at v2.6.38 1629 lines 40 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/module.h> 18#include <linux/blkpg.h> 19#include <linux/buffer_head.h> 20#include <linux/pagevec.h> 21#include <linux/writeback.h> 22#include <linux/mpage.h> 23#include <linux/mount.h> 24#include <linux/uio.h> 25#include <linux/namei.h> 26#include <linux/log2.h> 27#include <linux/kmemleak.h> 28#include <asm/uaccess.h> 29#include "internal.h" 30 31struct bdev_inode { 32 struct block_device bdev; 33 struct inode vfs_inode; 34}; 35 36static const struct address_space_operations def_blk_aops; 37 38static inline struct bdev_inode *BDEV_I(struct inode *inode) 39{ 40 return container_of(inode, struct bdev_inode, vfs_inode); 41} 42 43inline struct block_device *I_BDEV(struct inode *inode) 44{ 45 return &BDEV_I(inode)->bdev; 46} 47 48EXPORT_SYMBOL(I_BDEV); 49 50/* 51 * move the inode from it's current bdi to the a new bdi. if the inode is dirty 52 * we need to move it onto the dirty list of @dst so that the inode is always 53 * on the right list. 54 */ 55static void bdev_inode_switch_bdi(struct inode *inode, 56 struct backing_dev_info *dst) 57{ 58 spin_lock(&inode_lock); 59 inode->i_data.backing_dev_info = dst; 60 if (inode->i_state & I_DIRTY) 61 list_move(&inode->i_wb_list, &dst->wb.b_dirty); 62 spin_unlock(&inode_lock); 63} 64 65static sector_t max_block(struct block_device *bdev) 66{ 67 sector_t retval = ~((sector_t)0); 68 loff_t sz = i_size_read(bdev->bd_inode); 69 70 if (sz) { 71 unsigned int size = block_size(bdev); 72 unsigned int sizebits = blksize_bits(size); 73 retval = (sz >> sizebits); 74 } 75 return retval; 76} 77 78/* Kill _all_ buffers and pagecache , dirty or not.. */ 79static void kill_bdev(struct block_device *bdev) 80{ 81 if (bdev->bd_inode->i_mapping->nrpages == 0) 82 return; 83 invalidate_bh_lrus(); 84 truncate_inode_pages(bdev->bd_inode->i_mapping, 0); 85} 86 87int set_blocksize(struct block_device *bdev, int size) 88{ 89 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 90 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 91 return -EINVAL; 92 93 /* Size cannot be smaller than the size supported by the device */ 94 if (size < bdev_logical_block_size(bdev)) 95 return -EINVAL; 96 97 /* Don't change the size if it is same as current */ 98 if (bdev->bd_block_size != size) { 99 sync_blockdev(bdev); 100 bdev->bd_block_size = size; 101 bdev->bd_inode->i_blkbits = blksize_bits(size); 102 kill_bdev(bdev); 103 } 104 return 0; 105} 106 107EXPORT_SYMBOL(set_blocksize); 108 109int sb_set_blocksize(struct super_block *sb, int size) 110{ 111 if (set_blocksize(sb->s_bdev, size)) 112 return 0; 113 /* If we get here, we know size is power of two 114 * and it's value is between 512 and PAGE_SIZE */ 115 sb->s_blocksize = size; 116 sb->s_blocksize_bits = blksize_bits(size); 117 return sb->s_blocksize; 118} 119 120EXPORT_SYMBOL(sb_set_blocksize); 121 122int sb_min_blocksize(struct super_block *sb, int size) 123{ 124 int minsize = bdev_logical_block_size(sb->s_bdev); 125 if (size < minsize) 126 size = minsize; 127 return sb_set_blocksize(sb, size); 128} 129 130EXPORT_SYMBOL(sb_min_blocksize); 131 132static int 133blkdev_get_block(struct inode *inode, sector_t iblock, 134 struct buffer_head *bh, int create) 135{ 136 if (iblock >= max_block(I_BDEV(inode))) { 137 if (create) 138 return -EIO; 139 140 /* 141 * for reads, we're just trying to fill a partial page. 142 * return a hole, they will have to call get_block again 143 * before they can fill it, and they will get -EIO at that 144 * time 145 */ 146 return 0; 147 } 148 bh->b_bdev = I_BDEV(inode); 149 bh->b_blocknr = iblock; 150 set_buffer_mapped(bh); 151 return 0; 152} 153 154static int 155blkdev_get_blocks(struct inode *inode, sector_t iblock, 156 struct buffer_head *bh, int create) 157{ 158 sector_t end_block = max_block(I_BDEV(inode)); 159 unsigned long max_blocks = bh->b_size >> inode->i_blkbits; 160 161 if ((iblock + max_blocks) > end_block) { 162 max_blocks = end_block - iblock; 163 if ((long)max_blocks <= 0) { 164 if (create) 165 return -EIO; /* write fully beyond EOF */ 166 /* 167 * It is a read which is fully beyond EOF. We return 168 * a !buffer_mapped buffer 169 */ 170 max_blocks = 0; 171 } 172 } 173 174 bh->b_bdev = I_BDEV(inode); 175 bh->b_blocknr = iblock; 176 bh->b_size = max_blocks << inode->i_blkbits; 177 if (max_blocks) 178 set_buffer_mapped(bh); 179 return 0; 180} 181 182static ssize_t 183blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 184 loff_t offset, unsigned long nr_segs) 185{ 186 struct file *file = iocb->ki_filp; 187 struct inode *inode = file->f_mapping->host; 188 189 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iov, offset, 190 nr_segs, blkdev_get_blocks, NULL, NULL, 0); 191} 192 193int __sync_blockdev(struct block_device *bdev, int wait) 194{ 195 if (!bdev) 196 return 0; 197 if (!wait) 198 return filemap_flush(bdev->bd_inode->i_mapping); 199 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 200} 201 202/* 203 * Write out and wait upon all the dirty data associated with a block 204 * device via its mapping. Does not take the superblock lock. 205 */ 206int sync_blockdev(struct block_device *bdev) 207{ 208 return __sync_blockdev(bdev, 1); 209} 210EXPORT_SYMBOL(sync_blockdev); 211 212/* 213 * Write out and wait upon all dirty data associated with this 214 * device. Filesystem data as well as the underlying block 215 * device. Takes the superblock lock. 216 */ 217int fsync_bdev(struct block_device *bdev) 218{ 219 struct super_block *sb = get_super(bdev); 220 if (sb) { 221 int res = sync_filesystem(sb); 222 drop_super(sb); 223 return res; 224 } 225 return sync_blockdev(bdev); 226} 227EXPORT_SYMBOL(fsync_bdev); 228 229/** 230 * freeze_bdev -- lock a filesystem and force it into a consistent state 231 * @bdev: blockdevice to lock 232 * 233 * If a superblock is found on this device, we take the s_umount semaphore 234 * on it to make sure nobody unmounts until the snapshot creation is done. 235 * The reference counter (bd_fsfreeze_count) guarantees that only the last 236 * unfreeze process can unfreeze the frozen filesystem actually when multiple 237 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 238 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 239 * actually. 240 */ 241struct super_block *freeze_bdev(struct block_device *bdev) 242{ 243 struct super_block *sb; 244 int error = 0; 245 246 mutex_lock(&bdev->bd_fsfreeze_mutex); 247 if (++bdev->bd_fsfreeze_count > 1) { 248 /* 249 * We don't even need to grab a reference - the first call 250 * to freeze_bdev grab an active reference and only the last 251 * thaw_bdev drops it. 252 */ 253 sb = get_super(bdev); 254 drop_super(sb); 255 mutex_unlock(&bdev->bd_fsfreeze_mutex); 256 return sb; 257 } 258 259 sb = get_active_super(bdev); 260 if (!sb) 261 goto out; 262 error = freeze_super(sb); 263 if (error) { 264 deactivate_super(sb); 265 bdev->bd_fsfreeze_count--; 266 mutex_unlock(&bdev->bd_fsfreeze_mutex); 267 return ERR_PTR(error); 268 } 269 deactivate_super(sb); 270 out: 271 sync_blockdev(bdev); 272 mutex_unlock(&bdev->bd_fsfreeze_mutex); 273 return sb; /* thaw_bdev releases s->s_umount */ 274} 275EXPORT_SYMBOL(freeze_bdev); 276 277/** 278 * thaw_bdev -- unlock filesystem 279 * @bdev: blockdevice to unlock 280 * @sb: associated superblock 281 * 282 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 283 */ 284int thaw_bdev(struct block_device *bdev, struct super_block *sb) 285{ 286 int error = -EINVAL; 287 288 mutex_lock(&bdev->bd_fsfreeze_mutex); 289 if (!bdev->bd_fsfreeze_count) 290 goto out; 291 292 error = 0; 293 if (--bdev->bd_fsfreeze_count > 0) 294 goto out; 295 296 if (!sb) 297 goto out; 298 299 error = thaw_super(sb); 300 if (error) { 301 bdev->bd_fsfreeze_count++; 302 mutex_unlock(&bdev->bd_fsfreeze_mutex); 303 return error; 304 } 305out: 306 mutex_unlock(&bdev->bd_fsfreeze_mutex); 307 return 0; 308} 309EXPORT_SYMBOL(thaw_bdev); 310 311static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 312{ 313 return block_write_full_page(page, blkdev_get_block, wbc); 314} 315 316static int blkdev_readpage(struct file * file, struct page * page) 317{ 318 return block_read_full_page(page, blkdev_get_block); 319} 320 321static int blkdev_write_begin(struct file *file, struct address_space *mapping, 322 loff_t pos, unsigned len, unsigned flags, 323 struct page **pagep, void **fsdata) 324{ 325 return block_write_begin(mapping, pos, len, flags, pagep, 326 blkdev_get_block); 327} 328 329static int blkdev_write_end(struct file *file, struct address_space *mapping, 330 loff_t pos, unsigned len, unsigned copied, 331 struct page *page, void *fsdata) 332{ 333 int ret; 334 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 335 336 unlock_page(page); 337 page_cache_release(page); 338 339 return ret; 340} 341 342/* 343 * private llseek: 344 * for a block special file file->f_path.dentry->d_inode->i_size is zero 345 * so we compute the size by hand (just as in block_read/write above) 346 */ 347static loff_t block_llseek(struct file *file, loff_t offset, int origin) 348{ 349 struct inode *bd_inode = file->f_mapping->host; 350 loff_t size; 351 loff_t retval; 352 353 mutex_lock(&bd_inode->i_mutex); 354 size = i_size_read(bd_inode); 355 356 switch (origin) { 357 case 2: 358 offset += size; 359 break; 360 case 1: 361 offset += file->f_pos; 362 } 363 retval = -EINVAL; 364 if (offset >= 0 && offset <= size) { 365 if (offset != file->f_pos) { 366 file->f_pos = offset; 367 } 368 retval = offset; 369 } 370 mutex_unlock(&bd_inode->i_mutex); 371 return retval; 372} 373 374int blkdev_fsync(struct file *filp, int datasync) 375{ 376 struct inode *bd_inode = filp->f_mapping->host; 377 struct block_device *bdev = I_BDEV(bd_inode); 378 int error; 379 380 /* 381 * There is no need to serialise calls to blkdev_issue_flush with 382 * i_mutex and doing so causes performance issues with concurrent 383 * O_SYNC writers to a block device. 384 */ 385 mutex_unlock(&bd_inode->i_mutex); 386 387 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 388 if (error == -EOPNOTSUPP) 389 error = 0; 390 391 mutex_lock(&bd_inode->i_mutex); 392 393 return error; 394} 395EXPORT_SYMBOL(blkdev_fsync); 396 397/* 398 * pseudo-fs 399 */ 400 401static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 402static struct kmem_cache * bdev_cachep __read_mostly; 403 404static struct inode *bdev_alloc_inode(struct super_block *sb) 405{ 406 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 407 if (!ei) 408 return NULL; 409 return &ei->vfs_inode; 410} 411 412static void bdev_i_callback(struct rcu_head *head) 413{ 414 struct inode *inode = container_of(head, struct inode, i_rcu); 415 struct bdev_inode *bdi = BDEV_I(inode); 416 417 INIT_LIST_HEAD(&inode->i_dentry); 418 kmem_cache_free(bdev_cachep, bdi); 419} 420 421static void bdev_destroy_inode(struct inode *inode) 422{ 423 call_rcu(&inode->i_rcu, bdev_i_callback); 424} 425 426static void init_once(void *foo) 427{ 428 struct bdev_inode *ei = (struct bdev_inode *) foo; 429 struct block_device *bdev = &ei->bdev; 430 431 memset(bdev, 0, sizeof(*bdev)); 432 mutex_init(&bdev->bd_mutex); 433 INIT_LIST_HEAD(&bdev->bd_inodes); 434 INIT_LIST_HEAD(&bdev->bd_list); 435#ifdef CONFIG_SYSFS 436 INIT_LIST_HEAD(&bdev->bd_holder_disks); 437#endif 438 inode_init_once(&ei->vfs_inode); 439 /* Initialize mutex for freeze. */ 440 mutex_init(&bdev->bd_fsfreeze_mutex); 441} 442 443static inline void __bd_forget(struct inode *inode) 444{ 445 list_del_init(&inode->i_devices); 446 inode->i_bdev = NULL; 447 inode->i_mapping = &inode->i_data; 448} 449 450static void bdev_evict_inode(struct inode *inode) 451{ 452 struct block_device *bdev = &BDEV_I(inode)->bdev; 453 struct list_head *p; 454 truncate_inode_pages(&inode->i_data, 0); 455 invalidate_inode_buffers(inode); /* is it needed here? */ 456 end_writeback(inode); 457 spin_lock(&bdev_lock); 458 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) { 459 __bd_forget(list_entry(p, struct inode, i_devices)); 460 } 461 list_del_init(&bdev->bd_list); 462 spin_unlock(&bdev_lock); 463} 464 465static const struct super_operations bdev_sops = { 466 .statfs = simple_statfs, 467 .alloc_inode = bdev_alloc_inode, 468 .destroy_inode = bdev_destroy_inode, 469 .drop_inode = generic_delete_inode, 470 .evict_inode = bdev_evict_inode, 471}; 472 473static struct dentry *bd_mount(struct file_system_type *fs_type, 474 int flags, const char *dev_name, void *data) 475{ 476 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, 0x62646576); 477} 478 479static struct file_system_type bd_type = { 480 .name = "bdev", 481 .mount = bd_mount, 482 .kill_sb = kill_anon_super, 483}; 484 485struct super_block *blockdev_superblock __read_mostly; 486 487void __init bdev_cache_init(void) 488{ 489 int err; 490 struct vfsmount *bd_mnt; 491 492 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 493 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 494 SLAB_MEM_SPREAD|SLAB_PANIC), 495 init_once); 496 err = register_filesystem(&bd_type); 497 if (err) 498 panic("Cannot register bdev pseudo-fs"); 499 bd_mnt = kern_mount(&bd_type); 500 if (IS_ERR(bd_mnt)) 501 panic("Cannot create bdev pseudo-fs"); 502 /* 503 * This vfsmount structure is only used to obtain the 504 * blockdev_superblock, so tell kmemleak not to report it. 505 */ 506 kmemleak_not_leak(bd_mnt); 507 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 508} 509 510/* 511 * Most likely _very_ bad one - but then it's hardly critical for small 512 * /dev and can be fixed when somebody will need really large one. 513 * Keep in mind that it will be fed through icache hash function too. 514 */ 515static inline unsigned long hash(dev_t dev) 516{ 517 return MAJOR(dev)+MINOR(dev); 518} 519 520static int bdev_test(struct inode *inode, void *data) 521{ 522 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 523} 524 525static int bdev_set(struct inode *inode, void *data) 526{ 527 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 528 return 0; 529} 530 531static LIST_HEAD(all_bdevs); 532 533struct block_device *bdget(dev_t dev) 534{ 535 struct block_device *bdev; 536 struct inode *inode; 537 538 inode = iget5_locked(blockdev_superblock, hash(dev), 539 bdev_test, bdev_set, &dev); 540 541 if (!inode) 542 return NULL; 543 544 bdev = &BDEV_I(inode)->bdev; 545 546 if (inode->i_state & I_NEW) { 547 bdev->bd_contains = NULL; 548 bdev->bd_inode = inode; 549 bdev->bd_block_size = (1 << inode->i_blkbits); 550 bdev->bd_part_count = 0; 551 bdev->bd_invalidated = 0; 552 inode->i_mode = S_IFBLK; 553 inode->i_rdev = dev; 554 inode->i_bdev = bdev; 555 inode->i_data.a_ops = &def_blk_aops; 556 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 557 inode->i_data.backing_dev_info = &default_backing_dev_info; 558 spin_lock(&bdev_lock); 559 list_add(&bdev->bd_list, &all_bdevs); 560 spin_unlock(&bdev_lock); 561 unlock_new_inode(inode); 562 } 563 return bdev; 564} 565 566EXPORT_SYMBOL(bdget); 567 568/** 569 * bdgrab -- Grab a reference to an already referenced block device 570 * @bdev: Block device to grab a reference to. 571 */ 572struct block_device *bdgrab(struct block_device *bdev) 573{ 574 ihold(bdev->bd_inode); 575 return bdev; 576} 577 578long nr_blockdev_pages(void) 579{ 580 struct block_device *bdev; 581 long ret = 0; 582 spin_lock(&bdev_lock); 583 list_for_each_entry(bdev, &all_bdevs, bd_list) { 584 ret += bdev->bd_inode->i_mapping->nrpages; 585 } 586 spin_unlock(&bdev_lock); 587 return ret; 588} 589 590void bdput(struct block_device *bdev) 591{ 592 iput(bdev->bd_inode); 593} 594 595EXPORT_SYMBOL(bdput); 596 597static struct block_device *bd_acquire(struct inode *inode) 598{ 599 struct block_device *bdev; 600 601 spin_lock(&bdev_lock); 602 bdev = inode->i_bdev; 603 if (bdev) { 604 ihold(bdev->bd_inode); 605 spin_unlock(&bdev_lock); 606 return bdev; 607 } 608 spin_unlock(&bdev_lock); 609 610 bdev = bdget(inode->i_rdev); 611 if (bdev) { 612 spin_lock(&bdev_lock); 613 if (!inode->i_bdev) { 614 /* 615 * We take an additional reference to bd_inode, 616 * and it's released in clear_inode() of inode. 617 * So, we can access it via ->i_mapping always 618 * without igrab(). 619 */ 620 ihold(bdev->bd_inode); 621 inode->i_bdev = bdev; 622 inode->i_mapping = bdev->bd_inode->i_mapping; 623 list_add(&inode->i_devices, &bdev->bd_inodes); 624 } 625 spin_unlock(&bdev_lock); 626 } 627 return bdev; 628} 629 630/* Call when you free inode */ 631 632void bd_forget(struct inode *inode) 633{ 634 struct block_device *bdev = NULL; 635 636 spin_lock(&bdev_lock); 637 if (inode->i_bdev) { 638 if (!sb_is_blkdev_sb(inode->i_sb)) 639 bdev = inode->i_bdev; 640 __bd_forget(inode); 641 } 642 spin_unlock(&bdev_lock); 643 644 if (bdev) 645 iput(bdev->bd_inode); 646} 647 648/** 649 * bd_may_claim - test whether a block device can be claimed 650 * @bdev: block device of interest 651 * @whole: whole block device containing @bdev, may equal @bdev 652 * @holder: holder trying to claim @bdev 653 * 654 * Test whther @bdev can be claimed by @holder. 655 * 656 * CONTEXT: 657 * spin_lock(&bdev_lock). 658 * 659 * RETURNS: 660 * %true if @bdev can be claimed, %false otherwise. 661 */ 662static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 663 void *holder) 664{ 665 if (bdev->bd_holder == holder) 666 return true; /* already a holder */ 667 else if (bdev->bd_holder != NULL) 668 return false; /* held by someone else */ 669 else if (bdev->bd_contains == bdev) 670 return true; /* is a whole device which isn't held */ 671 672 else if (whole->bd_holder == bd_may_claim) 673 return true; /* is a partition of a device that is being partitioned */ 674 else if (whole->bd_holder != NULL) 675 return false; /* is a partition of a held device */ 676 else 677 return true; /* is a partition of an un-held device */ 678} 679 680/** 681 * bd_prepare_to_claim - prepare to claim a block device 682 * @bdev: block device of interest 683 * @whole: the whole device containing @bdev, may equal @bdev 684 * @holder: holder trying to claim @bdev 685 * 686 * Prepare to claim @bdev. This function fails if @bdev is already 687 * claimed by another holder and waits if another claiming is in 688 * progress. This function doesn't actually claim. On successful 689 * return, the caller has ownership of bd_claiming and bd_holder[s]. 690 * 691 * CONTEXT: 692 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 693 * it multiple times. 694 * 695 * RETURNS: 696 * 0 if @bdev can be claimed, -EBUSY otherwise. 697 */ 698static int bd_prepare_to_claim(struct block_device *bdev, 699 struct block_device *whole, void *holder) 700{ 701retry: 702 /* if someone else claimed, fail */ 703 if (!bd_may_claim(bdev, whole, holder)) 704 return -EBUSY; 705 706 /* if claiming is already in progress, wait for it to finish */ 707 if (whole->bd_claiming) { 708 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 709 DEFINE_WAIT(wait); 710 711 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 712 spin_unlock(&bdev_lock); 713 schedule(); 714 finish_wait(wq, &wait); 715 spin_lock(&bdev_lock); 716 goto retry; 717 } 718 719 /* yay, all mine */ 720 return 0; 721} 722 723/** 724 * bd_start_claiming - start claiming a block device 725 * @bdev: block device of interest 726 * @holder: holder trying to claim @bdev 727 * 728 * @bdev is about to be opened exclusively. Check @bdev can be opened 729 * exclusively and mark that an exclusive open is in progress. Each 730 * successful call to this function must be matched with a call to 731 * either bd_finish_claiming() or bd_abort_claiming() (which do not 732 * fail). 733 * 734 * This function is used to gain exclusive access to the block device 735 * without actually causing other exclusive open attempts to fail. It 736 * should be used when the open sequence itself requires exclusive 737 * access but may subsequently fail. 738 * 739 * CONTEXT: 740 * Might sleep. 741 * 742 * RETURNS: 743 * Pointer to the block device containing @bdev on success, ERR_PTR() 744 * value on failure. 745 */ 746static struct block_device *bd_start_claiming(struct block_device *bdev, 747 void *holder) 748{ 749 struct gendisk *disk; 750 struct block_device *whole; 751 int partno, err; 752 753 might_sleep(); 754 755 /* 756 * @bdev might not have been initialized properly yet, look up 757 * and grab the outer block device the hard way. 758 */ 759 disk = get_gendisk(bdev->bd_dev, &partno); 760 if (!disk) 761 return ERR_PTR(-ENXIO); 762 763 whole = bdget_disk(disk, 0); 764 module_put(disk->fops->owner); 765 put_disk(disk); 766 if (!whole) 767 return ERR_PTR(-ENOMEM); 768 769 /* prepare to claim, if successful, mark claiming in progress */ 770 spin_lock(&bdev_lock); 771 772 err = bd_prepare_to_claim(bdev, whole, holder); 773 if (err == 0) { 774 whole->bd_claiming = holder; 775 spin_unlock(&bdev_lock); 776 return whole; 777 } else { 778 spin_unlock(&bdev_lock); 779 bdput(whole); 780 return ERR_PTR(err); 781 } 782} 783 784#ifdef CONFIG_SYSFS 785struct bd_holder_disk { 786 struct list_head list; 787 struct gendisk *disk; 788 int refcnt; 789}; 790 791static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 792 struct gendisk *disk) 793{ 794 struct bd_holder_disk *holder; 795 796 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 797 if (holder->disk == disk) 798 return holder; 799 return NULL; 800} 801 802static int add_symlink(struct kobject *from, struct kobject *to) 803{ 804 return sysfs_create_link(from, to, kobject_name(to)); 805} 806 807static void del_symlink(struct kobject *from, struct kobject *to) 808{ 809 sysfs_remove_link(from, kobject_name(to)); 810} 811 812/** 813 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 814 * @bdev: the claimed slave bdev 815 * @disk: the holding disk 816 * 817 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 818 * 819 * This functions creates the following sysfs symlinks. 820 * 821 * - from "slaves" directory of the holder @disk to the claimed @bdev 822 * - from "holders" directory of the @bdev to the holder @disk 823 * 824 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 825 * passed to bd_link_disk_holder(), then: 826 * 827 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 828 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 829 * 830 * The caller must have claimed @bdev before calling this function and 831 * ensure that both @bdev and @disk are valid during the creation and 832 * lifetime of these symlinks. 833 * 834 * CONTEXT: 835 * Might sleep. 836 * 837 * RETURNS: 838 * 0 on success, -errno on failure. 839 */ 840int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 841{ 842 struct bd_holder_disk *holder; 843 int ret = 0; 844 845 mutex_lock(&bdev->bd_mutex); 846 847 WARN_ON_ONCE(!bdev->bd_holder); 848 849 /* FIXME: remove the following once add_disk() handles errors */ 850 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 851 goto out_unlock; 852 853 holder = bd_find_holder_disk(bdev, disk); 854 if (holder) { 855 holder->refcnt++; 856 goto out_unlock; 857 } 858 859 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 860 if (!holder) { 861 ret = -ENOMEM; 862 goto out_unlock; 863 } 864 865 INIT_LIST_HEAD(&holder->list); 866 holder->disk = disk; 867 holder->refcnt = 1; 868 869 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 870 if (ret) 871 goto out_free; 872 873 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 874 if (ret) 875 goto out_del; 876 /* 877 * bdev could be deleted beneath us which would implicitly destroy 878 * the holder directory. Hold on to it. 879 */ 880 kobject_get(bdev->bd_part->holder_dir); 881 882 list_add(&holder->list, &bdev->bd_holder_disks); 883 goto out_unlock; 884 885out_del: 886 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 887out_free: 888 kfree(holder); 889out_unlock: 890 mutex_unlock(&bdev->bd_mutex); 891 return ret; 892} 893EXPORT_SYMBOL_GPL(bd_link_disk_holder); 894 895/** 896 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 897 * @bdev: the calimed slave bdev 898 * @disk: the holding disk 899 * 900 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 901 * 902 * CONTEXT: 903 * Might sleep. 904 */ 905void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 906{ 907 struct bd_holder_disk *holder; 908 909 mutex_lock(&bdev->bd_mutex); 910 911 holder = bd_find_holder_disk(bdev, disk); 912 913 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 914 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 915 del_symlink(bdev->bd_part->holder_dir, 916 &disk_to_dev(disk)->kobj); 917 kobject_put(bdev->bd_part->holder_dir); 918 list_del_init(&holder->list); 919 kfree(holder); 920 } 921 922 mutex_unlock(&bdev->bd_mutex); 923} 924EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 925#endif 926 927/** 928 * flush_disk - invalidates all buffer-cache entries on a disk 929 * 930 * @bdev: struct block device to be flushed 931 * @kill_dirty: flag to guide handling of dirty inodes 932 * 933 * Invalidates all buffer-cache entries on a disk. It should be called 934 * when a disk has been changed -- either by a media change or online 935 * resize. 936 */ 937static void flush_disk(struct block_device *bdev, bool kill_dirty) 938{ 939 if (__invalidate_device(bdev, kill_dirty)) { 940 char name[BDEVNAME_SIZE] = ""; 941 942 if (bdev->bd_disk) 943 disk_name(bdev->bd_disk, 0, name); 944 printk(KERN_WARNING "VFS: busy inodes on changed media or " 945 "resized disk %s\n", name); 946 } 947 948 if (!bdev->bd_disk) 949 return; 950 if (disk_partitionable(bdev->bd_disk)) 951 bdev->bd_invalidated = 1; 952} 953 954/** 955 * check_disk_size_change - checks for disk size change and adjusts bdev size. 956 * @disk: struct gendisk to check 957 * @bdev: struct bdev to adjust. 958 * 959 * This routine checks to see if the bdev size does not match the disk size 960 * and adjusts it if it differs. 961 */ 962void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 963{ 964 loff_t disk_size, bdev_size; 965 966 disk_size = (loff_t)get_capacity(disk) << 9; 967 bdev_size = i_size_read(bdev->bd_inode); 968 if (disk_size != bdev_size) { 969 char name[BDEVNAME_SIZE]; 970 971 disk_name(disk, 0, name); 972 printk(KERN_INFO 973 "%s: detected capacity change from %lld to %lld\n", 974 name, bdev_size, disk_size); 975 i_size_write(bdev->bd_inode, disk_size); 976 flush_disk(bdev, false); 977 } 978} 979EXPORT_SYMBOL(check_disk_size_change); 980 981/** 982 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 983 * @disk: struct gendisk to be revalidated 984 * 985 * This routine is a wrapper for lower-level driver's revalidate_disk 986 * call-backs. It is used to do common pre and post operations needed 987 * for all revalidate_disk operations. 988 */ 989int revalidate_disk(struct gendisk *disk) 990{ 991 struct block_device *bdev; 992 int ret = 0; 993 994 if (disk->fops->revalidate_disk) 995 ret = disk->fops->revalidate_disk(disk); 996 997 bdev = bdget_disk(disk, 0); 998 if (!bdev) 999 return ret; 1000 1001 mutex_lock(&bdev->bd_mutex); 1002 check_disk_size_change(disk, bdev); 1003 mutex_unlock(&bdev->bd_mutex); 1004 bdput(bdev); 1005 return ret; 1006} 1007EXPORT_SYMBOL(revalidate_disk); 1008 1009/* 1010 * This routine checks whether a removable media has been changed, 1011 * and invalidates all buffer-cache-entries in that case. This 1012 * is a relatively slow routine, so we have to try to minimize using 1013 * it. Thus it is called only upon a 'mount' or 'open'. This 1014 * is the best way of combining speed and utility, I think. 1015 * People changing diskettes in the middle of an operation deserve 1016 * to lose :-) 1017 */ 1018int check_disk_change(struct block_device *bdev) 1019{ 1020 struct gendisk *disk = bdev->bd_disk; 1021 const struct block_device_operations *bdops = disk->fops; 1022 unsigned int events; 1023 1024 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1025 DISK_EVENT_EJECT_REQUEST); 1026 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1027 return 0; 1028 1029 flush_disk(bdev, true); 1030 if (bdops->revalidate_disk) 1031 bdops->revalidate_disk(bdev->bd_disk); 1032 return 1; 1033} 1034 1035EXPORT_SYMBOL(check_disk_change); 1036 1037void bd_set_size(struct block_device *bdev, loff_t size) 1038{ 1039 unsigned bsize = bdev_logical_block_size(bdev); 1040 1041 bdev->bd_inode->i_size = size; 1042 while (bsize < PAGE_CACHE_SIZE) { 1043 if (size & bsize) 1044 break; 1045 bsize <<= 1; 1046 } 1047 bdev->bd_block_size = bsize; 1048 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1049} 1050EXPORT_SYMBOL(bd_set_size); 1051 1052static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1053 1054/* 1055 * bd_mutex locking: 1056 * 1057 * mutex_lock(part->bd_mutex) 1058 * mutex_lock_nested(whole->bd_mutex, 1) 1059 */ 1060 1061static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1062{ 1063 struct gendisk *disk; 1064 int ret; 1065 int partno; 1066 int perm = 0; 1067 1068 if (mode & FMODE_READ) 1069 perm |= MAY_READ; 1070 if (mode & FMODE_WRITE) 1071 perm |= MAY_WRITE; 1072 /* 1073 * hooks: /n/, see "layering violations". 1074 */ 1075 if (!for_part) { 1076 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1077 if (ret != 0) { 1078 bdput(bdev); 1079 return ret; 1080 } 1081 } 1082 1083 restart: 1084 1085 ret = -ENXIO; 1086 disk = get_gendisk(bdev->bd_dev, &partno); 1087 if (!disk) 1088 goto out; 1089 1090 mutex_lock_nested(&bdev->bd_mutex, for_part); 1091 if (!bdev->bd_openers) { 1092 bdev->bd_disk = disk; 1093 bdev->bd_contains = bdev; 1094 if (!partno) { 1095 struct backing_dev_info *bdi; 1096 1097 ret = -ENXIO; 1098 bdev->bd_part = disk_get_part(disk, partno); 1099 if (!bdev->bd_part) 1100 goto out_clear; 1101 1102 if (disk->fops->open) { 1103 ret = disk->fops->open(bdev, mode); 1104 if (ret == -ERESTARTSYS) { 1105 /* Lost a race with 'disk' being 1106 * deleted, try again. 1107 * See md.c 1108 */ 1109 disk_put_part(bdev->bd_part); 1110 bdev->bd_part = NULL; 1111 module_put(disk->fops->owner); 1112 put_disk(disk); 1113 bdev->bd_disk = NULL; 1114 mutex_unlock(&bdev->bd_mutex); 1115 goto restart; 1116 } 1117 if (ret) 1118 goto out_clear; 1119 } 1120 if (!bdev->bd_openers) { 1121 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1122 bdi = blk_get_backing_dev_info(bdev); 1123 if (bdi == NULL) 1124 bdi = &default_backing_dev_info; 1125 bdev_inode_switch_bdi(bdev->bd_inode, bdi); 1126 } 1127 if (bdev->bd_invalidated) 1128 rescan_partitions(disk, bdev); 1129 } else { 1130 struct block_device *whole; 1131 whole = bdget_disk(disk, 0); 1132 ret = -ENOMEM; 1133 if (!whole) 1134 goto out_clear; 1135 BUG_ON(for_part); 1136 ret = __blkdev_get(whole, mode, 1); 1137 if (ret) 1138 goto out_clear; 1139 bdev->bd_contains = whole; 1140 bdev_inode_switch_bdi(bdev->bd_inode, 1141 whole->bd_inode->i_data.backing_dev_info); 1142 bdev->bd_part = disk_get_part(disk, partno); 1143 if (!(disk->flags & GENHD_FL_UP) || 1144 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1145 ret = -ENXIO; 1146 goto out_clear; 1147 } 1148 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1149 } 1150 } else { 1151 module_put(disk->fops->owner); 1152 put_disk(disk); 1153 disk = NULL; 1154 if (bdev->bd_contains == bdev) { 1155 if (bdev->bd_disk->fops->open) { 1156 ret = bdev->bd_disk->fops->open(bdev, mode); 1157 if (ret) 1158 goto out_unlock_bdev; 1159 } 1160 if (bdev->bd_invalidated) 1161 rescan_partitions(bdev->bd_disk, bdev); 1162 } 1163 } 1164 bdev->bd_openers++; 1165 if (for_part) 1166 bdev->bd_part_count++; 1167 mutex_unlock(&bdev->bd_mutex); 1168 return 0; 1169 1170 out_clear: 1171 disk_put_part(bdev->bd_part); 1172 bdev->bd_disk = NULL; 1173 bdev->bd_part = NULL; 1174 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info); 1175 if (bdev != bdev->bd_contains) 1176 __blkdev_put(bdev->bd_contains, mode, 1); 1177 bdev->bd_contains = NULL; 1178 out_unlock_bdev: 1179 mutex_unlock(&bdev->bd_mutex); 1180 out: 1181 if (disk) 1182 module_put(disk->fops->owner); 1183 put_disk(disk); 1184 bdput(bdev); 1185 1186 return ret; 1187} 1188 1189/** 1190 * blkdev_get - open a block device 1191 * @bdev: block_device to open 1192 * @mode: FMODE_* mask 1193 * @holder: exclusive holder identifier 1194 * 1195 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1196 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1197 * @holder is invalid. Exclusive opens may nest for the same @holder. 1198 * 1199 * On success, the reference count of @bdev is unchanged. On failure, 1200 * @bdev is put. 1201 * 1202 * CONTEXT: 1203 * Might sleep. 1204 * 1205 * RETURNS: 1206 * 0 on success, -errno on failure. 1207 */ 1208int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1209{ 1210 struct block_device *whole = NULL; 1211 int res; 1212 1213 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1214 1215 if ((mode & FMODE_EXCL) && holder) { 1216 whole = bd_start_claiming(bdev, holder); 1217 if (IS_ERR(whole)) { 1218 bdput(bdev); 1219 return PTR_ERR(whole); 1220 } 1221 } 1222 1223 res = __blkdev_get(bdev, mode, 0); 1224 1225 if (whole) { 1226 /* finish claiming */ 1227 mutex_lock(&bdev->bd_mutex); 1228 spin_lock(&bdev_lock); 1229 1230 if (!res) { 1231 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1232 /* 1233 * Note that for a whole device bd_holders 1234 * will be incremented twice, and bd_holder 1235 * will be set to bd_may_claim before being 1236 * set to holder 1237 */ 1238 whole->bd_holders++; 1239 whole->bd_holder = bd_may_claim; 1240 bdev->bd_holders++; 1241 bdev->bd_holder = holder; 1242 } 1243 1244 /* tell others that we're done */ 1245 BUG_ON(whole->bd_claiming != holder); 1246 whole->bd_claiming = NULL; 1247 wake_up_bit(&whole->bd_claiming, 0); 1248 1249 spin_unlock(&bdev_lock); 1250 1251 /* 1252 * Block event polling for write claims. Any write 1253 * holder makes the write_holder state stick until all 1254 * are released. This is good enough and tracking 1255 * individual writeable reference is too fragile given 1256 * the way @mode is used in blkdev_get/put(). 1257 */ 1258 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder) { 1259 bdev->bd_write_holder = true; 1260 disk_block_events(bdev->bd_disk); 1261 } 1262 1263 mutex_unlock(&bdev->bd_mutex); 1264 bdput(whole); 1265 } 1266 1267 return res; 1268} 1269EXPORT_SYMBOL(blkdev_get); 1270 1271/** 1272 * blkdev_get_by_path - open a block device by name 1273 * @path: path to the block device to open 1274 * @mode: FMODE_* mask 1275 * @holder: exclusive holder identifier 1276 * 1277 * Open the blockdevice described by the device file at @path. @mode 1278 * and @holder are identical to blkdev_get(). 1279 * 1280 * On success, the returned block_device has reference count of one. 1281 * 1282 * CONTEXT: 1283 * Might sleep. 1284 * 1285 * RETURNS: 1286 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1287 */ 1288struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1289 void *holder) 1290{ 1291 struct block_device *bdev; 1292 int err; 1293 1294 bdev = lookup_bdev(path); 1295 if (IS_ERR(bdev)) 1296 return bdev; 1297 1298 err = blkdev_get(bdev, mode, holder); 1299 if (err) 1300 return ERR_PTR(err); 1301 1302 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1303 blkdev_put(bdev, mode); 1304 return ERR_PTR(-EACCES); 1305 } 1306 1307 return bdev; 1308} 1309EXPORT_SYMBOL(blkdev_get_by_path); 1310 1311/** 1312 * blkdev_get_by_dev - open a block device by device number 1313 * @dev: device number of block device to open 1314 * @mode: FMODE_* mask 1315 * @holder: exclusive holder identifier 1316 * 1317 * Open the blockdevice described by device number @dev. @mode and 1318 * @holder are identical to blkdev_get(). 1319 * 1320 * Use it ONLY if you really do not have anything better - i.e. when 1321 * you are behind a truly sucky interface and all you are given is a 1322 * device number. _Never_ to be used for internal purposes. If you 1323 * ever need it - reconsider your API. 1324 * 1325 * On success, the returned block_device has reference count of one. 1326 * 1327 * CONTEXT: 1328 * Might sleep. 1329 * 1330 * RETURNS: 1331 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1332 */ 1333struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1334{ 1335 struct block_device *bdev; 1336 int err; 1337 1338 bdev = bdget(dev); 1339 if (!bdev) 1340 return ERR_PTR(-ENOMEM); 1341 1342 err = blkdev_get(bdev, mode, holder); 1343 if (err) 1344 return ERR_PTR(err); 1345 1346 return bdev; 1347} 1348EXPORT_SYMBOL(blkdev_get_by_dev); 1349 1350static int blkdev_open(struct inode * inode, struct file * filp) 1351{ 1352 struct block_device *bdev; 1353 1354 /* 1355 * Preserve backwards compatibility and allow large file access 1356 * even if userspace doesn't ask for it explicitly. Some mkfs 1357 * binary needs it. We might want to drop this workaround 1358 * during an unstable branch. 1359 */ 1360 filp->f_flags |= O_LARGEFILE; 1361 1362 if (filp->f_flags & O_NDELAY) 1363 filp->f_mode |= FMODE_NDELAY; 1364 if (filp->f_flags & O_EXCL) 1365 filp->f_mode |= FMODE_EXCL; 1366 if ((filp->f_flags & O_ACCMODE) == 3) 1367 filp->f_mode |= FMODE_WRITE_IOCTL; 1368 1369 bdev = bd_acquire(inode); 1370 if (bdev == NULL) 1371 return -ENOMEM; 1372 1373 filp->f_mapping = bdev->bd_inode->i_mapping; 1374 1375 return blkdev_get(bdev, filp->f_mode, filp); 1376} 1377 1378static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1379{ 1380 int ret = 0; 1381 struct gendisk *disk = bdev->bd_disk; 1382 struct block_device *victim = NULL; 1383 1384 mutex_lock_nested(&bdev->bd_mutex, for_part); 1385 if (for_part) 1386 bdev->bd_part_count--; 1387 1388 if (!--bdev->bd_openers) { 1389 WARN_ON_ONCE(bdev->bd_holders); 1390 sync_blockdev(bdev); 1391 kill_bdev(bdev); 1392 } 1393 if (bdev->bd_contains == bdev) { 1394 if (disk->fops->release) 1395 ret = disk->fops->release(disk, mode); 1396 } 1397 if (!bdev->bd_openers) { 1398 struct module *owner = disk->fops->owner; 1399 1400 put_disk(disk); 1401 module_put(owner); 1402 disk_put_part(bdev->bd_part); 1403 bdev->bd_part = NULL; 1404 bdev->bd_disk = NULL; 1405 bdev_inode_switch_bdi(bdev->bd_inode, 1406 &default_backing_dev_info); 1407 if (bdev != bdev->bd_contains) 1408 victim = bdev->bd_contains; 1409 bdev->bd_contains = NULL; 1410 } 1411 mutex_unlock(&bdev->bd_mutex); 1412 bdput(bdev); 1413 if (victim) 1414 __blkdev_put(victim, mode, 1); 1415 return ret; 1416} 1417 1418int blkdev_put(struct block_device *bdev, fmode_t mode) 1419{ 1420 if (mode & FMODE_EXCL) { 1421 bool bdev_free; 1422 1423 /* 1424 * Release a claim on the device. The holder fields 1425 * are protected with bdev_lock. bd_mutex is to 1426 * synchronize disk_holder unlinking. 1427 */ 1428 mutex_lock(&bdev->bd_mutex); 1429 spin_lock(&bdev_lock); 1430 1431 WARN_ON_ONCE(--bdev->bd_holders < 0); 1432 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1433 1434 /* bd_contains might point to self, check in a separate step */ 1435 if ((bdev_free = !bdev->bd_holders)) 1436 bdev->bd_holder = NULL; 1437 if (!bdev->bd_contains->bd_holders) 1438 bdev->bd_contains->bd_holder = NULL; 1439 1440 spin_unlock(&bdev_lock); 1441 1442 /* 1443 * If this was the last claim, remove holder link and 1444 * unblock evpoll if it was a write holder. 1445 */ 1446 if (bdev_free) { 1447 if (bdev->bd_write_holder) { 1448 disk_unblock_events(bdev->bd_disk); 1449 bdev->bd_write_holder = false; 1450 } else 1451 disk_check_events(bdev->bd_disk); 1452 } 1453 1454 mutex_unlock(&bdev->bd_mutex); 1455 } else 1456 disk_check_events(bdev->bd_disk); 1457 1458 return __blkdev_put(bdev, mode, 0); 1459} 1460EXPORT_SYMBOL(blkdev_put); 1461 1462static int blkdev_close(struct inode * inode, struct file * filp) 1463{ 1464 struct block_device *bdev = I_BDEV(filp->f_mapping->host); 1465 1466 return blkdev_put(bdev, filp->f_mode); 1467} 1468 1469static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1470{ 1471 struct block_device *bdev = I_BDEV(file->f_mapping->host); 1472 fmode_t mode = file->f_mode; 1473 1474 /* 1475 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1476 * to updated it before every ioctl. 1477 */ 1478 if (file->f_flags & O_NDELAY) 1479 mode |= FMODE_NDELAY; 1480 else 1481 mode &= ~FMODE_NDELAY; 1482 1483 return blkdev_ioctl(bdev, mode, cmd, arg); 1484} 1485 1486/* 1487 * Write data to the block device. Only intended for the block device itself 1488 * and the raw driver which basically is a fake block device. 1489 * 1490 * Does not take i_mutex for the write and thus is not for general purpose 1491 * use. 1492 */ 1493ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov, 1494 unsigned long nr_segs, loff_t pos) 1495{ 1496 struct file *file = iocb->ki_filp; 1497 ssize_t ret; 1498 1499 BUG_ON(iocb->ki_pos != pos); 1500 1501 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 1502 if (ret > 0 || ret == -EIOCBQUEUED) { 1503 ssize_t err; 1504 1505 err = generic_write_sync(file, pos, ret); 1506 if (err < 0 && ret > 0) 1507 ret = err; 1508 } 1509 return ret; 1510} 1511EXPORT_SYMBOL_GPL(blkdev_aio_write); 1512 1513/* 1514 * Try to release a page associated with block device when the system 1515 * is under memory pressure. 1516 */ 1517static int blkdev_releasepage(struct page *page, gfp_t wait) 1518{ 1519 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1520 1521 if (super && super->s_op->bdev_try_to_free_page) 1522 return super->s_op->bdev_try_to_free_page(super, page, wait); 1523 1524 return try_to_free_buffers(page); 1525} 1526 1527static const struct address_space_operations def_blk_aops = { 1528 .readpage = blkdev_readpage, 1529 .writepage = blkdev_writepage, 1530 .sync_page = block_sync_page, 1531 .write_begin = blkdev_write_begin, 1532 .write_end = blkdev_write_end, 1533 .writepages = generic_writepages, 1534 .releasepage = blkdev_releasepage, 1535 .direct_IO = blkdev_direct_IO, 1536}; 1537 1538const struct file_operations def_blk_fops = { 1539 .open = blkdev_open, 1540 .release = blkdev_close, 1541 .llseek = block_llseek, 1542 .read = do_sync_read, 1543 .write = do_sync_write, 1544 .aio_read = generic_file_aio_read, 1545 .aio_write = blkdev_aio_write, 1546 .mmap = generic_file_mmap, 1547 .fsync = blkdev_fsync, 1548 .unlocked_ioctl = block_ioctl, 1549#ifdef CONFIG_COMPAT 1550 .compat_ioctl = compat_blkdev_ioctl, 1551#endif 1552 .splice_read = generic_file_splice_read, 1553 .splice_write = generic_file_splice_write, 1554}; 1555 1556int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 1557{ 1558 int res; 1559 mm_segment_t old_fs = get_fs(); 1560 set_fs(KERNEL_DS); 1561 res = blkdev_ioctl(bdev, 0, cmd, arg); 1562 set_fs(old_fs); 1563 return res; 1564} 1565 1566EXPORT_SYMBOL(ioctl_by_bdev); 1567 1568/** 1569 * lookup_bdev - lookup a struct block_device by name 1570 * @pathname: special file representing the block device 1571 * 1572 * Get a reference to the blockdevice at @pathname in the current 1573 * namespace if possible and return it. Return ERR_PTR(error) 1574 * otherwise. 1575 */ 1576struct block_device *lookup_bdev(const char *pathname) 1577{ 1578 struct block_device *bdev; 1579 struct inode *inode; 1580 struct path path; 1581 int error; 1582 1583 if (!pathname || !*pathname) 1584 return ERR_PTR(-EINVAL); 1585 1586 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 1587 if (error) 1588 return ERR_PTR(error); 1589 1590 inode = path.dentry->d_inode; 1591 error = -ENOTBLK; 1592 if (!S_ISBLK(inode->i_mode)) 1593 goto fail; 1594 error = -EACCES; 1595 if (path.mnt->mnt_flags & MNT_NODEV) 1596 goto fail; 1597 error = -ENOMEM; 1598 bdev = bd_acquire(inode); 1599 if (!bdev) 1600 goto fail; 1601out: 1602 path_put(&path); 1603 return bdev; 1604fail: 1605 bdev = ERR_PTR(error); 1606 goto out; 1607} 1608EXPORT_SYMBOL(lookup_bdev); 1609 1610int __invalidate_device(struct block_device *bdev, bool kill_dirty) 1611{ 1612 struct super_block *sb = get_super(bdev); 1613 int res = 0; 1614 1615 if (sb) { 1616 /* 1617 * no need to lock the super, get_super holds the 1618 * read mutex so the filesystem cannot go away 1619 * under us (->put_super runs with the write lock 1620 * hold). 1621 */ 1622 shrink_dcache_sb(sb); 1623 res = invalidate_inodes(sb, kill_dirty); 1624 drop_super(sb); 1625 } 1626 invalidate_bdev(bdev); 1627 return res; 1628} 1629EXPORT_SYMBOL(__invalidate_device);