at v2.6.38 1578 lines 43 kB view raw
1/* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Author: Artem Bityutskiy (Битюцкий Артём) 19 */ 20 21/* 22 * UBI scanning sub-system. 23 * 24 * This sub-system is responsible for scanning the flash media, checking UBI 25 * headers and providing complete information about the UBI flash image. 26 * 27 * The scanning information is represented by a &struct ubi_scan_info' object. 28 * Information about found volumes is represented by &struct ubi_scan_volume 29 * objects which are kept in volume RB-tree with root at the @volumes field. 30 * The RB-tree is indexed by the volume ID. 31 * 32 * Scanned logical eraseblocks are represented by &struct ubi_scan_leb objects. 33 * These objects are kept in per-volume RB-trees with the root at the 34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep 35 * an RB-tree of per-volume objects and each of these objects is the root of 36 * RB-tree of per-eraseblock objects. 37 * 38 * Corrupted physical eraseblocks are put to the @corr list, free physical 39 * eraseblocks are put to the @free list and the physical eraseblock to be 40 * erased are put to the @erase list. 41 * 42 * UBI tries to distinguish between 2 types of corruptions. 43 * 1. Corruptions caused by power cuts. These are harmless and expected 44 * corruptions and UBI tries to handle them gracefully, without printing too 45 * many warnings and error messages. The idea is that we do not lose 46 * important data in these case - we may lose only the data which was being 47 * written to the media just before the power cut happened, and the upper 48 * layers (e.g., UBIFS) are supposed to handle these situations. UBI puts 49 * these PEBs to the head of the @erase list and they are scheduled for 50 * erasure. 51 * 52 * 2. Unexpected corruptions which are not caused by power cuts. During 53 * scanning, such PEBs are put to the @corr list and UBI preserves them. 54 * Obviously, this lessens the amount of available PEBs, and if at some 55 * point UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly 56 * informs about such PEBs every time the MTD device is attached. 57 * 58 * However, it is difficult to reliably distinguish between these types of 59 * corruptions and UBI's strategy is as follows. UBI assumes (2.) if the VID 60 * header is corrupted and the data area does not contain all 0xFFs, and there 61 * were not bit-flips or integrity errors while reading the data area. Otherwise 62 * UBI assumes (1.). The assumptions are: 63 * o if the data area contains only 0xFFs, there is no data, and it is safe 64 * to just erase this PEB. 65 * o if the data area has bit-flips and data integrity errors (ECC errors on 66 * NAND), it is probably a PEB which was being erased when power cut 67 * happened. 68 */ 69 70#include <linux/err.h> 71#include <linux/slab.h> 72#include <linux/crc32.h> 73#include <linux/math64.h> 74#include <linux/random.h> 75#include "ubi.h" 76 77#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 78static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si); 79#else 80#define paranoid_check_si(ubi, si) 0 81#endif 82 83/* Temporary variables used during scanning */ 84static struct ubi_ec_hdr *ech; 85static struct ubi_vid_hdr *vidh; 86 87/** 88 * add_to_list - add physical eraseblock to a list. 89 * @si: scanning information 90 * @pnum: physical eraseblock number to add 91 * @ec: erase counter of the physical eraseblock 92 * @to_head: if not zero, add to the head of the list 93 * @list: the list to add to 94 * 95 * This function adds physical eraseblock @pnum to free, erase, or alien lists. 96 * If @to_head is not zero, PEB will be added to the head of the list, which 97 * basically means it will be processed first later. E.g., we add corrupted 98 * PEBs (corrupted due to power cuts) to the head of the erase list to make 99 * sure we erase them first and get rid of corruptions ASAP. This function 100 * returns zero in case of success and a negative error code in case of 101 * failure. 102 */ 103static int add_to_list(struct ubi_scan_info *si, int pnum, int ec, int to_head, 104 struct list_head *list) 105{ 106 struct ubi_scan_leb *seb; 107 108 if (list == &si->free) { 109 dbg_bld("add to free: PEB %d, EC %d", pnum, ec); 110 } else if (list == &si->erase) { 111 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); 112 } else if (list == &si->alien) { 113 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); 114 si->alien_peb_count += 1; 115 } else 116 BUG(); 117 118 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); 119 if (!seb) 120 return -ENOMEM; 121 122 seb->pnum = pnum; 123 seb->ec = ec; 124 if (to_head) 125 list_add(&seb->u.list, list); 126 else 127 list_add_tail(&seb->u.list, list); 128 return 0; 129} 130 131/** 132 * add_corrupted - add a corrupted physical eraseblock. 133 * @si: scanning information 134 * @pnum: physical eraseblock number to add 135 * @ec: erase counter of the physical eraseblock 136 * 137 * This function adds corrupted physical eraseblock @pnum to the 'corr' list. 138 * The corruption was presumably not caused by a power cut. Returns zero in 139 * case of success and a negative error code in case of failure. 140 */ 141static int add_corrupted(struct ubi_scan_info *si, int pnum, int ec) 142{ 143 struct ubi_scan_leb *seb; 144 145 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); 146 147 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); 148 if (!seb) 149 return -ENOMEM; 150 151 si->corr_peb_count += 1; 152 seb->pnum = pnum; 153 seb->ec = ec; 154 list_add(&seb->u.list, &si->corr); 155 return 0; 156} 157 158/** 159 * validate_vid_hdr - check volume identifier header. 160 * @vid_hdr: the volume identifier header to check 161 * @sv: information about the volume this logical eraseblock belongs to 162 * @pnum: physical eraseblock number the VID header came from 163 * 164 * This function checks that data stored in @vid_hdr is consistent. Returns 165 * non-zero if an inconsistency was found and zero if not. 166 * 167 * Note, UBI does sanity check of everything it reads from the flash media. 168 * Most of the checks are done in the I/O sub-system. Here we check that the 169 * information in the VID header is consistent to the information in other VID 170 * headers of the same volume. 171 */ 172static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr, 173 const struct ubi_scan_volume *sv, int pnum) 174{ 175 int vol_type = vid_hdr->vol_type; 176 int vol_id = be32_to_cpu(vid_hdr->vol_id); 177 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 178 int data_pad = be32_to_cpu(vid_hdr->data_pad); 179 180 if (sv->leb_count != 0) { 181 int sv_vol_type; 182 183 /* 184 * This is not the first logical eraseblock belonging to this 185 * volume. Ensure that the data in its VID header is consistent 186 * to the data in previous logical eraseblock headers. 187 */ 188 189 if (vol_id != sv->vol_id) { 190 dbg_err("inconsistent vol_id"); 191 goto bad; 192 } 193 194 if (sv->vol_type == UBI_STATIC_VOLUME) 195 sv_vol_type = UBI_VID_STATIC; 196 else 197 sv_vol_type = UBI_VID_DYNAMIC; 198 199 if (vol_type != sv_vol_type) { 200 dbg_err("inconsistent vol_type"); 201 goto bad; 202 } 203 204 if (used_ebs != sv->used_ebs) { 205 dbg_err("inconsistent used_ebs"); 206 goto bad; 207 } 208 209 if (data_pad != sv->data_pad) { 210 dbg_err("inconsistent data_pad"); 211 goto bad; 212 } 213 } 214 215 return 0; 216 217bad: 218 ubi_err("inconsistent VID header at PEB %d", pnum); 219 ubi_dbg_dump_vid_hdr(vid_hdr); 220 ubi_dbg_dump_sv(sv); 221 return -EINVAL; 222} 223 224/** 225 * add_volume - add volume to the scanning information. 226 * @si: scanning information 227 * @vol_id: ID of the volume to add 228 * @pnum: physical eraseblock number 229 * @vid_hdr: volume identifier header 230 * 231 * If the volume corresponding to the @vid_hdr logical eraseblock is already 232 * present in the scanning information, this function does nothing. Otherwise 233 * it adds corresponding volume to the scanning information. Returns a pointer 234 * to the scanning volume object in case of success and a negative error code 235 * in case of failure. 236 */ 237static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id, 238 int pnum, 239 const struct ubi_vid_hdr *vid_hdr) 240{ 241 struct ubi_scan_volume *sv; 242 struct rb_node **p = &si->volumes.rb_node, *parent = NULL; 243 244 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); 245 246 /* Walk the volume RB-tree to look if this volume is already present */ 247 while (*p) { 248 parent = *p; 249 sv = rb_entry(parent, struct ubi_scan_volume, rb); 250 251 if (vol_id == sv->vol_id) 252 return sv; 253 254 if (vol_id > sv->vol_id) 255 p = &(*p)->rb_left; 256 else 257 p = &(*p)->rb_right; 258 } 259 260 /* The volume is absent - add it */ 261 sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL); 262 if (!sv) 263 return ERR_PTR(-ENOMEM); 264 265 sv->highest_lnum = sv->leb_count = 0; 266 sv->vol_id = vol_id; 267 sv->root = RB_ROOT; 268 sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs); 269 sv->data_pad = be32_to_cpu(vid_hdr->data_pad); 270 sv->compat = vid_hdr->compat; 271 sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME 272 : UBI_STATIC_VOLUME; 273 if (vol_id > si->highest_vol_id) 274 si->highest_vol_id = vol_id; 275 276 rb_link_node(&sv->rb, parent, p); 277 rb_insert_color(&sv->rb, &si->volumes); 278 si->vols_found += 1; 279 dbg_bld("added volume %d", vol_id); 280 return sv; 281} 282 283/** 284 * compare_lebs - find out which logical eraseblock is newer. 285 * @ubi: UBI device description object 286 * @seb: first logical eraseblock to compare 287 * @pnum: physical eraseblock number of the second logical eraseblock to 288 * compare 289 * @vid_hdr: volume identifier header of the second logical eraseblock 290 * 291 * This function compares 2 copies of a LEB and informs which one is newer. In 292 * case of success this function returns a positive value, in case of failure, a 293 * negative error code is returned. The success return codes use the following 294 * bits: 295 * o bit 0 is cleared: the first PEB (described by @seb) is newer than the 296 * second PEB (described by @pnum and @vid_hdr); 297 * o bit 0 is set: the second PEB is newer; 298 * o bit 1 is cleared: no bit-flips were detected in the newer LEB; 299 * o bit 1 is set: bit-flips were detected in the newer LEB; 300 * o bit 2 is cleared: the older LEB is not corrupted; 301 * o bit 2 is set: the older LEB is corrupted. 302 */ 303static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb, 304 int pnum, const struct ubi_vid_hdr *vid_hdr) 305{ 306 void *buf; 307 int len, err, second_is_newer, bitflips = 0, corrupted = 0; 308 uint32_t data_crc, crc; 309 struct ubi_vid_hdr *vh = NULL; 310 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); 311 312 if (sqnum2 == seb->sqnum) { 313 /* 314 * This must be a really ancient UBI image which has been 315 * created before sequence numbers support has been added. At 316 * that times we used 32-bit LEB versions stored in logical 317 * eraseblocks. That was before UBI got into mainline. We do not 318 * support these images anymore. Well, those images still work, 319 * but only if no unclean reboots happened. 320 */ 321 ubi_err("unsupported on-flash UBI format\n"); 322 return -EINVAL; 323 } 324 325 /* Obviously the LEB with lower sequence counter is older */ 326 second_is_newer = !!(sqnum2 > seb->sqnum); 327 328 /* 329 * Now we know which copy is newer. If the copy flag of the PEB with 330 * newer version is not set, then we just return, otherwise we have to 331 * check data CRC. For the second PEB we already have the VID header, 332 * for the first one - we'll need to re-read it from flash. 333 * 334 * Note: this may be optimized so that we wouldn't read twice. 335 */ 336 337 if (second_is_newer) { 338 if (!vid_hdr->copy_flag) { 339 /* It is not a copy, so it is newer */ 340 dbg_bld("second PEB %d is newer, copy_flag is unset", 341 pnum); 342 return 1; 343 } 344 } else { 345 if (!seb->copy_flag) { 346 /* It is not a copy, so it is newer */ 347 dbg_bld("first PEB %d is newer, copy_flag is unset", 348 pnum); 349 return bitflips << 1; 350 } 351 352 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 353 if (!vh) 354 return -ENOMEM; 355 356 pnum = seb->pnum; 357 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); 358 if (err) { 359 if (err == UBI_IO_BITFLIPS) 360 bitflips = 1; 361 else { 362 dbg_err("VID of PEB %d header is bad, but it " 363 "was OK earlier, err %d", pnum, err); 364 if (err > 0) 365 err = -EIO; 366 367 goto out_free_vidh; 368 } 369 } 370 371 vid_hdr = vh; 372 } 373 374 /* Read the data of the copy and check the CRC */ 375 376 len = be32_to_cpu(vid_hdr->data_size); 377 buf = vmalloc(len); 378 if (!buf) { 379 err = -ENOMEM; 380 goto out_free_vidh; 381 } 382 383 err = ubi_io_read_data(ubi, buf, pnum, 0, len); 384 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) 385 goto out_free_buf; 386 387 data_crc = be32_to_cpu(vid_hdr->data_crc); 388 crc = crc32(UBI_CRC32_INIT, buf, len); 389 if (crc != data_crc) { 390 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", 391 pnum, crc, data_crc); 392 corrupted = 1; 393 bitflips = 0; 394 second_is_newer = !second_is_newer; 395 } else { 396 dbg_bld("PEB %d CRC is OK", pnum); 397 bitflips = !!err; 398 } 399 400 vfree(buf); 401 ubi_free_vid_hdr(ubi, vh); 402 403 if (second_is_newer) 404 dbg_bld("second PEB %d is newer, copy_flag is set", pnum); 405 else 406 dbg_bld("first PEB %d is newer, copy_flag is set", pnum); 407 408 return second_is_newer | (bitflips << 1) | (corrupted << 2); 409 410out_free_buf: 411 vfree(buf); 412out_free_vidh: 413 ubi_free_vid_hdr(ubi, vh); 414 return err; 415} 416 417/** 418 * ubi_scan_add_used - add physical eraseblock to the scanning information. 419 * @ubi: UBI device description object 420 * @si: scanning information 421 * @pnum: the physical eraseblock number 422 * @ec: erase counter 423 * @vid_hdr: the volume identifier header 424 * @bitflips: if bit-flips were detected when this physical eraseblock was read 425 * 426 * This function adds information about a used physical eraseblock to the 427 * 'used' tree of the corresponding volume. The function is rather complex 428 * because it has to handle cases when this is not the first physical 429 * eraseblock belonging to the same logical eraseblock, and the newer one has 430 * to be picked, while the older one has to be dropped. This function returns 431 * zero in case of success and a negative error code in case of failure. 432 */ 433int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, 434 int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, 435 int bitflips) 436{ 437 int err, vol_id, lnum; 438 unsigned long long sqnum; 439 struct ubi_scan_volume *sv; 440 struct ubi_scan_leb *seb; 441 struct rb_node **p, *parent = NULL; 442 443 vol_id = be32_to_cpu(vid_hdr->vol_id); 444 lnum = be32_to_cpu(vid_hdr->lnum); 445 sqnum = be64_to_cpu(vid_hdr->sqnum); 446 447 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", 448 pnum, vol_id, lnum, ec, sqnum, bitflips); 449 450 sv = add_volume(si, vol_id, pnum, vid_hdr); 451 if (IS_ERR(sv)) 452 return PTR_ERR(sv); 453 454 if (si->max_sqnum < sqnum) 455 si->max_sqnum = sqnum; 456 457 /* 458 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look 459 * if this is the first instance of this logical eraseblock or not. 460 */ 461 p = &sv->root.rb_node; 462 while (*p) { 463 int cmp_res; 464 465 parent = *p; 466 seb = rb_entry(parent, struct ubi_scan_leb, u.rb); 467 if (lnum != seb->lnum) { 468 if (lnum < seb->lnum) 469 p = &(*p)->rb_left; 470 else 471 p = &(*p)->rb_right; 472 continue; 473 } 474 475 /* 476 * There is already a physical eraseblock describing the same 477 * logical eraseblock present. 478 */ 479 480 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, " 481 "EC %d", seb->pnum, seb->sqnum, seb->ec); 482 483 /* 484 * Make sure that the logical eraseblocks have different 485 * sequence numbers. Otherwise the image is bad. 486 * 487 * However, if the sequence number is zero, we assume it must 488 * be an ancient UBI image from the era when UBI did not have 489 * sequence numbers. We still can attach these images, unless 490 * there is a need to distinguish between old and new 491 * eraseblocks, in which case we'll refuse the image in 492 * 'compare_lebs()'. In other words, we attach old clean 493 * images, but refuse attaching old images with duplicated 494 * logical eraseblocks because there was an unclean reboot. 495 */ 496 if (seb->sqnum == sqnum && sqnum != 0) { 497 ubi_err("two LEBs with same sequence number %llu", 498 sqnum); 499 ubi_dbg_dump_seb(seb, 0); 500 ubi_dbg_dump_vid_hdr(vid_hdr); 501 return -EINVAL; 502 } 503 504 /* 505 * Now we have to drop the older one and preserve the newer 506 * one. 507 */ 508 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr); 509 if (cmp_res < 0) 510 return cmp_res; 511 512 if (cmp_res & 1) { 513 /* 514 * This logical eraseblock is newer than the one 515 * found earlier. 516 */ 517 err = validate_vid_hdr(vid_hdr, sv, pnum); 518 if (err) 519 return err; 520 521 err = add_to_list(si, seb->pnum, seb->ec, cmp_res & 4, 522 &si->erase); 523 if (err) 524 return err; 525 526 seb->ec = ec; 527 seb->pnum = pnum; 528 seb->scrub = ((cmp_res & 2) || bitflips); 529 seb->copy_flag = vid_hdr->copy_flag; 530 seb->sqnum = sqnum; 531 532 if (sv->highest_lnum == lnum) 533 sv->last_data_size = 534 be32_to_cpu(vid_hdr->data_size); 535 536 return 0; 537 } else { 538 /* 539 * This logical eraseblock is older than the one found 540 * previously. 541 */ 542 return add_to_list(si, pnum, ec, cmp_res & 4, 543 &si->erase); 544 } 545 } 546 547 /* 548 * We've met this logical eraseblock for the first time, add it to the 549 * scanning information. 550 */ 551 552 err = validate_vid_hdr(vid_hdr, sv, pnum); 553 if (err) 554 return err; 555 556 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); 557 if (!seb) 558 return -ENOMEM; 559 560 seb->ec = ec; 561 seb->pnum = pnum; 562 seb->lnum = lnum; 563 seb->scrub = bitflips; 564 seb->copy_flag = vid_hdr->copy_flag; 565 seb->sqnum = sqnum; 566 567 if (sv->highest_lnum <= lnum) { 568 sv->highest_lnum = lnum; 569 sv->last_data_size = be32_to_cpu(vid_hdr->data_size); 570 } 571 572 sv->leb_count += 1; 573 rb_link_node(&seb->u.rb, parent, p); 574 rb_insert_color(&seb->u.rb, &sv->root); 575 return 0; 576} 577 578/** 579 * ubi_scan_find_sv - find volume in the scanning information. 580 * @si: scanning information 581 * @vol_id: the requested volume ID 582 * 583 * This function returns a pointer to the volume description or %NULL if there 584 * are no data about this volume in the scanning information. 585 */ 586struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si, 587 int vol_id) 588{ 589 struct ubi_scan_volume *sv; 590 struct rb_node *p = si->volumes.rb_node; 591 592 while (p) { 593 sv = rb_entry(p, struct ubi_scan_volume, rb); 594 595 if (vol_id == sv->vol_id) 596 return sv; 597 598 if (vol_id > sv->vol_id) 599 p = p->rb_left; 600 else 601 p = p->rb_right; 602 } 603 604 return NULL; 605} 606 607/** 608 * ubi_scan_find_seb - find LEB in the volume scanning information. 609 * @sv: a pointer to the volume scanning information 610 * @lnum: the requested logical eraseblock 611 * 612 * This function returns a pointer to the scanning logical eraseblock or %NULL 613 * if there are no data about it in the scanning volume information. 614 */ 615struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv, 616 int lnum) 617{ 618 struct ubi_scan_leb *seb; 619 struct rb_node *p = sv->root.rb_node; 620 621 while (p) { 622 seb = rb_entry(p, struct ubi_scan_leb, u.rb); 623 624 if (lnum == seb->lnum) 625 return seb; 626 627 if (lnum > seb->lnum) 628 p = p->rb_left; 629 else 630 p = p->rb_right; 631 } 632 633 return NULL; 634} 635 636/** 637 * ubi_scan_rm_volume - delete scanning information about a volume. 638 * @si: scanning information 639 * @sv: the volume scanning information to delete 640 */ 641void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv) 642{ 643 struct rb_node *rb; 644 struct ubi_scan_leb *seb; 645 646 dbg_bld("remove scanning information about volume %d", sv->vol_id); 647 648 while ((rb = rb_first(&sv->root))) { 649 seb = rb_entry(rb, struct ubi_scan_leb, u.rb); 650 rb_erase(&seb->u.rb, &sv->root); 651 list_add_tail(&seb->u.list, &si->erase); 652 } 653 654 rb_erase(&sv->rb, &si->volumes); 655 kfree(sv); 656 si->vols_found -= 1; 657} 658 659/** 660 * ubi_scan_erase_peb - erase a physical eraseblock. 661 * @ubi: UBI device description object 662 * @si: scanning information 663 * @pnum: physical eraseblock number to erase; 664 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown) 665 * 666 * This function erases physical eraseblock 'pnum', and writes the erase 667 * counter header to it. This function should only be used on UBI device 668 * initialization stages, when the EBA sub-system had not been yet initialized. 669 * This function returns zero in case of success and a negative error code in 670 * case of failure. 671 */ 672int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si, 673 int pnum, int ec) 674{ 675 int err; 676 struct ubi_ec_hdr *ec_hdr; 677 678 if ((long long)ec >= UBI_MAX_ERASECOUNTER) { 679 /* 680 * Erase counter overflow. Upgrade UBI and use 64-bit 681 * erase counters internally. 682 */ 683 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec); 684 return -EINVAL; 685 } 686 687 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 688 if (!ec_hdr) 689 return -ENOMEM; 690 691 ec_hdr->ec = cpu_to_be64(ec); 692 693 err = ubi_io_sync_erase(ubi, pnum, 0); 694 if (err < 0) 695 goto out_free; 696 697 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); 698 699out_free: 700 kfree(ec_hdr); 701 return err; 702} 703 704/** 705 * ubi_scan_get_free_peb - get a free physical eraseblock. 706 * @ubi: UBI device description object 707 * @si: scanning information 708 * 709 * This function returns a free physical eraseblock. It is supposed to be 710 * called on the UBI initialization stages when the wear-leveling sub-system is 711 * not initialized yet. This function picks a physical eraseblocks from one of 712 * the lists, writes the EC header if it is needed, and removes it from the 713 * list. 714 * 715 * This function returns scanning physical eraseblock information in case of 716 * success and an error code in case of failure. 717 */ 718struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi, 719 struct ubi_scan_info *si) 720{ 721 int err = 0; 722 struct ubi_scan_leb *seb, *tmp_seb; 723 724 if (!list_empty(&si->free)) { 725 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list); 726 list_del(&seb->u.list); 727 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec); 728 return seb; 729 } 730 731 /* 732 * We try to erase the first physical eraseblock from the erase list 733 * and pick it if we succeed, or try to erase the next one if not. And 734 * so forth. We don't want to take care about bad eraseblocks here - 735 * they'll be handled later. 736 */ 737 list_for_each_entry_safe(seb, tmp_seb, &si->erase, u.list) { 738 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 739 seb->ec = si->mean_ec; 740 741 err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1); 742 if (err) 743 continue; 744 745 seb->ec += 1; 746 list_del(&seb->u.list); 747 dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec); 748 return seb; 749 } 750 751 ubi_err("no free eraseblocks"); 752 return ERR_PTR(-ENOSPC); 753} 754 755/** 756 * check_corruption - check the data area of PEB. 757 * @ubi: UBI device description object 758 * @vid_hrd: the (corrupted) VID header of this PEB 759 * @pnum: the physical eraseblock number to check 760 * 761 * This is a helper function which is used to distinguish between VID header 762 * corruptions caused by power cuts and other reasons. If the PEB contains only 763 * 0xFF bytes in the data area, the VID header is most probably corrupted 764 * because of a power cut (%0 is returned in this case). Otherwise, it was 765 * probably corrupted for some other reasons (%1 is returned in this case). A 766 * negative error code is returned if a read error occurred. 767 * 768 * If the corruption reason was a power cut, UBI can safely erase this PEB. 769 * Otherwise, it should preserve it to avoid possibly destroying important 770 * information. 771 */ 772static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr, 773 int pnum) 774{ 775 int err; 776 777 mutex_lock(&ubi->buf_mutex); 778 memset(ubi->peb_buf1, 0x00, ubi->leb_size); 779 780 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, ubi->leb_start, 781 ubi->leb_size); 782 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) { 783 /* 784 * Bit-flips or integrity errors while reading the data area. 785 * It is difficult to say for sure what type of corruption is 786 * this, but presumably a power cut happened while this PEB was 787 * erased, so it became unstable and corrupted, and should be 788 * erased. 789 */ 790 err = 0; 791 goto out_unlock; 792 } 793 794 if (err) 795 goto out_unlock; 796 797 if (ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->leb_size)) 798 goto out_unlock; 799 800 ubi_err("PEB %d contains corrupted VID header, and the data does not " 801 "contain all 0xFF, this may be a non-UBI PEB or a severe VID " 802 "header corruption which requires manual inspection", pnum); 803 ubi_dbg_dump_vid_hdr(vid_hdr); 804 dbg_msg("hexdump of PEB %d offset %d, length %d", 805 pnum, ubi->leb_start, ubi->leb_size); 806 ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 807 ubi->peb_buf1, ubi->leb_size, 1); 808 err = 1; 809 810out_unlock: 811 mutex_unlock(&ubi->buf_mutex); 812 return err; 813} 814 815/** 816 * process_eb - read, check UBI headers, and add them to scanning information. 817 * @ubi: UBI device description object 818 * @si: scanning information 819 * @pnum: the physical eraseblock number 820 * 821 * This function returns a zero if the physical eraseblock was successfully 822 * handled and a negative error code in case of failure. 823 */ 824static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, 825 int pnum) 826{ 827 long long uninitialized_var(ec); 828 int err, bitflips = 0, vol_id, ec_err = 0; 829 830 dbg_bld("scan PEB %d", pnum); 831 832 /* Skip bad physical eraseblocks */ 833 err = ubi_io_is_bad(ubi, pnum); 834 if (err < 0) 835 return err; 836 else if (err) { 837 /* 838 * FIXME: this is actually duty of the I/O sub-system to 839 * initialize this, but MTD does not provide enough 840 * information. 841 */ 842 si->bad_peb_count += 1; 843 return 0; 844 } 845 846 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); 847 if (err < 0) 848 return err; 849 switch (err) { 850 case 0: 851 break; 852 case UBI_IO_BITFLIPS: 853 bitflips = 1; 854 break; 855 case UBI_IO_FF: 856 si->empty_peb_count += 1; 857 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 0, 858 &si->erase); 859 case UBI_IO_FF_BITFLIPS: 860 si->empty_peb_count += 1; 861 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 1, 862 &si->erase); 863 case UBI_IO_BAD_HDR_EBADMSG: 864 case UBI_IO_BAD_HDR: 865 /* 866 * We have to also look at the VID header, possibly it is not 867 * corrupted. Set %bitflips flag in order to make this PEB be 868 * moved and EC be re-created. 869 */ 870 ec_err = err; 871 ec = UBI_SCAN_UNKNOWN_EC; 872 bitflips = 1; 873 break; 874 default: 875 ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err); 876 return -EINVAL; 877 } 878 879 if (!ec_err) { 880 int image_seq; 881 882 /* Make sure UBI version is OK */ 883 if (ech->version != UBI_VERSION) { 884 ubi_err("this UBI version is %d, image version is %d", 885 UBI_VERSION, (int)ech->version); 886 return -EINVAL; 887 } 888 889 ec = be64_to_cpu(ech->ec); 890 if (ec > UBI_MAX_ERASECOUNTER) { 891 /* 892 * Erase counter overflow. The EC headers have 64 bits 893 * reserved, but we anyway make use of only 31 bit 894 * values, as this seems to be enough for any existing 895 * flash. Upgrade UBI and use 64-bit erase counters 896 * internally. 897 */ 898 ubi_err("erase counter overflow, max is %d", 899 UBI_MAX_ERASECOUNTER); 900 ubi_dbg_dump_ec_hdr(ech); 901 return -EINVAL; 902 } 903 904 /* 905 * Make sure that all PEBs have the same image sequence number. 906 * This allows us to detect situations when users flash UBI 907 * images incorrectly, so that the flash has the new UBI image 908 * and leftovers from the old one. This feature was added 909 * relatively recently, and the sequence number was always 910 * zero, because old UBI implementations always set it to zero. 911 * For this reasons, we do not panic if some PEBs have zero 912 * sequence number, while other PEBs have non-zero sequence 913 * number. 914 */ 915 image_seq = be32_to_cpu(ech->image_seq); 916 if (!ubi->image_seq && image_seq) 917 ubi->image_seq = image_seq; 918 if (ubi->image_seq && image_seq && 919 ubi->image_seq != image_seq) { 920 ubi_err("bad image sequence number %d in PEB %d, " 921 "expected %d", image_seq, pnum, ubi->image_seq); 922 ubi_dbg_dump_ec_hdr(ech); 923 return -EINVAL; 924 } 925 } 926 927 /* OK, we've done with the EC header, let's look at the VID header */ 928 929 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); 930 if (err < 0) 931 return err; 932 switch (err) { 933 case 0: 934 break; 935 case UBI_IO_BITFLIPS: 936 bitflips = 1; 937 break; 938 case UBI_IO_BAD_HDR_EBADMSG: 939 if (ec_err == UBI_IO_BAD_HDR_EBADMSG) 940 /* 941 * Both EC and VID headers are corrupted and were read 942 * with data integrity error, probably this is a bad 943 * PEB, bit it is not marked as bad yet. This may also 944 * be a result of power cut during erasure. 945 */ 946 si->maybe_bad_peb_count += 1; 947 case UBI_IO_BAD_HDR: 948 if (ec_err) 949 /* 950 * Both headers are corrupted. There is a possibility 951 * that this a valid UBI PEB which has corresponding 952 * LEB, but the headers are corrupted. However, it is 953 * impossible to distinguish it from a PEB which just 954 * contains garbage because of a power cut during erase 955 * operation. So we just schedule this PEB for erasure. 956 * 957 * Besides, in case of NOR flash, we deliberatly 958 * corrupt both headers because NOR flash erasure is 959 * slow and can start from the end. 960 */ 961 err = 0; 962 else 963 /* 964 * The EC was OK, but the VID header is corrupted. We 965 * have to check what is in the data area. 966 */ 967 err = check_corruption(ubi, vidh, pnum); 968 969 if (err < 0) 970 return err; 971 else if (!err) 972 /* This corruption is caused by a power cut */ 973 err = add_to_list(si, pnum, ec, 1, &si->erase); 974 else 975 /* This is an unexpected corruption */ 976 err = add_corrupted(si, pnum, ec); 977 if (err) 978 return err; 979 goto adjust_mean_ec; 980 case UBI_IO_FF_BITFLIPS: 981 err = add_to_list(si, pnum, ec, 1, &si->erase); 982 if (err) 983 return err; 984 goto adjust_mean_ec; 985 case UBI_IO_FF: 986 if (ec_err) 987 err = add_to_list(si, pnum, ec, 1, &si->erase); 988 else 989 err = add_to_list(si, pnum, ec, 0, &si->free); 990 if (err) 991 return err; 992 goto adjust_mean_ec; 993 default: 994 ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d", 995 err); 996 return -EINVAL; 997 } 998 999 vol_id = be32_to_cpu(vidh->vol_id); 1000 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { 1001 int lnum = be32_to_cpu(vidh->lnum); 1002 1003 /* Unsupported internal volume */ 1004 switch (vidh->compat) { 1005 case UBI_COMPAT_DELETE: 1006 ubi_msg("\"delete\" compatible internal volume %d:%d" 1007 " found, will remove it", vol_id, lnum); 1008 err = add_to_list(si, pnum, ec, 1, &si->erase); 1009 if (err) 1010 return err; 1011 return 0; 1012 1013 case UBI_COMPAT_RO: 1014 ubi_msg("read-only compatible internal volume %d:%d" 1015 " found, switch to read-only mode", 1016 vol_id, lnum); 1017 ubi->ro_mode = 1; 1018 break; 1019 1020 case UBI_COMPAT_PRESERVE: 1021 ubi_msg("\"preserve\" compatible internal volume %d:%d" 1022 " found", vol_id, lnum); 1023 err = add_to_list(si, pnum, ec, 0, &si->alien); 1024 if (err) 1025 return err; 1026 return 0; 1027 1028 case UBI_COMPAT_REJECT: 1029 ubi_err("incompatible internal volume %d:%d found", 1030 vol_id, lnum); 1031 return -EINVAL; 1032 } 1033 } 1034 1035 if (ec_err) 1036 ubi_warn("valid VID header but corrupted EC header at PEB %d", 1037 pnum); 1038 err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips); 1039 if (err) 1040 return err; 1041 1042adjust_mean_ec: 1043 if (!ec_err) { 1044 si->ec_sum += ec; 1045 si->ec_count += 1; 1046 if (ec > si->max_ec) 1047 si->max_ec = ec; 1048 if (ec < si->min_ec) 1049 si->min_ec = ec; 1050 } 1051 1052 return 0; 1053} 1054 1055/** 1056 * check_what_we_have - check what PEB were found by scanning. 1057 * @ubi: UBI device description object 1058 * @si: scanning information 1059 * 1060 * This is a helper function which takes a look what PEBs were found by 1061 * scanning, and decides whether the flash is empty and should be formatted and 1062 * whether there are too many corrupted PEBs and we should not attach this 1063 * MTD device. Returns zero if we should proceed with attaching the MTD device, 1064 * and %-EINVAL if we should not. 1065 */ 1066static int check_what_we_have(struct ubi_device *ubi, struct ubi_scan_info *si) 1067{ 1068 struct ubi_scan_leb *seb; 1069 int max_corr, peb_count; 1070 1071 peb_count = ubi->peb_count - si->bad_peb_count - si->alien_peb_count; 1072 max_corr = peb_count / 20 ?: 8; 1073 1074 /* 1075 * Few corrupted PEBs is not a problem and may be just a result of 1076 * unclean reboots. However, many of them may indicate some problems 1077 * with the flash HW or driver. 1078 */ 1079 if (si->corr_peb_count) { 1080 ubi_err("%d PEBs are corrupted and preserved", 1081 si->corr_peb_count); 1082 printk(KERN_ERR "Corrupted PEBs are:"); 1083 list_for_each_entry(seb, &si->corr, u.list) 1084 printk(KERN_CONT " %d", seb->pnum); 1085 printk(KERN_CONT "\n"); 1086 1087 /* 1088 * If too many PEBs are corrupted, we refuse attaching, 1089 * otherwise, only print a warning. 1090 */ 1091 if (si->corr_peb_count >= max_corr) { 1092 ubi_err("too many corrupted PEBs, refusing this device"); 1093 return -EINVAL; 1094 } 1095 } 1096 1097 if (si->empty_peb_count + si->maybe_bad_peb_count == peb_count) { 1098 /* 1099 * All PEBs are empty, or almost all - a couple PEBs look like 1100 * they may be bad PEBs which were not marked as bad yet. 1101 * 1102 * This piece of code basically tries to distinguish between 1103 * the following situations: 1104 * 1105 * 1. Flash is empty, but there are few bad PEBs, which are not 1106 * marked as bad so far, and which were read with error. We 1107 * want to go ahead and format this flash. While formatting, 1108 * the faulty PEBs will probably be marked as bad. 1109 * 1110 * 2. Flash contains non-UBI data and we do not want to format 1111 * it and destroy possibly important information. 1112 */ 1113 if (si->maybe_bad_peb_count <= 2) { 1114 si->is_empty = 1; 1115 ubi_msg("empty MTD device detected"); 1116 get_random_bytes(&ubi->image_seq, 1117 sizeof(ubi->image_seq)); 1118 } else { 1119 ubi_err("MTD device is not UBI-formatted and possibly " 1120 "contains non-UBI data - refusing it"); 1121 return -EINVAL; 1122 } 1123 1124 } 1125 1126 return 0; 1127} 1128 1129/** 1130 * ubi_scan - scan an MTD device. 1131 * @ubi: UBI device description object 1132 * 1133 * This function does full scanning of an MTD device and returns complete 1134 * information about it. In case of failure, an error code is returned. 1135 */ 1136struct ubi_scan_info *ubi_scan(struct ubi_device *ubi) 1137{ 1138 int err, pnum; 1139 struct rb_node *rb1, *rb2; 1140 struct ubi_scan_volume *sv; 1141 struct ubi_scan_leb *seb; 1142 struct ubi_scan_info *si; 1143 1144 si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL); 1145 if (!si) 1146 return ERR_PTR(-ENOMEM); 1147 1148 INIT_LIST_HEAD(&si->corr); 1149 INIT_LIST_HEAD(&si->free); 1150 INIT_LIST_HEAD(&si->erase); 1151 INIT_LIST_HEAD(&si->alien); 1152 si->volumes = RB_ROOT; 1153 1154 err = -ENOMEM; 1155 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 1156 if (!ech) 1157 goto out_si; 1158 1159 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 1160 if (!vidh) 1161 goto out_ech; 1162 1163 for (pnum = 0; pnum < ubi->peb_count; pnum++) { 1164 cond_resched(); 1165 1166 dbg_gen("process PEB %d", pnum); 1167 err = process_eb(ubi, si, pnum); 1168 if (err < 0) 1169 goto out_vidh; 1170 } 1171 1172 dbg_msg("scanning is finished"); 1173 1174 /* Calculate mean erase counter */ 1175 if (si->ec_count) 1176 si->mean_ec = div_u64(si->ec_sum, si->ec_count); 1177 1178 err = check_what_we_have(ubi, si); 1179 if (err) 1180 goto out_vidh; 1181 1182 /* 1183 * In case of unknown erase counter we use the mean erase counter 1184 * value. 1185 */ 1186 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1187 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) 1188 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 1189 seb->ec = si->mean_ec; 1190 } 1191 1192 list_for_each_entry(seb, &si->free, u.list) { 1193 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 1194 seb->ec = si->mean_ec; 1195 } 1196 1197 list_for_each_entry(seb, &si->corr, u.list) 1198 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 1199 seb->ec = si->mean_ec; 1200 1201 list_for_each_entry(seb, &si->erase, u.list) 1202 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 1203 seb->ec = si->mean_ec; 1204 1205 err = paranoid_check_si(ubi, si); 1206 if (err) 1207 goto out_vidh; 1208 1209 ubi_free_vid_hdr(ubi, vidh); 1210 kfree(ech); 1211 1212 return si; 1213 1214out_vidh: 1215 ubi_free_vid_hdr(ubi, vidh); 1216out_ech: 1217 kfree(ech); 1218out_si: 1219 ubi_scan_destroy_si(si); 1220 return ERR_PTR(err); 1221} 1222 1223/** 1224 * destroy_sv - free the scanning volume information 1225 * @sv: scanning volume information 1226 * 1227 * This function destroys the volume RB-tree (@sv->root) and the scanning 1228 * volume information. 1229 */ 1230static void destroy_sv(struct ubi_scan_volume *sv) 1231{ 1232 struct ubi_scan_leb *seb; 1233 struct rb_node *this = sv->root.rb_node; 1234 1235 while (this) { 1236 if (this->rb_left) 1237 this = this->rb_left; 1238 else if (this->rb_right) 1239 this = this->rb_right; 1240 else { 1241 seb = rb_entry(this, struct ubi_scan_leb, u.rb); 1242 this = rb_parent(this); 1243 if (this) { 1244 if (this->rb_left == &seb->u.rb) 1245 this->rb_left = NULL; 1246 else 1247 this->rb_right = NULL; 1248 } 1249 1250 kfree(seb); 1251 } 1252 } 1253 kfree(sv); 1254} 1255 1256/** 1257 * ubi_scan_destroy_si - destroy scanning information. 1258 * @si: scanning information 1259 */ 1260void ubi_scan_destroy_si(struct ubi_scan_info *si) 1261{ 1262 struct ubi_scan_leb *seb, *seb_tmp; 1263 struct ubi_scan_volume *sv; 1264 struct rb_node *rb; 1265 1266 list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) { 1267 list_del(&seb->u.list); 1268 kfree(seb); 1269 } 1270 list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) { 1271 list_del(&seb->u.list); 1272 kfree(seb); 1273 } 1274 list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) { 1275 list_del(&seb->u.list); 1276 kfree(seb); 1277 } 1278 list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) { 1279 list_del(&seb->u.list); 1280 kfree(seb); 1281 } 1282 1283 /* Destroy the volume RB-tree */ 1284 rb = si->volumes.rb_node; 1285 while (rb) { 1286 if (rb->rb_left) 1287 rb = rb->rb_left; 1288 else if (rb->rb_right) 1289 rb = rb->rb_right; 1290 else { 1291 sv = rb_entry(rb, struct ubi_scan_volume, rb); 1292 1293 rb = rb_parent(rb); 1294 if (rb) { 1295 if (rb->rb_left == &sv->rb) 1296 rb->rb_left = NULL; 1297 else 1298 rb->rb_right = NULL; 1299 } 1300 1301 destroy_sv(sv); 1302 } 1303 } 1304 1305 kfree(si); 1306} 1307 1308#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 1309 1310/** 1311 * paranoid_check_si - check the scanning information. 1312 * @ubi: UBI device description object 1313 * @si: scanning information 1314 * 1315 * This function returns zero if the scanning information is all right, and a 1316 * negative error code if not or if an error occurred. 1317 */ 1318static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si) 1319{ 1320 int pnum, err, vols_found = 0; 1321 struct rb_node *rb1, *rb2; 1322 struct ubi_scan_volume *sv; 1323 struct ubi_scan_leb *seb, *last_seb; 1324 uint8_t *buf; 1325 1326 /* 1327 * At first, check that scanning information is OK. 1328 */ 1329 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1330 int leb_count = 0; 1331 1332 cond_resched(); 1333 1334 vols_found += 1; 1335 1336 if (si->is_empty) { 1337 ubi_err("bad is_empty flag"); 1338 goto bad_sv; 1339 } 1340 1341 if (sv->vol_id < 0 || sv->highest_lnum < 0 || 1342 sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 || 1343 sv->data_pad < 0 || sv->last_data_size < 0) { 1344 ubi_err("negative values"); 1345 goto bad_sv; 1346 } 1347 1348 if (sv->vol_id >= UBI_MAX_VOLUMES && 1349 sv->vol_id < UBI_INTERNAL_VOL_START) { 1350 ubi_err("bad vol_id"); 1351 goto bad_sv; 1352 } 1353 1354 if (sv->vol_id > si->highest_vol_id) { 1355 ubi_err("highest_vol_id is %d, but vol_id %d is there", 1356 si->highest_vol_id, sv->vol_id); 1357 goto out; 1358 } 1359 1360 if (sv->vol_type != UBI_DYNAMIC_VOLUME && 1361 sv->vol_type != UBI_STATIC_VOLUME) { 1362 ubi_err("bad vol_type"); 1363 goto bad_sv; 1364 } 1365 1366 if (sv->data_pad > ubi->leb_size / 2) { 1367 ubi_err("bad data_pad"); 1368 goto bad_sv; 1369 } 1370 1371 last_seb = NULL; 1372 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1373 cond_resched(); 1374 1375 last_seb = seb; 1376 leb_count += 1; 1377 1378 if (seb->pnum < 0 || seb->ec < 0) { 1379 ubi_err("negative values"); 1380 goto bad_seb; 1381 } 1382 1383 if (seb->ec < si->min_ec) { 1384 ubi_err("bad si->min_ec (%d), %d found", 1385 si->min_ec, seb->ec); 1386 goto bad_seb; 1387 } 1388 1389 if (seb->ec > si->max_ec) { 1390 ubi_err("bad si->max_ec (%d), %d found", 1391 si->max_ec, seb->ec); 1392 goto bad_seb; 1393 } 1394 1395 if (seb->pnum >= ubi->peb_count) { 1396 ubi_err("too high PEB number %d, total PEBs %d", 1397 seb->pnum, ubi->peb_count); 1398 goto bad_seb; 1399 } 1400 1401 if (sv->vol_type == UBI_STATIC_VOLUME) { 1402 if (seb->lnum >= sv->used_ebs) { 1403 ubi_err("bad lnum or used_ebs"); 1404 goto bad_seb; 1405 } 1406 } else { 1407 if (sv->used_ebs != 0) { 1408 ubi_err("non-zero used_ebs"); 1409 goto bad_seb; 1410 } 1411 } 1412 1413 if (seb->lnum > sv->highest_lnum) { 1414 ubi_err("incorrect highest_lnum or lnum"); 1415 goto bad_seb; 1416 } 1417 } 1418 1419 if (sv->leb_count != leb_count) { 1420 ubi_err("bad leb_count, %d objects in the tree", 1421 leb_count); 1422 goto bad_sv; 1423 } 1424 1425 if (!last_seb) 1426 continue; 1427 1428 seb = last_seb; 1429 1430 if (seb->lnum != sv->highest_lnum) { 1431 ubi_err("bad highest_lnum"); 1432 goto bad_seb; 1433 } 1434 } 1435 1436 if (vols_found != si->vols_found) { 1437 ubi_err("bad si->vols_found %d, should be %d", 1438 si->vols_found, vols_found); 1439 goto out; 1440 } 1441 1442 /* Check that scanning information is correct */ 1443 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1444 last_seb = NULL; 1445 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1446 int vol_type; 1447 1448 cond_resched(); 1449 1450 last_seb = seb; 1451 1452 err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1); 1453 if (err && err != UBI_IO_BITFLIPS) { 1454 ubi_err("VID header is not OK (%d)", err); 1455 if (err > 0) 1456 err = -EIO; 1457 return err; 1458 } 1459 1460 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? 1461 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 1462 if (sv->vol_type != vol_type) { 1463 ubi_err("bad vol_type"); 1464 goto bad_vid_hdr; 1465 } 1466 1467 if (seb->sqnum != be64_to_cpu(vidh->sqnum)) { 1468 ubi_err("bad sqnum %llu", seb->sqnum); 1469 goto bad_vid_hdr; 1470 } 1471 1472 if (sv->vol_id != be32_to_cpu(vidh->vol_id)) { 1473 ubi_err("bad vol_id %d", sv->vol_id); 1474 goto bad_vid_hdr; 1475 } 1476 1477 if (sv->compat != vidh->compat) { 1478 ubi_err("bad compat %d", vidh->compat); 1479 goto bad_vid_hdr; 1480 } 1481 1482 if (seb->lnum != be32_to_cpu(vidh->lnum)) { 1483 ubi_err("bad lnum %d", seb->lnum); 1484 goto bad_vid_hdr; 1485 } 1486 1487 if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) { 1488 ubi_err("bad used_ebs %d", sv->used_ebs); 1489 goto bad_vid_hdr; 1490 } 1491 1492 if (sv->data_pad != be32_to_cpu(vidh->data_pad)) { 1493 ubi_err("bad data_pad %d", sv->data_pad); 1494 goto bad_vid_hdr; 1495 } 1496 } 1497 1498 if (!last_seb) 1499 continue; 1500 1501 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) { 1502 ubi_err("bad highest_lnum %d", sv->highest_lnum); 1503 goto bad_vid_hdr; 1504 } 1505 1506 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) { 1507 ubi_err("bad last_data_size %d", sv->last_data_size); 1508 goto bad_vid_hdr; 1509 } 1510 } 1511 1512 /* 1513 * Make sure that all the physical eraseblocks are in one of the lists 1514 * or trees. 1515 */ 1516 buf = kzalloc(ubi->peb_count, GFP_KERNEL); 1517 if (!buf) 1518 return -ENOMEM; 1519 1520 for (pnum = 0; pnum < ubi->peb_count; pnum++) { 1521 err = ubi_io_is_bad(ubi, pnum); 1522 if (err < 0) { 1523 kfree(buf); 1524 return err; 1525 } else if (err) 1526 buf[pnum] = 1; 1527 } 1528 1529 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) 1530 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) 1531 buf[seb->pnum] = 1; 1532 1533 list_for_each_entry(seb, &si->free, u.list) 1534 buf[seb->pnum] = 1; 1535 1536 list_for_each_entry(seb, &si->corr, u.list) 1537 buf[seb->pnum] = 1; 1538 1539 list_for_each_entry(seb, &si->erase, u.list) 1540 buf[seb->pnum] = 1; 1541 1542 list_for_each_entry(seb, &si->alien, u.list) 1543 buf[seb->pnum] = 1; 1544 1545 err = 0; 1546 for (pnum = 0; pnum < ubi->peb_count; pnum++) 1547 if (!buf[pnum]) { 1548 ubi_err("PEB %d is not referred", pnum); 1549 err = 1; 1550 } 1551 1552 kfree(buf); 1553 if (err) 1554 goto out; 1555 return 0; 1556 1557bad_seb: 1558 ubi_err("bad scanning information about LEB %d", seb->lnum); 1559 ubi_dbg_dump_seb(seb, 0); 1560 ubi_dbg_dump_sv(sv); 1561 goto out; 1562 1563bad_sv: 1564 ubi_err("bad scanning information about volume %d", sv->vol_id); 1565 ubi_dbg_dump_sv(sv); 1566 goto out; 1567 1568bad_vid_hdr: 1569 ubi_err("bad scanning information about volume %d", sv->vol_id); 1570 ubi_dbg_dump_sv(sv); 1571 ubi_dbg_dump_vid_hdr(vidh); 1572 1573out: 1574 ubi_dbg_dump_stack(); 1575 return -EINVAL; 1576} 1577 1578#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */