at v2.6.38-rc2 1623 lines 40 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/module.h> 18#include <linux/blkpg.h> 19#include <linux/buffer_head.h> 20#include <linux/pagevec.h> 21#include <linux/writeback.h> 22#include <linux/mpage.h> 23#include <linux/mount.h> 24#include <linux/uio.h> 25#include <linux/namei.h> 26#include <linux/log2.h> 27#include <linux/kmemleak.h> 28#include <asm/uaccess.h> 29#include "internal.h" 30 31struct bdev_inode { 32 struct block_device bdev; 33 struct inode vfs_inode; 34}; 35 36static const struct address_space_operations def_blk_aops; 37 38static inline struct bdev_inode *BDEV_I(struct inode *inode) 39{ 40 return container_of(inode, struct bdev_inode, vfs_inode); 41} 42 43inline struct block_device *I_BDEV(struct inode *inode) 44{ 45 return &BDEV_I(inode)->bdev; 46} 47 48EXPORT_SYMBOL(I_BDEV); 49 50/* 51 * move the inode from it's current bdi to the a new bdi. if the inode is dirty 52 * we need to move it onto the dirty list of @dst so that the inode is always 53 * on the right list. 54 */ 55static void bdev_inode_switch_bdi(struct inode *inode, 56 struct backing_dev_info *dst) 57{ 58 spin_lock(&inode_lock); 59 inode->i_data.backing_dev_info = dst; 60 if (inode->i_state & I_DIRTY) 61 list_move(&inode->i_wb_list, &dst->wb.b_dirty); 62 spin_unlock(&inode_lock); 63} 64 65static sector_t max_block(struct block_device *bdev) 66{ 67 sector_t retval = ~((sector_t)0); 68 loff_t sz = i_size_read(bdev->bd_inode); 69 70 if (sz) { 71 unsigned int size = block_size(bdev); 72 unsigned int sizebits = blksize_bits(size); 73 retval = (sz >> sizebits); 74 } 75 return retval; 76} 77 78/* Kill _all_ buffers and pagecache , dirty or not.. */ 79static void kill_bdev(struct block_device *bdev) 80{ 81 if (bdev->bd_inode->i_mapping->nrpages == 0) 82 return; 83 invalidate_bh_lrus(); 84 truncate_inode_pages(bdev->bd_inode->i_mapping, 0); 85} 86 87int set_blocksize(struct block_device *bdev, int size) 88{ 89 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 90 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 91 return -EINVAL; 92 93 /* Size cannot be smaller than the size supported by the device */ 94 if (size < bdev_logical_block_size(bdev)) 95 return -EINVAL; 96 97 /* Don't change the size if it is same as current */ 98 if (bdev->bd_block_size != size) { 99 sync_blockdev(bdev); 100 bdev->bd_block_size = size; 101 bdev->bd_inode->i_blkbits = blksize_bits(size); 102 kill_bdev(bdev); 103 } 104 return 0; 105} 106 107EXPORT_SYMBOL(set_blocksize); 108 109int sb_set_blocksize(struct super_block *sb, int size) 110{ 111 if (set_blocksize(sb->s_bdev, size)) 112 return 0; 113 /* If we get here, we know size is power of two 114 * and it's value is between 512 and PAGE_SIZE */ 115 sb->s_blocksize = size; 116 sb->s_blocksize_bits = blksize_bits(size); 117 return sb->s_blocksize; 118} 119 120EXPORT_SYMBOL(sb_set_blocksize); 121 122int sb_min_blocksize(struct super_block *sb, int size) 123{ 124 int minsize = bdev_logical_block_size(sb->s_bdev); 125 if (size < minsize) 126 size = minsize; 127 return sb_set_blocksize(sb, size); 128} 129 130EXPORT_SYMBOL(sb_min_blocksize); 131 132static int 133blkdev_get_block(struct inode *inode, sector_t iblock, 134 struct buffer_head *bh, int create) 135{ 136 if (iblock >= max_block(I_BDEV(inode))) { 137 if (create) 138 return -EIO; 139 140 /* 141 * for reads, we're just trying to fill a partial page. 142 * return a hole, they will have to call get_block again 143 * before they can fill it, and they will get -EIO at that 144 * time 145 */ 146 return 0; 147 } 148 bh->b_bdev = I_BDEV(inode); 149 bh->b_blocknr = iblock; 150 set_buffer_mapped(bh); 151 return 0; 152} 153 154static int 155blkdev_get_blocks(struct inode *inode, sector_t iblock, 156 struct buffer_head *bh, int create) 157{ 158 sector_t end_block = max_block(I_BDEV(inode)); 159 unsigned long max_blocks = bh->b_size >> inode->i_blkbits; 160 161 if ((iblock + max_blocks) > end_block) { 162 max_blocks = end_block - iblock; 163 if ((long)max_blocks <= 0) { 164 if (create) 165 return -EIO; /* write fully beyond EOF */ 166 /* 167 * It is a read which is fully beyond EOF. We return 168 * a !buffer_mapped buffer 169 */ 170 max_blocks = 0; 171 } 172 } 173 174 bh->b_bdev = I_BDEV(inode); 175 bh->b_blocknr = iblock; 176 bh->b_size = max_blocks << inode->i_blkbits; 177 if (max_blocks) 178 set_buffer_mapped(bh); 179 return 0; 180} 181 182static ssize_t 183blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 184 loff_t offset, unsigned long nr_segs) 185{ 186 struct file *file = iocb->ki_filp; 187 struct inode *inode = file->f_mapping->host; 188 189 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iov, offset, 190 nr_segs, blkdev_get_blocks, NULL, NULL, 0); 191} 192 193int __sync_blockdev(struct block_device *bdev, int wait) 194{ 195 if (!bdev) 196 return 0; 197 if (!wait) 198 return filemap_flush(bdev->bd_inode->i_mapping); 199 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 200} 201 202/* 203 * Write out and wait upon all the dirty data associated with a block 204 * device via its mapping. Does not take the superblock lock. 205 */ 206int sync_blockdev(struct block_device *bdev) 207{ 208 return __sync_blockdev(bdev, 1); 209} 210EXPORT_SYMBOL(sync_blockdev); 211 212/* 213 * Write out and wait upon all dirty data associated with this 214 * device. Filesystem data as well as the underlying block 215 * device. Takes the superblock lock. 216 */ 217int fsync_bdev(struct block_device *bdev) 218{ 219 struct super_block *sb = get_super(bdev); 220 if (sb) { 221 int res = sync_filesystem(sb); 222 drop_super(sb); 223 return res; 224 } 225 return sync_blockdev(bdev); 226} 227EXPORT_SYMBOL(fsync_bdev); 228 229/** 230 * freeze_bdev -- lock a filesystem and force it into a consistent state 231 * @bdev: blockdevice to lock 232 * 233 * If a superblock is found on this device, we take the s_umount semaphore 234 * on it to make sure nobody unmounts until the snapshot creation is done. 235 * The reference counter (bd_fsfreeze_count) guarantees that only the last 236 * unfreeze process can unfreeze the frozen filesystem actually when multiple 237 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 238 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 239 * actually. 240 */ 241struct super_block *freeze_bdev(struct block_device *bdev) 242{ 243 struct super_block *sb; 244 int error = 0; 245 246 mutex_lock(&bdev->bd_fsfreeze_mutex); 247 if (++bdev->bd_fsfreeze_count > 1) { 248 /* 249 * We don't even need to grab a reference - the first call 250 * to freeze_bdev grab an active reference and only the last 251 * thaw_bdev drops it. 252 */ 253 sb = get_super(bdev); 254 drop_super(sb); 255 mutex_unlock(&bdev->bd_fsfreeze_mutex); 256 return sb; 257 } 258 259 sb = get_active_super(bdev); 260 if (!sb) 261 goto out; 262 error = freeze_super(sb); 263 if (error) { 264 deactivate_super(sb); 265 bdev->bd_fsfreeze_count--; 266 mutex_unlock(&bdev->bd_fsfreeze_mutex); 267 return ERR_PTR(error); 268 } 269 deactivate_super(sb); 270 out: 271 sync_blockdev(bdev); 272 mutex_unlock(&bdev->bd_fsfreeze_mutex); 273 return sb; /* thaw_bdev releases s->s_umount */ 274} 275EXPORT_SYMBOL(freeze_bdev); 276 277/** 278 * thaw_bdev -- unlock filesystem 279 * @bdev: blockdevice to unlock 280 * @sb: associated superblock 281 * 282 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 283 */ 284int thaw_bdev(struct block_device *bdev, struct super_block *sb) 285{ 286 int error = -EINVAL; 287 288 mutex_lock(&bdev->bd_fsfreeze_mutex); 289 if (!bdev->bd_fsfreeze_count) 290 goto out; 291 292 error = 0; 293 if (--bdev->bd_fsfreeze_count > 0) 294 goto out; 295 296 if (!sb) 297 goto out; 298 299 error = thaw_super(sb); 300 if (error) { 301 bdev->bd_fsfreeze_count++; 302 mutex_unlock(&bdev->bd_fsfreeze_mutex); 303 return error; 304 } 305out: 306 mutex_unlock(&bdev->bd_fsfreeze_mutex); 307 return 0; 308} 309EXPORT_SYMBOL(thaw_bdev); 310 311static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 312{ 313 return block_write_full_page(page, blkdev_get_block, wbc); 314} 315 316static int blkdev_readpage(struct file * file, struct page * page) 317{ 318 return block_read_full_page(page, blkdev_get_block); 319} 320 321static int blkdev_write_begin(struct file *file, struct address_space *mapping, 322 loff_t pos, unsigned len, unsigned flags, 323 struct page **pagep, void **fsdata) 324{ 325 return block_write_begin(mapping, pos, len, flags, pagep, 326 blkdev_get_block); 327} 328 329static int blkdev_write_end(struct file *file, struct address_space *mapping, 330 loff_t pos, unsigned len, unsigned copied, 331 struct page *page, void *fsdata) 332{ 333 int ret; 334 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 335 336 unlock_page(page); 337 page_cache_release(page); 338 339 return ret; 340} 341 342/* 343 * private llseek: 344 * for a block special file file->f_path.dentry->d_inode->i_size is zero 345 * so we compute the size by hand (just as in block_read/write above) 346 */ 347static loff_t block_llseek(struct file *file, loff_t offset, int origin) 348{ 349 struct inode *bd_inode = file->f_mapping->host; 350 loff_t size; 351 loff_t retval; 352 353 mutex_lock(&bd_inode->i_mutex); 354 size = i_size_read(bd_inode); 355 356 switch (origin) { 357 case 2: 358 offset += size; 359 break; 360 case 1: 361 offset += file->f_pos; 362 } 363 retval = -EINVAL; 364 if (offset >= 0 && offset <= size) { 365 if (offset != file->f_pos) { 366 file->f_pos = offset; 367 } 368 retval = offset; 369 } 370 mutex_unlock(&bd_inode->i_mutex); 371 return retval; 372} 373 374int blkdev_fsync(struct file *filp, int datasync) 375{ 376 struct inode *bd_inode = filp->f_mapping->host; 377 struct block_device *bdev = I_BDEV(bd_inode); 378 int error; 379 380 /* 381 * There is no need to serialise calls to blkdev_issue_flush with 382 * i_mutex and doing so causes performance issues with concurrent 383 * O_SYNC writers to a block device. 384 */ 385 mutex_unlock(&bd_inode->i_mutex); 386 387 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 388 if (error == -EOPNOTSUPP) 389 error = 0; 390 391 mutex_lock(&bd_inode->i_mutex); 392 393 return error; 394} 395EXPORT_SYMBOL(blkdev_fsync); 396 397/* 398 * pseudo-fs 399 */ 400 401static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 402static struct kmem_cache * bdev_cachep __read_mostly; 403 404static struct inode *bdev_alloc_inode(struct super_block *sb) 405{ 406 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 407 if (!ei) 408 return NULL; 409 return &ei->vfs_inode; 410} 411 412static void bdev_i_callback(struct rcu_head *head) 413{ 414 struct inode *inode = container_of(head, struct inode, i_rcu); 415 struct bdev_inode *bdi = BDEV_I(inode); 416 417 INIT_LIST_HEAD(&inode->i_dentry); 418 kmem_cache_free(bdev_cachep, bdi); 419} 420 421static void bdev_destroy_inode(struct inode *inode) 422{ 423 call_rcu(&inode->i_rcu, bdev_i_callback); 424} 425 426static void init_once(void *foo) 427{ 428 struct bdev_inode *ei = (struct bdev_inode *) foo; 429 struct block_device *bdev = &ei->bdev; 430 431 memset(bdev, 0, sizeof(*bdev)); 432 mutex_init(&bdev->bd_mutex); 433 INIT_LIST_HEAD(&bdev->bd_inodes); 434 INIT_LIST_HEAD(&bdev->bd_list); 435#ifdef CONFIG_SYSFS 436 INIT_LIST_HEAD(&bdev->bd_holder_disks); 437#endif 438 inode_init_once(&ei->vfs_inode); 439 /* Initialize mutex for freeze. */ 440 mutex_init(&bdev->bd_fsfreeze_mutex); 441} 442 443static inline void __bd_forget(struct inode *inode) 444{ 445 list_del_init(&inode->i_devices); 446 inode->i_bdev = NULL; 447 inode->i_mapping = &inode->i_data; 448} 449 450static void bdev_evict_inode(struct inode *inode) 451{ 452 struct block_device *bdev = &BDEV_I(inode)->bdev; 453 struct list_head *p; 454 truncate_inode_pages(&inode->i_data, 0); 455 invalidate_inode_buffers(inode); /* is it needed here? */ 456 end_writeback(inode); 457 spin_lock(&bdev_lock); 458 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) { 459 __bd_forget(list_entry(p, struct inode, i_devices)); 460 } 461 list_del_init(&bdev->bd_list); 462 spin_unlock(&bdev_lock); 463} 464 465static const struct super_operations bdev_sops = { 466 .statfs = simple_statfs, 467 .alloc_inode = bdev_alloc_inode, 468 .destroy_inode = bdev_destroy_inode, 469 .drop_inode = generic_delete_inode, 470 .evict_inode = bdev_evict_inode, 471}; 472 473static struct dentry *bd_mount(struct file_system_type *fs_type, 474 int flags, const char *dev_name, void *data) 475{ 476 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, 0x62646576); 477} 478 479static struct file_system_type bd_type = { 480 .name = "bdev", 481 .mount = bd_mount, 482 .kill_sb = kill_anon_super, 483}; 484 485struct super_block *blockdev_superblock __read_mostly; 486 487void __init bdev_cache_init(void) 488{ 489 int err; 490 struct vfsmount *bd_mnt; 491 492 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 493 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 494 SLAB_MEM_SPREAD|SLAB_PANIC), 495 init_once); 496 err = register_filesystem(&bd_type); 497 if (err) 498 panic("Cannot register bdev pseudo-fs"); 499 bd_mnt = kern_mount(&bd_type); 500 if (IS_ERR(bd_mnt)) 501 panic("Cannot create bdev pseudo-fs"); 502 /* 503 * This vfsmount structure is only used to obtain the 504 * blockdev_superblock, so tell kmemleak not to report it. 505 */ 506 kmemleak_not_leak(bd_mnt); 507 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 508} 509 510/* 511 * Most likely _very_ bad one - but then it's hardly critical for small 512 * /dev and can be fixed when somebody will need really large one. 513 * Keep in mind that it will be fed through icache hash function too. 514 */ 515static inline unsigned long hash(dev_t dev) 516{ 517 return MAJOR(dev)+MINOR(dev); 518} 519 520static int bdev_test(struct inode *inode, void *data) 521{ 522 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 523} 524 525static int bdev_set(struct inode *inode, void *data) 526{ 527 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 528 return 0; 529} 530 531static LIST_HEAD(all_bdevs); 532 533struct block_device *bdget(dev_t dev) 534{ 535 struct block_device *bdev; 536 struct inode *inode; 537 538 inode = iget5_locked(blockdev_superblock, hash(dev), 539 bdev_test, bdev_set, &dev); 540 541 if (!inode) 542 return NULL; 543 544 bdev = &BDEV_I(inode)->bdev; 545 546 if (inode->i_state & I_NEW) { 547 bdev->bd_contains = NULL; 548 bdev->bd_inode = inode; 549 bdev->bd_block_size = (1 << inode->i_blkbits); 550 bdev->bd_part_count = 0; 551 bdev->bd_invalidated = 0; 552 inode->i_mode = S_IFBLK; 553 inode->i_rdev = dev; 554 inode->i_bdev = bdev; 555 inode->i_data.a_ops = &def_blk_aops; 556 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 557 inode->i_data.backing_dev_info = &default_backing_dev_info; 558 spin_lock(&bdev_lock); 559 list_add(&bdev->bd_list, &all_bdevs); 560 spin_unlock(&bdev_lock); 561 unlock_new_inode(inode); 562 } 563 return bdev; 564} 565 566EXPORT_SYMBOL(bdget); 567 568/** 569 * bdgrab -- Grab a reference to an already referenced block device 570 * @bdev: Block device to grab a reference to. 571 */ 572struct block_device *bdgrab(struct block_device *bdev) 573{ 574 ihold(bdev->bd_inode); 575 return bdev; 576} 577 578long nr_blockdev_pages(void) 579{ 580 struct block_device *bdev; 581 long ret = 0; 582 spin_lock(&bdev_lock); 583 list_for_each_entry(bdev, &all_bdevs, bd_list) { 584 ret += bdev->bd_inode->i_mapping->nrpages; 585 } 586 spin_unlock(&bdev_lock); 587 return ret; 588} 589 590void bdput(struct block_device *bdev) 591{ 592 iput(bdev->bd_inode); 593} 594 595EXPORT_SYMBOL(bdput); 596 597static struct block_device *bd_acquire(struct inode *inode) 598{ 599 struct block_device *bdev; 600 601 spin_lock(&bdev_lock); 602 bdev = inode->i_bdev; 603 if (bdev) { 604 ihold(bdev->bd_inode); 605 spin_unlock(&bdev_lock); 606 return bdev; 607 } 608 spin_unlock(&bdev_lock); 609 610 bdev = bdget(inode->i_rdev); 611 if (bdev) { 612 spin_lock(&bdev_lock); 613 if (!inode->i_bdev) { 614 /* 615 * We take an additional reference to bd_inode, 616 * and it's released in clear_inode() of inode. 617 * So, we can access it via ->i_mapping always 618 * without igrab(). 619 */ 620 ihold(bdev->bd_inode); 621 inode->i_bdev = bdev; 622 inode->i_mapping = bdev->bd_inode->i_mapping; 623 list_add(&inode->i_devices, &bdev->bd_inodes); 624 } 625 spin_unlock(&bdev_lock); 626 } 627 return bdev; 628} 629 630/* Call when you free inode */ 631 632void bd_forget(struct inode *inode) 633{ 634 struct block_device *bdev = NULL; 635 636 spin_lock(&bdev_lock); 637 if (inode->i_bdev) { 638 if (!sb_is_blkdev_sb(inode->i_sb)) 639 bdev = inode->i_bdev; 640 __bd_forget(inode); 641 } 642 spin_unlock(&bdev_lock); 643 644 if (bdev) 645 iput(bdev->bd_inode); 646} 647 648/** 649 * bd_may_claim - test whether a block device can be claimed 650 * @bdev: block device of interest 651 * @whole: whole block device containing @bdev, may equal @bdev 652 * @holder: holder trying to claim @bdev 653 * 654 * Test whther @bdev can be claimed by @holder. 655 * 656 * CONTEXT: 657 * spin_lock(&bdev_lock). 658 * 659 * RETURNS: 660 * %true if @bdev can be claimed, %false otherwise. 661 */ 662static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 663 void *holder) 664{ 665 if (bdev->bd_holder == holder) 666 return true; /* already a holder */ 667 else if (bdev->bd_holder != NULL) 668 return false; /* held by someone else */ 669 else if (bdev->bd_contains == bdev) 670 return true; /* is a whole device which isn't held */ 671 672 else if (whole->bd_holder == bd_may_claim) 673 return true; /* is a partition of a device that is being partitioned */ 674 else if (whole->bd_holder != NULL) 675 return false; /* is a partition of a held device */ 676 else 677 return true; /* is a partition of an un-held device */ 678} 679 680/** 681 * bd_prepare_to_claim - prepare to claim a block device 682 * @bdev: block device of interest 683 * @whole: the whole device containing @bdev, may equal @bdev 684 * @holder: holder trying to claim @bdev 685 * 686 * Prepare to claim @bdev. This function fails if @bdev is already 687 * claimed by another holder and waits if another claiming is in 688 * progress. This function doesn't actually claim. On successful 689 * return, the caller has ownership of bd_claiming and bd_holder[s]. 690 * 691 * CONTEXT: 692 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 693 * it multiple times. 694 * 695 * RETURNS: 696 * 0 if @bdev can be claimed, -EBUSY otherwise. 697 */ 698static int bd_prepare_to_claim(struct block_device *bdev, 699 struct block_device *whole, void *holder) 700{ 701retry: 702 /* if someone else claimed, fail */ 703 if (!bd_may_claim(bdev, whole, holder)) 704 return -EBUSY; 705 706 /* if claiming is already in progress, wait for it to finish */ 707 if (whole->bd_claiming) { 708 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 709 DEFINE_WAIT(wait); 710 711 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 712 spin_unlock(&bdev_lock); 713 schedule(); 714 finish_wait(wq, &wait); 715 spin_lock(&bdev_lock); 716 goto retry; 717 } 718 719 /* yay, all mine */ 720 return 0; 721} 722 723/** 724 * bd_start_claiming - start claiming a block device 725 * @bdev: block device of interest 726 * @holder: holder trying to claim @bdev 727 * 728 * @bdev is about to be opened exclusively. Check @bdev can be opened 729 * exclusively and mark that an exclusive open is in progress. Each 730 * successful call to this function must be matched with a call to 731 * either bd_finish_claiming() or bd_abort_claiming() (which do not 732 * fail). 733 * 734 * This function is used to gain exclusive access to the block device 735 * without actually causing other exclusive open attempts to fail. It 736 * should be used when the open sequence itself requires exclusive 737 * access but may subsequently fail. 738 * 739 * CONTEXT: 740 * Might sleep. 741 * 742 * RETURNS: 743 * Pointer to the block device containing @bdev on success, ERR_PTR() 744 * value on failure. 745 */ 746static struct block_device *bd_start_claiming(struct block_device *bdev, 747 void *holder) 748{ 749 struct gendisk *disk; 750 struct block_device *whole; 751 int partno, err; 752 753 might_sleep(); 754 755 /* 756 * @bdev might not have been initialized properly yet, look up 757 * and grab the outer block device the hard way. 758 */ 759 disk = get_gendisk(bdev->bd_dev, &partno); 760 if (!disk) 761 return ERR_PTR(-ENXIO); 762 763 whole = bdget_disk(disk, 0); 764 module_put(disk->fops->owner); 765 put_disk(disk); 766 if (!whole) 767 return ERR_PTR(-ENOMEM); 768 769 /* prepare to claim, if successful, mark claiming in progress */ 770 spin_lock(&bdev_lock); 771 772 err = bd_prepare_to_claim(bdev, whole, holder); 773 if (err == 0) { 774 whole->bd_claiming = holder; 775 spin_unlock(&bdev_lock); 776 return whole; 777 } else { 778 spin_unlock(&bdev_lock); 779 bdput(whole); 780 return ERR_PTR(err); 781 } 782} 783 784#ifdef CONFIG_SYSFS 785struct bd_holder_disk { 786 struct list_head list; 787 struct gendisk *disk; 788 int refcnt; 789}; 790 791static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 792 struct gendisk *disk) 793{ 794 struct bd_holder_disk *holder; 795 796 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 797 if (holder->disk == disk) 798 return holder; 799 return NULL; 800} 801 802static int add_symlink(struct kobject *from, struct kobject *to) 803{ 804 return sysfs_create_link(from, to, kobject_name(to)); 805} 806 807static void del_symlink(struct kobject *from, struct kobject *to) 808{ 809 sysfs_remove_link(from, kobject_name(to)); 810} 811 812/** 813 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 814 * @bdev: the claimed slave bdev 815 * @disk: the holding disk 816 * 817 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 818 * 819 * This functions creates the following sysfs symlinks. 820 * 821 * - from "slaves" directory of the holder @disk to the claimed @bdev 822 * - from "holders" directory of the @bdev to the holder @disk 823 * 824 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 825 * passed to bd_link_disk_holder(), then: 826 * 827 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 828 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 829 * 830 * The caller must have claimed @bdev before calling this function and 831 * ensure that both @bdev and @disk are valid during the creation and 832 * lifetime of these symlinks. 833 * 834 * CONTEXT: 835 * Might sleep. 836 * 837 * RETURNS: 838 * 0 on success, -errno on failure. 839 */ 840int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 841{ 842 struct bd_holder_disk *holder; 843 int ret = 0; 844 845 mutex_lock(&bdev->bd_mutex); 846 847 WARN_ON_ONCE(!bdev->bd_holder); 848 849 /* FIXME: remove the following once add_disk() handles errors */ 850 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 851 goto out_unlock; 852 853 holder = bd_find_holder_disk(bdev, disk); 854 if (holder) { 855 holder->refcnt++; 856 goto out_unlock; 857 } 858 859 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 860 if (!holder) { 861 ret = -ENOMEM; 862 goto out_unlock; 863 } 864 865 INIT_LIST_HEAD(&holder->list); 866 holder->disk = disk; 867 holder->refcnt = 1; 868 869 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 870 if (ret) 871 goto out_free; 872 873 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 874 if (ret) 875 goto out_del; 876 877 list_add(&holder->list, &bdev->bd_holder_disks); 878 goto out_unlock; 879 880out_del: 881 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 882out_free: 883 kfree(holder); 884out_unlock: 885 mutex_unlock(&bdev->bd_mutex); 886 return ret; 887} 888EXPORT_SYMBOL_GPL(bd_link_disk_holder); 889 890/** 891 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 892 * @bdev: the calimed slave bdev 893 * @disk: the holding disk 894 * 895 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 896 * 897 * CONTEXT: 898 * Might sleep. 899 */ 900void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 901{ 902 struct bd_holder_disk *holder; 903 904 mutex_lock(&bdev->bd_mutex); 905 906 holder = bd_find_holder_disk(bdev, disk); 907 908 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 909 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 910 del_symlink(bdev->bd_part->holder_dir, 911 &disk_to_dev(disk)->kobj); 912 list_del_init(&holder->list); 913 kfree(holder); 914 } 915 916 mutex_unlock(&bdev->bd_mutex); 917} 918EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 919#endif 920 921/** 922 * flush_disk - invalidates all buffer-cache entries on a disk 923 * 924 * @bdev: struct block device to be flushed 925 * 926 * Invalidates all buffer-cache entries on a disk. It should be called 927 * when a disk has been changed -- either by a media change or online 928 * resize. 929 */ 930static void flush_disk(struct block_device *bdev) 931{ 932 if (__invalidate_device(bdev)) { 933 char name[BDEVNAME_SIZE] = ""; 934 935 if (bdev->bd_disk) 936 disk_name(bdev->bd_disk, 0, name); 937 printk(KERN_WARNING "VFS: busy inodes on changed media or " 938 "resized disk %s\n", name); 939 } 940 941 if (!bdev->bd_disk) 942 return; 943 if (disk_partitionable(bdev->bd_disk)) 944 bdev->bd_invalidated = 1; 945} 946 947/** 948 * check_disk_size_change - checks for disk size change and adjusts bdev size. 949 * @disk: struct gendisk to check 950 * @bdev: struct bdev to adjust. 951 * 952 * This routine checks to see if the bdev size does not match the disk size 953 * and adjusts it if it differs. 954 */ 955void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 956{ 957 loff_t disk_size, bdev_size; 958 959 disk_size = (loff_t)get_capacity(disk) << 9; 960 bdev_size = i_size_read(bdev->bd_inode); 961 if (disk_size != bdev_size) { 962 char name[BDEVNAME_SIZE]; 963 964 disk_name(disk, 0, name); 965 printk(KERN_INFO 966 "%s: detected capacity change from %lld to %lld\n", 967 name, bdev_size, disk_size); 968 i_size_write(bdev->bd_inode, disk_size); 969 flush_disk(bdev); 970 } 971} 972EXPORT_SYMBOL(check_disk_size_change); 973 974/** 975 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 976 * @disk: struct gendisk to be revalidated 977 * 978 * This routine is a wrapper for lower-level driver's revalidate_disk 979 * call-backs. It is used to do common pre and post operations needed 980 * for all revalidate_disk operations. 981 */ 982int revalidate_disk(struct gendisk *disk) 983{ 984 struct block_device *bdev; 985 int ret = 0; 986 987 if (disk->fops->revalidate_disk) 988 ret = disk->fops->revalidate_disk(disk); 989 990 bdev = bdget_disk(disk, 0); 991 if (!bdev) 992 return ret; 993 994 mutex_lock(&bdev->bd_mutex); 995 check_disk_size_change(disk, bdev); 996 mutex_unlock(&bdev->bd_mutex); 997 bdput(bdev); 998 return ret; 999} 1000EXPORT_SYMBOL(revalidate_disk); 1001 1002/* 1003 * This routine checks whether a removable media has been changed, 1004 * and invalidates all buffer-cache-entries in that case. This 1005 * is a relatively slow routine, so we have to try to minimize using 1006 * it. Thus it is called only upon a 'mount' or 'open'. This 1007 * is the best way of combining speed and utility, I think. 1008 * People changing diskettes in the middle of an operation deserve 1009 * to lose :-) 1010 */ 1011int check_disk_change(struct block_device *bdev) 1012{ 1013 struct gendisk *disk = bdev->bd_disk; 1014 const struct block_device_operations *bdops = disk->fops; 1015 unsigned int events; 1016 1017 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1018 DISK_EVENT_EJECT_REQUEST); 1019 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1020 return 0; 1021 1022 flush_disk(bdev); 1023 if (bdops->revalidate_disk) 1024 bdops->revalidate_disk(bdev->bd_disk); 1025 return 1; 1026} 1027 1028EXPORT_SYMBOL(check_disk_change); 1029 1030void bd_set_size(struct block_device *bdev, loff_t size) 1031{ 1032 unsigned bsize = bdev_logical_block_size(bdev); 1033 1034 bdev->bd_inode->i_size = size; 1035 while (bsize < PAGE_CACHE_SIZE) { 1036 if (size & bsize) 1037 break; 1038 bsize <<= 1; 1039 } 1040 bdev->bd_block_size = bsize; 1041 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1042} 1043EXPORT_SYMBOL(bd_set_size); 1044 1045static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1046 1047/* 1048 * bd_mutex locking: 1049 * 1050 * mutex_lock(part->bd_mutex) 1051 * mutex_lock_nested(whole->bd_mutex, 1) 1052 */ 1053 1054static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1055{ 1056 struct gendisk *disk; 1057 int ret; 1058 int partno; 1059 int perm = 0; 1060 1061 if (mode & FMODE_READ) 1062 perm |= MAY_READ; 1063 if (mode & FMODE_WRITE) 1064 perm |= MAY_WRITE; 1065 /* 1066 * hooks: /n/, see "layering violations". 1067 */ 1068 if (!for_part) { 1069 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1070 if (ret != 0) { 1071 bdput(bdev); 1072 return ret; 1073 } 1074 } 1075 1076 restart: 1077 1078 ret = -ENXIO; 1079 disk = get_gendisk(bdev->bd_dev, &partno); 1080 if (!disk) 1081 goto out; 1082 1083 mutex_lock_nested(&bdev->bd_mutex, for_part); 1084 if (!bdev->bd_openers) { 1085 bdev->bd_disk = disk; 1086 bdev->bd_contains = bdev; 1087 if (!partno) { 1088 struct backing_dev_info *bdi; 1089 1090 ret = -ENXIO; 1091 bdev->bd_part = disk_get_part(disk, partno); 1092 if (!bdev->bd_part) 1093 goto out_clear; 1094 1095 if (disk->fops->open) { 1096 ret = disk->fops->open(bdev, mode); 1097 if (ret == -ERESTARTSYS) { 1098 /* Lost a race with 'disk' being 1099 * deleted, try again. 1100 * See md.c 1101 */ 1102 disk_put_part(bdev->bd_part); 1103 bdev->bd_part = NULL; 1104 module_put(disk->fops->owner); 1105 put_disk(disk); 1106 bdev->bd_disk = NULL; 1107 mutex_unlock(&bdev->bd_mutex); 1108 goto restart; 1109 } 1110 if (ret) 1111 goto out_clear; 1112 } 1113 if (!bdev->bd_openers) { 1114 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1115 bdi = blk_get_backing_dev_info(bdev); 1116 if (bdi == NULL) 1117 bdi = &default_backing_dev_info; 1118 bdev_inode_switch_bdi(bdev->bd_inode, bdi); 1119 } 1120 if (bdev->bd_invalidated) 1121 rescan_partitions(disk, bdev); 1122 } else { 1123 struct block_device *whole; 1124 whole = bdget_disk(disk, 0); 1125 ret = -ENOMEM; 1126 if (!whole) 1127 goto out_clear; 1128 BUG_ON(for_part); 1129 ret = __blkdev_get(whole, mode, 1); 1130 if (ret) 1131 goto out_clear; 1132 bdev->bd_contains = whole; 1133 bdev_inode_switch_bdi(bdev->bd_inode, 1134 whole->bd_inode->i_data.backing_dev_info); 1135 bdev->bd_part = disk_get_part(disk, partno); 1136 if (!(disk->flags & GENHD_FL_UP) || 1137 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1138 ret = -ENXIO; 1139 goto out_clear; 1140 } 1141 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1142 } 1143 } else { 1144 module_put(disk->fops->owner); 1145 put_disk(disk); 1146 disk = NULL; 1147 if (bdev->bd_contains == bdev) { 1148 if (bdev->bd_disk->fops->open) { 1149 ret = bdev->bd_disk->fops->open(bdev, mode); 1150 if (ret) 1151 goto out_unlock_bdev; 1152 } 1153 if (bdev->bd_invalidated) 1154 rescan_partitions(bdev->bd_disk, bdev); 1155 } 1156 } 1157 bdev->bd_openers++; 1158 if (for_part) 1159 bdev->bd_part_count++; 1160 mutex_unlock(&bdev->bd_mutex); 1161 return 0; 1162 1163 out_clear: 1164 disk_put_part(bdev->bd_part); 1165 bdev->bd_disk = NULL; 1166 bdev->bd_part = NULL; 1167 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info); 1168 if (bdev != bdev->bd_contains) 1169 __blkdev_put(bdev->bd_contains, mode, 1); 1170 bdev->bd_contains = NULL; 1171 out_unlock_bdev: 1172 mutex_unlock(&bdev->bd_mutex); 1173 out: 1174 if (disk) 1175 module_put(disk->fops->owner); 1176 put_disk(disk); 1177 bdput(bdev); 1178 1179 return ret; 1180} 1181 1182/** 1183 * blkdev_get - open a block device 1184 * @bdev: block_device to open 1185 * @mode: FMODE_* mask 1186 * @holder: exclusive holder identifier 1187 * 1188 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1189 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1190 * @holder is invalid. Exclusive opens may nest for the same @holder. 1191 * 1192 * On success, the reference count of @bdev is unchanged. On failure, 1193 * @bdev is put. 1194 * 1195 * CONTEXT: 1196 * Might sleep. 1197 * 1198 * RETURNS: 1199 * 0 on success, -errno on failure. 1200 */ 1201int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1202{ 1203 struct block_device *whole = NULL; 1204 int res; 1205 1206 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1207 1208 if ((mode & FMODE_EXCL) && holder) { 1209 whole = bd_start_claiming(bdev, holder); 1210 if (IS_ERR(whole)) { 1211 bdput(bdev); 1212 return PTR_ERR(whole); 1213 } 1214 } 1215 1216 res = __blkdev_get(bdev, mode, 0); 1217 1218 /* __blkdev_get() may alter read only status, check it afterwards */ 1219 if (!res && (mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1220 __blkdev_put(bdev, mode, 0); 1221 res = -EACCES; 1222 } 1223 1224 if (whole) { 1225 /* finish claiming */ 1226 mutex_lock(&bdev->bd_mutex); 1227 spin_lock(&bdev_lock); 1228 1229 if (!res) { 1230 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1231 /* 1232 * Note that for a whole device bd_holders 1233 * will be incremented twice, and bd_holder 1234 * will be set to bd_may_claim before being 1235 * set to holder 1236 */ 1237 whole->bd_holders++; 1238 whole->bd_holder = bd_may_claim; 1239 bdev->bd_holders++; 1240 bdev->bd_holder = holder; 1241 } 1242 1243 /* tell others that we're done */ 1244 BUG_ON(whole->bd_claiming != holder); 1245 whole->bd_claiming = NULL; 1246 wake_up_bit(&whole->bd_claiming, 0); 1247 1248 spin_unlock(&bdev_lock); 1249 1250 /* 1251 * Block event polling for write claims. Any write 1252 * holder makes the write_holder state stick until all 1253 * are released. This is good enough and tracking 1254 * individual writeable reference is too fragile given 1255 * the way @mode is used in blkdev_get/put(). 1256 */ 1257 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder) { 1258 bdev->bd_write_holder = true; 1259 disk_block_events(bdev->bd_disk); 1260 } 1261 1262 mutex_unlock(&bdev->bd_mutex); 1263 bdput(whole); 1264 } 1265 1266 return res; 1267} 1268EXPORT_SYMBOL(blkdev_get); 1269 1270/** 1271 * blkdev_get_by_path - open a block device by name 1272 * @path: path to the block device to open 1273 * @mode: FMODE_* mask 1274 * @holder: exclusive holder identifier 1275 * 1276 * Open the blockdevice described by the device file at @path. @mode 1277 * and @holder are identical to blkdev_get(). 1278 * 1279 * On success, the returned block_device has reference count of one. 1280 * 1281 * CONTEXT: 1282 * Might sleep. 1283 * 1284 * RETURNS: 1285 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1286 */ 1287struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1288 void *holder) 1289{ 1290 struct block_device *bdev; 1291 int err; 1292 1293 bdev = lookup_bdev(path); 1294 if (IS_ERR(bdev)) 1295 return bdev; 1296 1297 err = blkdev_get(bdev, mode, holder); 1298 if (err) 1299 return ERR_PTR(err); 1300 1301 return bdev; 1302} 1303EXPORT_SYMBOL(blkdev_get_by_path); 1304 1305/** 1306 * blkdev_get_by_dev - open a block device by device number 1307 * @dev: device number of block device to open 1308 * @mode: FMODE_* mask 1309 * @holder: exclusive holder identifier 1310 * 1311 * Open the blockdevice described by device number @dev. @mode and 1312 * @holder are identical to blkdev_get(). 1313 * 1314 * Use it ONLY if you really do not have anything better - i.e. when 1315 * you are behind a truly sucky interface and all you are given is a 1316 * device number. _Never_ to be used for internal purposes. If you 1317 * ever need it - reconsider your API. 1318 * 1319 * On success, the returned block_device has reference count of one. 1320 * 1321 * CONTEXT: 1322 * Might sleep. 1323 * 1324 * RETURNS: 1325 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1326 */ 1327struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1328{ 1329 struct block_device *bdev; 1330 int err; 1331 1332 bdev = bdget(dev); 1333 if (!bdev) 1334 return ERR_PTR(-ENOMEM); 1335 1336 err = blkdev_get(bdev, mode, holder); 1337 if (err) 1338 return ERR_PTR(err); 1339 1340 return bdev; 1341} 1342EXPORT_SYMBOL(blkdev_get_by_dev); 1343 1344static int blkdev_open(struct inode * inode, struct file * filp) 1345{ 1346 struct block_device *bdev; 1347 1348 /* 1349 * Preserve backwards compatibility and allow large file access 1350 * even if userspace doesn't ask for it explicitly. Some mkfs 1351 * binary needs it. We might want to drop this workaround 1352 * during an unstable branch. 1353 */ 1354 filp->f_flags |= O_LARGEFILE; 1355 1356 if (filp->f_flags & O_NDELAY) 1357 filp->f_mode |= FMODE_NDELAY; 1358 if (filp->f_flags & O_EXCL) 1359 filp->f_mode |= FMODE_EXCL; 1360 if ((filp->f_flags & O_ACCMODE) == 3) 1361 filp->f_mode |= FMODE_WRITE_IOCTL; 1362 1363 bdev = bd_acquire(inode); 1364 if (bdev == NULL) 1365 return -ENOMEM; 1366 1367 filp->f_mapping = bdev->bd_inode->i_mapping; 1368 1369 return blkdev_get(bdev, filp->f_mode, filp); 1370} 1371 1372static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1373{ 1374 int ret = 0; 1375 struct gendisk *disk = bdev->bd_disk; 1376 struct block_device *victim = NULL; 1377 1378 mutex_lock_nested(&bdev->bd_mutex, for_part); 1379 if (for_part) 1380 bdev->bd_part_count--; 1381 1382 if (!--bdev->bd_openers) { 1383 WARN_ON_ONCE(bdev->bd_holders); 1384 sync_blockdev(bdev); 1385 kill_bdev(bdev); 1386 } 1387 if (bdev->bd_contains == bdev) { 1388 if (disk->fops->release) 1389 ret = disk->fops->release(disk, mode); 1390 } 1391 if (!bdev->bd_openers) { 1392 struct module *owner = disk->fops->owner; 1393 1394 put_disk(disk); 1395 module_put(owner); 1396 disk_put_part(bdev->bd_part); 1397 bdev->bd_part = NULL; 1398 bdev->bd_disk = NULL; 1399 bdev_inode_switch_bdi(bdev->bd_inode, 1400 &default_backing_dev_info); 1401 if (bdev != bdev->bd_contains) 1402 victim = bdev->bd_contains; 1403 bdev->bd_contains = NULL; 1404 } 1405 mutex_unlock(&bdev->bd_mutex); 1406 bdput(bdev); 1407 if (victim) 1408 __blkdev_put(victim, mode, 1); 1409 return ret; 1410} 1411 1412int blkdev_put(struct block_device *bdev, fmode_t mode) 1413{ 1414 if (mode & FMODE_EXCL) { 1415 bool bdev_free; 1416 1417 /* 1418 * Release a claim on the device. The holder fields 1419 * are protected with bdev_lock. bd_mutex is to 1420 * synchronize disk_holder unlinking. 1421 */ 1422 mutex_lock(&bdev->bd_mutex); 1423 spin_lock(&bdev_lock); 1424 1425 WARN_ON_ONCE(--bdev->bd_holders < 0); 1426 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1427 1428 /* bd_contains might point to self, check in a separate step */ 1429 if ((bdev_free = !bdev->bd_holders)) 1430 bdev->bd_holder = NULL; 1431 if (!bdev->bd_contains->bd_holders) 1432 bdev->bd_contains->bd_holder = NULL; 1433 1434 spin_unlock(&bdev_lock); 1435 1436 /* 1437 * If this was the last claim, remove holder link and 1438 * unblock evpoll if it was a write holder. 1439 */ 1440 if (bdev_free) { 1441 if (bdev->bd_write_holder) { 1442 disk_unblock_events(bdev->bd_disk); 1443 bdev->bd_write_holder = false; 1444 } else 1445 disk_check_events(bdev->bd_disk); 1446 } 1447 1448 mutex_unlock(&bdev->bd_mutex); 1449 } else 1450 disk_check_events(bdev->bd_disk); 1451 1452 return __blkdev_put(bdev, mode, 0); 1453} 1454EXPORT_SYMBOL(blkdev_put); 1455 1456static int blkdev_close(struct inode * inode, struct file * filp) 1457{ 1458 struct block_device *bdev = I_BDEV(filp->f_mapping->host); 1459 1460 return blkdev_put(bdev, filp->f_mode); 1461} 1462 1463static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1464{ 1465 struct block_device *bdev = I_BDEV(file->f_mapping->host); 1466 fmode_t mode = file->f_mode; 1467 1468 /* 1469 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1470 * to updated it before every ioctl. 1471 */ 1472 if (file->f_flags & O_NDELAY) 1473 mode |= FMODE_NDELAY; 1474 else 1475 mode &= ~FMODE_NDELAY; 1476 1477 return blkdev_ioctl(bdev, mode, cmd, arg); 1478} 1479 1480/* 1481 * Write data to the block device. Only intended for the block device itself 1482 * and the raw driver which basically is a fake block device. 1483 * 1484 * Does not take i_mutex for the write and thus is not for general purpose 1485 * use. 1486 */ 1487ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov, 1488 unsigned long nr_segs, loff_t pos) 1489{ 1490 struct file *file = iocb->ki_filp; 1491 ssize_t ret; 1492 1493 BUG_ON(iocb->ki_pos != pos); 1494 1495 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 1496 if (ret > 0 || ret == -EIOCBQUEUED) { 1497 ssize_t err; 1498 1499 err = generic_write_sync(file, pos, ret); 1500 if (err < 0 && ret > 0) 1501 ret = err; 1502 } 1503 return ret; 1504} 1505EXPORT_SYMBOL_GPL(blkdev_aio_write); 1506 1507/* 1508 * Try to release a page associated with block device when the system 1509 * is under memory pressure. 1510 */ 1511static int blkdev_releasepage(struct page *page, gfp_t wait) 1512{ 1513 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1514 1515 if (super && super->s_op->bdev_try_to_free_page) 1516 return super->s_op->bdev_try_to_free_page(super, page, wait); 1517 1518 return try_to_free_buffers(page); 1519} 1520 1521static const struct address_space_operations def_blk_aops = { 1522 .readpage = blkdev_readpage, 1523 .writepage = blkdev_writepage, 1524 .sync_page = block_sync_page, 1525 .write_begin = blkdev_write_begin, 1526 .write_end = blkdev_write_end, 1527 .writepages = generic_writepages, 1528 .releasepage = blkdev_releasepage, 1529 .direct_IO = blkdev_direct_IO, 1530}; 1531 1532const struct file_operations def_blk_fops = { 1533 .open = blkdev_open, 1534 .release = blkdev_close, 1535 .llseek = block_llseek, 1536 .read = do_sync_read, 1537 .write = do_sync_write, 1538 .aio_read = generic_file_aio_read, 1539 .aio_write = blkdev_aio_write, 1540 .mmap = generic_file_mmap, 1541 .fsync = blkdev_fsync, 1542 .unlocked_ioctl = block_ioctl, 1543#ifdef CONFIG_COMPAT 1544 .compat_ioctl = compat_blkdev_ioctl, 1545#endif 1546 .splice_read = generic_file_splice_read, 1547 .splice_write = generic_file_splice_write, 1548}; 1549 1550int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 1551{ 1552 int res; 1553 mm_segment_t old_fs = get_fs(); 1554 set_fs(KERNEL_DS); 1555 res = blkdev_ioctl(bdev, 0, cmd, arg); 1556 set_fs(old_fs); 1557 return res; 1558} 1559 1560EXPORT_SYMBOL(ioctl_by_bdev); 1561 1562/** 1563 * lookup_bdev - lookup a struct block_device by name 1564 * @pathname: special file representing the block device 1565 * 1566 * Get a reference to the blockdevice at @pathname in the current 1567 * namespace if possible and return it. Return ERR_PTR(error) 1568 * otherwise. 1569 */ 1570struct block_device *lookup_bdev(const char *pathname) 1571{ 1572 struct block_device *bdev; 1573 struct inode *inode; 1574 struct path path; 1575 int error; 1576 1577 if (!pathname || !*pathname) 1578 return ERR_PTR(-EINVAL); 1579 1580 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 1581 if (error) 1582 return ERR_PTR(error); 1583 1584 inode = path.dentry->d_inode; 1585 error = -ENOTBLK; 1586 if (!S_ISBLK(inode->i_mode)) 1587 goto fail; 1588 error = -EACCES; 1589 if (path.mnt->mnt_flags & MNT_NODEV) 1590 goto fail; 1591 error = -ENOMEM; 1592 bdev = bd_acquire(inode); 1593 if (!bdev) 1594 goto fail; 1595out: 1596 path_put(&path); 1597 return bdev; 1598fail: 1599 bdev = ERR_PTR(error); 1600 goto out; 1601} 1602EXPORT_SYMBOL(lookup_bdev); 1603 1604int __invalidate_device(struct block_device *bdev) 1605{ 1606 struct super_block *sb = get_super(bdev); 1607 int res = 0; 1608 1609 if (sb) { 1610 /* 1611 * no need to lock the super, get_super holds the 1612 * read mutex so the filesystem cannot go away 1613 * under us (->put_super runs with the write lock 1614 * hold). 1615 */ 1616 shrink_dcache_sb(sb); 1617 res = invalidate_inodes(sb); 1618 drop_super(sb); 1619 } 1620 invalidate_bdev(bdev); 1621 return res; 1622} 1623EXPORT_SYMBOL(__invalidate_device);