struct skb_frag_struct skb_frag_t; 129 130struct skb_frag_struct { 131 struct page *page; 132#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 133 __u32 page_offset; 134 __u32 size; 135#else 136 __u16 page_offset; 137 __u16 size; 138#endif 139}; 140 141#define HAVE_HW_TIME_STAMP 142 143/** 144 * struct skb_shared_hwtstamps - hardware time stamps 145 * @hwtstamp: hardware time stamp transformed into duration 146 * since arbitrary point in time 147 * @syststamp: hwtstamp transformed to system time base 148 * 149 * Software time stamps generated by ktime_get_real() are stored in 150 * skb->tstamp. The relation between the different kinds of time 151 * stamps is as follows: 152 * 153 * syststamp and tstamp can be compared against each other in 154 * arbitrary combinations. The accuracy of a 155 * syststamp/tstamp/"syststamp from other device" comparison is 156 * limited by the accuracy of the transformation into system time 157 * base. This depends on the device driver and its underlying 158 * hardware. 159 * 160 * hwtstamps can only be compared against other hwtstamps from 161 * the same device. 162 * 163 * This structure is attached to packets as part of the 164 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 165 */ 166struct skb_shared_hwtstamps { 167 ktime_t hwtstamp; 168 ktime_t syststamp; 169}; 170 171/* Definitions for tx_flags in struct skb_shared_info */ 172enum { 173 /* generate hardware time stamp */ 174 SKBTX_HW_TSTAMP = 1 << 0, 175 176 /* generate software time stamp */ 177 SKBTX_SW_TSTAMP = 1 << 1, 178 179 /* device driver is going to provide hardware time stamp */ 180 SKBTX_IN_PROGRESS = 1 << 2, 181 182 /* ensure the originating sk reference is available on driver level */ 183 SKBTX_DRV_NEEDS_SK_REF = 1 << 3, 184}; 185 186/* This data is invariant across clones and lives at 187 * the end of the header data, ie. at skb->end. 188 */ 189struct skb_shared_info { 190 unsigned short nr_frags; 191 unsigned short gso_size; 192 /* Warning: this field is not always filled in (UFO)! */ 193 unsigned short gso_segs; 194 unsigned short gso_type; 195 __be32 ip6_frag_id; 196 __u8 tx_flags; 197 struct sk_buff *frag_list; 198 struct skb_shared_hwtstamps hwtstamps; 199 200 /* 201 * Warning : all fields before dataref are cleared in __alloc_skb() 202 */ 203 atomic_t dataref; 204 205 /* Intermediate layers must ensure that destructor_arg 206 * remains valid until skb destructor */ 207 void * destructor_arg; 208 /* must be last field, see pskb_expand_head() */ 209 skb_frag_t frags[MAX_SKB_FRAGS]; 210}; 211 212/* We divide dataref into two halves. The higher 16 bits hold references 213 * to the payload part of skb->data. The lower 16 bits hold references to 214 * the entire skb->data. A clone of a headerless skb holds the length of 215 * the header in skb->hdr_len. 216 * 217 * All users must obey the rule that the skb->data reference count must be 218 * greater than or equal to the payload reference count. 219 * 220 * Holding a reference to the payload part means that the user does not 221 * care about modifications to the header part of skb->data. 222 */ 223#define SKB_DATAREF_SHIFT 16 224#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 225 226 227enum { 228 SKB_FCLONE_UNAVAILABLE, 229 SKB_FCLONE_ORIG, 230 SKB_FCLONE_CLONE, 231}; 232 233enum { 234 SKB_GSO_TCPV4 = 1 << 0, 235 SKB_GSO_UDP = 1 << 1, 236 237 /* This indicates the skb is from an untrusted source. */ 238 SKB_GSO_DODGY = 1 << 2, 239 240 /* This indicates the tcp segment has CWR set. */ 241 SKB_GSO_TCP_ECN = 1 << 3, 242 243 SKB_GSO_TCPV6 = 1 << 4, 244 245 SKB_GSO_FCOE = 1 << 5, 246}; 247 248#if BITS_PER_LONG > 32 249#define NET_SKBUFF_DATA_USES_OFFSET 1 250#endif 251 252#ifdef NET_SKBUFF_DATA_USES_OFFSET 253typedef unsigned int sk_buff_data_t; 254#else 255typedef unsigned char *sk_buff_data_t; 256#endif 257 258#if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ 259 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) 260#define NET_SKBUFF_NF_DEFRAG_NEEDED 1 261#endif 262 263/** 264 * struct sk_buff - socket buffer 265 * @next: Next buffer in list 266 * @prev: Previous buffer in list 267 * @sk: Socket we are owned by 268 * @tstamp: Time we arrived 269 * @dev: Device we arrived on/are leaving by 270 * @transport_header: Transport layer header 271 * @network_header: Network layer header 272 * @mac_header: Link layer header 273 * @_skb_refdst: destination entry (with norefcount bit) 274 * @sp: the security path, used for xfrm 275 * @cb: Control buffer. Free for use by every layer. Put private vars here 276 * @len: Length of actual data 277 * @data_len: Data length 278 * @mac_len: Length of link layer header 279 * @hdr_len: writable header length of cloned skb 280 * @csum: Checksum (must include start/offset pair) 281 * @csum_start: Offset from skb->head where checksumming should start 282 * @csum_offset: Offset from csum_start where checksum should be stored 283 * @local_df: allow local fragmentation 284 * @cloned: Head may be cloned (check refcnt to be sure) 285 * @nohdr: Payload reference only, must not modify header 286 * @pkt_type: Packet class 287 * @fclone: skbuff clone status 288 * @ip_summed: Driver fed us an IP checksum 289 * @priority: Packet queueing priority 290 * @users: User count - see {datagram,tcp}.c 291 * @protocol: Packet protocol from driver 292 * @truesize: Buffer size 293 * @head: Head of buffer 294 * @data: Data head pointer 295 * @tail: Tail pointer 296 * @end: End pointer 297 * @destructor: Destruct function 298 * @mark: Generic packet mark 299 * @nfct: Associated connection, if any 300 * @ipvs_property: skbuff is owned by ipvs 301 * @peeked: this packet has been seen already, so stats have been 302 * done for it, don't do them again 303 * @nf_trace: netfilter packet trace flag 304 * @nfctinfo: Relationship of this skb to the connection 305 * @nfct_reasm: netfilter conntrack re-assembly pointer 306 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 307 * @skb_iif: ifindex of device we arrived on 308 * @rxhash: the packet hash computed on receive 309 * @queue_mapping: Queue mapping for multiqueue devices 310 * @tc_index: Traffic control index 311 * @tc_verd: traffic control verdict 312 * @ndisc_nodetype: router type (from link layer) 313 * @dma_cookie: a cookie to one of several possible DMA operations 314 * done by skb DMA functions 315 * @secmark: security marking 316 * @vlan_tci: vlan tag control information 317 */ 318 319struct sk_buff { 320 /* These two members must be first. */ 321 struct sk_buff *next; 322 struct sk_buff *prev; 323 324 ktime_t tstamp; 325 326 struct sock *sk; 327 struct net_device *dev; 328 329 /* 330 * This is the control buffer. It is free to use for every 331 * layer. Please put your private variables there. If you 332 * want to keep them across layers you have to do a skb_clone() 333 * first. This is owned by whoever has the skb queued ATM. 334 */ 335 char cb[48] __aligned(8); 336 337 unsigned long _skb_refdst; 338#ifdef CONFIG_XFRM 339 struct sec_path *sp; 340#endif 341 unsigned int len, 342 data_len; 343 __u16 mac_len, 344 hdr_len; 345 union { 346 __wsum csum; 347 struct { 348 __u16 csum_start; 349 __u16 csum_offset; 350 }; 351 }; 352 __u32 priority; 353 kmemcheck_bitfield_begin(flags1); 354 __u8 local_df:1, 355 cloned:1, 356 ip_summed:2, 357 nohdr:1, 358 nfctinfo:3; 359 __u8 pkt_type:3, 360 fclone:2, 361 ipvs_property:1, 362 peeked:1, 363 nf_trace:1; 364 kmemcheck_bitfield_end(flags1); 365 __be16 protocol; 366 367 void (*destructor)(struct sk_buff *skb); 368#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 369 struct nf_conntrack *nfct; 370#endif 371#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 372 struct sk_buff *nfct_reasm; 373#endif 374#ifdef CONFIG_BRIDGE_NETFILTER 375 struct nf_bridge_info *nf_bridge; 376#endif 377 378 int skb_iif; 379#ifdef CONFIG_NET_SCHED 380 __u16 tc_index; /* traffic control index */ 381#ifdef CONFIG_NET_CLS_ACT 382 __u16 tc_verd; /* traffic control verdict */ 383#endif 384#endif 385 386 __u32 rxhash; 387 388 kmemcheck_bitfield_begin(flags2); 389 __u16 queue_mapping:16; 390#ifdef CONFIG_IPV6_NDISC_NODETYPE 391 __u8 ndisc_nodetype:2, 392 deliver_no_wcard:1; 393#else 394 __u8 deliver_no_wcard:1; 395#endif 396 __u8 ooo_okay:1; 397 kmemcheck_bitfield_end(flags2); 398 399 /* 0/13 bit hole */ 400 401#ifdef CONFIG_NET_DMA 402 dma_cookie_t dma_cookie; 403#endif 404#ifdef CONFIG_NETWORK_SECMARK 405 __u32 secmark; 406#endif 407 union { 408 __u32 mark; 409 __u32 dropcount; 410 }; 411 412 __u16 vlan_tci; 413 414 sk_buff_data_t transport_header; 415 sk_buff_data_t network_header; 416 sk_buff_data_t mac_header; 417 /* These elements must be at the end, see alloc_skb() for details. */ 418 sk_buff_data_t tail; 419 sk_buff_data_t end; 420 unsigned char *head, 421 *data; 422 unsigned int truesize; 423 atomic_t users; 424}; 425 426#ifdef __KERNEL__ 427/* 428 * Handling routines are only of interest to the kernel 429 */ 430#include <linux/slab.h> 431 432#include <asm/system.h> 433 434/* 435 * skb might have a dst pointer attached, refcounted or not. 436 * _skb_refdst low order bit is set if refcount was _not_ taken 437 */ 438#define SKB_DST_NOREF 1UL 439#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 440 441/** 442 * skb_dst - returns skb dst_entry 443 * @skb: buffer 444 * 445 * Returns skb dst_entry, regardless of reference taken or not. 446 */ 447static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 448{ 449 /* If refdst was not refcounted, check we still are in a 450 * rcu_read_lock section 451 */ 452 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 453 !rcu_read_lock_held() && 454 !rcu_read_lock_bh_held()); 455 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 456} 457 458/** 459 * skb_dst_set - sets skb dst 460 * @skb: buffer 461 * @dst: dst entry 462 * 463 * Sets skb dst, assuming a reference was taken on dst and should 464 * be released by skb_dst_drop() 465 */ 466static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 467{ 468 skb->_skb_refdst = (unsigned long)dst; 469} 470 471extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst); 472 473/** 474 * skb_dst_is_noref - Test if skb dst isnt refcounted 475 * @skb: buffer 476 */ 477static inline bool skb_dst_is_noref(const struct sk_buff *skb) 478{ 479 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 480} 481 482static inline struct rtable *skb_rtable(const struct sk_buff *skb) 483{ 484 return (struct rtable *)skb_dst(skb); 485} 486 487extern void kfree_skb(struct sk_buff *skb); 488extern void consume_skb(struct sk_buff *skb); 489extern void __kfree_skb(struct sk_buff *skb); 490extern struct sk_buff *__alloc_skb(unsigned int size, 491 gfp_t priority, int fclone, int node); 492static inline struct sk_buff *alloc_skb(unsigned int size, 493 gfp_t priority) 494{ 495 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 496} 497 498static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 499 gfp_t priority) 500{ 501 return __alloc_skb(size, priority, 1, NUMA_NO_NODE); 502} 503 504extern bool skb_recycle_check(struct sk_buff *skb, int skb_size); 505 506extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 507extern struct sk_buff *skb_clone(struct sk_buff *skb, 508 gfp_t priority); 509extern struct sk_buff *skb_copy(const struct sk_buff *skb, 510 gfp_t priority); 511extern struct sk_buff *pskb_copy(struct sk_buff *skb, 512 gfp_t gfp_mask); 513extern int pskb_expand_head(struct sk_buff *skb, 514 int nhead, int ntail, 515 gfp_t gfp_mask); 516extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 517 unsigned int headroom); 518extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 519 int newheadroom, int newtailroom, 520 gfp_t priority); 521extern int skb_to_sgvec(struct sk_buff *skb, 522 struct scatterlist *sg, int offset, 523 int len); 524extern int skb_cow_data(struct sk_buff *skb, int tailbits, 525 struct sk_buff **trailer); 526extern int skb_pad(struct sk_buff *skb, int pad); 527#define dev_kfree_skb(a) consume_skb(a) 528 529extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 530 int getfrag(void *from, char *to, int offset, 531 int len,int odd, struct sk_buff *skb), 532 void *from, int length); 533 534struct skb_seq_state { 535 __u32 lower_offset; 536 __u32 upper_offset; 537 __u32 frag_idx; 538 __u32 stepped_offset; 539 struct sk_buff *root_skb; 540 struct sk_buff *cur_skb; 541 __u8 *frag_data; 542}; 543 544extern void skb_prepare_seq_read(struct sk_buff *skb, 545 unsigned int from, unsigned int to, 546 struct skb_seq_state *st); 547extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 548 struct skb_seq_state *st); 549extern void skb_abort_seq_read(struct skb_seq_state *st); 550 551extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 552 unsigned int to, struct ts_config *config, 553 struct ts_state *state); 554 555extern __u32 __skb_get_rxhash(struct sk_buff *skb); 556static inline __u32 skb_get_rxhash(struct sk_buff *skb) 557{ 558 if (!skb->rxhash) 559 skb->rxhash = __skb_get_rxhash(skb); 560 561 return skb->rxhash; 562} 563 564#ifdef NET_SKBUFF_DATA_USES_OFFSET 565static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 566{ 567 return skb->head + skb->end; 568} 569#else 570static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 571{ 572 return skb->end; 573} 574#endif 575 576/* Internal */ 577#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 578 579static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 580{ 581 return &skb_shinfo(skb)->hwtstamps; 582} 583 584/** 585 * skb_queue_empty - check if a queue is empty 586 * @list: queue head 587 * 588 * Returns true if the queue is empty, false otherwise. 589 */ 590static inline int skb_queue_empty(const struct sk_buff_head *list) 591{ 592 return list->next == (struct sk_buff *)list; 593} 594 595/** 596 * skb_queue_is_last - check if skb is the last entry in the queue 597 * @list: queue head 598 * @skb: buffer 599 * 600 * Returns true if @skb is the last buffer on the list. 601 */ 602static inline bool skb_queue_is_last(const struct sk_buff_head *list, 603 const struct sk_buff *skb) 604{ 605 return skb->next == (struct sk_buff *)list; 606} 607 608/** 609 * skb_queue_is_first - check if skb is the first entry in the queue 610 * @list: queue head 611 * @skb: buffer 612 * 613 * Returns true if @skb is the first buffer on the list. 614 */ 615static inline bool skb_queue_is_first(const struct sk_buff_head *list, 616 const struct sk_buff *skb) 617{ 618 return skb->prev == (struct sk_buff *)list; 619} 620 621/** 622 * skb_queue_next - return the next packet in the queue 623 * @list: queue head 624 * @skb: current buffer 625 * 626 * Return the next packet in @list after @skb. It is only valid to 627 * call this if skb_queue_is_last() evaluates to false. 628 */ 629static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 630 const struct sk_buff *skb) 631{ 632 /* This BUG_ON may seem severe, but if we just return then we 633 * are going to dereference garbage. 634 */ 635 BUG_ON(skb_queue_is_last(list, skb)); 636 return skb->next; 637} 638 639/** 640 * skb_queue_prev - return the prev packet in the queue 641 * @list: queue head 642 * @skb: current buffer 643 * 644 * Return the prev packet in @list before @skb. It is only valid to 645 * call this if skb_queue_is_first() evaluates to false. 646 */ 647static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 648 const struct sk_buff *skb) 649{ 650 /* This BUG_ON may seem severe, but if we just return then we 651 * are going to dereference garbage. 652 */ 653 BUG_ON(skb_queue_is_first(list, skb)); 654 return skb->prev; 655} 656 657/** 658 * skb_get - reference buffer 659 * @skb: buffer to reference 660 * 661 * Makes another reference to a socket buffer and returns a pointer 662 * to the buffer. 663 */ 664static inline struct sk_buff *skb_get(struct sk_buff *skb) 665{ 666 atomic_inc(&skb->users); 667 return skb; 668} 669 670/* 671 * If users == 1, we are the only owner and are can avoid redundant 672 * atomic change. 673 */ 674 675/** 676 * skb_cloned - is the buffer a clone 677 * @skb: buffer to check 678 * 679 * Returns true if the buffer was generated with skb_clone() and is 680 * one of multiple shared copies of the buffer. Cloned buffers are 681 * shared data so must not be written to under normal circumstances. 682 */ 683static inline int skb_cloned(const struct sk_buff *skb) 684{ 685 return skb->cloned && 686 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 687} 688 689/** 690 * skb_header_cloned - is the header a clone 691 * @skb: buffer to check 692 * 693 * Returns true if modifying the header part of the buffer requires 694 * the data to be copied. 695 */ 696static inline int skb_header_cloned(const struct sk_buff *skb) 697{ 698 int dataref; 699 700 if (!skb->cloned) 701 return 0; 702 703 dataref = atomic_read(&skb_shinfo(skb)->dataref); 704 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 705 return dataref != 1; 706} 707 708/** 709 * skb_header_release - release reference to header 710 * @skb: buffer to operate on 711 * 712 * Drop a reference to the header part of the buffer. This is done 713 * by acquiring a payload reference. You must not read from the header 714 * part of skb->data after this. 715 */ 716static inline void skb_header_release(struct sk_buff *skb) 717{ 718 BUG_ON(skb->nohdr); 719 skb->nohdr = 1; 720 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 721} 722 723/** 724 * skb_shared - is the buffer shared 725 * @skb: buffer to check 726 * 727 * Returns true if more than one person has a reference to this 728 * buffer. 729 */ 730static inline int skb_shared(const struct sk_buff *skb) 731{ 732 return atomic_read(&skb->users) != 1; 733} 734 735/** 736 * skb_share_check - check if buffer is shared and if so clone it 737 * @skb: buffer to check 738 * @pri: priority for memory allocation 739 * 740 * If the buffer is shared the buffer is cloned and the old copy 741 * drops a reference. A new clone with a single reference is returned. 742 * If the buffer is not shared the original buffer is returned. When 743 * being called from interrupt status or with spinlocks held pri must 744 * be GFP_ATOMIC. 745 * 746 * NULL is returned on a memory allocation failure. 747 */ 748static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 749 gfp_t pri) 750{ 751 might_sleep_if(pri & __GFP_WAIT); 752 if (skb_shared(skb)) { 753 struct sk_buff *nskb = skb_clone(skb, pri); 754 kfree_skb(skb); 755 skb = nskb; 756 } 757 return skb; 758} 759 760/* 761 * Copy shared buffers into a new sk_buff. We effectively do COW on 762 * packets to handle cases where we have a local reader and forward 763 * and a couple of other messy ones. The normal one is tcpdumping 764 * a packet thats being forwarded. 765 */ 766 767/** 768 * skb_unshare - make a copy of a shared buffer 769 * @skb: buffer to check 770 * @pri: priority for memory allocation 771 * 772 * If the socket buffer is a clone then this function creates a new 773 * copy of the data, drops a reference count on the old copy and returns 774 * the new copy with the reference count at 1. If the buffer is not a clone 775 * the original buffer is returned. When called with a spinlock held or 776 * from interrupt state @pri must be %GFP_ATOMIC 777 * 778 * %NULL is returned on a memory allocation failure. 779 */ 780static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 781 gfp_t pri) 782{ 783 might_sleep_if(pri & __GFP_WAIT); 784 if (skb_cloned(skb)) { 785 struct sk_buff *nskb = skb_copy(skb, pri); 786 kfree_skb(skb); /* Free our shared copy */ 787 skb = nskb; 788 } 789 return skb; 790} 791 792/** 793 * skb_peek - peek at the head of an &sk_buff_head 794 * @list_: list to peek at 795 * 796 * Peek an &sk_buff. Unlike most other operations you _MUST_ 797 * be careful with this one. A peek leaves the buffer on the 798 * list and someone else may run off with it. You must hold 799 * the appropriate locks or have a private queue to do this. 800 * 801 * Returns %NULL for an empty list or a pointer to the head element. 802 * The reference count is not incremented and the reference is therefore 803 * volatile. Use with caution. 804 */ 805static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 806{ 807 struct sk_buff *list = ((struct sk_buff *)list_)->next; 808 if (list == (struct sk_buff *)list_) 809 list = NULL; 810 return list; 811} 812 813/** 814 * skb_peek_tail - peek at the tail of an &sk_buff_head 815 * @list_: list to peek at 816 * 817 * Peek an &sk_buff. Unlike most other operations you _MUST_ 818 * be careful with this one. A peek leaves the buffer on the 819 * list and someone else may run off with it. You must hold 820 * the appropriate locks or have a private queue to do this. 821 * 822 * Returns %NULL for an empty list or a pointer to the tail element. 823 * The reference count is not incremented and the reference is therefore 824 * volatile. Use with caution. 825 */ 826static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 827{ 828 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 829 if (list == (struct sk_buff *)list_) 830 list = NULL; 831 return list; 832} 833 834/** 835 * skb_queue_len - get queue length 836 * @list_: list to measure 837 * 838 * Return the length of an &sk_buff queue. 839 */ 840static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 841{ 842 return list_->qlen; 843} 844 845/** 846 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 847 * @list: queue to initialize 848 * 849 * This initializes only the list and queue length aspects of 850 * an sk_buff_head object. This allows to initialize the list 851 * aspects of an sk_buff_head without reinitializing things like 852 * the spinlock. It can also be used for on-stack sk_buff_head 853 * objects where the spinlock is known to not be used. 854 */ 855static inline void __skb_queue_head_init(struct sk_buff_head *list) 856{ 857 list->prev = list->next = (struct sk_buff *)list; 858 list->qlen = 0; 859} 860 861/* 862 * This function creates a split out lock class for each invocation; 863 * this is needed for now since a whole lot of users of the skb-queue 864 * infrastructure in drivers have different locking usage (in hardirq) 865 * than the networking core (in softirq only). In the long run either the 866 * network layer or drivers should need annotation to consolidate the 867 * main types of usage into 3 classes. 868 */ 869static inline void skb_queue_head_init(struct sk_buff_head *list) 870{ 871 spin_lock_init(&list->lock); 872 __skb_queue_head_init(list); 873} 874 875static inline void skb_queue_head_init_class(struct sk_buff_head *list, 876 struct lock_class_key *class) 877{ 878 skb_queue_head_init(list); 879 lockdep_set_class(&list->lock, class); 880} 881 882/* 883 * Insert an sk_buff on a list. 884 * 885 * The "__skb_xxxx()" functions are the non-atomic ones that 886 * can only be called with interrupts disabled. 887 */ 888extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 889static inline void __skb_insert(struct sk_buff *newsk, 890 struct sk_buff *prev, struct sk_buff *next, 891 struct sk_buff_head *list) 892{ 893 newsk->next = next; 894 newsk->prev = prev; 895 next->prev = prev->next = newsk; 896 list->qlen++; 897} 898 899static inline void __skb_queue_splice(const struct sk_buff_head *list, 900 struct sk_buff *prev, 901 struct sk_buff *next) 902{ 903 struct sk_buff *first = list->next; 904 struct sk_buff *last = list->prev; 905 906 first->prev = prev; 907 prev->next = first; 908 909 last->next = next; 910 next->prev = last; 911} 912 913/** 914 * skb_queue_splice - join two skb lists, this is designed for stacks 915 * @list: the new list to add 916 * @head: the place to add it in the first list 917 */ 918static inline void skb_queue_splice(const struct sk_buff_head *list, 919 struct sk_buff_head *head) 920{ 921 if (!skb_queue_empty(list)) { 922 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 923 head->qlen += list->qlen; 924 } 925} 926 927/** 928 * skb_queue_splice - join two skb lists and reinitialise the emptied list 929 * @list: the new list to add 930 * @head: the place to add it in the first list 931 * 932 * The list at @list is reinitialised 933 */ 934static inline void skb_queue_splice_init(struct sk_buff_head *list, 935 struct sk_buff_head *head) 936{ 937 if (!skb_queue_empty(list)) { 938 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 939 head->qlen += list->qlen; 940 __skb_queue_head_init(list); 941 } 942} 943 944/** 945 * skb_queue_splice_tail - join two skb lists, each list being a queue 946 * @list: the new list to add 947 * @head: the place to add it in the first list 948 */ 949static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 950 struct sk_buff_head *head) 951{ 952 if (!skb_queue_empty(list)) { 953 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 954 head->qlen += list->qlen; 955 } 956} 957 958/** 959 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list 960 * @list: the new list to add 961 * @head: the place to add it in the first list 962 * 963 * Each of the lists is a queue. 964 * The list at @list is reinitialised 965 */ 966static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 967 struct sk_buff_head *head) 968{ 969 if (!skb_queue_empty(list)) { 970 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 971 head->qlen += list->qlen; 972 __skb_queue_head_init(list); 973 } 974} 975 976/** 977 * __skb_queue_after - queue a buffer at the list head 978 * @list: list to use 979 * @prev: place after this buffer 980 * @newsk: buffer to queue 981 * 982 * Queue a buffer int the middle of a list. This function takes no locks 983 * and you must therefore hold required locks before calling it. 984 * 985 * A buffer cannot be placed on two lists at the same time. 986 */ 987static inline void __skb_queue_after(struct sk_buff_head *list, 988 struct sk_buff *prev, 989 struct sk_buff *newsk) 990{ 991 __skb_insert(newsk, prev, prev->next, list); 992} 993 994extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 995 struct sk_buff_head *list); 996 997static inline void __skb_queue_before(struct sk_buff_head *list, 998 struct sk_buff *next, 999 struct sk_buff *newsk) 1000{ 1001 __skb_insert(newsk, next->prev, next, list); 1002} 1003 1004/** 1005 * __skb_queue_head - queue a buffer at the list head 1006 * @list: list to use 1007 * @newsk: buffer to queue 1008 * 1009 * Queue a buffer at the start of a list. This function takes no locks 1010 * and you must therefore hold required locks before calling it. 1011 * 1012 * A buffer cannot be placed on two lists at the same time. 1013 */ 1014extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1015static inline void __skb_queue_head(struct sk_buff_head *list, 1016 struct sk_buff *newsk) 1017{ 1018 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1019} 1020 1021/** 1022 * __skb_queue_tail - queue a buffer at the list tail 1023 * @list: list to use 1024 * @newsk: buffer to queue 1025 * 1026 * Queue a buffer at the end of a list. This function takes no locks 1027 * and you must therefore hold required locks before calling it. 1028 * 1029 * A buffer cannot be placed on two lists at the same time. 1030 */ 1031extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1032static inline void __skb_queue_tail(struct sk_buff_head *list, 1033 struct sk_buff *newsk) 1034{ 1035 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1036} 1037 1038/* 1039 * remove sk_buff from list. _Must_ be called atomically, and with 1040 * the list known.. 1041 */ 1042extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1043static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1044{ 1045 struct sk_buff *next, *prev; 1046 1047 list->qlen--; 1048 next = skb->next; 1049 prev = skb->prev; 1050 skb->next = skb->prev = NULL; 1051 next->prev = prev; 1052 prev->next = next; 1053} 1054 1055/** 1056 * __skb_dequeue - remove from the head of the queue 1057 * @list: list to dequeue from 1058 * 1059 * Remove the head of the list. This function does not take any locks 1060 * so must be used with appropriate locks held only. The head item is 1061 * returned or %NULL if the list is empty. 1062 */ 1063extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1064static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1065{ 1066 struct sk_buff *skb = skb_peek(list); 1067 if (skb) 1068 __skb_unlink(skb, list); 1069 return skb; 1070} 1071 1072/** 1073 * __skb_dequeue_tail - remove from the tail of the queue 1074 * @list: list to dequeue from 1075 * 1076 * Remove the tail of the list. This function does not take any locks 1077 * so must be used with appropriate locks held only. The tail item is 1078 * returned or %NULL if the list is empty. 1079 */ 1080extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1081static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1082{ 1083 struct sk_buff *skb = skb_peek_tail(list); 1084 if (skb) 1085 __skb_unlink(skb, list); 1086 return skb; 1087} 1088 1089 1090static inline int skb_is_nonlinear(const struct sk_buff *skb) 1091{ 1092 return skb->data_len; 1093} 1094 1095static inline unsigned int skb_headlen(const struct sk_buff *skb) 1096{ 1097 return skb->len - skb->data_len; 1098} 1099 1100static inline int skb_pagelen(const struct sk_buff *skb) 1101{ 1102 int i, len = 0; 1103 1104 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1105 len += skb_shinfo(skb)->frags[i].size; 1106 return len + skb_headlen(skb); 1107} 1108 1109static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1110 struct page *page, int off, int size) 1111{ 1112 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1113 1114 frag->page = page; 1115 frag->page_offset = off; 1116 frag->size = size; 1117 skb_shinfo(skb)->nr_frags = i + 1; 1118} 1119 1120extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1121 int off, int size); 1122 1123#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1124#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1125#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1126 1127#ifdef NET_SKBUFF_DATA_USES_OFFSET 1128static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1129{ 1130 return skb->head + skb->tail; 1131} 1132 1133static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1134{ 1135 skb->tail = skb->data - skb->head; 1136} 1137 1138static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1139{ 1140 skb_reset_tail_pointer(skb); 1141 skb->tail += offset; 1142} 1143#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1144static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1145{ 1146 return skb->tail; 1147} 1148 1149static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1150{ 1151 skb->tail = skb->data; 1152} 1153 1154static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1155{ 1156 skb->tail = skb->data + offset; 1157} 1158 1159#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1160 1161/* 1162 * Add data to an sk_buff 1163 */ 1164extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1165static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1166{ 1167 unsigned char *tmp = skb_tail_pointer(skb); 1168 SKB_LINEAR_ASSERT(skb); 1169 skb->tail += len; 1170 skb->len += len; 1171 return tmp; 1172} 1173 1174extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1175static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1176{ 1177 skb->data -= len; 1178 skb->len += len; 1179 return skb->data; 1180} 1181 1182extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1183static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1184{ 1185 skb->len -= len; 1186 BUG_ON(skb->len < skb->data_len); 1187 return skb->data += len; 1188} 1189 1190static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1191{ 1192 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1193} 1194 1195extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1196 1197static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1198{ 1199 if (len > skb_headlen(skb) && 1200 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1201 return NULL; 1202 skb->len -= len; 1203 return skb->data += len; 1204} 1205 1206static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1207{ 1208 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1209} 1210 1211static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1212{ 1213 if (likely(len <= skb_headlen(skb))) 1214 return 1; 1215 if (unlikely(len > skb->len)) 1216 return 0; 1217 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1218} 1219 1220/** 1221 * skb_headroom - bytes at buffer head 1222 * @skb: buffer to check 1223 * 1224 * Return the number of bytes of free space at the head of an &sk_buff. 1225 */ 1226static inline unsigned int skb_headroom(const struct sk_buff *skb) 1227{ 1228 return skb->data - skb->head; 1229} 1230 1231/** 1232 * skb_tailroom - bytes at buffer end 1233 * @skb: buffer to check 1234 * 1235 * Return the number of bytes of free space at the tail of an sk_buff 1236 */ 1237static inline int skb_tailroom(const struct sk_buff *skb) 1238{ 1239 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1240} 1241 1242/** 1243 * skb_reserve - adjust headroom 1244 * @skb: buffer to alter 1245 * @len: bytes to move 1246 * 1247 * Increase the headroom of an empty &sk_buff by reducing the tail 1248 * room. This is only allowed for an empty buffer. 1249 */ 1250static inline void skb_reserve(struct sk_buff *skb, int len) 1251{ 1252 skb->data += len; 1253 skb->tail += len; 1254} 1255 1256#ifdef NET_SKBUFF_DATA_USES_OFFSET 1257static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1258{ 1259 return skb->head + skb->transport_header; 1260} 1261 1262static inline void skb_reset_transport_header(struct sk_buff *skb) 1263{ 1264 skb->transport_header = skb->data - skb->head; 1265} 1266 1267static inline void skb_set_transport_header(struct sk_buff *skb, 1268 const int offset) 1269{ 1270 skb_reset_transport_header(skb); 1271 skb->transport_header += offset; 1272} 1273 1274static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1275{ 1276 return skb->head + skb->network_header; 1277} 1278 1279static inline void skb_reset_network_header(struct sk_buff *skb) 1280{ 1281 skb->network_header = skb->data - skb->head; 1282} 1283 1284static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1285{ 1286 skb_reset_network_header(skb); 1287 skb->network_header += offset; 1288} 1289 1290static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1291{ 1292 return skb->head + skb->mac_header; 1293} 1294 1295static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1296{ 1297 return skb->mac_header != ~0U; 1298} 1299 1300static inline void skb_reset_mac_header(struct sk_buff *skb) 1301{ 1302 skb->mac_header = skb->data - skb->head; 1303} 1304 1305static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1306{ 1307 skb_reset_mac_header(skb); 1308 skb->mac_header += offset; 1309} 1310 1311#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1312 1313static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1314{ 1315 return skb->transport_header; 1316} 1317 1318static inline void skb_reset_transport_header(struct sk_buff *skb) 1319{ 1320 skb->transport_header = skb->data; 1321} 1322 1323static inline void skb_set_transport_header(struct sk_buff *skb, 1324 const int offset) 1325{ 1326 skb->transport_header = skb->data + offset; 1327} 1328 1329static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1330{ 1331 return skb->network_header; 1332} 1333 1334static inline void skb_reset_network_header(struct sk_buff *skb) 1335{ 1336 skb->network_header = skb->data; 1337} 1338 1339static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1340{ 1341 skb->network_header = skb->data + offset; 1342} 1343 1344static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1345{ 1346 return skb->mac_header; 1347} 1348 1349static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1350{ 1351 return skb->mac_header != NULL; 1352} 1353 1354static inline void skb_reset_mac_header(struct sk_buff *skb) 1355{ 1356 skb->mac_header = skb->data; 1357} 1358 1359static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1360{ 1361 skb->mac_header = skb->data + offset; 1362} 1363#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1364 1365static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1366{ 1367 return skb->csum_start - skb_headroom(skb); 1368} 1369 1370static inline int skb_transport_offset(const struct sk_buff *skb) 1371{ 1372 return skb_transport_header(skb) - skb->data; 1373} 1374 1375static inline u32 skb_network_header_len(const struct sk_buff *skb) 1376{ 1377 return skb->transport_header - skb->network_header; 1378} 1379 1380static inline int skb_network_offset(const struct sk_buff *skb) 1381{ 1382 return skb_network_header(skb) - skb->data; 1383} 1384 1385static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1386{ 1387 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1388} 1389 1390/* 1391 * CPUs often take a performance hit when accessing unaligned memory 1392 * locations. The actual performance hit varies, it can be small if the 1393 * hardware handles it or large if we have to take an exception and fix it 1394 * in software. 1395 * 1396 * Since an ethernet header is 14 bytes network drivers often end up with 1397 * the IP header at an unaligned offset. The IP header can be aligned by 1398 * shifting the start of the packet by 2 bytes. Drivers should do this 1399 * with: 1400 * 1401 * skb_reserve(skb, NET_IP_ALIGN); 1402 * 1403 * The downside to this alignment of the IP header is that the DMA is now 1404 * unaligned. On some architectures the cost of an unaligned DMA is high 1405 * and this cost outweighs the gains made by aligning the IP header. 1406 * 1407 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1408 * to be overridden. 1409 */ 1410#ifndef NET_IP_ALIGN 1411#define NET_IP_ALIGN 2 1412#endif 1413 1414/* 1415 * The networking layer reserves some headroom in skb data (via 1416 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1417 * the header has to grow. In the default case, if the header has to grow 1418 * 32 bytes or less we avoid the reallocation. 1419 * 1420 * Unfortunately this headroom changes the DMA alignment of the resulting 1421 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1422 * on some architectures. An architecture can override this value, 1423 * perhaps setting it to a cacheline in size (since that will maintain 1424 * cacheline alignment of the DMA). It must be a power of 2. 1425 * 1426 * Various parts of the networking layer expect at least 32 bytes of 1427 * headroom, you should not reduce this. 1428 * 1429 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1430 * to reduce average number of cache lines per packet. 1431 * get_rps_cpus() for example only access one 64 bytes aligned block : 1432 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1433 */ 1434#ifndef NET_SKB_PAD 1435#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1436#endif 1437 1438extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1439 1440static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1441{ 1442 if (unlikely(skb->data_len)) { 1443 WARN_ON(1); 1444 return; 1445 } 1446 skb->len = len; 1447 skb_set_tail_pointer(skb, len); 1448} 1449 1450extern void skb_trim(struct sk_buff *skb, unsigned int len); 1451 1452static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1453{ 1454 if (skb->data_len) 1455 return ___pskb_trim(skb, len); 1456 __skb_trim(skb, len); 1457 return 0; 1458} 1459 1460static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1461{ 1462 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1463} 1464 1465/** 1466 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1467 * @skb: buffer to alter 1468 * @len: new length 1469 * 1470 * This is identical to pskb_trim except that the caller knows that 1471 * the skb is not cloned so we should never get an error due to out- 1472 * of-memory. 1473 */ 1474static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1475{ 1476 int err = pskb_trim(skb, len); 1477 BUG_ON(err); 1478} 1479 1480/** 1481 * skb_orphan - orphan a buffer 1482 * @skb: buffer to orphan 1483 * 1484 * If a buffer currently has an owner then we call the owner's 1485 * destructor function and make the @skb unowned. The buffer continues 1486 * to exist but is no longer charged to its former owner. 1487 */ 1488static inline void skb_orphan(struct sk_buff *skb) 1489{ 1490 if (skb->destructor) 1491 skb->destructor(skb); 1492 skb->destructor = NULL; 1493 skb->sk = NULL; 1494} 1495 1496/** 1497 * __skb_queue_purge - empty a list 1498 * @list: list to empty 1499 * 1500 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1501 * the list and one reference dropped. This function does not take the 1502 * list lock and the caller must hold the relevant locks to use it. 1503 */ 1504extern void skb_queue_purge(struct sk_buff_head *list); 1505static inline void __skb_queue_purge(struct sk_buff_head *list) 1506{ 1507 struct sk_buff *skb; 1508 while ((skb = __skb_dequeue(list)) != NULL) 1509 kfree_skb(skb); 1510} 1511 1512/** 1513 * __dev_alloc_skb - allocate an skbuff for receiving 1514 * @length: length to allocate 1515 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1516 * 1517 * Allocate a new &sk_buff and assign it a usage count of one. The 1518 * buffer has unspecified headroom built in. Users should allocate 1519 * the headroom they think they need without accounting for the 1520 * built in space. The built in space is used for optimisations. 1521 * 1522 * %NULL is returned if there is no free memory. 1523 */ 1524static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1525 gfp_t gfp_mask) 1526{ 1527 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1528 if (likely(skb)) 1529 skb_reserve(skb, NET_SKB_PAD); 1530 return skb; 1531} 1532 1533extern struct sk_buff *dev_alloc_skb(unsigned int length); 1534 1535extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1536 unsigned int length, gfp_t gfp_mask); 1537 1538/** 1539 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1540 * @dev: network device to receive on 1541 * @length: length to allocate 1542 * 1543 * Allocate a new &sk_buff and assign it a usage count of one. The 1544 * buffer has unspecified headroom built in. Users should allocate 1545 * the headroom they think they need without accounting for the 1546 * built in space. The built in space is used for optimisations. 1547 * 1548 * %NULL is returned if there is no free memory. Although this function 1549 * allocates memory it can be called from an interrupt. 1550 */ 1551static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1552 unsigned int length) 1553{ 1554 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1555} 1556 1557static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1558 unsigned int length) 1559{ 1560 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN); 1561 1562 if (NET_IP_ALIGN && skb) 1563 skb_reserve(skb, NET_IP_ALIGN); 1564 return skb; 1565} 1566 1567/** 1568 * __netdev_alloc_page - allocate a page for ps-rx on a specific device 1569 * @dev: network device to receive on 1570 * @gfp_mask: alloc_pages_node mask 1571 * 1572 * Allocate a new page. dev currently unused. 1573 * 1574 * %NULL is returned if there is no free memory. 1575 */ 1576static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask) 1577{ 1578 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0); 1579} 1580 1581/** 1582 * netdev_alloc_page - allocate a page for ps-rx on a specific device 1583 * @dev: network device to receive on 1584 * 1585 * Allocate a new page. dev currently unused. 1586 * 1587 * %NULL is returned if there is no free memory. 1588 */ 1589static inline struct page *netdev_alloc_page(struct net_device *dev) 1590{ 1591 return __netdev_alloc_page(dev, GFP_ATOMIC); 1592} 1593 1594static inline void netdev_free_page(struct net_device *dev, struct page *page) 1595{ 1596 __free_page(page); 1597} 1598 1599/** 1600 * skb_clone_writable - is the header of a clone writable 1601 * @skb: buffer to check 1602 * @len: length up to which to write 1603 * 1604 * Returns true if modifying the header part of the cloned buffer 1605 * does not requires the data to be copied. 1606 */ 1607static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1608{ 1609 return !skb_header_cloned(skb) && 1610 skb_headroom(skb) + len <= skb->hdr_len; 1611} 1612 1613static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1614 int cloned) 1615{ 1616 int delta = 0; 1617 1618 if (headroom < NET_SKB_PAD) 1619 headroom = NET_SKB_PAD; 1620 if (headroom > skb_headroom(skb)) 1621 delta = headroom - skb_headroom(skb); 1622 1623 if (delta || cloned) 1624 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1625 GFP_ATOMIC); 1626 return 0; 1627} 1628 1629/** 1630 * skb_cow - copy header of skb when it is required 1631 * @skb: buffer to cow 1632 * @headroom: needed headroom 1633 * 1634 * If the skb passed lacks sufficient headroom or its data part 1635 * is shared, data is reallocated. If reallocation fails, an error 1636 * is returned and original skb is not changed. 1637 * 1638 * The result is skb with writable area skb->head...skb->tail 1639 * and at least @headroom of space at head. 1640 */ 1641static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1642{ 1643 return __skb_cow(skb, headroom, skb_cloned(skb)); 1644} 1645 1646/** 1647 * skb_cow_head - skb_cow but only making the head writable 1648 * @skb: buffer to cow 1649 * @headroom: needed headroom 1650 * 1651 * This function is identical to skb_cow except that we replace the 1652 * skb_cloned check by skb_header_cloned. It should be used when 1653 * you only need to push on some header and do not need to modify 1654 * the data. 1655 */ 1656static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1657{ 1658 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1659} 1660 1661/** 1662 * skb_padto - pad an skbuff up to a minimal size 1663 * @skb: buffer to pad 1664 * @len: minimal length 1665 * 1666 * Pads up a buffer to ensure the trailing bytes exist and are 1667 * blanked. If the buffer already contains sufficient data it 1668 * is untouched. Otherwise it is extended. Returns zero on 1669 * success. The skb is freed on error. 1670 */ 1671 1672static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1673{ 1674 unsigned int size = skb->len; 1675 if (likely(size >= len)) 1676 return 0; 1677 return skb_pad(skb, len - size); 1678} 1679 1680static inline int skb_add_data(struct sk_buff *skb, 1681 char __user *from, int copy) 1682{ 1683 const int off = skb->len; 1684 1685 if (skb->ip_summed == CHECKSUM_NONE) { 1686 int err = 0; 1687 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1688 copy, 0, &err); 1689 if (!err) { 1690 skb->csum = csum_block_add(skb->csum, csum, off); 1691 return 0; 1692 } 1693 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1694 return 0; 1695 1696 __skb_trim(skb, off); 1697 return -EFAULT; 1698} 1699 1700static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1701 struct page *page, int off) 1702{ 1703 if (i) { 1704 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1705 1706 return page == frag->page && 1707 off == frag->page_offset + frag->size; 1708 } 1709 return 0; 1710} 1711 1712static inline int __skb_linearize(struct sk_buff *skb) 1713{ 1714 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1715} 1716 1717/** 1718 * skb_linearize - convert paged skb to linear one 1719 * @skb: buffer to linarize 1720 * 1721 * If there is no free memory -ENOMEM is returned, otherwise zero 1722 * is returned and the old skb data released. 1723 */ 1724static inline int skb_linearize(struct sk_buff *skb) 1725{ 1726 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1727} 1728 1729/** 1730 * skb_linearize_cow - make sure skb is linear and writable 1731 * @skb: buffer to process 1732 * 1733 * If there is no free memory -ENOMEM is returned, otherwise zero 1734 * is returned and the old skb data released. 1735 */ 1736static inline int skb_linearize_cow(struct sk_buff *skb) 1737{ 1738 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1739 __skb_linearize(skb) : 0; 1740} 1741 1742/** 1743 * skb_postpull_rcsum - update checksum for received skb after pull 1744 * @skb: buffer to update 1745 * @start: start of data before pull 1746 * @len: length of data pulled 1747 * 1748 * After doing a pull on a received packet, you need to call this to 1749 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1750 * CHECKSUM_NONE so that it can be recomputed from scratch. 1751 */ 1752 1753static inline void skb_postpull_rcsum(struct sk_buff *skb, 1754 const void *start, unsigned int len) 1755{ 1756 if (skb->ip_summed == CHECKSUM_COMPLETE) 1757 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1758} 1759 1760unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1761 1762/** 1763 * pskb_trim_rcsum - trim received skb and update checksum 1764 * @skb: buffer to trim 1765 * @len: new length 1766 * 1767 * This is exactly the same as pskb_trim except that it ensures the 1768 * checksum of received packets are still valid after the operation. 1769 */ 1770 1771static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1772{ 1773 if (likely(len >= skb->len)) 1774 return 0; 1775 if (skb->ip_summed == CHECKSUM_COMPLETE) 1776 skb->ip_summed = CHECKSUM_NONE; 1777 return __pskb_trim(skb, len); 1778} 1779 1780#define skb_queue_walk(queue, skb) \ 1781 for (skb = (queue)->next; \ 1782 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1783 skb = skb->next) 1784 1785#define skb_queue_walk_safe(queue, skb, tmp) \ 1786 for (skb = (queue)->next, tmp = skb->next; \ 1787 skb != (struct sk_buff *)(queue); \ 1788 skb = tmp, tmp = skb->next) 1789 1790#define skb_queue_walk_from(queue, skb) \ 1791 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1792 skb = skb->next) 1793 1794#define skb_queue_walk_from_safe(queue, skb, tmp) \ 1795 for (tmp = skb->next; \ 1796 skb != (struct sk_buff *)(queue); \ 1797 skb = tmp, tmp = skb->next) 1798 1799#define skb_queue_reverse_walk(queue, skb) \ 1800 for (skb = (queue)->prev; \ 1801 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1802 skb = skb->prev) 1803 1804 1805static inline bool skb_has_frag_list(const struct sk_buff *skb) 1806{ 1807 return skb_shinfo(skb)->frag_list != NULL; 1808} 1809 1810static inline void skb_frag_list_init(struct sk_buff *skb) 1811{ 1812 skb_shinfo(skb)->frag_list = NULL; 1813} 1814 1815static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 1816{ 1817 frag->next = skb_shinfo(skb)->frag_list; 1818 skb_shinfo(skb)->frag_list = frag; 1819} 1820 1821#define skb_walk_frags(skb, iter) \ 1822 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 1823 1824extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1825 int *peeked, int *err); 1826extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1827 int noblock, int *err); 1828extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1829 struct poll_table_struct *wait); 1830extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1831 int offset, struct iovec *to, 1832 int size); 1833extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1834 int hlen, 1835 struct iovec *iov); 1836extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 1837 int offset, 1838 const struct iovec *from, 1839 int from_offset, 1840 int len); 1841extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 1842 int offset, 1843 const struct iovec *to, 1844 int to_offset, 1845 int size); 1846extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1847extern void skb_free_datagram_locked(struct sock *sk, 1848 struct sk_buff *skb); 1849extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1850 unsigned int flags); 1851extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1852 int len, __wsum csum); 1853extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1854 void *to, int len); 1855extern int skb_store_bits(struct sk_buff *skb, int offset, 1856 const void *from, int len); 1857extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1858 int offset, u8 *to, int len, 1859 __wsum csum); 1860extern int skb_splice_bits(struct sk_buff *skb, 1861 unsigned int offset, 1862 struct pipe_inode_info *pipe, 1863 unsigned int len, 1864 unsigned int flags); 1865extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1866extern void skb_split(struct sk_buff *skb, 1867 struct sk_buff *skb1, const u32 len); 1868extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 1869 int shiftlen); 1870 1871extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1872 1873static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1874 int len, void *buffer) 1875{ 1876 int hlen = skb_headlen(skb); 1877 1878 if (hlen - offset >= len) 1879 return skb->data + offset; 1880 1881 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1882 return NULL; 1883 1884 return buffer; 1885} 1886 1887static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1888 void *to, 1889 const unsigned int len) 1890{ 1891 memcpy(to, skb->data, len); 1892} 1893 1894static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1895 const int offset, void *to, 1896 const unsigned int len) 1897{ 1898 memcpy(to, skb->data + offset, len); 1899} 1900 1901static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1902 const void *from, 1903 const unsigned int len) 1904{ 1905 memcpy(skb->data, from, len); 1906} 1907 1908static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1909 const int offset, 1910 const void *from, 1911 const unsigned int len) 1912{ 1913 memcpy(skb->data + offset, from, len); 1914} 1915 1916extern void skb_init(void); 1917 1918static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 1919{ 1920 return skb->tstamp; 1921} 1922 1923/** 1924 * skb_get_timestamp - get timestamp from a skb 1925 * @skb: skb to get stamp from 1926 * @stamp: pointer to struct timeval to store stamp in 1927 * 1928 * Timestamps are stored in the skb as offsets to a base timestamp. 1929 * This function converts the offset back to a struct timeval and stores 1930 * it in stamp. 1931 */ 1932static inline void skb_get_timestamp(const struct sk_buff *skb, 1933 struct timeval *stamp) 1934{ 1935 *stamp = ktime_to_timeval(skb->tstamp); 1936} 1937 1938static inline void skb_get_timestampns(const struct sk_buff *skb, 1939 struct timespec *stamp) 1940{ 1941 *stamp = ktime_to_timespec(skb->tstamp); 1942} 1943 1944static inline void __net_timestamp(struct sk_buff *skb) 1945{ 1946 skb->tstamp = ktime_get_real(); 1947} 1948 1949static inline ktime_t net_timedelta(ktime_t t) 1950{ 1951 return ktime_sub(ktime_get_real(), t); 1952} 1953 1954static inline ktime_t net_invalid_timestamp(void) 1955{ 1956 return ktime_set(0, 0); 1957} 1958 1959extern void skb_timestamping_init(void); 1960 1961#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 1962 1963extern void skb_clone_tx_timestamp(struct sk_buff *skb); 1964extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 1965 1966#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 1967 1968static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 1969{ 1970} 1971 1972static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 1973{ 1974 return false; 1975} 1976 1977#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 1978 1979/** 1980 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 1981 * 1982 * @skb: clone of the the original outgoing packet 1983 * @hwtstamps: hardware time stamps 1984 * 1985 */ 1986void skb_complete_tx_timestamp(struct sk_buff *skb, 1987 struct skb_shared_hwtstamps *hwtstamps); 1988 1989/** 1990 * skb_tstamp_tx - queue clone of skb with send time stamps 1991 * @orig_skb: the original outgoing packet 1992 * @hwtstamps: hardware time stamps, may be NULL if not available 1993 * 1994 * If the skb has a socket associated, then this function clones the 1995 * skb (thus sharing the actual data and optional structures), stores 1996 * the optional hardware time stamping information (if non NULL) or 1997 * generates a software time stamp (otherwise), then queues the clone 1998 * to the error queue of the socket. Errors are silently ignored. 1999 */ 2000extern void skb_tstamp_tx(struct sk_buff *orig_skb, 2001 struct skb_shared_hwtstamps *hwtstamps); 2002 2003static inline void sw_tx_timestamp(struct sk_buff *skb) 2004{ 2005 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2006 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2007 skb_tstamp_tx(skb, NULL); 2008} 2009 2010/** 2011 * skb_tx_timestamp() - Driver hook for transmit timestamping 2012 * 2013 * Ethernet MAC Drivers should call this function in their hard_xmit() 2014 * function as soon as possible after giving the sk_buff to the MAC 2015 * hardware, but before freeing the sk_buff. 2016 * 2017 * @skb: A socket buffer. 2018 */ 2019static inline void skb_tx_timestamp(struct sk_buff *skb) 2020{ 2021 skb_clone_tx_timestamp(skb); 2022 sw_tx_timestamp(skb); 2023} 2024 2025extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2026extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2027 2028static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2029{ 2030 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2031} 2032 2033/** 2034 * skb_checksum_complete - Calculate checksum of an entire packet 2035 * @skb: packet to process 2036 * 2037 * This function calculates the checksum over the entire packet plus 2038 * the value of skb->csum. The latter can be used to supply the 2039 * checksum of a pseudo header as used by TCP/UDP. It returns the 2040 * checksum. 2041 * 2042 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2043 * this function can be used to verify that checksum on received 2044 * packets. In that case the function should return zero if the 2045 * checksum is correct. In particular, this function will return zero 2046 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2047 * hardware has already verified the correctness of the checksum. 2048 */ 2049static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2050{ 2051 return skb_csum_unnecessary(skb) ? 2052 0 : __skb_checksum_complete(skb); 2053} 2054 2055#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2056extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2057static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2058{ 2059 if (nfct && atomic_dec_and_test(&nfct->use)) 2060 nf_conntrack_destroy(nfct); 2061} 2062static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2063{ 2064 if (nfct) 2065 atomic_inc(&nfct->use); 2066} 2067#endif 2068#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2069static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2070{ 2071 if (skb) 2072 atomic_inc(&skb->users); 2073} 2074static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2075{ 2076 if (skb) 2077 kfree_skb(skb); 2078} 2079#endif 2080#ifdef CONFIG_BRIDGE_NETFILTER 2081static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2082{ 2083 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2084 kfree(nf_bridge); 2085} 2086static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2087{ 2088 if (nf_bridge) 2089 atomic_inc(&nf_bridge->use); 2090} 2091#endif /* CONFIG_BRIDGE_NETFILTER */ 2092static inline void nf_reset(struct sk_buff *skb) 2093{ 2094#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2095 nf_conntrack_put(skb->nfct); 2096 skb->nfct = NULL; 2097#endif 2098#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2099 nf_conntrack_put_reasm(skb->nfct_reasm); 2100 skb->nfct_reasm = NULL; 2101#endif 2102#ifdef CONFIG_BRIDGE_NETFILTER 2103 nf_bridge_put(skb->nf_bridge); 2104 skb->nf_bridge = NULL; 2105#endif 2106} 2107 2108/* Note: This doesn't put any conntrack and bridge info in dst. */ 2109static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2110{ 2111#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2112 dst->nfct = src->nfct; 2113 nf_conntrack_get(src->nfct); 2114 dst->nfctinfo = src->nfctinfo; 2115#endif 2116#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2117 dst->nfct_reasm = src->nfct_reasm; 2118 nf_conntrack_get_reasm(src->nfct_reasm); 2119#endif 2120#ifdef CONFIG_BRIDGE_NETFILTER 2121 dst->nf_bridge = src->nf_bridge; 2122 nf_bridge_get(src->nf_bridge); 2123#endif 2124} 2125 2126static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2127{ 2128#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2129 nf_conntrack_put(dst->nfct); 2130#endif 2131#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2132 nf_conntrack_put_reasm(dst->nfct_reasm); 2133#endif 2134#ifdef CONFIG_BRIDGE_NETFILTER 2135 nf_bridge_put(dst->nf_bridge); 2136#endif 2137 __nf_copy(dst, src); 2138} 2139 2140#ifdef CONFIG_NETWORK_SECMARK 2141static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2142{ 2143 to->secmark = from->secmark; 2144} 2145 2146static inline void skb_init_secmark(struct sk_buff *skb) 2147{ 2148 skb->secmark = 0; 2149} 2150#else 2151static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2152{ } 2153 2154static inline void skb_init_secmark(struct sk_buff *skb) 2155{ } 2156#endif 2157 2158static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2159{ 2160 skb->queue_mapping = queue_mapping; 2161} 2162 2163static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2164{ 2165 return skb->queue_mapping; 2166} 2167 2168static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2169{ 2170 to->queue_mapping = from->queue_mapping; 2171} 2172 2173static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2174{ 2175 skb->queue_mapping = rx_queue + 1; 2176} 2177 2178static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2179{ 2180 return skb->queue_mapping - 1; 2181} 2182 2183static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2184{ 2185 return skb->queue_mapping != 0; 2186} 2187 2188extern u16 __skb_tx_hash(const struct net_device *dev, 2189 const struct sk_buff *skb, 2190 unsigned int num_tx_queues); 2191 2192#ifdef CONFIG_XFRM 2193static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2194{ 2195 return skb->sp; 2196} 2197#else 2198static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2199{ 2200 return NULL; 2201} 2202#endif 2203 2204static inline int skb_is_gso(const struct sk_buff *skb) 2205{ 2206 return skb_shinfo(skb)->gso_size; 2207} 2208 2209static inline int skb_is_gso_v6(const struct sk_buff *skb) 2210{ 2211 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2212} 2213 2214extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2215 2216static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2217{ 2218 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2219 * wanted then gso_type will be set. */ 2220 struct skb_shared_info *shinfo = skb_shinfo(skb); 2221 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2222 unlikely(shinfo->gso_type == 0)) { 2223 __skb_warn_lro_forwarding(skb); 2224 return true; 2225 } 2226 return false; 2227} 2228 2229static inline void skb_forward_csum(struct sk_buff *skb) 2230{ 2231 /* Unfortunately we don't support this one. Any brave souls? */ 2232 if (skb->ip_summed == CHECKSUM_COMPLETE) 2233 skb->ip_summed = CHECKSUM_NONE; 2234} 2235 2236/** 2237 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2238 * @skb: skb to check 2239 * 2240 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2241 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2242 * use this helper, to document places where we make this assertion. 2243 */ 2244static inline void skb_checksum_none_assert(struct sk_buff *skb) 2245{ 2246#ifdef DEBUG 2247 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2248#endif 2249} 2250 2251bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2252#endif /* __KERNEL__ */ 2253#endif /* _LINUX_SKBUFF_H */