at v2.6.37 33 kB view raw
1/* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14#include <linux/capability.h> 15#include <linux/module.h> 16#include <linux/init.h> 17#include <linux/kernel.h> 18#include <linux/security.h> 19#include <linux/ima.h> 20 21/* Boot-time LSM user choice */ 22static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 23 CONFIG_DEFAULT_SECURITY; 24 25/* things that live in capability.c */ 26extern void __init security_fixup_ops(struct security_operations *ops); 27 28static struct security_operations *security_ops; 29static struct security_operations default_security_ops = { 30 .name = "default", 31}; 32 33static inline int __init verify(struct security_operations *ops) 34{ 35 /* verify the security_operations structure exists */ 36 if (!ops) 37 return -EINVAL; 38 security_fixup_ops(ops); 39 return 0; 40} 41 42static void __init do_security_initcalls(void) 43{ 44 initcall_t *call; 45 call = __security_initcall_start; 46 while (call < __security_initcall_end) { 47 (*call) (); 48 call++; 49 } 50} 51 52/** 53 * security_init - initializes the security framework 54 * 55 * This should be called early in the kernel initialization sequence. 56 */ 57int __init security_init(void) 58{ 59 printk(KERN_INFO "Security Framework initialized\n"); 60 61 security_fixup_ops(&default_security_ops); 62 security_ops = &default_security_ops; 63 do_security_initcalls(); 64 65 return 0; 66} 67 68void reset_security_ops(void) 69{ 70 security_ops = &default_security_ops; 71} 72 73/* Save user chosen LSM */ 74static int __init choose_lsm(char *str) 75{ 76 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 77 return 1; 78} 79__setup("security=", choose_lsm); 80 81/** 82 * security_module_enable - Load given security module on boot ? 83 * @ops: a pointer to the struct security_operations that is to be checked. 84 * 85 * Each LSM must pass this method before registering its own operations 86 * to avoid security registration races. This method may also be used 87 * to check if your LSM is currently loaded during kernel initialization. 88 * 89 * Return true if: 90 * -The passed LSM is the one chosen by user at boot time, 91 * -or the passed LSM is configured as the default and the user did not 92 * choose an alternate LSM at boot time. 93 * Otherwise, return false. 94 */ 95int __init security_module_enable(struct security_operations *ops) 96{ 97 return !strcmp(ops->name, chosen_lsm); 98} 99 100/** 101 * register_security - registers a security framework with the kernel 102 * @ops: a pointer to the struct security_options that is to be registered 103 * 104 * This function allows a security module to register itself with the 105 * kernel security subsystem. Some rudimentary checking is done on the @ops 106 * value passed to this function. You'll need to check first if your LSM 107 * is allowed to register its @ops by calling security_module_enable(@ops). 108 * 109 * If there is already a security module registered with the kernel, 110 * an error will be returned. Otherwise %0 is returned on success. 111 */ 112int __init register_security(struct security_operations *ops) 113{ 114 if (verify(ops)) { 115 printk(KERN_DEBUG "%s could not verify " 116 "security_operations structure.\n", __func__); 117 return -EINVAL; 118 } 119 120 if (security_ops != &default_security_ops) 121 return -EAGAIN; 122 123 security_ops = ops; 124 125 return 0; 126} 127 128/* Security operations */ 129 130int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 131{ 132 return security_ops->ptrace_access_check(child, mode); 133} 134 135int security_ptrace_traceme(struct task_struct *parent) 136{ 137 return security_ops->ptrace_traceme(parent); 138} 139 140int security_capget(struct task_struct *target, 141 kernel_cap_t *effective, 142 kernel_cap_t *inheritable, 143 kernel_cap_t *permitted) 144{ 145 return security_ops->capget(target, effective, inheritable, permitted); 146} 147 148int security_capset(struct cred *new, const struct cred *old, 149 const kernel_cap_t *effective, 150 const kernel_cap_t *inheritable, 151 const kernel_cap_t *permitted) 152{ 153 return security_ops->capset(new, old, 154 effective, inheritable, permitted); 155} 156 157int security_capable(int cap) 158{ 159 return security_ops->capable(current, current_cred(), cap, 160 SECURITY_CAP_AUDIT); 161} 162 163int security_real_capable(struct task_struct *tsk, int cap) 164{ 165 const struct cred *cred; 166 int ret; 167 168 cred = get_task_cred(tsk); 169 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT); 170 put_cred(cred); 171 return ret; 172} 173 174int security_real_capable_noaudit(struct task_struct *tsk, int cap) 175{ 176 const struct cred *cred; 177 int ret; 178 179 cred = get_task_cred(tsk); 180 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT); 181 put_cred(cred); 182 return ret; 183} 184 185int security_sysctl(struct ctl_table *table, int op) 186{ 187 return security_ops->sysctl(table, op); 188} 189 190int security_quotactl(int cmds, int type, int id, struct super_block *sb) 191{ 192 return security_ops->quotactl(cmds, type, id, sb); 193} 194 195int security_quota_on(struct dentry *dentry) 196{ 197 return security_ops->quota_on(dentry); 198} 199 200int security_syslog(int type) 201{ 202 return security_ops->syslog(type); 203} 204 205int security_settime(struct timespec *ts, struct timezone *tz) 206{ 207 return security_ops->settime(ts, tz); 208} 209 210int security_vm_enough_memory(long pages) 211{ 212 WARN_ON(current->mm == NULL); 213 return security_ops->vm_enough_memory(current->mm, pages); 214} 215 216int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 217{ 218 WARN_ON(mm == NULL); 219 return security_ops->vm_enough_memory(mm, pages); 220} 221 222int security_vm_enough_memory_kern(long pages) 223{ 224 /* If current->mm is a kernel thread then we will pass NULL, 225 for this specific case that is fine */ 226 return security_ops->vm_enough_memory(current->mm, pages); 227} 228 229int security_bprm_set_creds(struct linux_binprm *bprm) 230{ 231 return security_ops->bprm_set_creds(bprm); 232} 233 234int security_bprm_check(struct linux_binprm *bprm) 235{ 236 int ret; 237 238 ret = security_ops->bprm_check_security(bprm); 239 if (ret) 240 return ret; 241 return ima_bprm_check(bprm); 242} 243 244void security_bprm_committing_creds(struct linux_binprm *bprm) 245{ 246 security_ops->bprm_committing_creds(bprm); 247} 248 249void security_bprm_committed_creds(struct linux_binprm *bprm) 250{ 251 security_ops->bprm_committed_creds(bprm); 252} 253 254int security_bprm_secureexec(struct linux_binprm *bprm) 255{ 256 return security_ops->bprm_secureexec(bprm); 257} 258 259int security_sb_alloc(struct super_block *sb) 260{ 261 return security_ops->sb_alloc_security(sb); 262} 263 264void security_sb_free(struct super_block *sb) 265{ 266 security_ops->sb_free_security(sb); 267} 268 269int security_sb_copy_data(char *orig, char *copy) 270{ 271 return security_ops->sb_copy_data(orig, copy); 272} 273EXPORT_SYMBOL(security_sb_copy_data); 274 275int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 276{ 277 return security_ops->sb_kern_mount(sb, flags, data); 278} 279 280int security_sb_show_options(struct seq_file *m, struct super_block *sb) 281{ 282 return security_ops->sb_show_options(m, sb); 283} 284 285int security_sb_statfs(struct dentry *dentry) 286{ 287 return security_ops->sb_statfs(dentry); 288} 289 290int security_sb_mount(char *dev_name, struct path *path, 291 char *type, unsigned long flags, void *data) 292{ 293 return security_ops->sb_mount(dev_name, path, type, flags, data); 294} 295 296int security_sb_umount(struct vfsmount *mnt, int flags) 297{ 298 return security_ops->sb_umount(mnt, flags); 299} 300 301int security_sb_pivotroot(struct path *old_path, struct path *new_path) 302{ 303 return security_ops->sb_pivotroot(old_path, new_path); 304} 305 306int security_sb_set_mnt_opts(struct super_block *sb, 307 struct security_mnt_opts *opts) 308{ 309 return security_ops->sb_set_mnt_opts(sb, opts); 310} 311EXPORT_SYMBOL(security_sb_set_mnt_opts); 312 313void security_sb_clone_mnt_opts(const struct super_block *oldsb, 314 struct super_block *newsb) 315{ 316 security_ops->sb_clone_mnt_opts(oldsb, newsb); 317} 318EXPORT_SYMBOL(security_sb_clone_mnt_opts); 319 320int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 321{ 322 return security_ops->sb_parse_opts_str(options, opts); 323} 324EXPORT_SYMBOL(security_sb_parse_opts_str); 325 326int security_inode_alloc(struct inode *inode) 327{ 328 inode->i_security = NULL; 329 return security_ops->inode_alloc_security(inode); 330} 331 332void security_inode_free(struct inode *inode) 333{ 334 ima_inode_free(inode); 335 security_ops->inode_free_security(inode); 336} 337 338int security_inode_init_security(struct inode *inode, struct inode *dir, 339 char **name, void **value, size_t *len) 340{ 341 if (unlikely(IS_PRIVATE(inode))) 342 return -EOPNOTSUPP; 343 return security_ops->inode_init_security(inode, dir, name, value, len); 344} 345EXPORT_SYMBOL(security_inode_init_security); 346 347#ifdef CONFIG_SECURITY_PATH 348int security_path_mknod(struct path *dir, struct dentry *dentry, int mode, 349 unsigned int dev) 350{ 351 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 352 return 0; 353 return security_ops->path_mknod(dir, dentry, mode, dev); 354} 355EXPORT_SYMBOL(security_path_mknod); 356 357int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode) 358{ 359 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 360 return 0; 361 return security_ops->path_mkdir(dir, dentry, mode); 362} 363 364int security_path_rmdir(struct path *dir, struct dentry *dentry) 365{ 366 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 367 return 0; 368 return security_ops->path_rmdir(dir, dentry); 369} 370 371int security_path_unlink(struct path *dir, struct dentry *dentry) 372{ 373 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 374 return 0; 375 return security_ops->path_unlink(dir, dentry); 376} 377 378int security_path_symlink(struct path *dir, struct dentry *dentry, 379 const char *old_name) 380{ 381 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 382 return 0; 383 return security_ops->path_symlink(dir, dentry, old_name); 384} 385 386int security_path_link(struct dentry *old_dentry, struct path *new_dir, 387 struct dentry *new_dentry) 388{ 389 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 390 return 0; 391 return security_ops->path_link(old_dentry, new_dir, new_dentry); 392} 393 394int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 395 struct path *new_dir, struct dentry *new_dentry) 396{ 397 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 398 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 399 return 0; 400 return security_ops->path_rename(old_dir, old_dentry, new_dir, 401 new_dentry); 402} 403 404int security_path_truncate(struct path *path) 405{ 406 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 407 return 0; 408 return security_ops->path_truncate(path); 409} 410 411int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt, 412 mode_t mode) 413{ 414 if (unlikely(IS_PRIVATE(dentry->d_inode))) 415 return 0; 416 return security_ops->path_chmod(dentry, mnt, mode); 417} 418 419int security_path_chown(struct path *path, uid_t uid, gid_t gid) 420{ 421 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 422 return 0; 423 return security_ops->path_chown(path, uid, gid); 424} 425 426int security_path_chroot(struct path *path) 427{ 428 return security_ops->path_chroot(path); 429} 430#endif 431 432int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 433{ 434 if (unlikely(IS_PRIVATE(dir))) 435 return 0; 436 return security_ops->inode_create(dir, dentry, mode); 437} 438EXPORT_SYMBOL_GPL(security_inode_create); 439 440int security_inode_link(struct dentry *old_dentry, struct inode *dir, 441 struct dentry *new_dentry) 442{ 443 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 444 return 0; 445 return security_ops->inode_link(old_dentry, dir, new_dentry); 446} 447 448int security_inode_unlink(struct inode *dir, struct dentry *dentry) 449{ 450 if (unlikely(IS_PRIVATE(dentry->d_inode))) 451 return 0; 452 return security_ops->inode_unlink(dir, dentry); 453} 454 455int security_inode_symlink(struct inode *dir, struct dentry *dentry, 456 const char *old_name) 457{ 458 if (unlikely(IS_PRIVATE(dir))) 459 return 0; 460 return security_ops->inode_symlink(dir, dentry, old_name); 461} 462 463int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 464{ 465 if (unlikely(IS_PRIVATE(dir))) 466 return 0; 467 return security_ops->inode_mkdir(dir, dentry, mode); 468} 469EXPORT_SYMBOL_GPL(security_inode_mkdir); 470 471int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 472{ 473 if (unlikely(IS_PRIVATE(dentry->d_inode))) 474 return 0; 475 return security_ops->inode_rmdir(dir, dentry); 476} 477 478int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 479{ 480 if (unlikely(IS_PRIVATE(dir))) 481 return 0; 482 return security_ops->inode_mknod(dir, dentry, mode, dev); 483} 484 485int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 486 struct inode *new_dir, struct dentry *new_dentry) 487{ 488 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 489 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 490 return 0; 491 return security_ops->inode_rename(old_dir, old_dentry, 492 new_dir, new_dentry); 493} 494 495int security_inode_readlink(struct dentry *dentry) 496{ 497 if (unlikely(IS_PRIVATE(dentry->d_inode))) 498 return 0; 499 return security_ops->inode_readlink(dentry); 500} 501 502int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 503{ 504 if (unlikely(IS_PRIVATE(dentry->d_inode))) 505 return 0; 506 return security_ops->inode_follow_link(dentry, nd); 507} 508 509int security_inode_permission(struct inode *inode, int mask) 510{ 511 if (unlikely(IS_PRIVATE(inode))) 512 return 0; 513 return security_ops->inode_permission(inode, mask); 514} 515 516int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 517{ 518 if (unlikely(IS_PRIVATE(dentry->d_inode))) 519 return 0; 520 return security_ops->inode_setattr(dentry, attr); 521} 522EXPORT_SYMBOL_GPL(security_inode_setattr); 523 524int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 525{ 526 if (unlikely(IS_PRIVATE(dentry->d_inode))) 527 return 0; 528 return security_ops->inode_getattr(mnt, dentry); 529} 530 531int security_inode_setxattr(struct dentry *dentry, const char *name, 532 const void *value, size_t size, int flags) 533{ 534 if (unlikely(IS_PRIVATE(dentry->d_inode))) 535 return 0; 536 return security_ops->inode_setxattr(dentry, name, value, size, flags); 537} 538 539void security_inode_post_setxattr(struct dentry *dentry, const char *name, 540 const void *value, size_t size, int flags) 541{ 542 if (unlikely(IS_PRIVATE(dentry->d_inode))) 543 return; 544 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 545} 546 547int security_inode_getxattr(struct dentry *dentry, const char *name) 548{ 549 if (unlikely(IS_PRIVATE(dentry->d_inode))) 550 return 0; 551 return security_ops->inode_getxattr(dentry, name); 552} 553 554int security_inode_listxattr(struct dentry *dentry) 555{ 556 if (unlikely(IS_PRIVATE(dentry->d_inode))) 557 return 0; 558 return security_ops->inode_listxattr(dentry); 559} 560 561int security_inode_removexattr(struct dentry *dentry, const char *name) 562{ 563 if (unlikely(IS_PRIVATE(dentry->d_inode))) 564 return 0; 565 return security_ops->inode_removexattr(dentry, name); 566} 567 568int security_inode_need_killpriv(struct dentry *dentry) 569{ 570 return security_ops->inode_need_killpriv(dentry); 571} 572 573int security_inode_killpriv(struct dentry *dentry) 574{ 575 return security_ops->inode_killpriv(dentry); 576} 577 578int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 579{ 580 if (unlikely(IS_PRIVATE(inode))) 581 return -EOPNOTSUPP; 582 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 583} 584 585int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 586{ 587 if (unlikely(IS_PRIVATE(inode))) 588 return -EOPNOTSUPP; 589 return security_ops->inode_setsecurity(inode, name, value, size, flags); 590} 591 592int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 593{ 594 if (unlikely(IS_PRIVATE(inode))) 595 return 0; 596 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 597} 598 599void security_inode_getsecid(const struct inode *inode, u32 *secid) 600{ 601 security_ops->inode_getsecid(inode, secid); 602} 603 604int security_file_permission(struct file *file, int mask) 605{ 606 int ret; 607 608 ret = security_ops->file_permission(file, mask); 609 if (ret) 610 return ret; 611 612 return fsnotify_perm(file, mask); 613} 614 615int security_file_alloc(struct file *file) 616{ 617 return security_ops->file_alloc_security(file); 618} 619 620void security_file_free(struct file *file) 621{ 622 security_ops->file_free_security(file); 623} 624 625int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 626{ 627 return security_ops->file_ioctl(file, cmd, arg); 628} 629 630int security_file_mmap(struct file *file, unsigned long reqprot, 631 unsigned long prot, unsigned long flags, 632 unsigned long addr, unsigned long addr_only) 633{ 634 int ret; 635 636 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 637 if (ret) 638 return ret; 639 return ima_file_mmap(file, prot); 640} 641 642int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 643 unsigned long prot) 644{ 645 return security_ops->file_mprotect(vma, reqprot, prot); 646} 647 648int security_file_lock(struct file *file, unsigned int cmd) 649{ 650 return security_ops->file_lock(file, cmd); 651} 652 653int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 654{ 655 return security_ops->file_fcntl(file, cmd, arg); 656} 657 658int security_file_set_fowner(struct file *file) 659{ 660 return security_ops->file_set_fowner(file); 661} 662 663int security_file_send_sigiotask(struct task_struct *tsk, 664 struct fown_struct *fown, int sig) 665{ 666 return security_ops->file_send_sigiotask(tsk, fown, sig); 667} 668 669int security_file_receive(struct file *file) 670{ 671 return security_ops->file_receive(file); 672} 673 674int security_dentry_open(struct file *file, const struct cred *cred) 675{ 676 int ret; 677 678 ret = security_ops->dentry_open(file, cred); 679 if (ret) 680 return ret; 681 682 return fsnotify_perm(file, MAY_OPEN); 683} 684 685int security_task_create(unsigned long clone_flags) 686{ 687 return security_ops->task_create(clone_flags); 688} 689 690int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 691{ 692 return security_ops->cred_alloc_blank(cred, gfp); 693} 694 695void security_cred_free(struct cred *cred) 696{ 697 security_ops->cred_free(cred); 698} 699 700int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 701{ 702 return security_ops->cred_prepare(new, old, gfp); 703} 704 705void security_transfer_creds(struct cred *new, const struct cred *old) 706{ 707 security_ops->cred_transfer(new, old); 708} 709 710int security_kernel_act_as(struct cred *new, u32 secid) 711{ 712 return security_ops->kernel_act_as(new, secid); 713} 714 715int security_kernel_create_files_as(struct cred *new, struct inode *inode) 716{ 717 return security_ops->kernel_create_files_as(new, inode); 718} 719 720int security_kernel_module_request(char *kmod_name) 721{ 722 return security_ops->kernel_module_request(kmod_name); 723} 724 725int security_task_fix_setuid(struct cred *new, const struct cred *old, 726 int flags) 727{ 728 return security_ops->task_fix_setuid(new, old, flags); 729} 730 731int security_task_setpgid(struct task_struct *p, pid_t pgid) 732{ 733 return security_ops->task_setpgid(p, pgid); 734} 735 736int security_task_getpgid(struct task_struct *p) 737{ 738 return security_ops->task_getpgid(p); 739} 740 741int security_task_getsid(struct task_struct *p) 742{ 743 return security_ops->task_getsid(p); 744} 745 746void security_task_getsecid(struct task_struct *p, u32 *secid) 747{ 748 security_ops->task_getsecid(p, secid); 749} 750EXPORT_SYMBOL(security_task_getsecid); 751 752int security_task_setnice(struct task_struct *p, int nice) 753{ 754 return security_ops->task_setnice(p, nice); 755} 756 757int security_task_setioprio(struct task_struct *p, int ioprio) 758{ 759 return security_ops->task_setioprio(p, ioprio); 760} 761 762int security_task_getioprio(struct task_struct *p) 763{ 764 return security_ops->task_getioprio(p); 765} 766 767int security_task_setrlimit(struct task_struct *p, unsigned int resource, 768 struct rlimit *new_rlim) 769{ 770 return security_ops->task_setrlimit(p, resource, new_rlim); 771} 772 773int security_task_setscheduler(struct task_struct *p) 774{ 775 return security_ops->task_setscheduler(p); 776} 777 778int security_task_getscheduler(struct task_struct *p) 779{ 780 return security_ops->task_getscheduler(p); 781} 782 783int security_task_movememory(struct task_struct *p) 784{ 785 return security_ops->task_movememory(p); 786} 787 788int security_task_kill(struct task_struct *p, struct siginfo *info, 789 int sig, u32 secid) 790{ 791 return security_ops->task_kill(p, info, sig, secid); 792} 793 794int security_task_wait(struct task_struct *p) 795{ 796 return security_ops->task_wait(p); 797} 798 799int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 800 unsigned long arg4, unsigned long arg5) 801{ 802 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 803} 804 805void security_task_to_inode(struct task_struct *p, struct inode *inode) 806{ 807 security_ops->task_to_inode(p, inode); 808} 809 810int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 811{ 812 return security_ops->ipc_permission(ipcp, flag); 813} 814 815void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 816{ 817 security_ops->ipc_getsecid(ipcp, secid); 818} 819 820int security_msg_msg_alloc(struct msg_msg *msg) 821{ 822 return security_ops->msg_msg_alloc_security(msg); 823} 824 825void security_msg_msg_free(struct msg_msg *msg) 826{ 827 security_ops->msg_msg_free_security(msg); 828} 829 830int security_msg_queue_alloc(struct msg_queue *msq) 831{ 832 return security_ops->msg_queue_alloc_security(msq); 833} 834 835void security_msg_queue_free(struct msg_queue *msq) 836{ 837 security_ops->msg_queue_free_security(msq); 838} 839 840int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 841{ 842 return security_ops->msg_queue_associate(msq, msqflg); 843} 844 845int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 846{ 847 return security_ops->msg_queue_msgctl(msq, cmd); 848} 849 850int security_msg_queue_msgsnd(struct msg_queue *msq, 851 struct msg_msg *msg, int msqflg) 852{ 853 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 854} 855 856int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 857 struct task_struct *target, long type, int mode) 858{ 859 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 860} 861 862int security_shm_alloc(struct shmid_kernel *shp) 863{ 864 return security_ops->shm_alloc_security(shp); 865} 866 867void security_shm_free(struct shmid_kernel *shp) 868{ 869 security_ops->shm_free_security(shp); 870} 871 872int security_shm_associate(struct shmid_kernel *shp, int shmflg) 873{ 874 return security_ops->shm_associate(shp, shmflg); 875} 876 877int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 878{ 879 return security_ops->shm_shmctl(shp, cmd); 880} 881 882int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 883{ 884 return security_ops->shm_shmat(shp, shmaddr, shmflg); 885} 886 887int security_sem_alloc(struct sem_array *sma) 888{ 889 return security_ops->sem_alloc_security(sma); 890} 891 892void security_sem_free(struct sem_array *sma) 893{ 894 security_ops->sem_free_security(sma); 895} 896 897int security_sem_associate(struct sem_array *sma, int semflg) 898{ 899 return security_ops->sem_associate(sma, semflg); 900} 901 902int security_sem_semctl(struct sem_array *sma, int cmd) 903{ 904 return security_ops->sem_semctl(sma, cmd); 905} 906 907int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 908 unsigned nsops, int alter) 909{ 910 return security_ops->sem_semop(sma, sops, nsops, alter); 911} 912 913void security_d_instantiate(struct dentry *dentry, struct inode *inode) 914{ 915 if (unlikely(inode && IS_PRIVATE(inode))) 916 return; 917 security_ops->d_instantiate(dentry, inode); 918} 919EXPORT_SYMBOL(security_d_instantiate); 920 921int security_getprocattr(struct task_struct *p, char *name, char **value) 922{ 923 return security_ops->getprocattr(p, name, value); 924} 925 926int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 927{ 928 return security_ops->setprocattr(p, name, value, size); 929} 930 931int security_netlink_send(struct sock *sk, struct sk_buff *skb) 932{ 933 return security_ops->netlink_send(sk, skb); 934} 935 936int security_netlink_recv(struct sk_buff *skb, int cap) 937{ 938 return security_ops->netlink_recv(skb, cap); 939} 940EXPORT_SYMBOL(security_netlink_recv); 941 942int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 943{ 944 return security_ops->secid_to_secctx(secid, secdata, seclen); 945} 946EXPORT_SYMBOL(security_secid_to_secctx); 947 948int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 949{ 950 return security_ops->secctx_to_secid(secdata, seclen, secid); 951} 952EXPORT_SYMBOL(security_secctx_to_secid); 953 954void security_release_secctx(char *secdata, u32 seclen) 955{ 956 security_ops->release_secctx(secdata, seclen); 957} 958EXPORT_SYMBOL(security_release_secctx); 959 960int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 961{ 962 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 963} 964EXPORT_SYMBOL(security_inode_notifysecctx); 965 966int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 967{ 968 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 969} 970EXPORT_SYMBOL(security_inode_setsecctx); 971 972int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 973{ 974 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 975} 976EXPORT_SYMBOL(security_inode_getsecctx); 977 978#ifdef CONFIG_SECURITY_NETWORK 979 980int security_unix_stream_connect(struct socket *sock, struct socket *other, 981 struct sock *newsk) 982{ 983 return security_ops->unix_stream_connect(sock, other, newsk); 984} 985EXPORT_SYMBOL(security_unix_stream_connect); 986 987int security_unix_may_send(struct socket *sock, struct socket *other) 988{ 989 return security_ops->unix_may_send(sock, other); 990} 991EXPORT_SYMBOL(security_unix_may_send); 992 993int security_socket_create(int family, int type, int protocol, int kern) 994{ 995 return security_ops->socket_create(family, type, protocol, kern); 996} 997 998int security_socket_post_create(struct socket *sock, int family, 999 int type, int protocol, int kern) 1000{ 1001 return security_ops->socket_post_create(sock, family, type, 1002 protocol, kern); 1003} 1004 1005int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1006{ 1007 return security_ops->socket_bind(sock, address, addrlen); 1008} 1009 1010int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1011{ 1012 return security_ops->socket_connect(sock, address, addrlen); 1013} 1014 1015int security_socket_listen(struct socket *sock, int backlog) 1016{ 1017 return security_ops->socket_listen(sock, backlog); 1018} 1019 1020int security_socket_accept(struct socket *sock, struct socket *newsock) 1021{ 1022 return security_ops->socket_accept(sock, newsock); 1023} 1024 1025int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1026{ 1027 return security_ops->socket_sendmsg(sock, msg, size); 1028} 1029 1030int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1031 int size, int flags) 1032{ 1033 return security_ops->socket_recvmsg(sock, msg, size, flags); 1034} 1035 1036int security_socket_getsockname(struct socket *sock) 1037{ 1038 return security_ops->socket_getsockname(sock); 1039} 1040 1041int security_socket_getpeername(struct socket *sock) 1042{ 1043 return security_ops->socket_getpeername(sock); 1044} 1045 1046int security_socket_getsockopt(struct socket *sock, int level, int optname) 1047{ 1048 return security_ops->socket_getsockopt(sock, level, optname); 1049} 1050 1051int security_socket_setsockopt(struct socket *sock, int level, int optname) 1052{ 1053 return security_ops->socket_setsockopt(sock, level, optname); 1054} 1055 1056int security_socket_shutdown(struct socket *sock, int how) 1057{ 1058 return security_ops->socket_shutdown(sock, how); 1059} 1060 1061int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1062{ 1063 return security_ops->socket_sock_rcv_skb(sk, skb); 1064} 1065EXPORT_SYMBOL(security_sock_rcv_skb); 1066 1067int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1068 int __user *optlen, unsigned len) 1069{ 1070 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1071} 1072 1073int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1074{ 1075 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1076} 1077EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1078 1079int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1080{ 1081 return security_ops->sk_alloc_security(sk, family, priority); 1082} 1083 1084void security_sk_free(struct sock *sk) 1085{ 1086 security_ops->sk_free_security(sk); 1087} 1088 1089void security_sk_clone(const struct sock *sk, struct sock *newsk) 1090{ 1091 security_ops->sk_clone_security(sk, newsk); 1092} 1093 1094void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1095{ 1096 security_ops->sk_getsecid(sk, &fl->secid); 1097} 1098EXPORT_SYMBOL(security_sk_classify_flow); 1099 1100void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1101{ 1102 security_ops->req_classify_flow(req, fl); 1103} 1104EXPORT_SYMBOL(security_req_classify_flow); 1105 1106void security_sock_graft(struct sock *sk, struct socket *parent) 1107{ 1108 security_ops->sock_graft(sk, parent); 1109} 1110EXPORT_SYMBOL(security_sock_graft); 1111 1112int security_inet_conn_request(struct sock *sk, 1113 struct sk_buff *skb, struct request_sock *req) 1114{ 1115 return security_ops->inet_conn_request(sk, skb, req); 1116} 1117EXPORT_SYMBOL(security_inet_conn_request); 1118 1119void security_inet_csk_clone(struct sock *newsk, 1120 const struct request_sock *req) 1121{ 1122 security_ops->inet_csk_clone(newsk, req); 1123} 1124 1125void security_inet_conn_established(struct sock *sk, 1126 struct sk_buff *skb) 1127{ 1128 security_ops->inet_conn_established(sk, skb); 1129} 1130 1131int security_secmark_relabel_packet(u32 secid) 1132{ 1133 return security_ops->secmark_relabel_packet(secid); 1134} 1135EXPORT_SYMBOL(security_secmark_relabel_packet); 1136 1137void security_secmark_refcount_inc(void) 1138{ 1139 security_ops->secmark_refcount_inc(); 1140} 1141EXPORT_SYMBOL(security_secmark_refcount_inc); 1142 1143void security_secmark_refcount_dec(void) 1144{ 1145 security_ops->secmark_refcount_dec(); 1146} 1147EXPORT_SYMBOL(security_secmark_refcount_dec); 1148 1149int security_tun_dev_create(void) 1150{ 1151 return security_ops->tun_dev_create(); 1152} 1153EXPORT_SYMBOL(security_tun_dev_create); 1154 1155void security_tun_dev_post_create(struct sock *sk) 1156{ 1157 return security_ops->tun_dev_post_create(sk); 1158} 1159EXPORT_SYMBOL(security_tun_dev_post_create); 1160 1161int security_tun_dev_attach(struct sock *sk) 1162{ 1163 return security_ops->tun_dev_attach(sk); 1164} 1165EXPORT_SYMBOL(security_tun_dev_attach); 1166 1167#endif /* CONFIG_SECURITY_NETWORK */ 1168 1169#ifdef CONFIG_SECURITY_NETWORK_XFRM 1170 1171int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1172{ 1173 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1174} 1175EXPORT_SYMBOL(security_xfrm_policy_alloc); 1176 1177int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1178 struct xfrm_sec_ctx **new_ctxp) 1179{ 1180 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1181} 1182 1183void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1184{ 1185 security_ops->xfrm_policy_free_security(ctx); 1186} 1187EXPORT_SYMBOL(security_xfrm_policy_free); 1188 1189int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1190{ 1191 return security_ops->xfrm_policy_delete_security(ctx); 1192} 1193 1194int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1195{ 1196 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1197} 1198EXPORT_SYMBOL(security_xfrm_state_alloc); 1199 1200int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1201 struct xfrm_sec_ctx *polsec, u32 secid) 1202{ 1203 if (!polsec) 1204 return 0; 1205 /* 1206 * We want the context to be taken from secid which is usually 1207 * from the sock. 1208 */ 1209 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1210} 1211 1212int security_xfrm_state_delete(struct xfrm_state *x) 1213{ 1214 return security_ops->xfrm_state_delete_security(x); 1215} 1216EXPORT_SYMBOL(security_xfrm_state_delete); 1217 1218void security_xfrm_state_free(struct xfrm_state *x) 1219{ 1220 security_ops->xfrm_state_free_security(x); 1221} 1222 1223int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1224{ 1225 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1226} 1227 1228int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1229 struct xfrm_policy *xp, struct flowi *fl) 1230{ 1231 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1232} 1233 1234int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1235{ 1236 return security_ops->xfrm_decode_session(skb, secid, 1); 1237} 1238 1239void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1240{ 1241 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1242 1243 BUG_ON(rc); 1244} 1245EXPORT_SYMBOL(security_skb_classify_flow); 1246 1247#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1248 1249#ifdef CONFIG_KEYS 1250 1251int security_key_alloc(struct key *key, const struct cred *cred, 1252 unsigned long flags) 1253{ 1254 return security_ops->key_alloc(key, cred, flags); 1255} 1256 1257void security_key_free(struct key *key) 1258{ 1259 security_ops->key_free(key); 1260} 1261 1262int security_key_permission(key_ref_t key_ref, 1263 const struct cred *cred, key_perm_t perm) 1264{ 1265 return security_ops->key_permission(key_ref, cred, perm); 1266} 1267 1268int security_key_getsecurity(struct key *key, char **_buffer) 1269{ 1270 return security_ops->key_getsecurity(key, _buffer); 1271} 1272 1273#endif /* CONFIG_KEYS */ 1274 1275#ifdef CONFIG_AUDIT 1276 1277int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1278{ 1279 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1280} 1281 1282int security_audit_rule_known(struct audit_krule *krule) 1283{ 1284 return security_ops->audit_rule_known(krule); 1285} 1286 1287void security_audit_rule_free(void *lsmrule) 1288{ 1289 security_ops->audit_rule_free(lsmrule); 1290} 1291 1292int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1293 struct audit_context *actx) 1294{ 1295 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1296} 1297 1298#endif /* CONFIG_AUDIT */