at v2.6.38 1180 lines 31 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <linux/types.h> 18#include <linux/ioctl.h> 19#include <asm/byteorder.h> 20 21/* 22 * User-space ABI bits: 23 */ 24 25/* 26 * attr.type 27 */ 28enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 PERF_TYPE_BREAKPOINT = 5, 35 36 PERF_TYPE_MAX, /* non-ABI */ 37}; 38 39/* 40 * Generalized performance event event_id types, used by the 41 * attr.event_id parameter of the sys_perf_event_open() 42 * syscall: 43 */ 44enum perf_hw_id { 45 /* 46 * Common hardware events, generalized by the kernel: 47 */ 48 PERF_COUNT_HW_CPU_CYCLES = 0, 49 PERF_COUNT_HW_INSTRUCTIONS = 1, 50 PERF_COUNT_HW_CACHE_REFERENCES = 2, 51 PERF_COUNT_HW_CACHE_MISSES = 3, 52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 53 PERF_COUNT_HW_BRANCH_MISSES = 5, 54 PERF_COUNT_HW_BUS_CYCLES = 6, 55 56 PERF_COUNT_HW_MAX, /* non-ABI */ 57}; 58 59/* 60 * Generalized hardware cache events: 61 * 62 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x 63 * { read, write, prefetch } x 64 * { accesses, misses } 65 */ 66enum perf_hw_cache_id { 67 PERF_COUNT_HW_CACHE_L1D = 0, 68 PERF_COUNT_HW_CACHE_L1I = 1, 69 PERF_COUNT_HW_CACHE_LL = 2, 70 PERF_COUNT_HW_CACHE_DTLB = 3, 71 PERF_COUNT_HW_CACHE_ITLB = 4, 72 PERF_COUNT_HW_CACHE_BPU = 5, 73 74 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 75}; 76 77enum perf_hw_cache_op_id { 78 PERF_COUNT_HW_CACHE_OP_READ = 0, 79 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 80 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 81 82 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 83}; 84 85enum perf_hw_cache_op_result_id { 86 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 87 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 88 89 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 90}; 91 92/* 93 * Special "software" events provided by the kernel, even if the hardware 94 * does not support performance events. These events measure various 95 * physical and sw events of the kernel (and allow the profiling of them as 96 * well): 97 */ 98enum perf_sw_ids { 99 PERF_COUNT_SW_CPU_CLOCK = 0, 100 PERF_COUNT_SW_TASK_CLOCK = 1, 101 PERF_COUNT_SW_PAGE_FAULTS = 2, 102 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 103 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 104 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 105 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 106 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 107 PERF_COUNT_SW_EMULATION_FAULTS = 8, 108 109 PERF_COUNT_SW_MAX, /* non-ABI */ 110}; 111 112/* 113 * Bits that can be set in attr.sample_type to request information 114 * in the overflow packets. 115 */ 116enum perf_event_sample_format { 117 PERF_SAMPLE_IP = 1U << 0, 118 PERF_SAMPLE_TID = 1U << 1, 119 PERF_SAMPLE_TIME = 1U << 2, 120 PERF_SAMPLE_ADDR = 1U << 3, 121 PERF_SAMPLE_READ = 1U << 4, 122 PERF_SAMPLE_CALLCHAIN = 1U << 5, 123 PERF_SAMPLE_ID = 1U << 6, 124 PERF_SAMPLE_CPU = 1U << 7, 125 PERF_SAMPLE_PERIOD = 1U << 8, 126 PERF_SAMPLE_STREAM_ID = 1U << 9, 127 PERF_SAMPLE_RAW = 1U << 10, 128 129 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */ 130}; 131 132/* 133 * The format of the data returned by read() on a perf event fd, 134 * as specified by attr.read_format: 135 * 136 * struct read_format { 137 * { u64 value; 138 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 139 * { u64 time_running; } && PERF_FORMAT_RUNNING 140 * { u64 id; } && PERF_FORMAT_ID 141 * } && !PERF_FORMAT_GROUP 142 * 143 * { u64 nr; 144 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 145 * { u64 time_running; } && PERF_FORMAT_RUNNING 146 * { u64 value; 147 * { u64 id; } && PERF_FORMAT_ID 148 * } cntr[nr]; 149 * } && PERF_FORMAT_GROUP 150 * }; 151 */ 152enum perf_event_read_format { 153 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 154 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 155 PERF_FORMAT_ID = 1U << 2, 156 PERF_FORMAT_GROUP = 1U << 3, 157 158 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 159}; 160 161#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 162 163/* 164 * Hardware event_id to monitor via a performance monitoring event: 165 */ 166struct perf_event_attr { 167 168 /* 169 * Major type: hardware/software/tracepoint/etc. 170 */ 171 __u32 type; 172 173 /* 174 * Size of the attr structure, for fwd/bwd compat. 175 */ 176 __u32 size; 177 178 /* 179 * Type specific configuration information. 180 */ 181 __u64 config; 182 183 union { 184 __u64 sample_period; 185 __u64 sample_freq; 186 }; 187 188 __u64 sample_type; 189 __u64 read_format; 190 191 __u64 disabled : 1, /* off by default */ 192 inherit : 1, /* children inherit it */ 193 pinned : 1, /* must always be on PMU */ 194 exclusive : 1, /* only group on PMU */ 195 exclude_user : 1, /* don't count user */ 196 exclude_kernel : 1, /* ditto kernel */ 197 exclude_hv : 1, /* ditto hypervisor */ 198 exclude_idle : 1, /* don't count when idle */ 199 mmap : 1, /* include mmap data */ 200 comm : 1, /* include comm data */ 201 freq : 1, /* use freq, not period */ 202 inherit_stat : 1, /* per task counts */ 203 enable_on_exec : 1, /* next exec enables */ 204 task : 1, /* trace fork/exit */ 205 watermark : 1, /* wakeup_watermark */ 206 /* 207 * precise_ip: 208 * 209 * 0 - SAMPLE_IP can have arbitrary skid 210 * 1 - SAMPLE_IP must have constant skid 211 * 2 - SAMPLE_IP requested to have 0 skid 212 * 3 - SAMPLE_IP must have 0 skid 213 * 214 * See also PERF_RECORD_MISC_EXACT_IP 215 */ 216 precise_ip : 2, /* skid constraint */ 217 mmap_data : 1, /* non-exec mmap data */ 218 sample_id_all : 1, /* sample_type all events */ 219 220 __reserved_1 : 45; 221 222 union { 223 __u32 wakeup_events; /* wakeup every n events */ 224 __u32 wakeup_watermark; /* bytes before wakeup */ 225 }; 226 227 __u32 bp_type; 228 __u64 bp_addr; 229 __u64 bp_len; 230}; 231 232/* 233 * Ioctls that can be done on a perf event fd: 234 */ 235#define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 236#define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 237#define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 238#define PERF_EVENT_IOC_RESET _IO ('$', 3) 239#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 240#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 241#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 242 243enum perf_event_ioc_flags { 244 PERF_IOC_FLAG_GROUP = 1U << 0, 245}; 246 247/* 248 * Structure of the page that can be mapped via mmap 249 */ 250struct perf_event_mmap_page { 251 __u32 version; /* version number of this structure */ 252 __u32 compat_version; /* lowest version this is compat with */ 253 254 /* 255 * Bits needed to read the hw events in user-space. 256 * 257 * u32 seq; 258 * s64 count; 259 * 260 * do { 261 * seq = pc->lock; 262 * 263 * barrier() 264 * if (pc->index) { 265 * count = pmc_read(pc->index - 1); 266 * count += pc->offset; 267 * } else 268 * goto regular_read; 269 * 270 * barrier(); 271 * } while (pc->lock != seq); 272 * 273 * NOTE: for obvious reason this only works on self-monitoring 274 * processes. 275 */ 276 __u32 lock; /* seqlock for synchronization */ 277 __u32 index; /* hardware event identifier */ 278 __s64 offset; /* add to hardware event value */ 279 __u64 time_enabled; /* time event active */ 280 __u64 time_running; /* time event on cpu */ 281 282 /* 283 * Hole for extension of the self monitor capabilities 284 */ 285 286 __u64 __reserved[123]; /* align to 1k */ 287 288 /* 289 * Control data for the mmap() data buffer. 290 * 291 * User-space reading the @data_head value should issue an rmb(), on 292 * SMP capable platforms, after reading this value -- see 293 * perf_event_wakeup(). 294 * 295 * When the mapping is PROT_WRITE the @data_tail value should be 296 * written by userspace to reflect the last read data. In this case 297 * the kernel will not over-write unread data. 298 */ 299 __u64 data_head; /* head in the data section */ 300 __u64 data_tail; /* user-space written tail */ 301}; 302 303#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 304#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 305#define PERF_RECORD_MISC_KERNEL (1 << 0) 306#define PERF_RECORD_MISC_USER (2 << 0) 307#define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 308#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 309#define PERF_RECORD_MISC_GUEST_USER (5 << 0) 310 311/* 312 * Indicates that the content of PERF_SAMPLE_IP points to 313 * the actual instruction that triggered the event. See also 314 * perf_event_attr::precise_ip. 315 */ 316#define PERF_RECORD_MISC_EXACT_IP (1 << 14) 317/* 318 * Reserve the last bit to indicate some extended misc field 319 */ 320#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 321 322struct perf_event_header { 323 __u32 type; 324 __u16 misc; 325 __u16 size; 326}; 327 328enum perf_event_type { 329 330 /* 331 * If perf_event_attr.sample_id_all is set then all event types will 332 * have the sample_type selected fields related to where/when 333 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID) 334 * described in PERF_RECORD_SAMPLE below, it will be stashed just after 335 * the perf_event_header and the fields already present for the existing 336 * fields, i.e. at the end of the payload. That way a newer perf.data 337 * file will be supported by older perf tools, with these new optional 338 * fields being ignored. 339 * 340 * The MMAP events record the PROT_EXEC mappings so that we can 341 * correlate userspace IPs to code. They have the following structure: 342 * 343 * struct { 344 * struct perf_event_header header; 345 * 346 * u32 pid, tid; 347 * u64 addr; 348 * u64 len; 349 * u64 pgoff; 350 * char filename[]; 351 * }; 352 */ 353 PERF_RECORD_MMAP = 1, 354 355 /* 356 * struct { 357 * struct perf_event_header header; 358 * u64 id; 359 * u64 lost; 360 * }; 361 */ 362 PERF_RECORD_LOST = 2, 363 364 /* 365 * struct { 366 * struct perf_event_header header; 367 * 368 * u32 pid, tid; 369 * char comm[]; 370 * }; 371 */ 372 PERF_RECORD_COMM = 3, 373 374 /* 375 * struct { 376 * struct perf_event_header header; 377 * u32 pid, ppid; 378 * u32 tid, ptid; 379 * u64 time; 380 * }; 381 */ 382 PERF_RECORD_EXIT = 4, 383 384 /* 385 * struct { 386 * struct perf_event_header header; 387 * u64 time; 388 * u64 id; 389 * u64 stream_id; 390 * }; 391 */ 392 PERF_RECORD_THROTTLE = 5, 393 PERF_RECORD_UNTHROTTLE = 6, 394 395 /* 396 * struct { 397 * struct perf_event_header header; 398 * u32 pid, ppid; 399 * u32 tid, ptid; 400 * u64 time; 401 * }; 402 */ 403 PERF_RECORD_FORK = 7, 404 405 /* 406 * struct { 407 * struct perf_event_header header; 408 * u32 pid, tid; 409 * 410 * struct read_format values; 411 * }; 412 */ 413 PERF_RECORD_READ = 8, 414 415 /* 416 * struct { 417 * struct perf_event_header header; 418 * 419 * { u64 ip; } && PERF_SAMPLE_IP 420 * { u32 pid, tid; } && PERF_SAMPLE_TID 421 * { u64 time; } && PERF_SAMPLE_TIME 422 * { u64 addr; } && PERF_SAMPLE_ADDR 423 * { u64 id; } && PERF_SAMPLE_ID 424 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 425 * { u32 cpu, res; } && PERF_SAMPLE_CPU 426 * { u64 period; } && PERF_SAMPLE_PERIOD 427 * 428 * { struct read_format values; } && PERF_SAMPLE_READ 429 * 430 * { u64 nr, 431 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 432 * 433 * # 434 * # The RAW record below is opaque data wrt the ABI 435 * # 436 * # That is, the ABI doesn't make any promises wrt to 437 * # the stability of its content, it may vary depending 438 * # on event, hardware, kernel version and phase of 439 * # the moon. 440 * # 441 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 442 * # 443 * 444 * { u32 size; 445 * char data[size];}&& PERF_SAMPLE_RAW 446 * }; 447 */ 448 PERF_RECORD_SAMPLE = 9, 449 450 PERF_RECORD_MAX, /* non-ABI */ 451}; 452 453enum perf_callchain_context { 454 PERF_CONTEXT_HV = (__u64)-32, 455 PERF_CONTEXT_KERNEL = (__u64)-128, 456 PERF_CONTEXT_USER = (__u64)-512, 457 458 PERF_CONTEXT_GUEST = (__u64)-2048, 459 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 460 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 461 462 PERF_CONTEXT_MAX = (__u64)-4095, 463}; 464 465#define PERF_FLAG_FD_NO_GROUP (1U << 0) 466#define PERF_FLAG_FD_OUTPUT (1U << 1) 467 468#ifdef __KERNEL__ 469/* 470 * Kernel-internal data types and definitions: 471 */ 472 473#ifdef CONFIG_PERF_EVENTS 474# include <asm/perf_event.h> 475# include <asm/local64.h> 476#endif 477 478struct perf_guest_info_callbacks { 479 int (*is_in_guest) (void); 480 int (*is_user_mode) (void); 481 unsigned long (*get_guest_ip) (void); 482}; 483 484#ifdef CONFIG_HAVE_HW_BREAKPOINT 485#include <asm/hw_breakpoint.h> 486#endif 487 488#include <linux/list.h> 489#include <linux/mutex.h> 490#include <linux/rculist.h> 491#include <linux/rcupdate.h> 492#include <linux/spinlock.h> 493#include <linux/hrtimer.h> 494#include <linux/fs.h> 495#include <linux/pid_namespace.h> 496#include <linux/workqueue.h> 497#include <linux/ftrace.h> 498#include <linux/cpu.h> 499#include <linux/irq_work.h> 500#include <linux/jump_label_ref.h> 501#include <asm/atomic.h> 502#include <asm/local.h> 503 504#define PERF_MAX_STACK_DEPTH 255 505 506struct perf_callchain_entry { 507 __u64 nr; 508 __u64 ip[PERF_MAX_STACK_DEPTH]; 509}; 510 511struct perf_raw_record { 512 u32 size; 513 void *data; 514}; 515 516struct perf_branch_entry { 517 __u64 from; 518 __u64 to; 519 __u64 flags; 520}; 521 522struct perf_branch_stack { 523 __u64 nr; 524 struct perf_branch_entry entries[0]; 525}; 526 527struct task_struct; 528 529/** 530 * struct hw_perf_event - performance event hardware details: 531 */ 532struct hw_perf_event { 533#ifdef CONFIG_PERF_EVENTS 534 union { 535 struct { /* hardware */ 536 u64 config; 537 u64 last_tag; 538 unsigned long config_base; 539 unsigned long event_base; 540 int idx; 541 int last_cpu; 542 }; 543 struct { /* software */ 544 struct hrtimer hrtimer; 545 }; 546#ifdef CONFIG_HAVE_HW_BREAKPOINT 547 struct { /* breakpoint */ 548 struct arch_hw_breakpoint info; 549 struct list_head bp_list; 550 /* 551 * Crufty hack to avoid the chicken and egg 552 * problem hw_breakpoint has with context 553 * creation and event initalization. 554 */ 555 struct task_struct *bp_target; 556 }; 557#endif 558 }; 559 int state; 560 local64_t prev_count; 561 u64 sample_period; 562 u64 last_period; 563 local64_t period_left; 564 u64 interrupts; 565 566 u64 freq_time_stamp; 567 u64 freq_count_stamp; 568#endif 569}; 570 571/* 572 * hw_perf_event::state flags 573 */ 574#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 575#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 576#define PERF_HES_ARCH 0x04 577 578struct perf_event; 579 580/* 581 * Common implementation detail of pmu::{start,commit,cancel}_txn 582 */ 583#define PERF_EVENT_TXN 0x1 584 585/** 586 * struct pmu - generic performance monitoring unit 587 */ 588struct pmu { 589 struct list_head entry; 590 591 struct device *dev; 592 char *name; 593 int type; 594 595 int * __percpu pmu_disable_count; 596 struct perf_cpu_context * __percpu pmu_cpu_context; 597 int task_ctx_nr; 598 599 /* 600 * Fully disable/enable this PMU, can be used to protect from the PMI 601 * as well as for lazy/batch writing of the MSRs. 602 */ 603 void (*pmu_enable) (struct pmu *pmu); /* optional */ 604 void (*pmu_disable) (struct pmu *pmu); /* optional */ 605 606 /* 607 * Try and initialize the event for this PMU. 608 * Should return -ENOENT when the @event doesn't match this PMU. 609 */ 610 int (*event_init) (struct perf_event *event); 611 612#define PERF_EF_START 0x01 /* start the counter when adding */ 613#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 614#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 615 616 /* 617 * Adds/Removes a counter to/from the PMU, can be done inside 618 * a transaction, see the ->*_txn() methods. 619 */ 620 int (*add) (struct perf_event *event, int flags); 621 void (*del) (struct perf_event *event, int flags); 622 623 /* 624 * Starts/Stops a counter present on the PMU. The PMI handler 625 * should stop the counter when perf_event_overflow() returns 626 * !0. ->start() will be used to continue. 627 */ 628 void (*start) (struct perf_event *event, int flags); 629 void (*stop) (struct perf_event *event, int flags); 630 631 /* 632 * Updates the counter value of the event. 633 */ 634 void (*read) (struct perf_event *event); 635 636 /* 637 * Group events scheduling is treated as a transaction, add 638 * group events as a whole and perform one schedulability test. 639 * If the test fails, roll back the whole group 640 * 641 * Start the transaction, after this ->add() doesn't need to 642 * do schedulability tests. 643 */ 644 void (*start_txn) (struct pmu *pmu); /* optional */ 645 /* 646 * If ->start_txn() disabled the ->add() schedulability test 647 * then ->commit_txn() is required to perform one. On success 648 * the transaction is closed. On error the transaction is kept 649 * open until ->cancel_txn() is called. 650 */ 651 int (*commit_txn) (struct pmu *pmu); /* optional */ 652 /* 653 * Will cancel the transaction, assumes ->del() is called 654 * for each successfull ->add() during the transaction. 655 */ 656 void (*cancel_txn) (struct pmu *pmu); /* optional */ 657}; 658 659/** 660 * enum perf_event_active_state - the states of a event 661 */ 662enum perf_event_active_state { 663 PERF_EVENT_STATE_ERROR = -2, 664 PERF_EVENT_STATE_OFF = -1, 665 PERF_EVENT_STATE_INACTIVE = 0, 666 PERF_EVENT_STATE_ACTIVE = 1, 667}; 668 669struct file; 670 671#define PERF_BUFFER_WRITABLE 0x01 672 673struct perf_buffer { 674 atomic_t refcount; 675 struct rcu_head rcu_head; 676#ifdef CONFIG_PERF_USE_VMALLOC 677 struct work_struct work; 678 int page_order; /* allocation order */ 679#endif 680 int nr_pages; /* nr of data pages */ 681 int writable; /* are we writable */ 682 683 atomic_t poll; /* POLL_ for wakeups */ 684 685 local_t head; /* write position */ 686 local_t nest; /* nested writers */ 687 local_t events; /* event limit */ 688 local_t wakeup; /* wakeup stamp */ 689 local_t lost; /* nr records lost */ 690 691 long watermark; /* wakeup watermark */ 692 693 struct perf_event_mmap_page *user_page; 694 void *data_pages[0]; 695}; 696 697struct perf_sample_data; 698 699typedef void (*perf_overflow_handler_t)(struct perf_event *, int, 700 struct perf_sample_data *, 701 struct pt_regs *regs); 702 703enum perf_group_flag { 704 PERF_GROUP_SOFTWARE = 0x1, 705}; 706 707#define SWEVENT_HLIST_BITS 8 708#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 709 710struct swevent_hlist { 711 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 712 struct rcu_head rcu_head; 713}; 714 715#define PERF_ATTACH_CONTEXT 0x01 716#define PERF_ATTACH_GROUP 0x02 717#define PERF_ATTACH_TASK 0x04 718 719/** 720 * struct perf_event - performance event kernel representation: 721 */ 722struct perf_event { 723#ifdef CONFIG_PERF_EVENTS 724 struct list_head group_entry; 725 struct list_head event_entry; 726 struct list_head sibling_list; 727 struct hlist_node hlist_entry; 728 int nr_siblings; 729 int group_flags; 730 struct perf_event *group_leader; 731 struct pmu *pmu; 732 733 enum perf_event_active_state state; 734 unsigned int attach_state; 735 local64_t count; 736 atomic64_t child_count; 737 738 /* 739 * These are the total time in nanoseconds that the event 740 * has been enabled (i.e. eligible to run, and the task has 741 * been scheduled in, if this is a per-task event) 742 * and running (scheduled onto the CPU), respectively. 743 * 744 * They are computed from tstamp_enabled, tstamp_running and 745 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 746 */ 747 u64 total_time_enabled; 748 u64 total_time_running; 749 750 /* 751 * These are timestamps used for computing total_time_enabled 752 * and total_time_running when the event is in INACTIVE or 753 * ACTIVE state, measured in nanoseconds from an arbitrary point 754 * in time. 755 * tstamp_enabled: the notional time when the event was enabled 756 * tstamp_running: the notional time when the event was scheduled on 757 * tstamp_stopped: in INACTIVE state, the notional time when the 758 * event was scheduled off. 759 */ 760 u64 tstamp_enabled; 761 u64 tstamp_running; 762 u64 tstamp_stopped; 763 764 /* 765 * timestamp shadows the actual context timing but it can 766 * be safely used in NMI interrupt context. It reflects the 767 * context time as it was when the event was last scheduled in. 768 * 769 * ctx_time already accounts for ctx->timestamp. Therefore to 770 * compute ctx_time for a sample, simply add perf_clock(). 771 */ 772 u64 shadow_ctx_time; 773 774 struct perf_event_attr attr; 775 u16 header_size; 776 u16 id_header_size; 777 u16 read_size; 778 struct hw_perf_event hw; 779 780 struct perf_event_context *ctx; 781 struct file *filp; 782 783 /* 784 * These accumulate total time (in nanoseconds) that children 785 * events have been enabled and running, respectively. 786 */ 787 atomic64_t child_total_time_enabled; 788 atomic64_t child_total_time_running; 789 790 /* 791 * Protect attach/detach and child_list: 792 */ 793 struct mutex child_mutex; 794 struct list_head child_list; 795 struct perf_event *parent; 796 797 int oncpu; 798 int cpu; 799 800 struct list_head owner_entry; 801 struct task_struct *owner; 802 803 /* mmap bits */ 804 struct mutex mmap_mutex; 805 atomic_t mmap_count; 806 int mmap_locked; 807 struct user_struct *mmap_user; 808 struct perf_buffer *buffer; 809 810 /* poll related */ 811 wait_queue_head_t waitq; 812 struct fasync_struct *fasync; 813 814 /* delayed work for NMIs and such */ 815 int pending_wakeup; 816 int pending_kill; 817 int pending_disable; 818 struct irq_work pending; 819 820 atomic_t event_limit; 821 822 void (*destroy)(struct perf_event *); 823 struct rcu_head rcu_head; 824 825 struct pid_namespace *ns; 826 u64 id; 827 828 perf_overflow_handler_t overflow_handler; 829 830#ifdef CONFIG_EVENT_TRACING 831 struct ftrace_event_call *tp_event; 832 struct event_filter *filter; 833#endif 834 835#endif /* CONFIG_PERF_EVENTS */ 836}; 837 838enum perf_event_context_type { 839 task_context, 840 cpu_context, 841}; 842 843/** 844 * struct perf_event_context - event context structure 845 * 846 * Used as a container for task events and CPU events as well: 847 */ 848struct perf_event_context { 849 enum perf_event_context_type type; 850 struct pmu *pmu; 851 /* 852 * Protect the states of the events in the list, 853 * nr_active, and the list: 854 */ 855 raw_spinlock_t lock; 856 /* 857 * Protect the list of events. Locking either mutex or lock 858 * is sufficient to ensure the list doesn't change; to change 859 * the list you need to lock both the mutex and the spinlock. 860 */ 861 struct mutex mutex; 862 863 struct list_head pinned_groups; 864 struct list_head flexible_groups; 865 struct list_head event_list; 866 int nr_events; 867 int nr_active; 868 int is_active; 869 int nr_stat; 870 int rotate_disable; 871 atomic_t refcount; 872 struct task_struct *task; 873 874 /* 875 * Context clock, runs when context enabled. 876 */ 877 u64 time; 878 u64 timestamp; 879 880 /* 881 * These fields let us detect when two contexts have both 882 * been cloned (inherited) from a common ancestor. 883 */ 884 struct perf_event_context *parent_ctx; 885 u64 parent_gen; 886 u64 generation; 887 int pin_count; 888 struct rcu_head rcu_head; 889}; 890 891/* 892 * Number of contexts where an event can trigger: 893 * task, softirq, hardirq, nmi. 894 */ 895#define PERF_NR_CONTEXTS 4 896 897/** 898 * struct perf_event_cpu_context - per cpu event context structure 899 */ 900struct perf_cpu_context { 901 struct perf_event_context ctx; 902 struct perf_event_context *task_ctx; 903 int active_oncpu; 904 int exclusive; 905 struct list_head rotation_list; 906 int jiffies_interval; 907 struct pmu *active_pmu; 908}; 909 910struct perf_output_handle { 911 struct perf_event *event; 912 struct perf_buffer *buffer; 913 unsigned long wakeup; 914 unsigned long size; 915 void *addr; 916 int page; 917 int nmi; 918 int sample; 919}; 920 921#ifdef CONFIG_PERF_EVENTS 922 923extern int perf_pmu_register(struct pmu *pmu, char *name, int type); 924extern void perf_pmu_unregister(struct pmu *pmu); 925 926extern int perf_num_counters(void); 927extern const char *perf_pmu_name(void); 928extern void __perf_event_task_sched_in(struct task_struct *task); 929extern void __perf_event_task_sched_out(struct task_struct *task, struct task_struct *next); 930extern int perf_event_init_task(struct task_struct *child); 931extern void perf_event_exit_task(struct task_struct *child); 932extern void perf_event_free_task(struct task_struct *task); 933extern void perf_event_delayed_put(struct task_struct *task); 934extern void perf_event_print_debug(void); 935extern void perf_pmu_disable(struct pmu *pmu); 936extern void perf_pmu_enable(struct pmu *pmu); 937extern int perf_event_task_disable(void); 938extern int perf_event_task_enable(void); 939extern void perf_event_update_userpage(struct perf_event *event); 940extern int perf_event_release_kernel(struct perf_event *event); 941extern struct perf_event * 942perf_event_create_kernel_counter(struct perf_event_attr *attr, 943 int cpu, 944 struct task_struct *task, 945 perf_overflow_handler_t callback); 946extern u64 perf_event_read_value(struct perf_event *event, 947 u64 *enabled, u64 *running); 948 949struct perf_sample_data { 950 u64 type; 951 952 u64 ip; 953 struct { 954 u32 pid; 955 u32 tid; 956 } tid_entry; 957 u64 time; 958 u64 addr; 959 u64 id; 960 u64 stream_id; 961 struct { 962 u32 cpu; 963 u32 reserved; 964 } cpu_entry; 965 u64 period; 966 struct perf_callchain_entry *callchain; 967 struct perf_raw_record *raw; 968}; 969 970static inline 971void perf_sample_data_init(struct perf_sample_data *data, u64 addr) 972{ 973 data->addr = addr; 974 data->raw = NULL; 975} 976 977extern void perf_output_sample(struct perf_output_handle *handle, 978 struct perf_event_header *header, 979 struct perf_sample_data *data, 980 struct perf_event *event); 981extern void perf_prepare_sample(struct perf_event_header *header, 982 struct perf_sample_data *data, 983 struct perf_event *event, 984 struct pt_regs *regs); 985 986extern int perf_event_overflow(struct perf_event *event, int nmi, 987 struct perf_sample_data *data, 988 struct pt_regs *regs); 989 990static inline bool is_sampling_event(struct perf_event *event) 991{ 992 return event->attr.sample_period != 0; 993} 994 995/* 996 * Return 1 for a software event, 0 for a hardware event 997 */ 998static inline int is_software_event(struct perf_event *event) 999{ 1000 return event->pmu->task_ctx_nr == perf_sw_context; 1001} 1002 1003extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1004 1005extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64); 1006 1007#ifndef perf_arch_fetch_caller_regs 1008static inline void 1009perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1010#endif 1011 1012/* 1013 * Take a snapshot of the regs. Skip ip and frame pointer to 1014 * the nth caller. We only need a few of the regs: 1015 * - ip for PERF_SAMPLE_IP 1016 * - cs for user_mode() tests 1017 * - bp for callchains 1018 * - eflags, for future purposes, just in case 1019 */ 1020static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1021{ 1022 memset(regs, 0, sizeof(*regs)); 1023 1024 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1025} 1026 1027static __always_inline void 1028perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr) 1029{ 1030 struct pt_regs hot_regs; 1031 1032 JUMP_LABEL(&perf_swevent_enabled[event_id], have_event); 1033 return; 1034 1035have_event: 1036 if (!regs) { 1037 perf_fetch_caller_regs(&hot_regs); 1038 regs = &hot_regs; 1039 } 1040 __perf_sw_event(event_id, nr, nmi, regs, addr); 1041} 1042 1043extern atomic_t perf_task_events; 1044 1045static inline void perf_event_task_sched_in(struct task_struct *task) 1046{ 1047 COND_STMT(&perf_task_events, __perf_event_task_sched_in(task)); 1048} 1049 1050static inline 1051void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next) 1052{ 1053 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0); 1054 1055 COND_STMT(&perf_task_events, __perf_event_task_sched_out(task, next)); 1056} 1057 1058extern void perf_event_mmap(struct vm_area_struct *vma); 1059extern struct perf_guest_info_callbacks *perf_guest_cbs; 1060extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1061extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1062 1063extern void perf_event_comm(struct task_struct *tsk); 1064extern void perf_event_fork(struct task_struct *tsk); 1065 1066/* Callchains */ 1067DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1068 1069extern void perf_callchain_user(struct perf_callchain_entry *entry, 1070 struct pt_regs *regs); 1071extern void perf_callchain_kernel(struct perf_callchain_entry *entry, 1072 struct pt_regs *regs); 1073 1074 1075static inline void 1076perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 1077{ 1078 if (entry->nr < PERF_MAX_STACK_DEPTH) 1079 entry->ip[entry->nr++] = ip; 1080} 1081 1082extern int sysctl_perf_event_paranoid; 1083extern int sysctl_perf_event_mlock; 1084extern int sysctl_perf_event_sample_rate; 1085 1086static inline bool perf_paranoid_tracepoint_raw(void) 1087{ 1088 return sysctl_perf_event_paranoid > -1; 1089} 1090 1091static inline bool perf_paranoid_cpu(void) 1092{ 1093 return sysctl_perf_event_paranoid > 0; 1094} 1095 1096static inline bool perf_paranoid_kernel(void) 1097{ 1098 return sysctl_perf_event_paranoid > 1; 1099} 1100 1101extern void perf_event_init(void); 1102extern void perf_tp_event(u64 addr, u64 count, void *record, 1103 int entry_size, struct pt_regs *regs, 1104 struct hlist_head *head, int rctx); 1105extern void perf_bp_event(struct perf_event *event, void *data); 1106 1107#ifndef perf_misc_flags 1108#define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \ 1109 PERF_RECORD_MISC_KERNEL) 1110#define perf_instruction_pointer(regs) instruction_pointer(regs) 1111#endif 1112 1113extern int perf_output_begin(struct perf_output_handle *handle, 1114 struct perf_event *event, unsigned int size, 1115 int nmi, int sample); 1116extern void perf_output_end(struct perf_output_handle *handle); 1117extern void perf_output_copy(struct perf_output_handle *handle, 1118 const void *buf, unsigned int len); 1119extern int perf_swevent_get_recursion_context(void); 1120extern void perf_swevent_put_recursion_context(int rctx); 1121extern void perf_event_enable(struct perf_event *event); 1122extern void perf_event_disable(struct perf_event *event); 1123extern void perf_event_task_tick(void); 1124#else 1125static inline void 1126perf_event_task_sched_in(struct task_struct *task) { } 1127static inline void 1128perf_event_task_sched_out(struct task_struct *task, 1129 struct task_struct *next) { } 1130static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1131static inline void perf_event_exit_task(struct task_struct *child) { } 1132static inline void perf_event_free_task(struct task_struct *task) { } 1133static inline void perf_event_delayed_put(struct task_struct *task) { } 1134static inline void perf_event_print_debug(void) { } 1135static inline int perf_event_task_disable(void) { return -EINVAL; } 1136static inline int perf_event_task_enable(void) { return -EINVAL; } 1137 1138static inline void 1139perf_sw_event(u32 event_id, u64 nr, int nmi, 1140 struct pt_regs *regs, u64 addr) { } 1141static inline void 1142perf_bp_event(struct perf_event *event, void *data) { } 1143 1144static inline int perf_register_guest_info_callbacks 1145(struct perf_guest_info_callbacks *callbacks) { return 0; } 1146static inline int perf_unregister_guest_info_callbacks 1147(struct perf_guest_info_callbacks *callbacks) { return 0; } 1148 1149static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1150static inline void perf_event_comm(struct task_struct *tsk) { } 1151static inline void perf_event_fork(struct task_struct *tsk) { } 1152static inline void perf_event_init(void) { } 1153static inline int perf_swevent_get_recursion_context(void) { return -1; } 1154static inline void perf_swevent_put_recursion_context(int rctx) { } 1155static inline void perf_event_enable(struct perf_event *event) { } 1156static inline void perf_event_disable(struct perf_event *event) { } 1157static inline void perf_event_task_tick(void) { } 1158#endif 1159 1160#define perf_output_put(handle, x) \ 1161 perf_output_copy((handle), &(x), sizeof(x)) 1162 1163/* 1164 * This has to have a higher priority than migration_notifier in sched.c. 1165 */ 1166#define perf_cpu_notifier(fn) \ 1167do { \ 1168 static struct notifier_block fn##_nb __cpuinitdata = \ 1169 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1170 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1171 (void *)(unsigned long)smp_processor_id()); \ 1172 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1173 (void *)(unsigned long)smp_processor_id()); \ 1174 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1175 (void *)(unsigned long)smp_processor_id()); \ 1176 register_cpu_notifier(&fn##_nb); \ 1177} while (0) 1178 1179#endif /* __KERNEL__ */ 1180#endif /* _LINUX_PERF_EVENT_H */