at v2.6.38-rc4 2509 lines 64 kB view raw
1/* 2 * The low performance USB storage driver (ub). 3 * 4 * Copyright (c) 1999, 2000 Matthew Dharm (mdharm-usb@one-eyed-alien.net) 5 * Copyright (C) 2004 Pete Zaitcev (zaitcev@yahoo.com) 6 * 7 * This work is a part of Linux kernel, is derived from it, 8 * and is not licensed separately. See file COPYING for details. 9 * 10 * TODO (sorted by decreasing priority) 11 * -- Return sense now that rq allows it (we always auto-sense anyway). 12 * -- set readonly flag for CDs, set removable flag for CF readers 13 * -- do inquiry and verify we got a disk and not a tape (for LUN mismatch) 14 * -- verify the 13 conditions and do bulk resets 15 * -- highmem 16 * -- move top_sense and work_bcs into separate allocations (if they survive) 17 * for cache purists and esoteric architectures. 18 * -- Allocate structure for LUN 0 before the first ub_sync_tur, avoid NULL. ? 19 * -- prune comments, they are too volumnous 20 * -- Resove XXX's 21 * -- CLEAR, CLR2STS, CLRRS seem to be ripe for refactoring. 22 */ 23#include <linux/kernel.h> 24#include <linux/module.h> 25#include <linux/usb.h> 26#include <linux/usb_usual.h> 27#include <linux/blkdev.h> 28#include <linux/timer.h> 29#include <linux/scatterlist.h> 30#include <linux/slab.h> 31#include <linux/mutex.h> 32#include <scsi/scsi.h> 33 34#define DRV_NAME "ub" 35 36#define UB_MAJOR 180 37 38/* 39 * The command state machine is the key model for understanding of this driver. 40 * 41 * The general rule is that all transitions are done towards the bottom 42 * of the diagram, thus preventing any loops. 43 * 44 * An exception to that is how the STAT state is handled. A counter allows it 45 * to be re-entered along the path marked with [C]. 46 * 47 * +--------+ 48 * ! INIT ! 49 * +--------+ 50 * ! 51 * ub_scsi_cmd_start fails ->--------------------------------------\ 52 * ! ! 53 * V ! 54 * +--------+ ! 55 * ! CMD ! ! 56 * +--------+ ! 57 * ! +--------+ ! 58 * was -EPIPE -->-------------------------------->! CLEAR ! ! 59 * ! +--------+ ! 60 * ! ! ! 61 * was error -->------------------------------------- ! --------->\ 62 * ! ! ! 63 * /--<-- cmd->dir == NONE ? ! ! 64 * ! ! ! ! 65 * ! V ! ! 66 * ! +--------+ ! ! 67 * ! ! DATA ! ! ! 68 * ! +--------+ ! ! 69 * ! ! +---------+ ! ! 70 * ! was -EPIPE -->--------------->! CLR2STS ! ! ! 71 * ! ! +---------+ ! ! 72 * ! ! ! ! ! 73 * ! ! was error -->---- ! --------->\ 74 * ! was error -->--------------------- ! ------------- ! --------->\ 75 * ! ! ! ! ! 76 * ! V ! ! ! 77 * \--->+--------+ ! ! ! 78 * ! STAT !<--------------------------/ ! ! 79 * /--->+--------+ ! ! 80 * ! ! ! ! 81 * [C] was -EPIPE -->-----------\ ! ! 82 * ! ! ! ! ! 83 * +<---- len == 0 ! ! ! 84 * ! ! ! ! ! 85 * ! was error -->--------------------------------------!---------->\ 86 * ! ! ! ! ! 87 * +<---- bad CSW ! ! ! 88 * +<---- bad tag ! ! ! 89 * ! ! V ! ! 90 * ! ! +--------+ ! ! 91 * ! ! ! CLRRS ! ! ! 92 * ! ! +--------+ ! ! 93 * ! ! ! ! ! 94 * \------- ! --------------------[C]--------\ ! ! 95 * ! ! ! ! 96 * cmd->error---\ +--------+ ! ! 97 * ! +--------------->! SENSE !<----------/ ! 98 * STAT_FAIL----/ +--------+ ! 99 * ! ! V 100 * ! V +--------+ 101 * \--------------------------------\--------------------->! DONE ! 102 * +--------+ 103 */ 104 105/* 106 * This many LUNs per USB device. 107 * Every one of them takes a host, see UB_MAX_HOSTS. 108 */ 109#define UB_MAX_LUNS 9 110 111/* 112 */ 113 114#define UB_PARTS_PER_LUN 8 115 116#define UB_MAX_CDB_SIZE 16 /* Corresponds to Bulk */ 117 118#define UB_SENSE_SIZE 18 119 120/* 121 */ 122 123/* command block wrapper */ 124struct bulk_cb_wrap { 125 __le32 Signature; /* contains 'USBC' */ 126 u32 Tag; /* unique per command id */ 127 __le32 DataTransferLength; /* size of data */ 128 u8 Flags; /* direction in bit 0 */ 129 u8 Lun; /* LUN */ 130 u8 Length; /* of of the CDB */ 131 u8 CDB[UB_MAX_CDB_SIZE]; /* max command */ 132}; 133 134#define US_BULK_CB_WRAP_LEN 31 135#define US_BULK_CB_SIGN 0x43425355 /*spells out USBC */ 136#define US_BULK_FLAG_IN 1 137#define US_BULK_FLAG_OUT 0 138 139/* command status wrapper */ 140struct bulk_cs_wrap { 141 __le32 Signature; /* should = 'USBS' */ 142 u32 Tag; /* same as original command */ 143 __le32 Residue; /* amount not transferred */ 144 u8 Status; /* see below */ 145}; 146 147#define US_BULK_CS_WRAP_LEN 13 148#define US_BULK_CS_SIGN 0x53425355 /* spells out 'USBS' */ 149#define US_BULK_STAT_OK 0 150#define US_BULK_STAT_FAIL 1 151#define US_BULK_STAT_PHASE 2 152 153/* bulk-only class specific requests */ 154#define US_BULK_RESET_REQUEST 0xff 155#define US_BULK_GET_MAX_LUN 0xfe 156 157/* 158 */ 159struct ub_dev; 160 161#define UB_MAX_REQ_SG 9 /* cdrecord requires 32KB and maybe a header */ 162#define UB_MAX_SECTORS 64 163 164/* 165 * A second is more than enough for a 32K transfer (UB_MAX_SECTORS) 166 * even if a webcam hogs the bus, but some devices need time to spin up. 167 */ 168#define UB_URB_TIMEOUT (HZ*2) 169#define UB_DATA_TIMEOUT (HZ*5) /* ZIP does spin-ups in the data phase */ 170#define UB_STAT_TIMEOUT (HZ*5) /* Same spinups and eject for a dataless cmd. */ 171#define UB_CTRL_TIMEOUT (HZ/2) /* 500ms ought to be enough to clear a stall */ 172 173/* 174 * An instance of a SCSI command in transit. 175 */ 176#define UB_DIR_NONE 0 177#define UB_DIR_READ 1 178#define UB_DIR_ILLEGAL2 2 179#define UB_DIR_WRITE 3 180 181#define UB_DIR_CHAR(c) (((c)==UB_DIR_WRITE)? 'w': \ 182 (((c)==UB_DIR_READ)? 'r': 'n')) 183 184enum ub_scsi_cmd_state { 185 UB_CMDST_INIT, /* Initial state */ 186 UB_CMDST_CMD, /* Command submitted */ 187 UB_CMDST_DATA, /* Data phase */ 188 UB_CMDST_CLR2STS, /* Clearing before requesting status */ 189 UB_CMDST_STAT, /* Status phase */ 190 UB_CMDST_CLEAR, /* Clearing a stall (halt, actually) */ 191 UB_CMDST_CLRRS, /* Clearing before retrying status */ 192 UB_CMDST_SENSE, /* Sending Request Sense */ 193 UB_CMDST_DONE /* Final state */ 194}; 195 196struct ub_scsi_cmd { 197 unsigned char cdb[UB_MAX_CDB_SIZE]; 198 unsigned char cdb_len; 199 200 unsigned char dir; /* 0 - none, 1 - read, 3 - write. */ 201 enum ub_scsi_cmd_state state; 202 unsigned int tag; 203 struct ub_scsi_cmd *next; 204 205 int error; /* Return code - valid upon done */ 206 unsigned int act_len; /* Return size */ 207 unsigned char key, asc, ascq; /* May be valid if error==-EIO */ 208 209 int stat_count; /* Retries getting status. */ 210 unsigned int timeo; /* jiffies until rq->timeout changes */ 211 212 unsigned int len; /* Requested length */ 213 unsigned int current_sg; 214 unsigned int nsg; /* sgv[nsg] */ 215 struct scatterlist sgv[UB_MAX_REQ_SG]; 216 217 struct ub_lun *lun; 218 void (*done)(struct ub_dev *, struct ub_scsi_cmd *); 219 void *back; 220}; 221 222struct ub_request { 223 struct request *rq; 224 unsigned int current_try; 225 unsigned int nsg; /* sgv[nsg] */ 226 struct scatterlist sgv[UB_MAX_REQ_SG]; 227}; 228 229/* 230 */ 231struct ub_capacity { 232 unsigned long nsec; /* Linux size - 512 byte sectors */ 233 unsigned int bsize; /* Linux hardsect_size */ 234 unsigned int bshift; /* Shift between 512 and hard sects */ 235}; 236 237/* 238 * This is a direct take-off from linux/include/completion.h 239 * The difference is that I do not wait on this thing, just poll. 240 * When I want to wait (ub_probe), I just use the stock completion. 241 * 242 * Note that INIT_COMPLETION takes no lock. It is correct. But why 243 * in the bloody hell that thing takes struct instead of pointer to struct 244 * is quite beyond me. I just copied it from the stock completion. 245 */ 246struct ub_completion { 247 unsigned int done; 248 spinlock_t lock; 249}; 250 251static DEFINE_MUTEX(ub_mutex); 252static inline void ub_init_completion(struct ub_completion *x) 253{ 254 x->done = 0; 255 spin_lock_init(&x->lock); 256} 257 258#define UB_INIT_COMPLETION(x) ((x).done = 0) 259 260static void ub_complete(struct ub_completion *x) 261{ 262 unsigned long flags; 263 264 spin_lock_irqsave(&x->lock, flags); 265 x->done++; 266 spin_unlock_irqrestore(&x->lock, flags); 267} 268 269static int ub_is_completed(struct ub_completion *x) 270{ 271 unsigned long flags; 272 int ret; 273 274 spin_lock_irqsave(&x->lock, flags); 275 ret = x->done; 276 spin_unlock_irqrestore(&x->lock, flags); 277 return ret; 278} 279 280/* 281 */ 282struct ub_scsi_cmd_queue { 283 int qlen, qmax; 284 struct ub_scsi_cmd *head, *tail; 285}; 286 287/* 288 * The block device instance (one per LUN). 289 */ 290struct ub_lun { 291 struct ub_dev *udev; 292 struct list_head link; 293 struct gendisk *disk; 294 int id; /* Host index */ 295 int num; /* LUN number */ 296 char name[16]; 297 298 int changed; /* Media was changed */ 299 int removable; 300 int readonly; 301 302 struct ub_request urq; 303 304 /* Use Ingo's mempool if or when we have more than one command. */ 305 /* 306 * Currently we never need more than one command for the whole device. 307 * However, giving every LUN a command is a cheap and automatic way 308 * to enforce fairness between them. 309 */ 310 int cmda[1]; 311 struct ub_scsi_cmd cmdv[1]; 312 313 struct ub_capacity capacity; 314}; 315 316/* 317 * The USB device instance. 318 */ 319struct ub_dev { 320 spinlock_t *lock; 321 atomic_t poison; /* The USB device is disconnected */ 322 int openc; /* protected by ub_lock! */ 323 /* kref is too implicit for our taste */ 324 int reset; /* Reset is running */ 325 int bad_resid; 326 unsigned int tagcnt; 327 char name[12]; 328 struct usb_device *dev; 329 struct usb_interface *intf; 330 331 struct list_head luns; 332 333 unsigned int send_bulk_pipe; /* cached pipe values */ 334 unsigned int recv_bulk_pipe; 335 unsigned int send_ctrl_pipe; 336 unsigned int recv_ctrl_pipe; 337 338 struct tasklet_struct tasklet; 339 340 struct ub_scsi_cmd_queue cmd_queue; 341 struct ub_scsi_cmd top_rqs_cmd; /* REQUEST SENSE */ 342 unsigned char top_sense[UB_SENSE_SIZE]; 343 344 struct ub_completion work_done; 345 struct urb work_urb; 346 struct timer_list work_timer; 347 int last_pipe; /* What might need clearing */ 348 __le32 signature; /* Learned signature */ 349 struct bulk_cb_wrap work_bcb; 350 struct bulk_cs_wrap work_bcs; 351 struct usb_ctrlrequest work_cr; 352 353 struct work_struct reset_work; 354 wait_queue_head_t reset_wait; 355}; 356 357/* 358 */ 359static void ub_cleanup(struct ub_dev *sc); 360static int ub_request_fn_1(struct ub_lun *lun, struct request *rq); 361static void ub_cmd_build_block(struct ub_dev *sc, struct ub_lun *lun, 362 struct ub_scsi_cmd *cmd, struct ub_request *urq); 363static void ub_cmd_build_packet(struct ub_dev *sc, struct ub_lun *lun, 364 struct ub_scsi_cmd *cmd, struct ub_request *urq); 365static void ub_rw_cmd_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 366static void ub_end_rq(struct request *rq, unsigned int status); 367static int ub_rw_cmd_retry(struct ub_dev *sc, struct ub_lun *lun, 368 struct ub_request *urq, struct ub_scsi_cmd *cmd); 369static int ub_submit_scsi(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 370static void ub_urb_complete(struct urb *urb); 371static void ub_scsi_action(unsigned long _dev); 372static void ub_scsi_dispatch(struct ub_dev *sc); 373static void ub_scsi_urb_compl(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 374static void ub_data_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 375static void ub_state_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd, int rc); 376static int __ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 377static void ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 378static void ub_state_stat_counted(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 379static void ub_state_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 380static int ub_submit_clear_stall(struct ub_dev *sc, struct ub_scsi_cmd *cmd, 381 int stalled_pipe); 382static void ub_top_sense_done(struct ub_dev *sc, struct ub_scsi_cmd *scmd); 383static void ub_reset_enter(struct ub_dev *sc, int try); 384static void ub_reset_task(struct work_struct *work); 385static int ub_sync_tur(struct ub_dev *sc, struct ub_lun *lun); 386static int ub_sync_read_cap(struct ub_dev *sc, struct ub_lun *lun, 387 struct ub_capacity *ret); 388static int ub_sync_reset(struct ub_dev *sc); 389static int ub_probe_clear_stall(struct ub_dev *sc, int stalled_pipe); 390static int ub_probe_lun(struct ub_dev *sc, int lnum); 391 392/* 393 */ 394#ifdef CONFIG_USB_LIBUSUAL 395 396#define ub_usb_ids usb_storage_usb_ids 397#else 398 399static const struct usb_device_id ub_usb_ids[] = { 400 { USB_INTERFACE_INFO(USB_CLASS_MASS_STORAGE, USB_SC_SCSI, USB_PR_BULK) }, 401 { } 402}; 403 404MODULE_DEVICE_TABLE(usb, ub_usb_ids); 405#endif /* CONFIG_USB_LIBUSUAL */ 406 407/* 408 * Find me a way to identify "next free minor" for add_disk(), 409 * and the array disappears the next day. However, the number of 410 * hosts has something to do with the naming and /proc/partitions. 411 * This has to be thought out in detail before changing. 412 * If UB_MAX_HOST was 1000, we'd use a bitmap. Or a better data structure. 413 */ 414#define UB_MAX_HOSTS 26 415static char ub_hostv[UB_MAX_HOSTS]; 416 417#define UB_QLOCK_NUM 5 418static spinlock_t ub_qlockv[UB_QLOCK_NUM]; 419static int ub_qlock_next = 0; 420 421static DEFINE_SPINLOCK(ub_lock); /* Locks globals and ->openc */ 422 423/* 424 * The id allocator. 425 * 426 * This also stores the host for indexing by minor, which is somewhat dirty. 427 */ 428static int ub_id_get(void) 429{ 430 unsigned long flags; 431 int i; 432 433 spin_lock_irqsave(&ub_lock, flags); 434 for (i = 0; i < UB_MAX_HOSTS; i++) { 435 if (ub_hostv[i] == 0) { 436 ub_hostv[i] = 1; 437 spin_unlock_irqrestore(&ub_lock, flags); 438 return i; 439 } 440 } 441 spin_unlock_irqrestore(&ub_lock, flags); 442 return -1; 443} 444 445static void ub_id_put(int id) 446{ 447 unsigned long flags; 448 449 if (id < 0 || id >= UB_MAX_HOSTS) { 450 printk(KERN_ERR DRV_NAME ": bad host ID %d\n", id); 451 return; 452 } 453 454 spin_lock_irqsave(&ub_lock, flags); 455 if (ub_hostv[id] == 0) { 456 spin_unlock_irqrestore(&ub_lock, flags); 457 printk(KERN_ERR DRV_NAME ": freeing free host ID %d\n", id); 458 return; 459 } 460 ub_hostv[id] = 0; 461 spin_unlock_irqrestore(&ub_lock, flags); 462} 463 464/* 465 * This is necessitated by the fact that blk_cleanup_queue does not 466 * necesserily destroy the queue. Instead, it may merely decrease q->refcnt. 467 * Since our blk_init_queue() passes a spinlock common with ub_dev, 468 * we have life time issues when ub_cleanup frees ub_dev. 469 */ 470static spinlock_t *ub_next_lock(void) 471{ 472 unsigned long flags; 473 spinlock_t *ret; 474 475 spin_lock_irqsave(&ub_lock, flags); 476 ret = &ub_qlockv[ub_qlock_next]; 477 ub_qlock_next = (ub_qlock_next + 1) % UB_QLOCK_NUM; 478 spin_unlock_irqrestore(&ub_lock, flags); 479 return ret; 480} 481 482/* 483 * Downcount for deallocation. This rides on two assumptions: 484 * - once something is poisoned, its refcount cannot grow 485 * - opens cannot happen at this time (del_gendisk was done) 486 * If the above is true, we can drop the lock, which we need for 487 * blk_cleanup_queue(): the silly thing may attempt to sleep. 488 * [Actually, it never needs to sleep for us, but it calls might_sleep()] 489 */ 490static void ub_put(struct ub_dev *sc) 491{ 492 unsigned long flags; 493 494 spin_lock_irqsave(&ub_lock, flags); 495 --sc->openc; 496 if (sc->openc == 0 && atomic_read(&sc->poison)) { 497 spin_unlock_irqrestore(&ub_lock, flags); 498 ub_cleanup(sc); 499 } else { 500 spin_unlock_irqrestore(&ub_lock, flags); 501 } 502} 503 504/* 505 * Final cleanup and deallocation. 506 */ 507static void ub_cleanup(struct ub_dev *sc) 508{ 509 struct list_head *p; 510 struct ub_lun *lun; 511 struct request_queue *q; 512 513 while (!list_empty(&sc->luns)) { 514 p = sc->luns.next; 515 lun = list_entry(p, struct ub_lun, link); 516 list_del(p); 517 518 /* I don't think queue can be NULL. But... Stolen from sx8.c */ 519 if ((q = lun->disk->queue) != NULL) 520 blk_cleanup_queue(q); 521 /* 522 * If we zero disk->private_data BEFORE put_disk, we have 523 * to check for NULL all over the place in open, release, 524 * check_media and revalidate, because the block level 525 * semaphore is well inside the put_disk. 526 * But we cannot zero after the call, because *disk is gone. 527 * The sd.c is blatantly racy in this area. 528 */ 529 /* disk->private_data = NULL; */ 530 put_disk(lun->disk); 531 lun->disk = NULL; 532 533 ub_id_put(lun->id); 534 kfree(lun); 535 } 536 537 usb_set_intfdata(sc->intf, NULL); 538 usb_put_intf(sc->intf); 539 usb_put_dev(sc->dev); 540 kfree(sc); 541} 542 543/* 544 * The "command allocator". 545 */ 546static struct ub_scsi_cmd *ub_get_cmd(struct ub_lun *lun) 547{ 548 struct ub_scsi_cmd *ret; 549 550 if (lun->cmda[0]) 551 return NULL; 552 ret = &lun->cmdv[0]; 553 lun->cmda[0] = 1; 554 return ret; 555} 556 557static void ub_put_cmd(struct ub_lun *lun, struct ub_scsi_cmd *cmd) 558{ 559 if (cmd != &lun->cmdv[0]) { 560 printk(KERN_WARNING "%s: releasing a foreign cmd %p\n", 561 lun->name, cmd); 562 return; 563 } 564 if (!lun->cmda[0]) { 565 printk(KERN_WARNING "%s: releasing a free cmd\n", lun->name); 566 return; 567 } 568 lun->cmda[0] = 0; 569} 570 571/* 572 * The command queue. 573 */ 574static void ub_cmdq_add(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 575{ 576 struct ub_scsi_cmd_queue *t = &sc->cmd_queue; 577 578 if (t->qlen++ == 0) { 579 t->head = cmd; 580 t->tail = cmd; 581 } else { 582 t->tail->next = cmd; 583 t->tail = cmd; 584 } 585 586 if (t->qlen > t->qmax) 587 t->qmax = t->qlen; 588} 589 590static void ub_cmdq_insert(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 591{ 592 struct ub_scsi_cmd_queue *t = &sc->cmd_queue; 593 594 if (t->qlen++ == 0) { 595 t->head = cmd; 596 t->tail = cmd; 597 } else { 598 cmd->next = t->head; 599 t->head = cmd; 600 } 601 602 if (t->qlen > t->qmax) 603 t->qmax = t->qlen; 604} 605 606static struct ub_scsi_cmd *ub_cmdq_pop(struct ub_dev *sc) 607{ 608 struct ub_scsi_cmd_queue *t = &sc->cmd_queue; 609 struct ub_scsi_cmd *cmd; 610 611 if (t->qlen == 0) 612 return NULL; 613 if (--t->qlen == 0) 614 t->tail = NULL; 615 cmd = t->head; 616 t->head = cmd->next; 617 cmd->next = NULL; 618 return cmd; 619} 620 621#define ub_cmdq_peek(sc) ((sc)->cmd_queue.head) 622 623/* 624 * The request function is our main entry point 625 */ 626 627static void ub_request_fn(struct request_queue *q) 628{ 629 struct ub_lun *lun = q->queuedata; 630 struct request *rq; 631 632 while ((rq = blk_peek_request(q)) != NULL) { 633 if (ub_request_fn_1(lun, rq) != 0) { 634 blk_stop_queue(q); 635 break; 636 } 637 } 638} 639 640static int ub_request_fn_1(struct ub_lun *lun, struct request *rq) 641{ 642 struct ub_dev *sc = lun->udev; 643 struct ub_scsi_cmd *cmd; 644 struct ub_request *urq; 645 int n_elem; 646 647 if (atomic_read(&sc->poison)) { 648 blk_start_request(rq); 649 ub_end_rq(rq, DID_NO_CONNECT << 16); 650 return 0; 651 } 652 653 if (lun->changed && rq->cmd_type != REQ_TYPE_BLOCK_PC) { 654 blk_start_request(rq); 655 ub_end_rq(rq, SAM_STAT_CHECK_CONDITION); 656 return 0; 657 } 658 659 if (lun->urq.rq != NULL) 660 return -1; 661 if ((cmd = ub_get_cmd(lun)) == NULL) 662 return -1; 663 memset(cmd, 0, sizeof(struct ub_scsi_cmd)); 664 665 blk_start_request(rq); 666 667 urq = &lun->urq; 668 memset(urq, 0, sizeof(struct ub_request)); 669 urq->rq = rq; 670 671 /* 672 * get scatterlist from block layer 673 */ 674 sg_init_table(&urq->sgv[0], UB_MAX_REQ_SG); 675 n_elem = blk_rq_map_sg(lun->disk->queue, rq, &urq->sgv[0]); 676 if (n_elem < 0) { 677 /* Impossible, because blk_rq_map_sg should not hit ENOMEM. */ 678 printk(KERN_INFO "%s: failed request map (%d)\n", 679 lun->name, n_elem); 680 goto drop; 681 } 682 if (n_elem > UB_MAX_REQ_SG) { /* Paranoia */ 683 printk(KERN_WARNING "%s: request with %d segments\n", 684 lun->name, n_elem); 685 goto drop; 686 } 687 urq->nsg = n_elem; 688 689 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 690 ub_cmd_build_packet(sc, lun, cmd, urq); 691 } else { 692 ub_cmd_build_block(sc, lun, cmd, urq); 693 } 694 cmd->state = UB_CMDST_INIT; 695 cmd->lun = lun; 696 cmd->done = ub_rw_cmd_done; 697 cmd->back = urq; 698 699 cmd->tag = sc->tagcnt++; 700 if (ub_submit_scsi(sc, cmd) != 0) 701 goto drop; 702 703 return 0; 704 705drop: 706 ub_put_cmd(lun, cmd); 707 ub_end_rq(rq, DID_ERROR << 16); 708 return 0; 709} 710 711static void ub_cmd_build_block(struct ub_dev *sc, struct ub_lun *lun, 712 struct ub_scsi_cmd *cmd, struct ub_request *urq) 713{ 714 struct request *rq = urq->rq; 715 unsigned int block, nblks; 716 717 if (rq_data_dir(rq) == WRITE) 718 cmd->dir = UB_DIR_WRITE; 719 else 720 cmd->dir = UB_DIR_READ; 721 722 cmd->nsg = urq->nsg; 723 memcpy(cmd->sgv, urq->sgv, sizeof(struct scatterlist) * cmd->nsg); 724 725 /* 726 * build the command 727 * 728 * The call to blk_queue_logical_block_size() guarantees that request 729 * is aligned, but it is given in terms of 512 byte units, always. 730 */ 731 block = blk_rq_pos(rq) >> lun->capacity.bshift; 732 nblks = blk_rq_sectors(rq) >> lun->capacity.bshift; 733 734 cmd->cdb[0] = (cmd->dir == UB_DIR_READ)? READ_10: WRITE_10; 735 /* 10-byte uses 4 bytes of LBA: 2147483648KB, 2097152MB, 2048GB */ 736 cmd->cdb[2] = block >> 24; 737 cmd->cdb[3] = block >> 16; 738 cmd->cdb[4] = block >> 8; 739 cmd->cdb[5] = block; 740 cmd->cdb[7] = nblks >> 8; 741 cmd->cdb[8] = nblks; 742 cmd->cdb_len = 10; 743 744 cmd->len = blk_rq_bytes(rq); 745} 746 747static void ub_cmd_build_packet(struct ub_dev *sc, struct ub_lun *lun, 748 struct ub_scsi_cmd *cmd, struct ub_request *urq) 749{ 750 struct request *rq = urq->rq; 751 752 if (blk_rq_bytes(rq) == 0) { 753 cmd->dir = UB_DIR_NONE; 754 } else { 755 if (rq_data_dir(rq) == WRITE) 756 cmd->dir = UB_DIR_WRITE; 757 else 758 cmd->dir = UB_DIR_READ; 759 } 760 761 cmd->nsg = urq->nsg; 762 memcpy(cmd->sgv, urq->sgv, sizeof(struct scatterlist) * cmd->nsg); 763 764 memcpy(&cmd->cdb, rq->cmd, rq->cmd_len); 765 cmd->cdb_len = rq->cmd_len; 766 767 cmd->len = blk_rq_bytes(rq); 768 769 /* 770 * To reapply this to every URB is not as incorrect as it looks. 771 * In return, we avoid any complicated tracking calculations. 772 */ 773 cmd->timeo = rq->timeout; 774} 775 776static void ub_rw_cmd_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 777{ 778 struct ub_lun *lun = cmd->lun; 779 struct ub_request *urq = cmd->back; 780 struct request *rq; 781 unsigned int scsi_status; 782 783 rq = urq->rq; 784 785 if (cmd->error == 0) { 786 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 787 if (cmd->act_len >= rq->resid_len) 788 rq->resid_len = 0; 789 else 790 rq->resid_len -= cmd->act_len; 791 scsi_status = 0; 792 } else { 793 if (cmd->act_len != cmd->len) { 794 scsi_status = SAM_STAT_CHECK_CONDITION; 795 } else { 796 scsi_status = 0; 797 } 798 } 799 } else { 800 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 801 /* UB_SENSE_SIZE is smaller than SCSI_SENSE_BUFFERSIZE */ 802 memcpy(rq->sense, sc->top_sense, UB_SENSE_SIZE); 803 rq->sense_len = UB_SENSE_SIZE; 804 if (sc->top_sense[0] != 0) 805 scsi_status = SAM_STAT_CHECK_CONDITION; 806 else 807 scsi_status = DID_ERROR << 16; 808 } else { 809 if (cmd->error == -EIO && 810 (cmd->key == 0 || 811 cmd->key == MEDIUM_ERROR || 812 cmd->key == UNIT_ATTENTION)) { 813 if (ub_rw_cmd_retry(sc, lun, urq, cmd) == 0) 814 return; 815 } 816 scsi_status = SAM_STAT_CHECK_CONDITION; 817 } 818 } 819 820 urq->rq = NULL; 821 822 ub_put_cmd(lun, cmd); 823 ub_end_rq(rq, scsi_status); 824 blk_start_queue(lun->disk->queue); 825} 826 827static void ub_end_rq(struct request *rq, unsigned int scsi_status) 828{ 829 int error; 830 831 if (scsi_status == 0) { 832 error = 0; 833 } else { 834 error = -EIO; 835 rq->errors = scsi_status; 836 } 837 __blk_end_request_all(rq, error); 838} 839 840static int ub_rw_cmd_retry(struct ub_dev *sc, struct ub_lun *lun, 841 struct ub_request *urq, struct ub_scsi_cmd *cmd) 842{ 843 844 if (atomic_read(&sc->poison)) 845 return -ENXIO; 846 847 ub_reset_enter(sc, urq->current_try); 848 849 if (urq->current_try >= 3) 850 return -EIO; 851 urq->current_try++; 852 853 /* Remove this if anyone complains of flooding. */ 854 printk(KERN_DEBUG "%s: dir %c len/act %d/%d " 855 "[sense %x %02x %02x] retry %d\n", 856 sc->name, UB_DIR_CHAR(cmd->dir), cmd->len, cmd->act_len, 857 cmd->key, cmd->asc, cmd->ascq, urq->current_try); 858 859 memset(cmd, 0, sizeof(struct ub_scsi_cmd)); 860 ub_cmd_build_block(sc, lun, cmd, urq); 861 862 cmd->state = UB_CMDST_INIT; 863 cmd->lun = lun; 864 cmd->done = ub_rw_cmd_done; 865 cmd->back = urq; 866 867 cmd->tag = sc->tagcnt++; 868 869#if 0 /* Wasteful */ 870 return ub_submit_scsi(sc, cmd); 871#else 872 ub_cmdq_add(sc, cmd); 873 return 0; 874#endif 875} 876 877/* 878 * Submit a regular SCSI operation (not an auto-sense). 879 * 880 * The Iron Law of Good Submit Routine is: 881 * Zero return - callback is done, Nonzero return - callback is not done. 882 * No exceptions. 883 * 884 * Host is assumed locked. 885 */ 886static int ub_submit_scsi(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 887{ 888 889 if (cmd->state != UB_CMDST_INIT || 890 (cmd->dir != UB_DIR_NONE && cmd->len == 0)) { 891 return -EINVAL; 892 } 893 894 ub_cmdq_add(sc, cmd); 895 /* 896 * We can call ub_scsi_dispatch(sc) right away here, but it's a little 897 * safer to jump to a tasklet, in case upper layers do something silly. 898 */ 899 tasklet_schedule(&sc->tasklet); 900 return 0; 901} 902 903/* 904 * Submit the first URB for the queued command. 905 * This function does not deal with queueing in any way. 906 */ 907static int ub_scsi_cmd_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 908{ 909 struct bulk_cb_wrap *bcb; 910 int rc; 911 912 bcb = &sc->work_bcb; 913 914 /* 915 * ``If the allocation length is eighteen or greater, and a device 916 * server returns less than eithteen bytes of data, the application 917 * client should assume that the bytes not transferred would have been 918 * zeroes had the device server returned those bytes.'' 919 * 920 * We zero sense for all commands so that when a packet request 921 * fails it does not return a stale sense. 922 */ 923 memset(&sc->top_sense, 0, UB_SENSE_SIZE); 924 925 /* set up the command wrapper */ 926 bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN); 927 bcb->Tag = cmd->tag; /* Endianness is not important */ 928 bcb->DataTransferLength = cpu_to_le32(cmd->len); 929 bcb->Flags = (cmd->dir == UB_DIR_READ) ? 0x80 : 0; 930 bcb->Lun = (cmd->lun != NULL) ? cmd->lun->num : 0; 931 bcb->Length = cmd->cdb_len; 932 933 /* copy the command payload */ 934 memcpy(bcb->CDB, cmd->cdb, UB_MAX_CDB_SIZE); 935 936 UB_INIT_COMPLETION(sc->work_done); 937 938 sc->last_pipe = sc->send_bulk_pipe; 939 usb_fill_bulk_urb(&sc->work_urb, sc->dev, sc->send_bulk_pipe, 940 bcb, US_BULK_CB_WRAP_LEN, ub_urb_complete, sc); 941 942 if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { 943 /* XXX Clear stalls */ 944 ub_complete(&sc->work_done); 945 return rc; 946 } 947 948 sc->work_timer.expires = jiffies + UB_URB_TIMEOUT; 949 add_timer(&sc->work_timer); 950 951 cmd->state = UB_CMDST_CMD; 952 return 0; 953} 954 955/* 956 * Timeout handler. 957 */ 958static void ub_urb_timeout(unsigned long arg) 959{ 960 struct ub_dev *sc = (struct ub_dev *) arg; 961 unsigned long flags; 962 963 spin_lock_irqsave(sc->lock, flags); 964 if (!ub_is_completed(&sc->work_done)) 965 usb_unlink_urb(&sc->work_urb); 966 spin_unlock_irqrestore(sc->lock, flags); 967} 968 969/* 970 * Completion routine for the work URB. 971 * 972 * This can be called directly from usb_submit_urb (while we have 973 * the sc->lock taken) and from an interrupt (while we do NOT have 974 * the sc->lock taken). Therefore, bounce this off to a tasklet. 975 */ 976static void ub_urb_complete(struct urb *urb) 977{ 978 struct ub_dev *sc = urb->context; 979 980 ub_complete(&sc->work_done); 981 tasklet_schedule(&sc->tasklet); 982} 983 984static void ub_scsi_action(unsigned long _dev) 985{ 986 struct ub_dev *sc = (struct ub_dev *) _dev; 987 unsigned long flags; 988 989 spin_lock_irqsave(sc->lock, flags); 990 ub_scsi_dispatch(sc); 991 spin_unlock_irqrestore(sc->lock, flags); 992} 993 994static void ub_scsi_dispatch(struct ub_dev *sc) 995{ 996 struct ub_scsi_cmd *cmd; 997 int rc; 998 999 while (!sc->reset && (cmd = ub_cmdq_peek(sc)) != NULL) { 1000 if (cmd->state == UB_CMDST_DONE) { 1001 ub_cmdq_pop(sc); 1002 (*cmd->done)(sc, cmd); 1003 } else if (cmd->state == UB_CMDST_INIT) { 1004 if ((rc = ub_scsi_cmd_start(sc, cmd)) == 0) 1005 break; 1006 cmd->error = rc; 1007 cmd->state = UB_CMDST_DONE; 1008 } else { 1009 if (!ub_is_completed(&sc->work_done)) 1010 break; 1011 del_timer(&sc->work_timer); 1012 ub_scsi_urb_compl(sc, cmd); 1013 } 1014 } 1015} 1016 1017static void ub_scsi_urb_compl(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1018{ 1019 struct urb *urb = &sc->work_urb; 1020 struct bulk_cs_wrap *bcs; 1021 int endp; 1022 int len; 1023 int rc; 1024 1025 if (atomic_read(&sc->poison)) { 1026 ub_state_done(sc, cmd, -ENODEV); 1027 return; 1028 } 1029 1030 endp = usb_pipeendpoint(sc->last_pipe); 1031 if (usb_pipein(sc->last_pipe)) 1032 endp |= USB_DIR_IN; 1033 1034 if (cmd->state == UB_CMDST_CLEAR) { 1035 if (urb->status == -EPIPE) { 1036 /* 1037 * STALL while clearning STALL. 1038 * The control pipe clears itself - nothing to do. 1039 */ 1040 printk(KERN_NOTICE "%s: stall on control pipe\n", 1041 sc->name); 1042 goto Bad_End; 1043 } 1044 1045 /* 1046 * We ignore the result for the halt clear. 1047 */ 1048 1049 usb_reset_endpoint(sc->dev, endp); 1050 1051 ub_state_sense(sc, cmd); 1052 1053 } else if (cmd->state == UB_CMDST_CLR2STS) { 1054 if (urb->status == -EPIPE) { 1055 printk(KERN_NOTICE "%s: stall on control pipe\n", 1056 sc->name); 1057 goto Bad_End; 1058 } 1059 1060 /* 1061 * We ignore the result for the halt clear. 1062 */ 1063 1064 usb_reset_endpoint(sc->dev, endp); 1065 1066 ub_state_stat(sc, cmd); 1067 1068 } else if (cmd->state == UB_CMDST_CLRRS) { 1069 if (urb->status == -EPIPE) { 1070 printk(KERN_NOTICE "%s: stall on control pipe\n", 1071 sc->name); 1072 goto Bad_End; 1073 } 1074 1075 /* 1076 * We ignore the result for the halt clear. 1077 */ 1078 1079 usb_reset_endpoint(sc->dev, endp); 1080 1081 ub_state_stat_counted(sc, cmd); 1082 1083 } else if (cmd->state == UB_CMDST_CMD) { 1084 switch (urb->status) { 1085 case 0: 1086 break; 1087 case -EOVERFLOW: 1088 goto Bad_End; 1089 case -EPIPE: 1090 rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe); 1091 if (rc != 0) { 1092 printk(KERN_NOTICE "%s: " 1093 "unable to submit clear (%d)\n", 1094 sc->name, rc); 1095 /* 1096 * This is typically ENOMEM or some other such shit. 1097 * Retrying is pointless. Just do Bad End on it... 1098 */ 1099 ub_state_done(sc, cmd, rc); 1100 return; 1101 } 1102 cmd->state = UB_CMDST_CLEAR; 1103 return; 1104 case -ESHUTDOWN: /* unplug */ 1105 case -EILSEQ: /* unplug timeout on uhci */ 1106 ub_state_done(sc, cmd, -ENODEV); 1107 return; 1108 default: 1109 goto Bad_End; 1110 } 1111 if (urb->actual_length != US_BULK_CB_WRAP_LEN) { 1112 goto Bad_End; 1113 } 1114 1115 if (cmd->dir == UB_DIR_NONE || cmd->nsg < 1) { 1116 ub_state_stat(sc, cmd); 1117 return; 1118 } 1119 1120 // udelay(125); // usb-storage has this 1121 ub_data_start(sc, cmd); 1122 1123 } else if (cmd->state == UB_CMDST_DATA) { 1124 if (urb->status == -EPIPE) { 1125 rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe); 1126 if (rc != 0) { 1127 printk(KERN_NOTICE "%s: " 1128 "unable to submit clear (%d)\n", 1129 sc->name, rc); 1130 ub_state_done(sc, cmd, rc); 1131 return; 1132 } 1133 cmd->state = UB_CMDST_CLR2STS; 1134 return; 1135 } 1136 if (urb->status == -EOVERFLOW) { 1137 /* 1138 * A babble? Failure, but we must transfer CSW now. 1139 */ 1140 cmd->error = -EOVERFLOW; /* A cheap trick... */ 1141 ub_state_stat(sc, cmd); 1142 return; 1143 } 1144 1145 if (cmd->dir == UB_DIR_WRITE) { 1146 /* 1147 * Do not continue writes in case of a failure. 1148 * Doing so would cause sectors to be mixed up, 1149 * which is worse than sectors lost. 1150 * 1151 * We must try to read the CSW, or many devices 1152 * get confused. 1153 */ 1154 len = urb->actual_length; 1155 if (urb->status != 0 || 1156 len != cmd->sgv[cmd->current_sg].length) { 1157 cmd->act_len += len; 1158 1159 cmd->error = -EIO; 1160 ub_state_stat(sc, cmd); 1161 return; 1162 } 1163 1164 } else { 1165 /* 1166 * If an error occurs on read, we record it, and 1167 * continue to fetch data in order to avoid bubble. 1168 * 1169 * As a small shortcut, we stop if we detect that 1170 * a CSW mixed into data. 1171 */ 1172 if (urb->status != 0) 1173 cmd->error = -EIO; 1174 1175 len = urb->actual_length; 1176 if (urb->status != 0 || 1177 len != cmd->sgv[cmd->current_sg].length) { 1178 if ((len & 0x1FF) == US_BULK_CS_WRAP_LEN) 1179 goto Bad_End; 1180 } 1181 } 1182 1183 cmd->act_len += urb->actual_length; 1184 1185 if (++cmd->current_sg < cmd->nsg) { 1186 ub_data_start(sc, cmd); 1187 return; 1188 } 1189 ub_state_stat(sc, cmd); 1190 1191 } else if (cmd->state == UB_CMDST_STAT) { 1192 if (urb->status == -EPIPE) { 1193 rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe); 1194 if (rc != 0) { 1195 printk(KERN_NOTICE "%s: " 1196 "unable to submit clear (%d)\n", 1197 sc->name, rc); 1198 ub_state_done(sc, cmd, rc); 1199 return; 1200 } 1201 1202 /* 1203 * Having a stall when getting CSW is an error, so 1204 * make sure uppper levels are not oblivious to it. 1205 */ 1206 cmd->error = -EIO; /* A cheap trick... */ 1207 1208 cmd->state = UB_CMDST_CLRRS; 1209 return; 1210 } 1211 1212 /* Catch everything, including -EOVERFLOW and other nasties. */ 1213 if (urb->status != 0) 1214 goto Bad_End; 1215 1216 if (urb->actual_length == 0) { 1217 ub_state_stat_counted(sc, cmd); 1218 return; 1219 } 1220 1221 /* 1222 * Check the returned Bulk protocol status. 1223 * The status block has to be validated first. 1224 */ 1225 1226 bcs = &sc->work_bcs; 1227 1228 if (sc->signature == cpu_to_le32(0)) { 1229 /* 1230 * This is the first reply, so do not perform the check. 1231 * Instead, remember the signature the device uses 1232 * for future checks. But do not allow a nul. 1233 */ 1234 sc->signature = bcs->Signature; 1235 if (sc->signature == cpu_to_le32(0)) { 1236 ub_state_stat_counted(sc, cmd); 1237 return; 1238 } 1239 } else { 1240 if (bcs->Signature != sc->signature) { 1241 ub_state_stat_counted(sc, cmd); 1242 return; 1243 } 1244 } 1245 1246 if (bcs->Tag != cmd->tag) { 1247 /* 1248 * This usually happens when we disagree with the 1249 * device's microcode about something. For instance, 1250 * a few of them throw this after timeouts. They buffer 1251 * commands and reply at commands we timed out before. 1252 * Without flushing these replies we loop forever. 1253 */ 1254 ub_state_stat_counted(sc, cmd); 1255 return; 1256 } 1257 1258 if (!sc->bad_resid) { 1259 len = le32_to_cpu(bcs->Residue); 1260 if (len != cmd->len - cmd->act_len) { 1261 /* 1262 * Only start ignoring if this cmd ended well. 1263 */ 1264 if (cmd->len == cmd->act_len) { 1265 printk(KERN_NOTICE "%s: " 1266 "bad residual %d of %d, ignoring\n", 1267 sc->name, len, cmd->len); 1268 sc->bad_resid = 1; 1269 } 1270 } 1271 } 1272 1273 switch (bcs->Status) { 1274 case US_BULK_STAT_OK: 1275 break; 1276 case US_BULK_STAT_FAIL: 1277 ub_state_sense(sc, cmd); 1278 return; 1279 case US_BULK_STAT_PHASE: 1280 goto Bad_End; 1281 default: 1282 printk(KERN_INFO "%s: unknown CSW status 0x%x\n", 1283 sc->name, bcs->Status); 1284 ub_state_done(sc, cmd, -EINVAL); 1285 return; 1286 } 1287 1288 /* Not zeroing error to preserve a babble indicator */ 1289 if (cmd->error != 0) { 1290 ub_state_sense(sc, cmd); 1291 return; 1292 } 1293 cmd->state = UB_CMDST_DONE; 1294 ub_cmdq_pop(sc); 1295 (*cmd->done)(sc, cmd); 1296 1297 } else if (cmd->state == UB_CMDST_SENSE) { 1298 ub_state_done(sc, cmd, -EIO); 1299 1300 } else { 1301 printk(KERN_WARNING "%s: wrong command state %d\n", 1302 sc->name, cmd->state); 1303 ub_state_done(sc, cmd, -EINVAL); 1304 return; 1305 } 1306 return; 1307 1308Bad_End: /* Little Excel is dead */ 1309 ub_state_done(sc, cmd, -EIO); 1310} 1311 1312/* 1313 * Factorization helper for the command state machine: 1314 * Initiate a data segment transfer. 1315 */ 1316static void ub_data_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1317{ 1318 struct scatterlist *sg = &cmd->sgv[cmd->current_sg]; 1319 int pipe; 1320 int rc; 1321 1322 UB_INIT_COMPLETION(sc->work_done); 1323 1324 if (cmd->dir == UB_DIR_READ) 1325 pipe = sc->recv_bulk_pipe; 1326 else 1327 pipe = sc->send_bulk_pipe; 1328 sc->last_pipe = pipe; 1329 usb_fill_bulk_urb(&sc->work_urb, sc->dev, pipe, sg_virt(sg), 1330 sg->length, ub_urb_complete, sc); 1331 1332 if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { 1333 /* XXX Clear stalls */ 1334 ub_complete(&sc->work_done); 1335 ub_state_done(sc, cmd, rc); 1336 return; 1337 } 1338 1339 if (cmd->timeo) 1340 sc->work_timer.expires = jiffies + cmd->timeo; 1341 else 1342 sc->work_timer.expires = jiffies + UB_DATA_TIMEOUT; 1343 add_timer(&sc->work_timer); 1344 1345 cmd->state = UB_CMDST_DATA; 1346} 1347 1348/* 1349 * Factorization helper for the command state machine: 1350 * Finish the command. 1351 */ 1352static void ub_state_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd, int rc) 1353{ 1354 1355 cmd->error = rc; 1356 cmd->state = UB_CMDST_DONE; 1357 ub_cmdq_pop(sc); 1358 (*cmd->done)(sc, cmd); 1359} 1360 1361/* 1362 * Factorization helper for the command state machine: 1363 * Submit a CSW read. 1364 */ 1365static int __ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1366{ 1367 int rc; 1368 1369 UB_INIT_COMPLETION(sc->work_done); 1370 1371 sc->last_pipe = sc->recv_bulk_pipe; 1372 usb_fill_bulk_urb(&sc->work_urb, sc->dev, sc->recv_bulk_pipe, 1373 &sc->work_bcs, US_BULK_CS_WRAP_LEN, ub_urb_complete, sc); 1374 1375 if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { 1376 /* XXX Clear stalls */ 1377 ub_complete(&sc->work_done); 1378 ub_state_done(sc, cmd, rc); 1379 return -1; 1380 } 1381 1382 if (cmd->timeo) 1383 sc->work_timer.expires = jiffies + cmd->timeo; 1384 else 1385 sc->work_timer.expires = jiffies + UB_STAT_TIMEOUT; 1386 add_timer(&sc->work_timer); 1387 return 0; 1388} 1389 1390/* 1391 * Factorization helper for the command state machine: 1392 * Submit a CSW read and go to STAT state. 1393 */ 1394static void ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1395{ 1396 1397 if (__ub_state_stat(sc, cmd) != 0) 1398 return; 1399 1400 cmd->stat_count = 0; 1401 cmd->state = UB_CMDST_STAT; 1402} 1403 1404/* 1405 * Factorization helper for the command state machine: 1406 * Submit a CSW read and go to STAT state with counter (along [C] path). 1407 */ 1408static void ub_state_stat_counted(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1409{ 1410 1411 if (++cmd->stat_count >= 4) { 1412 ub_state_sense(sc, cmd); 1413 return; 1414 } 1415 1416 if (__ub_state_stat(sc, cmd) != 0) 1417 return; 1418 1419 cmd->state = UB_CMDST_STAT; 1420} 1421 1422/* 1423 * Factorization helper for the command state machine: 1424 * Submit a REQUEST SENSE and go to SENSE state. 1425 */ 1426static void ub_state_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1427{ 1428 struct ub_scsi_cmd *scmd; 1429 struct scatterlist *sg; 1430 int rc; 1431 1432 if (cmd->cdb[0] == REQUEST_SENSE) { 1433 rc = -EPIPE; 1434 goto error; 1435 } 1436 1437 scmd = &sc->top_rqs_cmd; 1438 memset(scmd, 0, sizeof(struct ub_scsi_cmd)); 1439 scmd->cdb[0] = REQUEST_SENSE; 1440 scmd->cdb[4] = UB_SENSE_SIZE; 1441 scmd->cdb_len = 6; 1442 scmd->dir = UB_DIR_READ; 1443 scmd->state = UB_CMDST_INIT; 1444 scmd->nsg = 1; 1445 sg = &scmd->sgv[0]; 1446 sg_init_table(sg, UB_MAX_REQ_SG); 1447 sg_set_page(sg, virt_to_page(sc->top_sense), UB_SENSE_SIZE, 1448 (unsigned long)sc->top_sense & (PAGE_SIZE-1)); 1449 scmd->len = UB_SENSE_SIZE; 1450 scmd->lun = cmd->lun; 1451 scmd->done = ub_top_sense_done; 1452 scmd->back = cmd; 1453 1454 scmd->tag = sc->tagcnt++; 1455 1456 cmd->state = UB_CMDST_SENSE; 1457 1458 ub_cmdq_insert(sc, scmd); 1459 return; 1460 1461error: 1462 ub_state_done(sc, cmd, rc); 1463} 1464 1465/* 1466 * A helper for the command's state machine: 1467 * Submit a stall clear. 1468 */ 1469static int ub_submit_clear_stall(struct ub_dev *sc, struct ub_scsi_cmd *cmd, 1470 int stalled_pipe) 1471{ 1472 int endp; 1473 struct usb_ctrlrequest *cr; 1474 int rc; 1475 1476 endp = usb_pipeendpoint(stalled_pipe); 1477 if (usb_pipein (stalled_pipe)) 1478 endp |= USB_DIR_IN; 1479 1480 cr = &sc->work_cr; 1481 cr->bRequestType = USB_RECIP_ENDPOINT; 1482 cr->bRequest = USB_REQ_CLEAR_FEATURE; 1483 cr->wValue = cpu_to_le16(USB_ENDPOINT_HALT); 1484 cr->wIndex = cpu_to_le16(endp); 1485 cr->wLength = cpu_to_le16(0); 1486 1487 UB_INIT_COMPLETION(sc->work_done); 1488 1489 usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe, 1490 (unsigned char*) cr, NULL, 0, ub_urb_complete, sc); 1491 1492 if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { 1493 ub_complete(&sc->work_done); 1494 return rc; 1495 } 1496 1497 sc->work_timer.expires = jiffies + UB_CTRL_TIMEOUT; 1498 add_timer(&sc->work_timer); 1499 return 0; 1500} 1501 1502/* 1503 */ 1504static void ub_top_sense_done(struct ub_dev *sc, struct ub_scsi_cmd *scmd) 1505{ 1506 unsigned char *sense = sc->top_sense; 1507 struct ub_scsi_cmd *cmd; 1508 1509 /* 1510 * Find the command which triggered the unit attention or a check, 1511 * save the sense into it, and advance its state machine. 1512 */ 1513 if ((cmd = ub_cmdq_peek(sc)) == NULL) { 1514 printk(KERN_WARNING "%s: sense done while idle\n", sc->name); 1515 return; 1516 } 1517 if (cmd != scmd->back) { 1518 printk(KERN_WARNING "%s: " 1519 "sense done for wrong command 0x%x\n", 1520 sc->name, cmd->tag); 1521 return; 1522 } 1523 if (cmd->state != UB_CMDST_SENSE) { 1524 printk(KERN_WARNING "%s: sense done with bad cmd state %d\n", 1525 sc->name, cmd->state); 1526 return; 1527 } 1528 1529 /* 1530 * Ignoring scmd->act_len, because the buffer was pre-zeroed. 1531 */ 1532 cmd->key = sense[2] & 0x0F; 1533 cmd->asc = sense[12]; 1534 cmd->ascq = sense[13]; 1535 1536 ub_scsi_urb_compl(sc, cmd); 1537} 1538 1539/* 1540 * Reset management 1541 */ 1542 1543static void ub_reset_enter(struct ub_dev *sc, int try) 1544{ 1545 1546 if (sc->reset) { 1547 /* This happens often on multi-LUN devices. */ 1548 return; 1549 } 1550 sc->reset = try + 1; 1551 1552#if 0 /* Not needed because the disconnect waits for us. */ 1553 unsigned long flags; 1554 spin_lock_irqsave(&ub_lock, flags); 1555 sc->openc++; 1556 spin_unlock_irqrestore(&ub_lock, flags); 1557#endif 1558 1559#if 0 /* We let them stop themselves. */ 1560 struct ub_lun *lun; 1561 list_for_each_entry(lun, &sc->luns, link) { 1562 blk_stop_queue(lun->disk->queue); 1563 } 1564#endif 1565 1566 schedule_work(&sc->reset_work); 1567} 1568 1569static void ub_reset_task(struct work_struct *work) 1570{ 1571 struct ub_dev *sc = container_of(work, struct ub_dev, reset_work); 1572 unsigned long flags; 1573 struct ub_lun *lun; 1574 int rc; 1575 1576 if (!sc->reset) { 1577 printk(KERN_WARNING "%s: Running reset unrequested\n", 1578 sc->name); 1579 return; 1580 } 1581 1582 if (atomic_read(&sc->poison)) { 1583 ; 1584 } else if ((sc->reset & 1) == 0) { 1585 ub_sync_reset(sc); 1586 msleep(700); /* usb-storage sleeps 6s (!) */ 1587 ub_probe_clear_stall(sc, sc->recv_bulk_pipe); 1588 ub_probe_clear_stall(sc, sc->send_bulk_pipe); 1589 } else if (sc->dev->actconfig->desc.bNumInterfaces != 1) { 1590 ; 1591 } else { 1592 rc = usb_lock_device_for_reset(sc->dev, sc->intf); 1593 if (rc < 0) { 1594 printk(KERN_NOTICE 1595 "%s: usb_lock_device_for_reset failed (%d)\n", 1596 sc->name, rc); 1597 } else { 1598 rc = usb_reset_device(sc->dev); 1599 if (rc < 0) { 1600 printk(KERN_NOTICE "%s: " 1601 "usb_lock_device_for_reset failed (%d)\n", 1602 sc->name, rc); 1603 } 1604 usb_unlock_device(sc->dev); 1605 } 1606 } 1607 1608 /* 1609 * In theory, no commands can be running while reset is active, 1610 * so nobody can ask for another reset, and so we do not need any 1611 * queues of resets or anything. We do need a spinlock though, 1612 * to interact with block layer. 1613 */ 1614 spin_lock_irqsave(sc->lock, flags); 1615 sc->reset = 0; 1616 tasklet_schedule(&sc->tasklet); 1617 list_for_each_entry(lun, &sc->luns, link) { 1618 blk_start_queue(lun->disk->queue); 1619 } 1620 wake_up(&sc->reset_wait); 1621 spin_unlock_irqrestore(sc->lock, flags); 1622} 1623 1624/* 1625 * XXX Reset brackets are too much hassle to implement, so just stub them 1626 * in order to prevent forced unbinding (which deadlocks solid when our 1627 * ->disconnect method waits for the reset to complete and this kills keventd). 1628 * 1629 * XXX Tell Alan to move usb_unlock_device inside of usb_reset_device, 1630 * or else the post_reset is invoked, and restats I/O on a locked device. 1631 */ 1632static int ub_pre_reset(struct usb_interface *iface) { 1633 return 0; 1634} 1635 1636static int ub_post_reset(struct usb_interface *iface) { 1637 return 0; 1638} 1639 1640/* 1641 * This is called from a process context. 1642 */ 1643static void ub_revalidate(struct ub_dev *sc, struct ub_lun *lun) 1644{ 1645 1646 lun->readonly = 0; /* XXX Query this from the device */ 1647 1648 lun->capacity.nsec = 0; 1649 lun->capacity.bsize = 512; 1650 lun->capacity.bshift = 0; 1651 1652 if (ub_sync_tur(sc, lun) != 0) 1653 return; /* Not ready */ 1654 lun->changed = 0; 1655 1656 if (ub_sync_read_cap(sc, lun, &lun->capacity) != 0) { 1657 /* 1658 * The retry here means something is wrong, either with the 1659 * device, with the transport, or with our code. 1660 * We keep this because sd.c has retries for capacity. 1661 */ 1662 if (ub_sync_read_cap(sc, lun, &lun->capacity) != 0) { 1663 lun->capacity.nsec = 0; 1664 lun->capacity.bsize = 512; 1665 lun->capacity.bshift = 0; 1666 } 1667 } 1668} 1669 1670/* 1671 * The open funcion. 1672 * This is mostly needed to keep refcounting, but also to support 1673 * media checks on removable media drives. 1674 */ 1675static int ub_bd_open(struct block_device *bdev, fmode_t mode) 1676{ 1677 struct ub_lun *lun = bdev->bd_disk->private_data; 1678 struct ub_dev *sc = lun->udev; 1679 unsigned long flags; 1680 int rc; 1681 1682 spin_lock_irqsave(&ub_lock, flags); 1683 if (atomic_read(&sc->poison)) { 1684 spin_unlock_irqrestore(&ub_lock, flags); 1685 return -ENXIO; 1686 } 1687 sc->openc++; 1688 spin_unlock_irqrestore(&ub_lock, flags); 1689 1690 if (lun->removable || lun->readonly) 1691 check_disk_change(bdev); 1692 1693 /* 1694 * The sd.c considers ->media_present and ->changed not equivalent, 1695 * under some pretty murky conditions (a failure of READ CAPACITY). 1696 * We may need it one day. 1697 */ 1698 if (lun->removable && lun->changed && !(mode & FMODE_NDELAY)) { 1699 rc = -ENOMEDIUM; 1700 goto err_open; 1701 } 1702 1703 if (lun->readonly && (mode & FMODE_WRITE)) { 1704 rc = -EROFS; 1705 goto err_open; 1706 } 1707 1708 return 0; 1709 1710err_open: 1711 ub_put(sc); 1712 return rc; 1713} 1714 1715static int ub_bd_unlocked_open(struct block_device *bdev, fmode_t mode) 1716{ 1717 int ret; 1718 1719 mutex_lock(&ub_mutex); 1720 ret = ub_bd_open(bdev, mode); 1721 mutex_unlock(&ub_mutex); 1722 1723 return ret; 1724} 1725 1726 1727/* 1728 */ 1729static int ub_bd_release(struct gendisk *disk, fmode_t mode) 1730{ 1731 struct ub_lun *lun = disk->private_data; 1732 struct ub_dev *sc = lun->udev; 1733 1734 mutex_lock(&ub_mutex); 1735 ub_put(sc); 1736 mutex_unlock(&ub_mutex); 1737 1738 return 0; 1739} 1740 1741/* 1742 * The ioctl interface. 1743 */ 1744static int ub_bd_ioctl(struct block_device *bdev, fmode_t mode, 1745 unsigned int cmd, unsigned long arg) 1746{ 1747 struct gendisk *disk = bdev->bd_disk; 1748 void __user *usermem = (void __user *) arg; 1749 int ret; 1750 1751 mutex_lock(&ub_mutex); 1752 ret = scsi_cmd_ioctl(disk->queue, disk, mode, cmd, usermem); 1753 mutex_unlock(&ub_mutex); 1754 1755 return ret; 1756} 1757 1758/* 1759 * This is called by check_disk_change if we reported a media change. 1760 * The main onjective here is to discover the features of the media such as 1761 * the capacity, read-only status, etc. USB storage generally does not 1762 * need to be spun up, but if we needed it, this would be the place. 1763 * 1764 * This call can sleep. 1765 * 1766 * The return code is not used. 1767 */ 1768static int ub_bd_revalidate(struct gendisk *disk) 1769{ 1770 struct ub_lun *lun = disk->private_data; 1771 1772 ub_revalidate(lun->udev, lun); 1773 1774 /* XXX Support sector size switching like in sr.c */ 1775 blk_queue_logical_block_size(disk->queue, lun->capacity.bsize); 1776 set_capacity(disk, lun->capacity.nsec); 1777 // set_disk_ro(sdkp->disk, lun->readonly); 1778 1779 return 0; 1780} 1781 1782/* 1783 * The check is called by the block layer to verify if the media 1784 * is still available. It is supposed to be harmless, lightweight and 1785 * non-intrusive in case the media was not changed. 1786 * 1787 * This call can sleep. 1788 * 1789 * The return code is bool! 1790 */ 1791static int ub_bd_media_changed(struct gendisk *disk) 1792{ 1793 struct ub_lun *lun = disk->private_data; 1794 1795 if (!lun->removable) 1796 return 0; 1797 1798 /* 1799 * We clean checks always after every command, so this is not 1800 * as dangerous as it looks. If the TEST_UNIT_READY fails here, 1801 * the device is actually not ready with operator or software 1802 * intervention required. One dangerous item might be a drive which 1803 * spins itself down, and come the time to write dirty pages, this 1804 * will fail, then block layer discards the data. Since we never 1805 * spin drives up, such devices simply cannot be used with ub anyway. 1806 */ 1807 if (ub_sync_tur(lun->udev, lun) != 0) { 1808 lun->changed = 1; 1809 return 1; 1810 } 1811 1812 return lun->changed; 1813} 1814 1815static const struct block_device_operations ub_bd_fops = { 1816 .owner = THIS_MODULE, 1817 .open = ub_bd_unlocked_open, 1818 .release = ub_bd_release, 1819 .ioctl = ub_bd_ioctl, 1820 .media_changed = ub_bd_media_changed, 1821 .revalidate_disk = ub_bd_revalidate, 1822}; 1823 1824/* 1825 * Common ->done routine for commands executed synchronously. 1826 */ 1827static void ub_probe_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1828{ 1829 struct completion *cop = cmd->back; 1830 complete(cop); 1831} 1832 1833/* 1834 * Test if the device has a check condition on it, synchronously. 1835 */ 1836static int ub_sync_tur(struct ub_dev *sc, struct ub_lun *lun) 1837{ 1838 struct ub_scsi_cmd *cmd; 1839 enum { ALLOC_SIZE = sizeof(struct ub_scsi_cmd) }; 1840 unsigned long flags; 1841 struct completion compl; 1842 int rc; 1843 1844 init_completion(&compl); 1845 1846 rc = -ENOMEM; 1847 if ((cmd = kzalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL) 1848 goto err_alloc; 1849 1850 cmd->cdb[0] = TEST_UNIT_READY; 1851 cmd->cdb_len = 6; 1852 cmd->dir = UB_DIR_NONE; 1853 cmd->state = UB_CMDST_INIT; 1854 cmd->lun = lun; /* This may be NULL, but that's ok */ 1855 cmd->done = ub_probe_done; 1856 cmd->back = &compl; 1857 1858 spin_lock_irqsave(sc->lock, flags); 1859 cmd->tag = sc->tagcnt++; 1860 1861 rc = ub_submit_scsi(sc, cmd); 1862 spin_unlock_irqrestore(sc->lock, flags); 1863 1864 if (rc != 0) 1865 goto err_submit; 1866 1867 wait_for_completion(&compl); 1868 1869 rc = cmd->error; 1870 1871 if (rc == -EIO && cmd->key != 0) /* Retries for benh's key */ 1872 rc = cmd->key; 1873 1874err_submit: 1875 kfree(cmd); 1876err_alloc: 1877 return rc; 1878} 1879 1880/* 1881 * Read the SCSI capacity synchronously (for probing). 1882 */ 1883static int ub_sync_read_cap(struct ub_dev *sc, struct ub_lun *lun, 1884 struct ub_capacity *ret) 1885{ 1886 struct ub_scsi_cmd *cmd; 1887 struct scatterlist *sg; 1888 char *p; 1889 enum { ALLOC_SIZE = sizeof(struct ub_scsi_cmd) + 8 }; 1890 unsigned long flags; 1891 unsigned int bsize, shift; 1892 unsigned long nsec; 1893 struct completion compl; 1894 int rc; 1895 1896 init_completion(&compl); 1897 1898 rc = -ENOMEM; 1899 if ((cmd = kzalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL) 1900 goto err_alloc; 1901 p = (char *)cmd + sizeof(struct ub_scsi_cmd); 1902 1903 cmd->cdb[0] = 0x25; 1904 cmd->cdb_len = 10; 1905 cmd->dir = UB_DIR_READ; 1906 cmd->state = UB_CMDST_INIT; 1907 cmd->nsg = 1; 1908 sg = &cmd->sgv[0]; 1909 sg_init_table(sg, UB_MAX_REQ_SG); 1910 sg_set_page(sg, virt_to_page(p), 8, (unsigned long)p & (PAGE_SIZE-1)); 1911 cmd->len = 8; 1912 cmd->lun = lun; 1913 cmd->done = ub_probe_done; 1914 cmd->back = &compl; 1915 1916 spin_lock_irqsave(sc->lock, flags); 1917 cmd->tag = sc->tagcnt++; 1918 1919 rc = ub_submit_scsi(sc, cmd); 1920 spin_unlock_irqrestore(sc->lock, flags); 1921 1922 if (rc != 0) 1923 goto err_submit; 1924 1925 wait_for_completion(&compl); 1926 1927 if (cmd->error != 0) { 1928 rc = -EIO; 1929 goto err_read; 1930 } 1931 if (cmd->act_len != 8) { 1932 rc = -EIO; 1933 goto err_read; 1934 } 1935 1936 /* sd.c special-cases sector size of 0 to mean 512. Needed? Safe? */ 1937 nsec = be32_to_cpu(*(__be32 *)p) + 1; 1938 bsize = be32_to_cpu(*(__be32 *)(p + 4)); 1939 switch (bsize) { 1940 case 512: shift = 0; break; 1941 case 1024: shift = 1; break; 1942 case 2048: shift = 2; break; 1943 case 4096: shift = 3; break; 1944 default: 1945 rc = -EDOM; 1946 goto err_inv_bsize; 1947 } 1948 1949 ret->bsize = bsize; 1950 ret->bshift = shift; 1951 ret->nsec = nsec << shift; 1952 rc = 0; 1953 1954err_inv_bsize: 1955err_read: 1956err_submit: 1957 kfree(cmd); 1958err_alloc: 1959 return rc; 1960} 1961 1962/* 1963 */ 1964static void ub_probe_urb_complete(struct urb *urb) 1965{ 1966 struct completion *cop = urb->context; 1967 complete(cop); 1968} 1969 1970static void ub_probe_timeout(unsigned long arg) 1971{ 1972 struct completion *cop = (struct completion *) arg; 1973 complete(cop); 1974} 1975 1976/* 1977 * Reset with a Bulk reset. 1978 */ 1979static int ub_sync_reset(struct ub_dev *sc) 1980{ 1981 int ifnum = sc->intf->cur_altsetting->desc.bInterfaceNumber; 1982 struct usb_ctrlrequest *cr; 1983 struct completion compl; 1984 struct timer_list timer; 1985 int rc; 1986 1987 init_completion(&compl); 1988 1989 cr = &sc->work_cr; 1990 cr->bRequestType = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 1991 cr->bRequest = US_BULK_RESET_REQUEST; 1992 cr->wValue = cpu_to_le16(0); 1993 cr->wIndex = cpu_to_le16(ifnum); 1994 cr->wLength = cpu_to_le16(0); 1995 1996 usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe, 1997 (unsigned char*) cr, NULL, 0, ub_probe_urb_complete, &compl); 1998 1999 if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) { 2000 printk(KERN_WARNING 2001 "%s: Unable to submit a bulk reset (%d)\n", sc->name, rc); 2002 return rc; 2003 } 2004 2005 init_timer(&timer); 2006 timer.function = ub_probe_timeout; 2007 timer.data = (unsigned long) &compl; 2008 timer.expires = jiffies + UB_CTRL_TIMEOUT; 2009 add_timer(&timer); 2010 2011 wait_for_completion(&compl); 2012 2013 del_timer_sync(&timer); 2014 usb_kill_urb(&sc->work_urb); 2015 2016 return sc->work_urb.status; 2017} 2018 2019/* 2020 * Get number of LUNs by the way of Bulk GetMaxLUN command. 2021 */ 2022static int ub_sync_getmaxlun(struct ub_dev *sc) 2023{ 2024 int ifnum = sc->intf->cur_altsetting->desc.bInterfaceNumber; 2025 unsigned char *p; 2026 enum { ALLOC_SIZE = 1 }; 2027 struct usb_ctrlrequest *cr; 2028 struct completion compl; 2029 struct timer_list timer; 2030 int nluns; 2031 int rc; 2032 2033 init_completion(&compl); 2034 2035 rc = -ENOMEM; 2036 if ((p = kmalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL) 2037 goto err_alloc; 2038 *p = 55; 2039 2040 cr = &sc->work_cr; 2041 cr->bRequestType = USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE; 2042 cr->bRequest = US_BULK_GET_MAX_LUN; 2043 cr->wValue = cpu_to_le16(0); 2044 cr->wIndex = cpu_to_le16(ifnum); 2045 cr->wLength = cpu_to_le16(1); 2046 2047 usb_fill_control_urb(&sc->work_urb, sc->dev, sc->recv_ctrl_pipe, 2048 (unsigned char*) cr, p, 1, ub_probe_urb_complete, &compl); 2049 2050 if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) 2051 goto err_submit; 2052 2053 init_timer(&timer); 2054 timer.function = ub_probe_timeout; 2055 timer.data = (unsigned long) &compl; 2056 timer.expires = jiffies + UB_CTRL_TIMEOUT; 2057 add_timer(&timer); 2058 2059 wait_for_completion(&compl); 2060 2061 del_timer_sync(&timer); 2062 usb_kill_urb(&sc->work_urb); 2063 2064 if ((rc = sc->work_urb.status) < 0) 2065 goto err_io; 2066 2067 if (sc->work_urb.actual_length != 1) { 2068 nluns = 0; 2069 } else { 2070 if ((nluns = *p) == 55) { 2071 nluns = 0; 2072 } else { 2073 /* GetMaxLUN returns the maximum LUN number */ 2074 nluns += 1; 2075 if (nluns > UB_MAX_LUNS) 2076 nluns = UB_MAX_LUNS; 2077 } 2078 } 2079 2080 kfree(p); 2081 return nluns; 2082 2083err_io: 2084err_submit: 2085 kfree(p); 2086err_alloc: 2087 return rc; 2088} 2089 2090/* 2091 * Clear initial stalls. 2092 */ 2093static int ub_probe_clear_stall(struct ub_dev *sc, int stalled_pipe) 2094{ 2095 int endp; 2096 struct usb_ctrlrequest *cr; 2097 struct completion compl; 2098 struct timer_list timer; 2099 int rc; 2100 2101 init_completion(&compl); 2102 2103 endp = usb_pipeendpoint(stalled_pipe); 2104 if (usb_pipein (stalled_pipe)) 2105 endp |= USB_DIR_IN; 2106 2107 cr = &sc->work_cr; 2108 cr->bRequestType = USB_RECIP_ENDPOINT; 2109 cr->bRequest = USB_REQ_CLEAR_FEATURE; 2110 cr->wValue = cpu_to_le16(USB_ENDPOINT_HALT); 2111 cr->wIndex = cpu_to_le16(endp); 2112 cr->wLength = cpu_to_le16(0); 2113 2114 usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe, 2115 (unsigned char*) cr, NULL, 0, ub_probe_urb_complete, &compl); 2116 2117 if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) { 2118 printk(KERN_WARNING 2119 "%s: Unable to submit a probe clear (%d)\n", sc->name, rc); 2120 return rc; 2121 } 2122 2123 init_timer(&timer); 2124 timer.function = ub_probe_timeout; 2125 timer.data = (unsigned long) &compl; 2126 timer.expires = jiffies + UB_CTRL_TIMEOUT; 2127 add_timer(&timer); 2128 2129 wait_for_completion(&compl); 2130 2131 del_timer_sync(&timer); 2132 usb_kill_urb(&sc->work_urb); 2133 2134 usb_reset_endpoint(sc->dev, endp); 2135 2136 return 0; 2137} 2138 2139/* 2140 * Get the pipe settings. 2141 */ 2142static int ub_get_pipes(struct ub_dev *sc, struct usb_device *dev, 2143 struct usb_interface *intf) 2144{ 2145 struct usb_host_interface *altsetting = intf->cur_altsetting; 2146 struct usb_endpoint_descriptor *ep_in = NULL; 2147 struct usb_endpoint_descriptor *ep_out = NULL; 2148 struct usb_endpoint_descriptor *ep; 2149 int i; 2150 2151 /* 2152 * Find the endpoints we need. 2153 * We are expecting a minimum of 2 endpoints - in and out (bulk). 2154 * We will ignore any others. 2155 */ 2156 for (i = 0; i < altsetting->desc.bNumEndpoints; i++) { 2157 ep = &altsetting->endpoint[i].desc; 2158 2159 /* Is it a BULK endpoint? */ 2160 if (usb_endpoint_xfer_bulk(ep)) { 2161 /* BULK in or out? */ 2162 if (usb_endpoint_dir_in(ep)) { 2163 if (ep_in == NULL) 2164 ep_in = ep; 2165 } else { 2166 if (ep_out == NULL) 2167 ep_out = ep; 2168 } 2169 } 2170 } 2171 2172 if (ep_in == NULL || ep_out == NULL) { 2173 printk(KERN_NOTICE "%s: failed endpoint check\n", sc->name); 2174 return -ENODEV; 2175 } 2176 2177 /* Calculate and store the pipe values */ 2178 sc->send_ctrl_pipe = usb_sndctrlpipe(dev, 0); 2179 sc->recv_ctrl_pipe = usb_rcvctrlpipe(dev, 0); 2180 sc->send_bulk_pipe = usb_sndbulkpipe(dev, 2181 usb_endpoint_num(ep_out)); 2182 sc->recv_bulk_pipe = usb_rcvbulkpipe(dev, 2183 usb_endpoint_num(ep_in)); 2184 2185 return 0; 2186} 2187 2188/* 2189 * Probing is done in the process context, which allows us to cheat 2190 * and not to build a state machine for the discovery. 2191 */ 2192static int ub_probe(struct usb_interface *intf, 2193 const struct usb_device_id *dev_id) 2194{ 2195 struct ub_dev *sc; 2196 int nluns; 2197 int rc; 2198 int i; 2199 2200 if (usb_usual_check_type(dev_id, USB_US_TYPE_UB)) 2201 return -ENXIO; 2202 2203 rc = -ENOMEM; 2204 if ((sc = kzalloc(sizeof(struct ub_dev), GFP_KERNEL)) == NULL) 2205 goto err_core; 2206 sc->lock = ub_next_lock(); 2207 INIT_LIST_HEAD(&sc->luns); 2208 usb_init_urb(&sc->work_urb); 2209 tasklet_init(&sc->tasklet, ub_scsi_action, (unsigned long)sc); 2210 atomic_set(&sc->poison, 0); 2211 INIT_WORK(&sc->reset_work, ub_reset_task); 2212 init_waitqueue_head(&sc->reset_wait); 2213 2214 init_timer(&sc->work_timer); 2215 sc->work_timer.data = (unsigned long) sc; 2216 sc->work_timer.function = ub_urb_timeout; 2217 2218 ub_init_completion(&sc->work_done); 2219 sc->work_done.done = 1; /* A little yuk, but oh well... */ 2220 2221 sc->dev = interface_to_usbdev(intf); 2222 sc->intf = intf; 2223 // sc->ifnum = intf->cur_altsetting->desc.bInterfaceNumber; 2224 usb_set_intfdata(intf, sc); 2225 usb_get_dev(sc->dev); 2226 /* 2227 * Since we give the interface struct to the block level through 2228 * disk->driverfs_dev, we have to pin it. Otherwise, block_uevent 2229 * oopses on close after a disconnect (kernels 2.6.16 and up). 2230 */ 2231 usb_get_intf(sc->intf); 2232 2233 snprintf(sc->name, 12, DRV_NAME "(%d.%d)", 2234 sc->dev->bus->busnum, sc->dev->devnum); 2235 2236 /* XXX Verify that we can handle the device (from descriptors) */ 2237 2238 if (ub_get_pipes(sc, sc->dev, intf) != 0) 2239 goto err_dev_desc; 2240 2241 /* 2242 * At this point, all USB initialization is done, do upper layer. 2243 * We really hate halfway initialized structures, so from the 2244 * invariants perspective, this ub_dev is fully constructed at 2245 * this point. 2246 */ 2247 2248 /* 2249 * This is needed to clear toggles. It is a problem only if we do 2250 * `rmmod ub && modprobe ub` without disconnects, but we like that. 2251 */ 2252#if 0 /* iPod Mini fails if we do this (big white iPod works) */ 2253 ub_probe_clear_stall(sc, sc->recv_bulk_pipe); 2254 ub_probe_clear_stall(sc, sc->send_bulk_pipe); 2255#endif 2256 2257 /* 2258 * The way this is used by the startup code is a little specific. 2259 * A SCSI check causes a USB stall. Our common case code sees it 2260 * and clears the check, after which the device is ready for use. 2261 * But if a check was not present, any command other than 2262 * TEST_UNIT_READY ends with a lockup (including REQUEST_SENSE). 2263 * 2264 * If we neglect to clear the SCSI check, the first real command fails 2265 * (which is the capacity readout). We clear that and retry, but why 2266 * causing spurious retries for no reason. 2267 * 2268 * Revalidation may start with its own TEST_UNIT_READY, but that one 2269 * has to succeed, so we clear checks with an additional one here. 2270 * In any case it's not our business how revaliadation is implemented. 2271 */ 2272 for (i = 0; i < 3; i++) { /* Retries for the schwag key from KS'04 */ 2273 if ((rc = ub_sync_tur(sc, NULL)) <= 0) break; 2274 if (rc != 0x6) break; 2275 msleep(10); 2276 } 2277 2278 nluns = 1; 2279 for (i = 0; i < 3; i++) { 2280 if ((rc = ub_sync_getmaxlun(sc)) < 0) 2281 break; 2282 if (rc != 0) { 2283 nluns = rc; 2284 break; 2285 } 2286 msleep(100); 2287 } 2288 2289 for (i = 0; i < nluns; i++) { 2290 ub_probe_lun(sc, i); 2291 } 2292 return 0; 2293 2294err_dev_desc: 2295 usb_set_intfdata(intf, NULL); 2296 usb_put_intf(sc->intf); 2297 usb_put_dev(sc->dev); 2298 kfree(sc); 2299err_core: 2300 return rc; 2301} 2302 2303static int ub_probe_lun(struct ub_dev *sc, int lnum) 2304{ 2305 struct ub_lun *lun; 2306 struct request_queue *q; 2307 struct gendisk *disk; 2308 int rc; 2309 2310 rc = -ENOMEM; 2311 if ((lun = kzalloc(sizeof(struct ub_lun), GFP_KERNEL)) == NULL) 2312 goto err_alloc; 2313 lun->num = lnum; 2314 2315 rc = -ENOSR; 2316 if ((lun->id = ub_id_get()) == -1) 2317 goto err_id; 2318 2319 lun->udev = sc; 2320 2321 snprintf(lun->name, 16, DRV_NAME "%c(%d.%d.%d)", 2322 lun->id + 'a', sc->dev->bus->busnum, sc->dev->devnum, lun->num); 2323 2324 lun->removable = 1; /* XXX Query this from the device */ 2325 lun->changed = 1; /* ub_revalidate clears only */ 2326 ub_revalidate(sc, lun); 2327 2328 rc = -ENOMEM; 2329 if ((disk = alloc_disk(UB_PARTS_PER_LUN)) == NULL) 2330 goto err_diskalloc; 2331 2332 sprintf(disk->disk_name, DRV_NAME "%c", lun->id + 'a'); 2333 disk->major = UB_MAJOR; 2334 disk->first_minor = lun->id * UB_PARTS_PER_LUN; 2335 disk->fops = &ub_bd_fops; 2336 disk->private_data = lun; 2337 disk->driverfs_dev = &sc->intf->dev; 2338 2339 rc = -ENOMEM; 2340 if ((q = blk_init_queue(ub_request_fn, sc->lock)) == NULL) 2341 goto err_blkqinit; 2342 2343 disk->queue = q; 2344 2345 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 2346 blk_queue_max_segments(q, UB_MAX_REQ_SG); 2347 blk_queue_segment_boundary(q, 0xffffffff); /* Dubious. */ 2348 blk_queue_max_hw_sectors(q, UB_MAX_SECTORS); 2349 blk_queue_logical_block_size(q, lun->capacity.bsize); 2350 2351 lun->disk = disk; 2352 q->queuedata = lun; 2353 list_add(&lun->link, &sc->luns); 2354 2355 set_capacity(disk, lun->capacity.nsec); 2356 if (lun->removable) 2357 disk->flags |= GENHD_FL_REMOVABLE; 2358 2359 add_disk(disk); 2360 2361 return 0; 2362 2363err_blkqinit: 2364 put_disk(disk); 2365err_diskalloc: 2366 ub_id_put(lun->id); 2367err_id: 2368 kfree(lun); 2369err_alloc: 2370 return rc; 2371} 2372 2373static void ub_disconnect(struct usb_interface *intf) 2374{ 2375 struct ub_dev *sc = usb_get_intfdata(intf); 2376 struct ub_lun *lun; 2377 unsigned long flags; 2378 2379 /* 2380 * Prevent ub_bd_release from pulling the rug from under us. 2381 * XXX This is starting to look like a kref. 2382 * XXX Why not to take this ref at probe time? 2383 */ 2384 spin_lock_irqsave(&ub_lock, flags); 2385 sc->openc++; 2386 spin_unlock_irqrestore(&ub_lock, flags); 2387 2388 /* 2389 * Fence stall clearings, operations triggered by unlinkings and so on. 2390 * We do not attempt to unlink any URBs, because we do not trust the 2391 * unlink paths in HC drivers. Also, we get -84 upon disconnect anyway. 2392 */ 2393 atomic_set(&sc->poison, 1); 2394 2395 /* 2396 * Wait for reset to end, if any. 2397 */ 2398 wait_event(sc->reset_wait, !sc->reset); 2399 2400 /* 2401 * Blow away queued commands. 2402 * 2403 * Actually, this never works, because before we get here 2404 * the HCD terminates outstanding URB(s). It causes our 2405 * SCSI command queue to advance, commands fail to submit, 2406 * and the whole queue drains. So, we just use this code to 2407 * print warnings. 2408 */ 2409 spin_lock_irqsave(sc->lock, flags); 2410 { 2411 struct ub_scsi_cmd *cmd; 2412 int cnt = 0; 2413 while ((cmd = ub_cmdq_peek(sc)) != NULL) { 2414 cmd->error = -ENOTCONN; 2415 cmd->state = UB_CMDST_DONE; 2416 ub_cmdq_pop(sc); 2417 (*cmd->done)(sc, cmd); 2418 cnt++; 2419 } 2420 if (cnt != 0) { 2421 printk(KERN_WARNING "%s: " 2422 "%d was queued after shutdown\n", sc->name, cnt); 2423 } 2424 } 2425 spin_unlock_irqrestore(sc->lock, flags); 2426 2427 /* 2428 * Unregister the upper layer. 2429 */ 2430 list_for_each_entry(lun, &sc->luns, link) { 2431 del_gendisk(lun->disk); 2432 /* 2433 * I wish I could do: 2434 * queue_flag_set(QUEUE_FLAG_DEAD, q); 2435 * As it is, we rely on our internal poisoning and let 2436 * the upper levels to spin furiously failing all the I/O. 2437 */ 2438 } 2439 2440 /* 2441 * Testing for -EINPROGRESS is always a bug, so we are bending 2442 * the rules a little. 2443 */ 2444 spin_lock_irqsave(sc->lock, flags); 2445 if (sc->work_urb.status == -EINPROGRESS) { /* janitors: ignore */ 2446 printk(KERN_WARNING "%s: " 2447 "URB is active after disconnect\n", sc->name); 2448 } 2449 spin_unlock_irqrestore(sc->lock, flags); 2450 2451 /* 2452 * There is virtually no chance that other CPU runs a timeout so long 2453 * after ub_urb_complete should have called del_timer, but only if HCD 2454 * didn't forget to deliver a callback on unlink. 2455 */ 2456 del_timer_sync(&sc->work_timer); 2457 2458 /* 2459 * At this point there must be no commands coming from anyone 2460 * and no URBs left in transit. 2461 */ 2462 2463 ub_put(sc); 2464} 2465 2466static struct usb_driver ub_driver = { 2467 .name = "ub", 2468 .probe = ub_probe, 2469 .disconnect = ub_disconnect, 2470 .id_table = ub_usb_ids, 2471 .pre_reset = ub_pre_reset, 2472 .post_reset = ub_post_reset, 2473}; 2474 2475static int __init ub_init(void) 2476{ 2477 int rc; 2478 int i; 2479 2480 for (i = 0; i < UB_QLOCK_NUM; i++) 2481 spin_lock_init(&ub_qlockv[i]); 2482 2483 if ((rc = register_blkdev(UB_MAJOR, DRV_NAME)) != 0) 2484 goto err_regblkdev; 2485 2486 if ((rc = usb_register(&ub_driver)) != 0) 2487 goto err_register; 2488 2489 usb_usual_set_present(USB_US_TYPE_UB); 2490 return 0; 2491 2492err_register: 2493 unregister_blkdev(UB_MAJOR, DRV_NAME); 2494err_regblkdev: 2495 return rc; 2496} 2497 2498static void __exit ub_exit(void) 2499{ 2500 usb_deregister(&ub_driver); 2501 2502 unregister_blkdev(UB_MAJOR, DRV_NAME); 2503 usb_usual_clear_present(USB_US_TYPE_UB); 2504} 2505 2506module_init(ub_init); 2507module_exit(ub_exit); 2508 2509MODULE_LICENSE("GPL");