at v2.6.38 27 kB view raw
1#ifndef __LINUX_PERCPU_H 2#define __LINUX_PERCPU_H 3 4#include <linux/preempt.h> 5#include <linux/smp.h> 6#include <linux/cpumask.h> 7#include <linux/pfn.h> 8#include <linux/init.h> 9 10#include <asm/percpu.h> 11 12/* enough to cover all DEFINE_PER_CPUs in modules */ 13#ifdef CONFIG_MODULES 14#define PERCPU_MODULE_RESERVE (8 << 10) 15#else 16#define PERCPU_MODULE_RESERVE 0 17#endif 18 19#ifndef PERCPU_ENOUGH_ROOM 20#define PERCPU_ENOUGH_ROOM \ 21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 22 PERCPU_MODULE_RESERVE) 23#endif 24 25/* 26 * Must be an lvalue. Since @var must be a simple identifier, 27 * we force a syntax error here if it isn't. 28 */ 29#define get_cpu_var(var) (*({ \ 30 preempt_disable(); \ 31 &__get_cpu_var(var); })) 32 33/* 34 * The weird & is necessary because sparse considers (void)(var) to be 35 * a direct dereference of percpu variable (var). 36 */ 37#define put_cpu_var(var) do { \ 38 (void)&(var); \ 39 preempt_enable(); \ 40} while (0) 41 42#define get_cpu_ptr(var) ({ \ 43 preempt_disable(); \ 44 this_cpu_ptr(var); }) 45 46#define put_cpu_ptr(var) do { \ 47 (void)(var); \ 48 preempt_enable(); \ 49} while (0) 50 51/* minimum unit size, also is the maximum supported allocation size */ 52#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10) 53 54/* 55 * Percpu allocator can serve percpu allocations before slab is 56 * initialized which allows slab to depend on the percpu allocator. 57 * The following two parameters decide how much resource to 58 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or 59 * larger than PERCPU_DYNAMIC_EARLY_SIZE. 60 */ 61#define PERCPU_DYNAMIC_EARLY_SLOTS 128 62#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10) 63 64/* 65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 66 * back on the first chunk for dynamic percpu allocation if arch is 67 * manually allocating and mapping it for faster access (as a part of 68 * large page mapping for example). 69 * 70 * The following values give between one and two pages of free space 71 * after typical minimal boot (2-way SMP, single disk and NIC) with 72 * both defconfig and a distro config on x86_64 and 32. More 73 * intelligent way to determine this would be nice. 74 */ 75#if BITS_PER_LONG > 32 76#define PERCPU_DYNAMIC_RESERVE (20 << 10) 77#else 78#define PERCPU_DYNAMIC_RESERVE (12 << 10) 79#endif 80 81extern void *pcpu_base_addr; 82extern const unsigned long *pcpu_unit_offsets; 83 84struct pcpu_group_info { 85 int nr_units; /* aligned # of units */ 86 unsigned long base_offset; /* base address offset */ 87 unsigned int *cpu_map; /* unit->cpu map, empty 88 * entries contain NR_CPUS */ 89}; 90 91struct pcpu_alloc_info { 92 size_t static_size; 93 size_t reserved_size; 94 size_t dyn_size; 95 size_t unit_size; 96 size_t atom_size; 97 size_t alloc_size; 98 size_t __ai_size; /* internal, don't use */ 99 int nr_groups; /* 0 if grouping unnecessary */ 100 struct pcpu_group_info groups[]; 101}; 102 103enum pcpu_fc { 104 PCPU_FC_AUTO, 105 PCPU_FC_EMBED, 106 PCPU_FC_PAGE, 107 108 PCPU_FC_NR, 109}; 110extern const char *pcpu_fc_names[PCPU_FC_NR]; 111 112extern enum pcpu_fc pcpu_chosen_fc; 113 114typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 115 size_t align); 116typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 117typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 118typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 119 120extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 121 int nr_units); 122extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 123 124extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 125 void *base_addr); 126 127#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 128extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 129 size_t atom_size, 130 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 131 pcpu_fc_alloc_fn_t alloc_fn, 132 pcpu_fc_free_fn_t free_fn); 133#endif 134 135#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 136extern int __init pcpu_page_first_chunk(size_t reserved_size, 137 pcpu_fc_alloc_fn_t alloc_fn, 138 pcpu_fc_free_fn_t free_fn, 139 pcpu_fc_populate_pte_fn_t populate_pte_fn); 140#endif 141 142/* 143 * Use this to get to a cpu's version of the per-cpu object 144 * dynamically allocated. Non-atomic access to the current CPU's 145 * version should probably be combined with get_cpu()/put_cpu(). 146 */ 147#ifdef CONFIG_SMP 148#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 149#else 150#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); }) 151#endif 152 153extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); 154extern bool is_kernel_percpu_address(unsigned long addr); 155 156#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 157extern void __init setup_per_cpu_areas(void); 158#endif 159extern void __init percpu_init_late(void); 160 161extern void __percpu *__alloc_percpu(size_t size, size_t align); 162extern void free_percpu(void __percpu *__pdata); 163extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 164 165#define alloc_percpu(type) \ 166 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) 167 168/* 169 * Optional methods for optimized non-lvalue per-cpu variable access. 170 * 171 * @var can be a percpu variable or a field of it and its size should 172 * equal char, int or long. percpu_read() evaluates to a lvalue and 173 * all others to void. 174 * 175 * These operations are guaranteed to be atomic w.r.t. preemption. 176 * The generic versions use plain get/put_cpu_var(). Archs are 177 * encouraged to implement single-instruction alternatives which don't 178 * require preemption protection. 179 */ 180#ifndef percpu_read 181# define percpu_read(var) \ 182 ({ \ 183 typeof(var) *pr_ptr__ = &(var); \ 184 typeof(var) pr_ret__; \ 185 pr_ret__ = get_cpu_var(*pr_ptr__); \ 186 put_cpu_var(*pr_ptr__); \ 187 pr_ret__; \ 188 }) 189#endif 190 191#define __percpu_generic_to_op(var, val, op) \ 192do { \ 193 typeof(var) *pgto_ptr__ = &(var); \ 194 get_cpu_var(*pgto_ptr__) op val; \ 195 put_cpu_var(*pgto_ptr__); \ 196} while (0) 197 198#ifndef percpu_write 199# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) 200#endif 201 202#ifndef percpu_add 203# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) 204#endif 205 206#ifndef percpu_sub 207# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) 208#endif 209 210#ifndef percpu_and 211# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) 212#endif 213 214#ifndef percpu_or 215# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) 216#endif 217 218#ifndef percpu_xor 219# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) 220#endif 221 222/* 223 * Branching function to split up a function into a set of functions that 224 * are called for different scalar sizes of the objects handled. 225 */ 226 227extern void __bad_size_call_parameter(void); 228 229#define __pcpu_size_call_return(stem, variable) \ 230({ typeof(variable) pscr_ret__; \ 231 __verify_pcpu_ptr(&(variable)); \ 232 switch(sizeof(variable)) { \ 233 case 1: pscr_ret__ = stem##1(variable);break; \ 234 case 2: pscr_ret__ = stem##2(variable);break; \ 235 case 4: pscr_ret__ = stem##4(variable);break; \ 236 case 8: pscr_ret__ = stem##8(variable);break; \ 237 default: \ 238 __bad_size_call_parameter();break; \ 239 } \ 240 pscr_ret__; \ 241}) 242 243#define __pcpu_size_call_return2(stem, variable, ...) \ 244({ \ 245 typeof(variable) pscr2_ret__; \ 246 __verify_pcpu_ptr(&(variable)); \ 247 switch(sizeof(variable)) { \ 248 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \ 249 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \ 250 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \ 251 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \ 252 default: \ 253 __bad_size_call_parameter(); break; \ 254 } \ 255 pscr2_ret__; \ 256}) 257 258#define __pcpu_size_call(stem, variable, ...) \ 259do { \ 260 __verify_pcpu_ptr(&(variable)); \ 261 switch(sizeof(variable)) { \ 262 case 1: stem##1(variable, __VA_ARGS__);break; \ 263 case 2: stem##2(variable, __VA_ARGS__);break; \ 264 case 4: stem##4(variable, __VA_ARGS__);break; \ 265 case 8: stem##8(variable, __VA_ARGS__);break; \ 266 default: \ 267 __bad_size_call_parameter();break; \ 268 } \ 269} while (0) 270 271/* 272 * Optimized manipulation for memory allocated through the per cpu 273 * allocator or for addresses of per cpu variables. 274 * 275 * These operation guarantee exclusivity of access for other operations 276 * on the *same* processor. The assumption is that per cpu data is only 277 * accessed by a single processor instance (the current one). 278 * 279 * The first group is used for accesses that must be done in a 280 * preemption safe way since we know that the context is not preempt 281 * safe. Interrupts may occur. If the interrupt modifies the variable 282 * too then RMW actions will not be reliable. 283 * 284 * The arch code can provide optimized functions in two ways: 285 * 286 * 1. Override the function completely. F.e. define this_cpu_add(). 287 * The arch must then ensure that the various scalar format passed 288 * are handled correctly. 289 * 290 * 2. Provide functions for certain scalar sizes. F.e. provide 291 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 292 * sized RMW actions. If arch code does not provide operations for 293 * a scalar size then the fallback in the generic code will be 294 * used. 295 */ 296 297#define _this_cpu_generic_read(pcp) \ 298({ typeof(pcp) ret__; \ 299 preempt_disable(); \ 300 ret__ = *this_cpu_ptr(&(pcp)); \ 301 preempt_enable(); \ 302 ret__; \ 303}) 304 305#ifndef this_cpu_read 306# ifndef this_cpu_read_1 307# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 308# endif 309# ifndef this_cpu_read_2 310# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 311# endif 312# ifndef this_cpu_read_4 313# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 314# endif 315# ifndef this_cpu_read_8 316# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 317# endif 318# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 319#endif 320 321#define _this_cpu_generic_to_op(pcp, val, op) \ 322do { \ 323 preempt_disable(); \ 324 *__this_cpu_ptr(&(pcp)) op val; \ 325 preempt_enable(); \ 326} while (0) 327 328#ifndef this_cpu_write 329# ifndef this_cpu_write_1 330# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 331# endif 332# ifndef this_cpu_write_2 333# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 334# endif 335# ifndef this_cpu_write_4 336# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 337# endif 338# ifndef this_cpu_write_8 339# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 340# endif 341# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 342#endif 343 344#ifndef this_cpu_add 345# ifndef this_cpu_add_1 346# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 347# endif 348# ifndef this_cpu_add_2 349# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 350# endif 351# ifndef this_cpu_add_4 352# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 353# endif 354# ifndef this_cpu_add_8 355# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 356# endif 357# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 358#endif 359 360#ifndef this_cpu_sub 361# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) 362#endif 363 364#ifndef this_cpu_inc 365# define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 366#endif 367 368#ifndef this_cpu_dec 369# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 370#endif 371 372#ifndef this_cpu_and 373# ifndef this_cpu_and_1 374# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 375# endif 376# ifndef this_cpu_and_2 377# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 378# endif 379# ifndef this_cpu_and_4 380# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 381# endif 382# ifndef this_cpu_and_8 383# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 384# endif 385# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 386#endif 387 388#ifndef this_cpu_or 389# ifndef this_cpu_or_1 390# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 391# endif 392# ifndef this_cpu_or_2 393# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 394# endif 395# ifndef this_cpu_or_4 396# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 397# endif 398# ifndef this_cpu_or_8 399# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 400# endif 401# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 402#endif 403 404#ifndef this_cpu_xor 405# ifndef this_cpu_xor_1 406# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 407# endif 408# ifndef this_cpu_xor_2 409# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 410# endif 411# ifndef this_cpu_xor_4 412# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 413# endif 414# ifndef this_cpu_xor_8 415# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 416# endif 417# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 418#endif 419 420#define _this_cpu_generic_add_return(pcp, val) \ 421({ \ 422 typeof(pcp) ret__; \ 423 preempt_disable(); \ 424 __this_cpu_add(pcp, val); \ 425 ret__ = __this_cpu_read(pcp); \ 426 preempt_enable(); \ 427 ret__; \ 428}) 429 430#ifndef this_cpu_add_return 431# ifndef this_cpu_add_return_1 432# define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val) 433# endif 434# ifndef this_cpu_add_return_2 435# define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val) 436# endif 437# ifndef this_cpu_add_return_4 438# define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val) 439# endif 440# ifndef this_cpu_add_return_8 441# define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val) 442# endif 443# define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val) 444#endif 445 446#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val)) 447#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1) 448#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1) 449 450#define _this_cpu_generic_xchg(pcp, nval) \ 451({ typeof(pcp) ret__; \ 452 preempt_disable(); \ 453 ret__ = __this_cpu_read(pcp); \ 454 __this_cpu_write(pcp, nval); \ 455 preempt_enable(); \ 456 ret__; \ 457}) 458 459#ifndef this_cpu_xchg 460# ifndef this_cpu_xchg_1 461# define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 462# endif 463# ifndef this_cpu_xchg_2 464# define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 465# endif 466# ifndef this_cpu_xchg_4 467# define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 468# endif 469# ifndef this_cpu_xchg_8 470# define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 471# endif 472# define this_cpu_xchg(pcp, nval) \ 473 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval) 474#endif 475 476#define _this_cpu_generic_cmpxchg(pcp, oval, nval) \ 477({ typeof(pcp) ret__; \ 478 preempt_disable(); \ 479 ret__ = __this_cpu_read(pcp); \ 480 if (ret__ == (oval)) \ 481 __this_cpu_write(pcp, nval); \ 482 preempt_enable(); \ 483 ret__; \ 484}) 485 486#ifndef this_cpu_cmpxchg 487# ifndef this_cpu_cmpxchg_1 488# define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 489# endif 490# ifndef this_cpu_cmpxchg_2 491# define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 492# endif 493# ifndef this_cpu_cmpxchg_4 494# define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 495# endif 496# ifndef this_cpu_cmpxchg_8 497# define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 498# endif 499# define this_cpu_cmpxchg(pcp, oval, nval) \ 500 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval) 501#endif 502 503/* 504 * Generic percpu operations that do not require preemption handling. 505 * Either we do not care about races or the caller has the 506 * responsibility of handling preemptions issues. Arch code can still 507 * override these instructions since the arch per cpu code may be more 508 * efficient and may actually get race freeness for free (that is the 509 * case for x86 for example). 510 * 511 * If there is no other protection through preempt disable and/or 512 * disabling interupts then one of these RMW operations can show unexpected 513 * behavior because the execution thread was rescheduled on another processor 514 * or an interrupt occurred and the same percpu variable was modified from 515 * the interrupt context. 516 */ 517#ifndef __this_cpu_read 518# ifndef __this_cpu_read_1 519# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) 520# endif 521# ifndef __this_cpu_read_2 522# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) 523# endif 524# ifndef __this_cpu_read_4 525# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) 526# endif 527# ifndef __this_cpu_read_8 528# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) 529# endif 530# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) 531#endif 532 533#define __this_cpu_generic_to_op(pcp, val, op) \ 534do { \ 535 *__this_cpu_ptr(&(pcp)) op val; \ 536} while (0) 537 538#ifndef __this_cpu_write 539# ifndef __this_cpu_write_1 540# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 541# endif 542# ifndef __this_cpu_write_2 543# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 544# endif 545# ifndef __this_cpu_write_4 546# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 547# endif 548# ifndef __this_cpu_write_8 549# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 550# endif 551# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) 552#endif 553 554#ifndef __this_cpu_add 555# ifndef __this_cpu_add_1 556# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 557# endif 558# ifndef __this_cpu_add_2 559# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 560# endif 561# ifndef __this_cpu_add_4 562# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 563# endif 564# ifndef __this_cpu_add_8 565# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 566# endif 567# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) 568#endif 569 570#ifndef __this_cpu_sub 571# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) 572#endif 573 574#ifndef __this_cpu_inc 575# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 576#endif 577 578#ifndef __this_cpu_dec 579# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 580#endif 581 582#ifndef __this_cpu_and 583# ifndef __this_cpu_and_1 584# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 585# endif 586# ifndef __this_cpu_and_2 587# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 588# endif 589# ifndef __this_cpu_and_4 590# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 591# endif 592# ifndef __this_cpu_and_8 593# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 594# endif 595# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) 596#endif 597 598#ifndef __this_cpu_or 599# ifndef __this_cpu_or_1 600# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 601# endif 602# ifndef __this_cpu_or_2 603# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 604# endif 605# ifndef __this_cpu_or_4 606# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 607# endif 608# ifndef __this_cpu_or_8 609# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 610# endif 611# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) 612#endif 613 614#ifndef __this_cpu_xor 615# ifndef __this_cpu_xor_1 616# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 617# endif 618# ifndef __this_cpu_xor_2 619# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 620# endif 621# ifndef __this_cpu_xor_4 622# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 623# endif 624# ifndef __this_cpu_xor_8 625# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 626# endif 627# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) 628#endif 629 630#define __this_cpu_generic_add_return(pcp, val) \ 631({ \ 632 __this_cpu_add(pcp, val); \ 633 __this_cpu_read(pcp); \ 634}) 635 636#ifndef __this_cpu_add_return 637# ifndef __this_cpu_add_return_1 638# define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val) 639# endif 640# ifndef __this_cpu_add_return_2 641# define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val) 642# endif 643# ifndef __this_cpu_add_return_4 644# define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val) 645# endif 646# ifndef __this_cpu_add_return_8 647# define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val) 648# endif 649# define __this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val) 650#endif 651 652#define __this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val)) 653#define __this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1) 654#define __this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1) 655 656#define __this_cpu_generic_xchg(pcp, nval) \ 657({ typeof(pcp) ret__; \ 658 ret__ = __this_cpu_read(pcp); \ 659 __this_cpu_write(pcp, nval); \ 660 ret__; \ 661}) 662 663#ifndef __this_cpu_xchg 664# ifndef __this_cpu_xchg_1 665# define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 666# endif 667# ifndef __this_cpu_xchg_2 668# define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 669# endif 670# ifndef __this_cpu_xchg_4 671# define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 672# endif 673# ifndef __this_cpu_xchg_8 674# define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 675# endif 676# define __this_cpu_xchg(pcp, nval) \ 677 __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval) 678#endif 679 680#define __this_cpu_generic_cmpxchg(pcp, oval, nval) \ 681({ \ 682 typeof(pcp) ret__; \ 683 ret__ = __this_cpu_read(pcp); \ 684 if (ret__ == (oval)) \ 685 __this_cpu_write(pcp, nval); \ 686 ret__; \ 687}) 688 689#ifndef __this_cpu_cmpxchg 690# ifndef __this_cpu_cmpxchg_1 691# define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 692# endif 693# ifndef __this_cpu_cmpxchg_2 694# define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 695# endif 696# ifndef __this_cpu_cmpxchg_4 697# define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 698# endif 699# ifndef __this_cpu_cmpxchg_8 700# define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 701# endif 702# define __this_cpu_cmpxchg(pcp, oval, nval) \ 703 __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval) 704#endif 705 706/* 707 * IRQ safe versions of the per cpu RMW operations. Note that these operations 708 * are *not* safe against modification of the same variable from another 709 * processors (which one gets when using regular atomic operations) 710 * They are guaranteed to be atomic vs. local interrupts and 711 * preemption only. 712 */ 713#define irqsafe_cpu_generic_to_op(pcp, val, op) \ 714do { \ 715 unsigned long flags; \ 716 local_irq_save(flags); \ 717 *__this_cpu_ptr(&(pcp)) op val; \ 718 local_irq_restore(flags); \ 719} while (0) 720 721#ifndef irqsafe_cpu_add 722# ifndef irqsafe_cpu_add_1 723# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 724# endif 725# ifndef irqsafe_cpu_add_2 726# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 727# endif 728# ifndef irqsafe_cpu_add_4 729# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 730# endif 731# ifndef irqsafe_cpu_add_8 732# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 733# endif 734# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val)) 735#endif 736 737#ifndef irqsafe_cpu_sub 738# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val)) 739#endif 740 741#ifndef irqsafe_cpu_inc 742# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1) 743#endif 744 745#ifndef irqsafe_cpu_dec 746# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1) 747#endif 748 749#ifndef irqsafe_cpu_and 750# ifndef irqsafe_cpu_and_1 751# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 752# endif 753# ifndef irqsafe_cpu_and_2 754# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 755# endif 756# ifndef irqsafe_cpu_and_4 757# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 758# endif 759# ifndef irqsafe_cpu_and_8 760# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 761# endif 762# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val)) 763#endif 764 765#ifndef irqsafe_cpu_or 766# ifndef irqsafe_cpu_or_1 767# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 768# endif 769# ifndef irqsafe_cpu_or_2 770# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 771# endif 772# ifndef irqsafe_cpu_or_4 773# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 774# endif 775# ifndef irqsafe_cpu_or_8 776# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 777# endif 778# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val)) 779#endif 780 781#ifndef irqsafe_cpu_xor 782# ifndef irqsafe_cpu_xor_1 783# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 784# endif 785# ifndef irqsafe_cpu_xor_2 786# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 787# endif 788# ifndef irqsafe_cpu_xor_4 789# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 790# endif 791# ifndef irqsafe_cpu_xor_8 792# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 793# endif 794# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val)) 795#endif 796 797#define irqsafe_cpu_generic_cmpxchg(pcp, oval, nval) \ 798({ \ 799 typeof(pcp) ret__; \ 800 unsigned long flags; \ 801 local_irq_save(flags); \ 802 ret__ = __this_cpu_read(pcp); \ 803 if (ret__ == (oval)) \ 804 __this_cpu_write(pcp, nval); \ 805 local_irq_restore(flags); \ 806 ret__; \ 807}) 808 809#ifndef irqsafe_cpu_cmpxchg 810# ifndef irqsafe_cpu_cmpxchg_1 811# define irqsafe_cpu_cmpxchg_1(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval) 812# endif 813# ifndef irqsafe_cpu_cmpxchg_2 814# define irqsafe_cpu_cmpxchg_2(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval) 815# endif 816# ifndef irqsafe_cpu_cmpxchg_4 817# define irqsafe_cpu_cmpxchg_4(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval) 818# endif 819# ifndef irqsafe_cpu_cmpxchg_8 820# define irqsafe_cpu_cmpxchg_8(pcp, oval, nval) irqsafe_cpu_generic_cmpxchg(pcp, oval, nval) 821# endif 822# define irqsafe_cpu_cmpxchg(pcp, oval, nval) \ 823 __pcpu_size_call_return2(irqsafe_cpu_cmpxchg_, (pcp), oval, nval) 824#endif 825 826#endif /* __LINUX_PERCPU_H */