at v2.6.38 56 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/list.h> 10#include <linux/mmzone.h> 11#include <linux/rbtree.h> 12#include <linux/prio_tree.h> 13#include <linux/debug_locks.h> 14#include <linux/mm_types.h> 15#include <linux/range.h> 16#include <linux/pfn.h> 17#include <linux/bit_spinlock.h> 18 19struct mempolicy; 20struct anon_vma; 21struct file_ra_state; 22struct user_struct; 23struct writeback_control; 24 25#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 26extern unsigned long max_mapnr; 27#endif 28 29extern unsigned long num_physpages; 30extern unsigned long totalram_pages; 31extern void * high_memory; 32extern int page_cluster; 33 34#ifdef CONFIG_SYSCTL 35extern int sysctl_legacy_va_layout; 36#else 37#define sysctl_legacy_va_layout 0 38#endif 39 40#include <asm/page.h> 41#include <asm/pgtable.h> 42#include <asm/processor.h> 43 44#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 45 46/* to align the pointer to the (next) page boundary */ 47#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 48 49/* 50 * Linux kernel virtual memory manager primitives. 51 * The idea being to have a "virtual" mm in the same way 52 * we have a virtual fs - giving a cleaner interface to the 53 * mm details, and allowing different kinds of memory mappings 54 * (from shared memory to executable loading to arbitrary 55 * mmap() functions). 56 */ 57 58extern struct kmem_cache *vm_area_cachep; 59 60#ifndef CONFIG_MMU 61extern struct rb_root nommu_region_tree; 62extern struct rw_semaphore nommu_region_sem; 63 64extern unsigned int kobjsize(const void *objp); 65#endif 66 67/* 68 * vm_flags in vm_area_struct, see mm_types.h. 69 */ 70#define VM_READ 0x00000001 /* currently active flags */ 71#define VM_WRITE 0x00000002 72#define VM_EXEC 0x00000004 73#define VM_SHARED 0x00000008 74 75/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 76#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 77#define VM_MAYWRITE 0x00000020 78#define VM_MAYEXEC 0x00000040 79#define VM_MAYSHARE 0x00000080 80 81#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 82#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 83#define VM_GROWSUP 0x00000200 84#else 85#define VM_GROWSUP 0x00000000 86#define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */ 87#endif 88#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 89#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 90 91#define VM_EXECUTABLE 0x00001000 92#define VM_LOCKED 0x00002000 93#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 94 95 /* Used by sys_madvise() */ 96#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 97#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 98 99#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 100#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 101#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 102#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 103#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 104#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 105#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 106#ifndef CONFIG_TRANSPARENT_HUGEPAGE 107#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 108#else 109#define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */ 110#endif 111#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 112#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 113 114#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 115#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 116#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 117#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ 118#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 119 120/* Bits set in the VMA until the stack is in its final location */ 121#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 122 123#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 124#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 125#endif 126 127#ifdef CONFIG_STACK_GROWSUP 128#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 129#else 130#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 131#endif 132 133#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 134#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 135#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 136#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 137#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 138 139/* 140 * special vmas that are non-mergable, non-mlock()able 141 */ 142#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 143 144/* 145 * mapping from the currently active vm_flags protection bits (the 146 * low four bits) to a page protection mask.. 147 */ 148extern pgprot_t protection_map[16]; 149 150#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 151#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 152#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 153#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 154 155/* 156 * This interface is used by x86 PAT code to identify a pfn mapping that is 157 * linear over entire vma. This is to optimize PAT code that deals with 158 * marking the physical region with a particular prot. This is not for generic 159 * mm use. Note also that this check will not work if the pfn mapping is 160 * linear for a vma starting at physical address 0. In which case PAT code 161 * falls back to slow path of reserving physical range page by page. 162 */ 163static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) 164{ 165 return (vma->vm_flags & VM_PFN_AT_MMAP); 166} 167 168static inline int is_pfn_mapping(struct vm_area_struct *vma) 169{ 170 return (vma->vm_flags & VM_PFNMAP); 171} 172 173/* 174 * vm_fault is filled by the the pagefault handler and passed to the vma's 175 * ->fault function. The vma's ->fault is responsible for returning a bitmask 176 * of VM_FAULT_xxx flags that give details about how the fault was handled. 177 * 178 * pgoff should be used in favour of virtual_address, if possible. If pgoff 179 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 180 * mapping support. 181 */ 182struct vm_fault { 183 unsigned int flags; /* FAULT_FLAG_xxx flags */ 184 pgoff_t pgoff; /* Logical page offset based on vma */ 185 void __user *virtual_address; /* Faulting virtual address */ 186 187 struct page *page; /* ->fault handlers should return a 188 * page here, unless VM_FAULT_NOPAGE 189 * is set (which is also implied by 190 * VM_FAULT_ERROR). 191 */ 192}; 193 194/* 195 * These are the virtual MM functions - opening of an area, closing and 196 * unmapping it (needed to keep files on disk up-to-date etc), pointer 197 * to the functions called when a no-page or a wp-page exception occurs. 198 */ 199struct vm_operations_struct { 200 void (*open)(struct vm_area_struct * area); 201 void (*close)(struct vm_area_struct * area); 202 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 203 204 /* notification that a previously read-only page is about to become 205 * writable, if an error is returned it will cause a SIGBUS */ 206 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 207 208 /* called by access_process_vm when get_user_pages() fails, typically 209 * for use by special VMAs that can switch between memory and hardware 210 */ 211 int (*access)(struct vm_area_struct *vma, unsigned long addr, 212 void *buf, int len, int write); 213#ifdef CONFIG_NUMA 214 /* 215 * set_policy() op must add a reference to any non-NULL @new mempolicy 216 * to hold the policy upon return. Caller should pass NULL @new to 217 * remove a policy and fall back to surrounding context--i.e. do not 218 * install a MPOL_DEFAULT policy, nor the task or system default 219 * mempolicy. 220 */ 221 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 222 223 /* 224 * get_policy() op must add reference [mpol_get()] to any policy at 225 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 226 * in mm/mempolicy.c will do this automatically. 227 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 228 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 229 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 230 * must return NULL--i.e., do not "fallback" to task or system default 231 * policy. 232 */ 233 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 234 unsigned long addr); 235 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 236 const nodemask_t *to, unsigned long flags); 237#endif 238}; 239 240struct mmu_gather; 241struct inode; 242 243#define page_private(page) ((page)->private) 244#define set_page_private(page, v) ((page)->private = (v)) 245 246/* 247 * FIXME: take this include out, include page-flags.h in 248 * files which need it (119 of them) 249 */ 250#include <linux/page-flags.h> 251#include <linux/huge_mm.h> 252 253/* 254 * Methods to modify the page usage count. 255 * 256 * What counts for a page usage: 257 * - cache mapping (page->mapping) 258 * - private data (page->private) 259 * - page mapped in a task's page tables, each mapping 260 * is counted separately 261 * 262 * Also, many kernel routines increase the page count before a critical 263 * routine so they can be sure the page doesn't go away from under them. 264 */ 265 266/* 267 * Drop a ref, return true if the refcount fell to zero (the page has no users) 268 */ 269static inline int put_page_testzero(struct page *page) 270{ 271 VM_BUG_ON(atomic_read(&page->_count) == 0); 272 return atomic_dec_and_test(&page->_count); 273} 274 275/* 276 * Try to grab a ref unless the page has a refcount of zero, return false if 277 * that is the case. 278 */ 279static inline int get_page_unless_zero(struct page *page) 280{ 281 return atomic_inc_not_zero(&page->_count); 282} 283 284extern int page_is_ram(unsigned long pfn); 285 286/* Support for virtually mapped pages */ 287struct page *vmalloc_to_page(const void *addr); 288unsigned long vmalloc_to_pfn(const void *addr); 289 290/* 291 * Determine if an address is within the vmalloc range 292 * 293 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 294 * is no special casing required. 295 */ 296static inline int is_vmalloc_addr(const void *x) 297{ 298#ifdef CONFIG_MMU 299 unsigned long addr = (unsigned long)x; 300 301 return addr >= VMALLOC_START && addr < VMALLOC_END; 302#else 303 return 0; 304#endif 305} 306#ifdef CONFIG_MMU 307extern int is_vmalloc_or_module_addr(const void *x); 308#else 309static inline int is_vmalloc_or_module_addr(const void *x) 310{ 311 return 0; 312} 313#endif 314 315static inline void compound_lock(struct page *page) 316{ 317#ifdef CONFIG_TRANSPARENT_HUGEPAGE 318 bit_spin_lock(PG_compound_lock, &page->flags); 319#endif 320} 321 322static inline void compound_unlock(struct page *page) 323{ 324#ifdef CONFIG_TRANSPARENT_HUGEPAGE 325 bit_spin_unlock(PG_compound_lock, &page->flags); 326#endif 327} 328 329static inline unsigned long compound_lock_irqsave(struct page *page) 330{ 331 unsigned long uninitialized_var(flags); 332#ifdef CONFIG_TRANSPARENT_HUGEPAGE 333 local_irq_save(flags); 334 compound_lock(page); 335#endif 336 return flags; 337} 338 339static inline void compound_unlock_irqrestore(struct page *page, 340 unsigned long flags) 341{ 342#ifdef CONFIG_TRANSPARENT_HUGEPAGE 343 compound_unlock(page); 344 local_irq_restore(flags); 345#endif 346} 347 348static inline struct page *compound_head(struct page *page) 349{ 350 if (unlikely(PageTail(page))) 351 return page->first_page; 352 return page; 353} 354 355static inline int page_count(struct page *page) 356{ 357 return atomic_read(&compound_head(page)->_count); 358} 359 360static inline void get_page(struct page *page) 361{ 362 /* 363 * Getting a normal page or the head of a compound page 364 * requires to already have an elevated page->_count. Only if 365 * we're getting a tail page, the elevated page->_count is 366 * required only in the head page, so for tail pages the 367 * bugcheck only verifies that the page->_count isn't 368 * negative. 369 */ 370 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page)); 371 atomic_inc(&page->_count); 372 /* 373 * Getting a tail page will elevate both the head and tail 374 * page->_count(s). 375 */ 376 if (unlikely(PageTail(page))) { 377 /* 378 * This is safe only because 379 * __split_huge_page_refcount can't run under 380 * get_page(). 381 */ 382 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0); 383 atomic_inc(&page->first_page->_count); 384 } 385} 386 387static inline struct page *virt_to_head_page(const void *x) 388{ 389 struct page *page = virt_to_page(x); 390 return compound_head(page); 391} 392 393/* 394 * Setup the page count before being freed into the page allocator for 395 * the first time (boot or memory hotplug) 396 */ 397static inline void init_page_count(struct page *page) 398{ 399 atomic_set(&page->_count, 1); 400} 401 402/* 403 * PageBuddy() indicate that the page is free and in the buddy system 404 * (see mm/page_alloc.c). 405 */ 406static inline int PageBuddy(struct page *page) 407{ 408 return atomic_read(&page->_mapcount) == -2; 409} 410 411static inline void __SetPageBuddy(struct page *page) 412{ 413 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 414 atomic_set(&page->_mapcount, -2); 415} 416 417static inline void __ClearPageBuddy(struct page *page) 418{ 419 VM_BUG_ON(!PageBuddy(page)); 420 atomic_set(&page->_mapcount, -1); 421} 422 423void put_page(struct page *page); 424void put_pages_list(struct list_head *pages); 425 426void split_page(struct page *page, unsigned int order); 427int split_free_page(struct page *page); 428 429/* 430 * Compound pages have a destructor function. Provide a 431 * prototype for that function and accessor functions. 432 * These are _only_ valid on the head of a PG_compound page. 433 */ 434typedef void compound_page_dtor(struct page *); 435 436static inline void set_compound_page_dtor(struct page *page, 437 compound_page_dtor *dtor) 438{ 439 page[1].lru.next = (void *)dtor; 440} 441 442static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 443{ 444 return (compound_page_dtor *)page[1].lru.next; 445} 446 447static inline int compound_order(struct page *page) 448{ 449 if (!PageHead(page)) 450 return 0; 451 return (unsigned long)page[1].lru.prev; 452} 453 454static inline int compound_trans_order(struct page *page) 455{ 456 int order; 457 unsigned long flags; 458 459 if (!PageHead(page)) 460 return 0; 461 462 flags = compound_lock_irqsave(page); 463 order = compound_order(page); 464 compound_unlock_irqrestore(page, flags); 465 return order; 466} 467 468static inline void set_compound_order(struct page *page, unsigned long order) 469{ 470 page[1].lru.prev = (void *)order; 471} 472 473#ifdef CONFIG_MMU 474/* 475 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 476 * servicing faults for write access. In the normal case, do always want 477 * pte_mkwrite. But get_user_pages can cause write faults for mappings 478 * that do not have writing enabled, when used by access_process_vm. 479 */ 480static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 481{ 482 if (likely(vma->vm_flags & VM_WRITE)) 483 pte = pte_mkwrite(pte); 484 return pte; 485} 486#endif 487 488/* 489 * Multiple processes may "see" the same page. E.g. for untouched 490 * mappings of /dev/null, all processes see the same page full of 491 * zeroes, and text pages of executables and shared libraries have 492 * only one copy in memory, at most, normally. 493 * 494 * For the non-reserved pages, page_count(page) denotes a reference count. 495 * page_count() == 0 means the page is free. page->lru is then used for 496 * freelist management in the buddy allocator. 497 * page_count() > 0 means the page has been allocated. 498 * 499 * Pages are allocated by the slab allocator in order to provide memory 500 * to kmalloc and kmem_cache_alloc. In this case, the management of the 501 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 502 * unless a particular usage is carefully commented. (the responsibility of 503 * freeing the kmalloc memory is the caller's, of course). 504 * 505 * A page may be used by anyone else who does a __get_free_page(). 506 * In this case, page_count still tracks the references, and should only 507 * be used through the normal accessor functions. The top bits of page->flags 508 * and page->virtual store page management information, but all other fields 509 * are unused and could be used privately, carefully. The management of this 510 * page is the responsibility of the one who allocated it, and those who have 511 * subsequently been given references to it. 512 * 513 * The other pages (we may call them "pagecache pages") are completely 514 * managed by the Linux memory manager: I/O, buffers, swapping etc. 515 * The following discussion applies only to them. 516 * 517 * A pagecache page contains an opaque `private' member, which belongs to the 518 * page's address_space. Usually, this is the address of a circular list of 519 * the page's disk buffers. PG_private must be set to tell the VM to call 520 * into the filesystem to release these pages. 521 * 522 * A page may belong to an inode's memory mapping. In this case, page->mapping 523 * is the pointer to the inode, and page->index is the file offset of the page, 524 * in units of PAGE_CACHE_SIZE. 525 * 526 * If pagecache pages are not associated with an inode, they are said to be 527 * anonymous pages. These may become associated with the swapcache, and in that 528 * case PG_swapcache is set, and page->private is an offset into the swapcache. 529 * 530 * In either case (swapcache or inode backed), the pagecache itself holds one 531 * reference to the page. Setting PG_private should also increment the 532 * refcount. The each user mapping also has a reference to the page. 533 * 534 * The pagecache pages are stored in a per-mapping radix tree, which is 535 * rooted at mapping->page_tree, and indexed by offset. 536 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 537 * lists, we instead now tag pages as dirty/writeback in the radix tree. 538 * 539 * All pagecache pages may be subject to I/O: 540 * - inode pages may need to be read from disk, 541 * - inode pages which have been modified and are MAP_SHARED may need 542 * to be written back to the inode on disk, 543 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 544 * modified may need to be swapped out to swap space and (later) to be read 545 * back into memory. 546 */ 547 548/* 549 * The zone field is never updated after free_area_init_core() 550 * sets it, so none of the operations on it need to be atomic. 551 */ 552 553 554/* 555 * page->flags layout: 556 * 557 * There are three possibilities for how page->flags get 558 * laid out. The first is for the normal case, without 559 * sparsemem. The second is for sparsemem when there is 560 * plenty of space for node and section. The last is when 561 * we have run out of space and have to fall back to an 562 * alternate (slower) way of determining the node. 563 * 564 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 565 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 566 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 567 */ 568#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 569#define SECTIONS_WIDTH SECTIONS_SHIFT 570#else 571#define SECTIONS_WIDTH 0 572#endif 573 574#define ZONES_WIDTH ZONES_SHIFT 575 576#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 577#define NODES_WIDTH NODES_SHIFT 578#else 579#ifdef CONFIG_SPARSEMEM_VMEMMAP 580#error "Vmemmap: No space for nodes field in page flags" 581#endif 582#define NODES_WIDTH 0 583#endif 584 585/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 586#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 587#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 588#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 589 590/* 591 * We are going to use the flags for the page to node mapping if its in 592 * there. This includes the case where there is no node, so it is implicit. 593 */ 594#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 595#define NODE_NOT_IN_PAGE_FLAGS 596#endif 597 598#ifndef PFN_SECTION_SHIFT 599#define PFN_SECTION_SHIFT 0 600#endif 601 602/* 603 * Define the bit shifts to access each section. For non-existant 604 * sections we define the shift as 0; that plus a 0 mask ensures 605 * the compiler will optimise away reference to them. 606 */ 607#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 608#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 609#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 610 611/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 612#ifdef NODE_NOT_IN_PAGE_FLAGS 613#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 614#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 615 SECTIONS_PGOFF : ZONES_PGOFF) 616#else 617#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 618#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 619 NODES_PGOFF : ZONES_PGOFF) 620#endif 621 622#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 623 624#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 625#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 626#endif 627 628#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 629#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 630#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 631#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 632 633static inline enum zone_type page_zonenum(struct page *page) 634{ 635 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 636} 637 638/* 639 * The identification function is only used by the buddy allocator for 640 * determining if two pages could be buddies. We are not really 641 * identifying a zone since we could be using a the section number 642 * id if we have not node id available in page flags. 643 * We guarantee only that it will return the same value for two 644 * combinable pages in a zone. 645 */ 646static inline int page_zone_id(struct page *page) 647{ 648 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 649} 650 651static inline int zone_to_nid(struct zone *zone) 652{ 653#ifdef CONFIG_NUMA 654 return zone->node; 655#else 656 return 0; 657#endif 658} 659 660#ifdef NODE_NOT_IN_PAGE_FLAGS 661extern int page_to_nid(struct page *page); 662#else 663static inline int page_to_nid(struct page *page) 664{ 665 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 666} 667#endif 668 669static inline struct zone *page_zone(struct page *page) 670{ 671 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 672} 673 674#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 675static inline unsigned long page_to_section(struct page *page) 676{ 677 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 678} 679#endif 680 681static inline void set_page_zone(struct page *page, enum zone_type zone) 682{ 683 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 684 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 685} 686 687static inline void set_page_node(struct page *page, unsigned long node) 688{ 689 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 690 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 691} 692 693static inline void set_page_section(struct page *page, unsigned long section) 694{ 695 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 696 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 697} 698 699static inline void set_page_links(struct page *page, enum zone_type zone, 700 unsigned long node, unsigned long pfn) 701{ 702 set_page_zone(page, zone); 703 set_page_node(page, node); 704 set_page_section(page, pfn_to_section_nr(pfn)); 705} 706 707/* 708 * Some inline functions in vmstat.h depend on page_zone() 709 */ 710#include <linux/vmstat.h> 711 712static __always_inline void *lowmem_page_address(struct page *page) 713{ 714 return __va(PFN_PHYS(page_to_pfn(page))); 715} 716 717#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 718#define HASHED_PAGE_VIRTUAL 719#endif 720 721#if defined(WANT_PAGE_VIRTUAL) 722#define page_address(page) ((page)->virtual) 723#define set_page_address(page, address) \ 724 do { \ 725 (page)->virtual = (address); \ 726 } while(0) 727#define page_address_init() do { } while(0) 728#endif 729 730#if defined(HASHED_PAGE_VIRTUAL) 731void *page_address(struct page *page); 732void set_page_address(struct page *page, void *virtual); 733void page_address_init(void); 734#endif 735 736#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 737#define page_address(page) lowmem_page_address(page) 738#define set_page_address(page, address) do { } while(0) 739#define page_address_init() do { } while(0) 740#endif 741 742/* 743 * On an anonymous page mapped into a user virtual memory area, 744 * page->mapping points to its anon_vma, not to a struct address_space; 745 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 746 * 747 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 748 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 749 * and then page->mapping points, not to an anon_vma, but to a private 750 * structure which KSM associates with that merged page. See ksm.h. 751 * 752 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 753 * 754 * Please note that, confusingly, "page_mapping" refers to the inode 755 * address_space which maps the page from disk; whereas "page_mapped" 756 * refers to user virtual address space into which the page is mapped. 757 */ 758#define PAGE_MAPPING_ANON 1 759#define PAGE_MAPPING_KSM 2 760#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 761 762extern struct address_space swapper_space; 763static inline struct address_space *page_mapping(struct page *page) 764{ 765 struct address_space *mapping = page->mapping; 766 767 VM_BUG_ON(PageSlab(page)); 768 if (unlikely(PageSwapCache(page))) 769 mapping = &swapper_space; 770 else if ((unsigned long)mapping & PAGE_MAPPING_ANON) 771 mapping = NULL; 772 return mapping; 773} 774 775/* Neutral page->mapping pointer to address_space or anon_vma or other */ 776static inline void *page_rmapping(struct page *page) 777{ 778 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 779} 780 781static inline int PageAnon(struct page *page) 782{ 783 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 784} 785 786/* 787 * Return the pagecache index of the passed page. Regular pagecache pages 788 * use ->index whereas swapcache pages use ->private 789 */ 790static inline pgoff_t page_index(struct page *page) 791{ 792 if (unlikely(PageSwapCache(page))) 793 return page_private(page); 794 return page->index; 795} 796 797/* 798 * The atomic page->_mapcount, like _count, starts from -1: 799 * so that transitions both from it and to it can be tracked, 800 * using atomic_inc_and_test and atomic_add_negative(-1). 801 */ 802static inline void reset_page_mapcount(struct page *page) 803{ 804 atomic_set(&(page)->_mapcount, -1); 805} 806 807static inline int page_mapcount(struct page *page) 808{ 809 return atomic_read(&(page)->_mapcount) + 1; 810} 811 812/* 813 * Return true if this page is mapped into pagetables. 814 */ 815static inline int page_mapped(struct page *page) 816{ 817 return atomic_read(&(page)->_mapcount) >= 0; 818} 819 820/* 821 * Different kinds of faults, as returned by handle_mm_fault(). 822 * Used to decide whether a process gets delivered SIGBUS or 823 * just gets major/minor fault counters bumped up. 824 */ 825 826#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 827 828#define VM_FAULT_OOM 0x0001 829#define VM_FAULT_SIGBUS 0x0002 830#define VM_FAULT_MAJOR 0x0004 831#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 832#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 833#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 834 835#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 836#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 837#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 838 839#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 840 841#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 842 VM_FAULT_HWPOISON_LARGE) 843 844/* Encode hstate index for a hwpoisoned large page */ 845#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 846#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 847 848/* 849 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 850 */ 851extern void pagefault_out_of_memory(void); 852 853#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 854 855extern void show_free_areas(void); 856 857int shmem_lock(struct file *file, int lock, struct user_struct *user); 858struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); 859int shmem_zero_setup(struct vm_area_struct *); 860 861#ifndef CONFIG_MMU 862extern unsigned long shmem_get_unmapped_area(struct file *file, 863 unsigned long addr, 864 unsigned long len, 865 unsigned long pgoff, 866 unsigned long flags); 867#endif 868 869extern int can_do_mlock(void); 870extern int user_shm_lock(size_t, struct user_struct *); 871extern void user_shm_unlock(size_t, struct user_struct *); 872 873/* 874 * Parameter block passed down to zap_pte_range in exceptional cases. 875 */ 876struct zap_details { 877 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 878 struct address_space *check_mapping; /* Check page->mapping if set */ 879 pgoff_t first_index; /* Lowest page->index to unmap */ 880 pgoff_t last_index; /* Highest page->index to unmap */ 881 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 882 unsigned long truncate_count; /* Compare vm_truncate_count */ 883}; 884 885struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 886 pte_t pte); 887 888int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 889 unsigned long size); 890unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 891 unsigned long size, struct zap_details *); 892unsigned long unmap_vmas(struct mmu_gather **tlb, 893 struct vm_area_struct *start_vma, unsigned long start_addr, 894 unsigned long end_addr, unsigned long *nr_accounted, 895 struct zap_details *); 896 897/** 898 * mm_walk - callbacks for walk_page_range 899 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 900 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 901 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 902 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 903 * @pte_hole: if set, called for each hole at all levels 904 * @hugetlb_entry: if set, called for each hugetlb entry 905 * 906 * (see walk_page_range for more details) 907 */ 908struct mm_walk { 909 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 910 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 911 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 912 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 913 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 914 int (*hugetlb_entry)(pte_t *, unsigned long, 915 unsigned long, unsigned long, struct mm_walk *); 916 struct mm_struct *mm; 917 void *private; 918}; 919 920int walk_page_range(unsigned long addr, unsigned long end, 921 struct mm_walk *walk); 922void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 923 unsigned long end, unsigned long floor, unsigned long ceiling); 924int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 925 struct vm_area_struct *vma); 926void unmap_mapping_range(struct address_space *mapping, 927 loff_t const holebegin, loff_t const holelen, int even_cows); 928int follow_pfn(struct vm_area_struct *vma, unsigned long address, 929 unsigned long *pfn); 930int follow_phys(struct vm_area_struct *vma, unsigned long address, 931 unsigned int flags, unsigned long *prot, resource_size_t *phys); 932int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 933 void *buf, int len, int write); 934 935static inline void unmap_shared_mapping_range(struct address_space *mapping, 936 loff_t const holebegin, loff_t const holelen) 937{ 938 unmap_mapping_range(mapping, holebegin, holelen, 0); 939} 940 941extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 942extern void truncate_setsize(struct inode *inode, loff_t newsize); 943extern int vmtruncate(struct inode *inode, loff_t offset); 944extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end); 945 946int truncate_inode_page(struct address_space *mapping, struct page *page); 947int generic_error_remove_page(struct address_space *mapping, struct page *page); 948 949int invalidate_inode_page(struct page *page); 950 951#ifdef CONFIG_MMU 952extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 953 unsigned long address, unsigned int flags); 954#else 955static inline int handle_mm_fault(struct mm_struct *mm, 956 struct vm_area_struct *vma, unsigned long address, 957 unsigned int flags) 958{ 959 /* should never happen if there's no MMU */ 960 BUG(); 961 return VM_FAULT_SIGBUS; 962} 963#endif 964 965extern int make_pages_present(unsigned long addr, unsigned long end); 966extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 967 968int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 969 unsigned long start, int nr_pages, int write, int force, 970 struct page **pages, struct vm_area_struct **vmas); 971int get_user_pages_fast(unsigned long start, int nr_pages, int write, 972 struct page **pages); 973struct page *get_dump_page(unsigned long addr); 974 975extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 976extern void do_invalidatepage(struct page *page, unsigned long offset); 977 978int __set_page_dirty_nobuffers(struct page *page); 979int __set_page_dirty_no_writeback(struct page *page); 980int redirty_page_for_writepage(struct writeback_control *wbc, 981 struct page *page); 982void account_page_dirtied(struct page *page, struct address_space *mapping); 983void account_page_writeback(struct page *page); 984int set_page_dirty(struct page *page); 985int set_page_dirty_lock(struct page *page); 986int clear_page_dirty_for_io(struct page *page); 987 988/* Is the vma a continuation of the stack vma above it? */ 989static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr) 990{ 991 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 992} 993 994extern unsigned long move_page_tables(struct vm_area_struct *vma, 995 unsigned long old_addr, struct vm_area_struct *new_vma, 996 unsigned long new_addr, unsigned long len); 997extern unsigned long do_mremap(unsigned long addr, 998 unsigned long old_len, unsigned long new_len, 999 unsigned long flags, unsigned long new_addr); 1000extern int mprotect_fixup(struct vm_area_struct *vma, 1001 struct vm_area_struct **pprev, unsigned long start, 1002 unsigned long end, unsigned long newflags); 1003 1004/* 1005 * doesn't attempt to fault and will return short. 1006 */ 1007int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1008 struct page **pages); 1009/* 1010 * per-process(per-mm_struct) statistics. 1011 */ 1012#if defined(SPLIT_RSS_COUNTING) 1013/* 1014 * The mm counters are not protected by its page_table_lock, 1015 * so must be incremented atomically. 1016 */ 1017static inline void set_mm_counter(struct mm_struct *mm, int member, long value) 1018{ 1019 atomic_long_set(&mm->rss_stat.count[member], value); 1020} 1021 1022unsigned long get_mm_counter(struct mm_struct *mm, int member); 1023 1024static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1025{ 1026 atomic_long_add(value, &mm->rss_stat.count[member]); 1027} 1028 1029static inline void inc_mm_counter(struct mm_struct *mm, int member) 1030{ 1031 atomic_long_inc(&mm->rss_stat.count[member]); 1032} 1033 1034static inline void dec_mm_counter(struct mm_struct *mm, int member) 1035{ 1036 atomic_long_dec(&mm->rss_stat.count[member]); 1037} 1038 1039#else /* !USE_SPLIT_PTLOCKS */ 1040/* 1041 * The mm counters are protected by its page_table_lock, 1042 * so can be incremented directly. 1043 */ 1044static inline void set_mm_counter(struct mm_struct *mm, int member, long value) 1045{ 1046 mm->rss_stat.count[member] = value; 1047} 1048 1049static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1050{ 1051 return mm->rss_stat.count[member]; 1052} 1053 1054static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1055{ 1056 mm->rss_stat.count[member] += value; 1057} 1058 1059static inline void inc_mm_counter(struct mm_struct *mm, int member) 1060{ 1061 mm->rss_stat.count[member]++; 1062} 1063 1064static inline void dec_mm_counter(struct mm_struct *mm, int member) 1065{ 1066 mm->rss_stat.count[member]--; 1067} 1068 1069#endif /* !USE_SPLIT_PTLOCKS */ 1070 1071static inline unsigned long get_mm_rss(struct mm_struct *mm) 1072{ 1073 return get_mm_counter(mm, MM_FILEPAGES) + 1074 get_mm_counter(mm, MM_ANONPAGES); 1075} 1076 1077static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1078{ 1079 return max(mm->hiwater_rss, get_mm_rss(mm)); 1080} 1081 1082static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1083{ 1084 return max(mm->hiwater_vm, mm->total_vm); 1085} 1086 1087static inline void update_hiwater_rss(struct mm_struct *mm) 1088{ 1089 unsigned long _rss = get_mm_rss(mm); 1090 1091 if ((mm)->hiwater_rss < _rss) 1092 (mm)->hiwater_rss = _rss; 1093} 1094 1095static inline void update_hiwater_vm(struct mm_struct *mm) 1096{ 1097 if (mm->hiwater_vm < mm->total_vm) 1098 mm->hiwater_vm = mm->total_vm; 1099} 1100 1101static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1102 struct mm_struct *mm) 1103{ 1104 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1105 1106 if (*maxrss < hiwater_rss) 1107 *maxrss = hiwater_rss; 1108} 1109 1110#if defined(SPLIT_RSS_COUNTING) 1111void sync_mm_rss(struct task_struct *task, struct mm_struct *mm); 1112#else 1113static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 1114{ 1115} 1116#endif 1117 1118/* 1119 * A callback you can register to apply pressure to ageable caches. 1120 * 1121 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 1122 * look through the least-recently-used 'nr_to_scan' entries and 1123 * attempt to free them up. It should return the number of objects 1124 * which remain in the cache. If it returns -1, it means it cannot do 1125 * any scanning at this time (eg. there is a risk of deadlock). 1126 * 1127 * The 'gfpmask' refers to the allocation we are currently trying to 1128 * fulfil. 1129 * 1130 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 1131 * querying the cache size, so a fastpath for that case is appropriate. 1132 */ 1133struct shrinker { 1134 int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask); 1135 int seeks; /* seeks to recreate an obj */ 1136 1137 /* These are for internal use */ 1138 struct list_head list; 1139 long nr; /* objs pending delete */ 1140}; 1141#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 1142extern void register_shrinker(struct shrinker *); 1143extern void unregister_shrinker(struct shrinker *); 1144 1145int vma_wants_writenotify(struct vm_area_struct *vma); 1146 1147extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1148 spinlock_t **ptl); 1149static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1150 spinlock_t **ptl) 1151{ 1152 pte_t *ptep; 1153 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1154 return ptep; 1155} 1156 1157#ifdef __PAGETABLE_PUD_FOLDED 1158static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1159 unsigned long address) 1160{ 1161 return 0; 1162} 1163#else 1164int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1165#endif 1166 1167#ifdef __PAGETABLE_PMD_FOLDED 1168static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1169 unsigned long address) 1170{ 1171 return 0; 1172} 1173#else 1174int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1175#endif 1176 1177int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1178 pmd_t *pmd, unsigned long address); 1179int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1180 1181/* 1182 * The following ifdef needed to get the 4level-fixup.h header to work. 1183 * Remove it when 4level-fixup.h has been removed. 1184 */ 1185#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1186static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1187{ 1188 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1189 NULL: pud_offset(pgd, address); 1190} 1191 1192static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1193{ 1194 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1195 NULL: pmd_offset(pud, address); 1196} 1197#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1198 1199#if USE_SPLIT_PTLOCKS 1200/* 1201 * We tuck a spinlock to guard each pagetable page into its struct page, 1202 * at page->private, with BUILD_BUG_ON to make sure that this will not 1203 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1204 * When freeing, reset page->mapping so free_pages_check won't complain. 1205 */ 1206#define __pte_lockptr(page) &((page)->ptl) 1207#define pte_lock_init(_page) do { \ 1208 spin_lock_init(__pte_lockptr(_page)); \ 1209} while (0) 1210#define pte_lock_deinit(page) ((page)->mapping = NULL) 1211#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1212#else /* !USE_SPLIT_PTLOCKS */ 1213/* 1214 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1215 */ 1216#define pte_lock_init(page) do {} while (0) 1217#define pte_lock_deinit(page) do {} while (0) 1218#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1219#endif /* USE_SPLIT_PTLOCKS */ 1220 1221static inline void pgtable_page_ctor(struct page *page) 1222{ 1223 pte_lock_init(page); 1224 inc_zone_page_state(page, NR_PAGETABLE); 1225} 1226 1227static inline void pgtable_page_dtor(struct page *page) 1228{ 1229 pte_lock_deinit(page); 1230 dec_zone_page_state(page, NR_PAGETABLE); 1231} 1232 1233#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1234({ \ 1235 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1236 pte_t *__pte = pte_offset_map(pmd, address); \ 1237 *(ptlp) = __ptl; \ 1238 spin_lock(__ptl); \ 1239 __pte; \ 1240}) 1241 1242#define pte_unmap_unlock(pte, ptl) do { \ 1243 spin_unlock(ptl); \ 1244 pte_unmap(pte); \ 1245} while (0) 1246 1247#define pte_alloc_map(mm, vma, pmd, address) \ 1248 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1249 pmd, address))? \ 1250 NULL: pte_offset_map(pmd, address)) 1251 1252#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1253 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1254 pmd, address))? \ 1255 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1256 1257#define pte_alloc_kernel(pmd, address) \ 1258 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1259 NULL: pte_offset_kernel(pmd, address)) 1260 1261extern void free_area_init(unsigned long * zones_size); 1262extern void free_area_init_node(int nid, unsigned long * zones_size, 1263 unsigned long zone_start_pfn, unsigned long *zholes_size); 1264#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 1265/* 1266 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 1267 * zones, allocate the backing mem_map and account for memory holes in a more 1268 * architecture independent manner. This is a substitute for creating the 1269 * zone_sizes[] and zholes_size[] arrays and passing them to 1270 * free_area_init_node() 1271 * 1272 * An architecture is expected to register range of page frames backed by 1273 * physical memory with add_active_range() before calling 1274 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1275 * usage, an architecture is expected to do something like 1276 * 1277 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1278 * max_highmem_pfn}; 1279 * for_each_valid_physical_page_range() 1280 * add_active_range(node_id, start_pfn, end_pfn) 1281 * free_area_init_nodes(max_zone_pfns); 1282 * 1283 * If the architecture guarantees that there are no holes in the ranges 1284 * registered with add_active_range(), free_bootmem_active_regions() 1285 * will call free_bootmem_node() for each registered physical page range. 1286 * Similarly sparse_memory_present_with_active_regions() calls 1287 * memory_present() for each range when SPARSEMEM is enabled. 1288 * 1289 * See mm/page_alloc.c for more information on each function exposed by 1290 * CONFIG_ARCH_POPULATES_NODE_MAP 1291 */ 1292extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1293extern void add_active_range(unsigned int nid, unsigned long start_pfn, 1294 unsigned long end_pfn); 1295extern void remove_active_range(unsigned int nid, unsigned long start_pfn, 1296 unsigned long end_pfn); 1297extern void remove_all_active_ranges(void); 1298void sort_node_map(void); 1299unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1300 unsigned long end_pfn); 1301extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1302 unsigned long end_pfn); 1303extern void get_pfn_range_for_nid(unsigned int nid, 1304 unsigned long *start_pfn, unsigned long *end_pfn); 1305extern unsigned long find_min_pfn_with_active_regions(void); 1306extern void free_bootmem_with_active_regions(int nid, 1307 unsigned long max_low_pfn); 1308int add_from_early_node_map(struct range *range, int az, 1309 int nr_range, int nid); 1310u64 __init find_memory_core_early(int nid, u64 size, u64 align, 1311 u64 goal, u64 limit); 1312void *__alloc_memory_core_early(int nodeid, u64 size, u64 align, 1313 u64 goal, u64 limit); 1314typedef int (*work_fn_t)(unsigned long, unsigned long, void *); 1315extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); 1316extern void sparse_memory_present_with_active_regions(int nid); 1317#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1318 1319#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \ 1320 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1321static inline int __early_pfn_to_nid(unsigned long pfn) 1322{ 1323 return 0; 1324} 1325#else 1326/* please see mm/page_alloc.c */ 1327extern int __meminit early_pfn_to_nid(unsigned long pfn); 1328#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1329/* there is a per-arch backend function. */ 1330extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1331#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1332#endif 1333 1334extern void set_dma_reserve(unsigned long new_dma_reserve); 1335extern void memmap_init_zone(unsigned long, int, unsigned long, 1336 unsigned long, enum memmap_context); 1337extern void setup_per_zone_wmarks(void); 1338extern void calculate_zone_inactive_ratio(struct zone *zone); 1339extern void mem_init(void); 1340extern void __init mmap_init(void); 1341extern void show_mem(void); 1342extern void si_meminfo(struct sysinfo * val); 1343extern void si_meminfo_node(struct sysinfo *val, int nid); 1344extern int after_bootmem; 1345 1346extern void setup_per_cpu_pageset(void); 1347 1348extern void zone_pcp_update(struct zone *zone); 1349 1350/* nommu.c */ 1351extern atomic_long_t mmap_pages_allocated; 1352extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1353 1354/* prio_tree.c */ 1355void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1356void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1357void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1358struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1359 struct prio_tree_iter *iter); 1360 1361#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1362 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1363 (vma = vma_prio_tree_next(vma, iter)); ) 1364 1365static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1366 struct list_head *list) 1367{ 1368 vma->shared.vm_set.parent = NULL; 1369 list_add_tail(&vma->shared.vm_set.list, list); 1370} 1371 1372/* mmap.c */ 1373extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1374extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1375 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1376extern struct vm_area_struct *vma_merge(struct mm_struct *, 1377 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1378 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1379 struct mempolicy *); 1380extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1381extern int split_vma(struct mm_struct *, 1382 struct vm_area_struct *, unsigned long addr, int new_below); 1383extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1384extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1385 struct rb_node **, struct rb_node *); 1386extern void unlink_file_vma(struct vm_area_struct *); 1387extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1388 unsigned long addr, unsigned long len, pgoff_t pgoff); 1389extern void exit_mmap(struct mm_struct *); 1390 1391extern int mm_take_all_locks(struct mm_struct *mm); 1392extern void mm_drop_all_locks(struct mm_struct *mm); 1393 1394#ifdef CONFIG_PROC_FS 1395/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1396extern void added_exe_file_vma(struct mm_struct *mm); 1397extern void removed_exe_file_vma(struct mm_struct *mm); 1398#else 1399static inline void added_exe_file_vma(struct mm_struct *mm) 1400{} 1401 1402static inline void removed_exe_file_vma(struct mm_struct *mm) 1403{} 1404#endif /* CONFIG_PROC_FS */ 1405 1406extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1407extern int install_special_mapping(struct mm_struct *mm, 1408 unsigned long addr, unsigned long len, 1409 unsigned long flags, struct page **pages); 1410 1411extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1412 1413extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1414 unsigned long len, unsigned long prot, 1415 unsigned long flag, unsigned long pgoff); 1416extern unsigned long mmap_region(struct file *file, unsigned long addr, 1417 unsigned long len, unsigned long flags, 1418 unsigned int vm_flags, unsigned long pgoff); 1419 1420static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1421 unsigned long len, unsigned long prot, 1422 unsigned long flag, unsigned long offset) 1423{ 1424 unsigned long ret = -EINVAL; 1425 if ((offset + PAGE_ALIGN(len)) < offset) 1426 goto out; 1427 if (!(offset & ~PAGE_MASK)) 1428 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1429out: 1430 return ret; 1431} 1432 1433extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1434 1435extern unsigned long do_brk(unsigned long, unsigned long); 1436 1437/* filemap.c */ 1438extern unsigned long page_unuse(struct page *); 1439extern void truncate_inode_pages(struct address_space *, loff_t); 1440extern void truncate_inode_pages_range(struct address_space *, 1441 loff_t lstart, loff_t lend); 1442 1443/* generic vm_area_ops exported for stackable file systems */ 1444extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1445 1446/* mm/page-writeback.c */ 1447int write_one_page(struct page *page, int wait); 1448void task_dirty_inc(struct task_struct *tsk); 1449 1450/* readahead.c */ 1451#define VM_MAX_READAHEAD 128 /* kbytes */ 1452#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1453 1454int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1455 pgoff_t offset, unsigned long nr_to_read); 1456 1457void page_cache_sync_readahead(struct address_space *mapping, 1458 struct file_ra_state *ra, 1459 struct file *filp, 1460 pgoff_t offset, 1461 unsigned long size); 1462 1463void page_cache_async_readahead(struct address_space *mapping, 1464 struct file_ra_state *ra, 1465 struct file *filp, 1466 struct page *pg, 1467 pgoff_t offset, 1468 unsigned long size); 1469 1470unsigned long max_sane_readahead(unsigned long nr); 1471unsigned long ra_submit(struct file_ra_state *ra, 1472 struct address_space *mapping, 1473 struct file *filp); 1474 1475/* Do stack extension */ 1476extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1477#if VM_GROWSUP 1478extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1479#else 1480 #define expand_upwards(vma, address) do { } while (0) 1481#endif 1482extern int expand_stack_downwards(struct vm_area_struct *vma, 1483 unsigned long address); 1484 1485/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1486extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1487extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1488 struct vm_area_struct **pprev); 1489 1490/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1491 NULL if none. Assume start_addr < end_addr. */ 1492static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1493{ 1494 struct vm_area_struct * vma = find_vma(mm,start_addr); 1495 1496 if (vma && end_addr <= vma->vm_start) 1497 vma = NULL; 1498 return vma; 1499} 1500 1501static inline unsigned long vma_pages(struct vm_area_struct *vma) 1502{ 1503 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1504} 1505 1506#ifdef CONFIG_MMU 1507pgprot_t vm_get_page_prot(unsigned long vm_flags); 1508#else 1509static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1510{ 1511 return __pgprot(0); 1512} 1513#endif 1514 1515struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1516int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1517 unsigned long pfn, unsigned long size, pgprot_t); 1518int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1519int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1520 unsigned long pfn); 1521int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1522 unsigned long pfn); 1523 1524struct page *follow_page(struct vm_area_struct *, unsigned long address, 1525 unsigned int foll_flags); 1526#define FOLL_WRITE 0x01 /* check pte is writable */ 1527#define FOLL_TOUCH 0x02 /* mark page accessed */ 1528#define FOLL_GET 0x04 /* do get_page on page */ 1529#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1530#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1531#define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1532#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1533 1534typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1535 void *data); 1536extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1537 unsigned long size, pte_fn_t fn, void *data); 1538 1539#ifdef CONFIG_PROC_FS 1540void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1541#else 1542static inline void vm_stat_account(struct mm_struct *mm, 1543 unsigned long flags, struct file *file, long pages) 1544{ 1545} 1546#endif /* CONFIG_PROC_FS */ 1547 1548#ifdef CONFIG_DEBUG_PAGEALLOC 1549extern int debug_pagealloc_enabled; 1550 1551extern void kernel_map_pages(struct page *page, int numpages, int enable); 1552 1553static inline void enable_debug_pagealloc(void) 1554{ 1555 debug_pagealloc_enabled = 1; 1556} 1557#ifdef CONFIG_HIBERNATION 1558extern bool kernel_page_present(struct page *page); 1559#endif /* CONFIG_HIBERNATION */ 1560#else 1561static inline void 1562kernel_map_pages(struct page *page, int numpages, int enable) {} 1563static inline void enable_debug_pagealloc(void) 1564{ 1565} 1566#ifdef CONFIG_HIBERNATION 1567static inline bool kernel_page_present(struct page *page) { return true; } 1568#endif /* CONFIG_HIBERNATION */ 1569#endif 1570 1571extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1572#ifdef __HAVE_ARCH_GATE_AREA 1573int in_gate_area_no_task(unsigned long addr); 1574int in_gate_area(struct task_struct *task, unsigned long addr); 1575#else 1576int in_gate_area_no_task(unsigned long addr); 1577#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1578#endif /* __HAVE_ARCH_GATE_AREA */ 1579 1580int drop_caches_sysctl_handler(struct ctl_table *, int, 1581 void __user *, size_t *, loff_t *); 1582unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1583 unsigned long lru_pages); 1584 1585#ifndef CONFIG_MMU 1586#define randomize_va_space 0 1587#else 1588extern int randomize_va_space; 1589#endif 1590 1591const char * arch_vma_name(struct vm_area_struct *vma); 1592void print_vma_addr(char *prefix, unsigned long rip); 1593 1594void sparse_mem_maps_populate_node(struct page **map_map, 1595 unsigned long pnum_begin, 1596 unsigned long pnum_end, 1597 unsigned long map_count, 1598 int nodeid); 1599 1600struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1601pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1602pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1603pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1604pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1605void *vmemmap_alloc_block(unsigned long size, int node); 1606void *vmemmap_alloc_block_buf(unsigned long size, int node); 1607void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1608int vmemmap_populate_basepages(struct page *start_page, 1609 unsigned long pages, int node); 1610int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1611void vmemmap_populate_print_last(void); 1612 1613 1614enum mf_flags { 1615 MF_COUNT_INCREASED = 1 << 0, 1616}; 1617extern void memory_failure(unsigned long pfn, int trapno); 1618extern int __memory_failure(unsigned long pfn, int trapno, int flags); 1619extern int unpoison_memory(unsigned long pfn); 1620extern int sysctl_memory_failure_early_kill; 1621extern int sysctl_memory_failure_recovery; 1622extern void shake_page(struct page *p, int access); 1623extern atomic_long_t mce_bad_pages; 1624extern int soft_offline_page(struct page *page, int flags); 1625#ifdef CONFIG_MEMORY_FAILURE 1626int is_hwpoison_address(unsigned long addr); 1627#else 1628static inline int is_hwpoison_address(unsigned long addr) 1629{ 1630 return 0; 1631} 1632#endif 1633 1634extern void dump_page(struct page *page); 1635 1636#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1637extern void clear_huge_page(struct page *page, 1638 unsigned long addr, 1639 unsigned int pages_per_huge_page); 1640extern void copy_user_huge_page(struct page *dst, struct page *src, 1641 unsigned long addr, struct vm_area_struct *vma, 1642 unsigned int pages_per_huge_page); 1643#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1644 1645#endif /* __KERNEL__ */ 1646#endif /* _LINUX_MM_H */