at v2.6.37 63 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/cache.h> 22 23#include <asm/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <linux/net.h> 27#include <linux/textsearch.h> 28#include <net/checksum.h> 29#include <linux/rcupdate.h> 30#include <linux/dmaengine.h> 31#include <linux/hrtimer.h> 32 33/* Don't change this without changing skb_csum_unnecessary! */ 34#define CHECKSUM_NONE 0 35#define CHECKSUM_UNNECESSARY 1 36#define CHECKSUM_COMPLETE 2 37#define CHECKSUM_PARTIAL 3 38 39#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 40 ~(SMP_CACHE_BYTES - 1)) 41#define SKB_WITH_OVERHEAD(X) \ 42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 43#define SKB_MAX_ORDER(X, ORDER) \ 44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 45#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 46#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 47 48/* A. Checksumming of received packets by device. 49 * 50 * NONE: device failed to checksum this packet. 51 * skb->csum is undefined. 52 * 53 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 54 * skb->csum is undefined. 55 * It is bad option, but, unfortunately, many of vendors do this. 56 * Apparently with secret goal to sell you new device, when you 57 * will add new protocol to your host. F.e. IPv6. 8) 58 * 59 * COMPLETE: the most generic way. Device supplied checksum of _all_ 60 * the packet as seen by netif_rx in skb->csum. 61 * NOTE: Even if device supports only some protocols, but 62 * is able to produce some skb->csum, it MUST use COMPLETE, 63 * not UNNECESSARY. 64 * 65 * PARTIAL: identical to the case for output below. This may occur 66 * on a packet received directly from another Linux OS, e.g., 67 * a virtualised Linux kernel on the same host. The packet can 68 * be treated in the same way as UNNECESSARY except that on 69 * output (i.e., forwarding) the checksum must be filled in 70 * by the OS or the hardware. 71 * 72 * B. Checksumming on output. 73 * 74 * NONE: skb is checksummed by protocol or csum is not required. 75 * 76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 77 * from skb->csum_start to the end and to record the checksum 78 * at skb->csum_start + skb->csum_offset. 79 * 80 * Device must show its capabilities in dev->features, set 81 * at device setup time. 82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 83 * everything. 84 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 86 * TCP/UDP over IPv4. Sigh. Vendors like this 87 * way by an unknown reason. Though, see comment above 88 * about CHECKSUM_UNNECESSARY. 8) 89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 90 * 91 * Any questions? No questions, good. --ANK 92 */ 93 94struct net_device; 95struct scatterlist; 96struct pipe_inode_info; 97 98#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 99struct nf_conntrack { 100 atomic_t use; 101}; 102#endif 103 104#ifdef CONFIG_BRIDGE_NETFILTER 105struct nf_bridge_info { 106 atomic_t use; 107 struct net_device *physindev; 108 struct net_device *physoutdev; 109 unsigned int mask; 110 unsigned long data[32 / sizeof(unsigned long)]; 111}; 112#endif 113 114struct sk_buff_head { 115 /* These two members must be first. */ 116 struct sk_buff *next; 117 struct sk_buff *prev; 118 119 __u32 qlen; 120 spinlock_t lock; 121}; 122 123struct sk_buff; 124 125/* To allow 64K frame to be packed as single skb without frag_list */ 126#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 127 128typedef struct skb_frag_struct skb_frag_t; 129 130struct skb_frag_struct { 131 struct page *page; 132#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 133 __u32 page_offset; 134 __u32 size; 135#else 136 __u16 page_offset; 137 __u16 size; 138#endif 139}; 140 141#define HAVE_HW_TIME_STAMP 142 143/** 144 * struct skb_shared_hwtstamps - hardware time stamps 145 * @hwtstamp: hardware time stamp transformed into duration 146 * since arbitrary point in time 147 * @syststamp: hwtstamp transformed to system time base 148 * 149 * Software time stamps generated by ktime_get_real() are stored in 150 * skb->tstamp. The relation between the different kinds of time 151 * stamps is as follows: 152 * 153 * syststamp and tstamp can be compared against each other in 154 * arbitrary combinations. The accuracy of a 155 * syststamp/tstamp/"syststamp from other device" comparison is 156 * limited by the accuracy of the transformation into system time 157 * base. This depends on the device driver and its underlying 158 * hardware. 159 * 160 * hwtstamps can only be compared against other hwtstamps from 161 * the same device. 162 * 163 * This structure is attached to packets as part of the 164 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 165 */ 166struct skb_shared_hwtstamps { 167 ktime_t hwtstamp; 168 ktime_t syststamp; 169}; 170 171/* Definitions for tx_flags in struct skb_shared_info */ 172enum { 173 /* generate hardware time stamp */ 174 SKBTX_HW_TSTAMP = 1 << 0, 175 176 /* generate software time stamp */ 177 SKBTX_SW_TSTAMP = 1 << 1, 178 179 /* device driver is going to provide hardware time stamp */ 180 SKBTX_IN_PROGRESS = 1 << 2, 181 182 /* ensure the originating sk reference is available on driver level */ 183 SKBTX_DRV_NEEDS_SK_REF = 1 << 3, 184}; 185 186/* This data is invariant across clones and lives at 187 * the end of the header data, ie. at skb->end. 188 */ 189struct skb_shared_info { 190 unsigned short nr_frags; 191 unsigned short gso_size; 192 /* Warning: this field is not always filled in (UFO)! */ 193 unsigned short gso_segs; 194 unsigned short gso_type; 195 __be32 ip6_frag_id; 196 __u8 tx_flags; 197 struct sk_buff *frag_list; 198 struct skb_shared_hwtstamps hwtstamps; 199 200 /* 201 * Warning : all fields before dataref are cleared in __alloc_skb() 202 */ 203 atomic_t dataref; 204 205 /* Intermediate layers must ensure that destructor_arg 206 * remains valid until skb destructor */ 207 void * destructor_arg; 208 /* must be last field, see pskb_expand_head() */ 209 skb_frag_t frags[MAX_SKB_FRAGS]; 210}; 211 212/* We divide dataref into two halves. The higher 16 bits hold references 213 * to the payload part of skb->data. The lower 16 bits hold references to 214 * the entire skb->data. A clone of a headerless skb holds the length of 215 * the header in skb->hdr_len. 216 * 217 * All users must obey the rule that the skb->data reference count must be 218 * greater than or equal to the payload reference count. 219 * 220 * Holding a reference to the payload part means that the user does not 221 * care about modifications to the header part of skb->data. 222 */ 223#define SKB_DATAREF_SHIFT 16 224#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 225 226 227enum { 228 SKB_FCLONE_UNAVAILABLE, 229 SKB_FCLONE_ORIG, 230 SKB_FCLONE_CLONE, 231}; 232 233enum { 234 SKB_GSO_TCPV4 = 1 << 0, 235 SKB_GSO_UDP = 1 << 1, 236 237 /* This indicates the skb is from an untrusted source. */ 238 SKB_GSO_DODGY = 1 << 2, 239 240 /* This indicates the tcp segment has CWR set. */ 241 SKB_GSO_TCP_ECN = 1 << 3, 242 243 SKB_GSO_TCPV6 = 1 << 4, 244 245 SKB_GSO_FCOE = 1 << 5, 246}; 247 248#if BITS_PER_LONG > 32 249#define NET_SKBUFF_DATA_USES_OFFSET 1 250#endif 251 252#ifdef NET_SKBUFF_DATA_USES_OFFSET 253typedef unsigned int sk_buff_data_t; 254#else 255typedef unsigned char *sk_buff_data_t; 256#endif 257 258/** 259 * struct sk_buff - socket buffer 260 * @next: Next buffer in list 261 * @prev: Previous buffer in list 262 * @sk: Socket we are owned by 263 * @tstamp: Time we arrived 264 * @dev: Device we arrived on/are leaving by 265 * @transport_header: Transport layer header 266 * @network_header: Network layer header 267 * @mac_header: Link layer header 268 * @_skb_refdst: destination entry (with norefcount bit) 269 * @sp: the security path, used for xfrm 270 * @cb: Control buffer. Free for use by every layer. Put private vars here 271 * @len: Length of actual data 272 * @data_len: Data length 273 * @mac_len: Length of link layer header 274 * @hdr_len: writable header length of cloned skb 275 * @csum: Checksum (must include start/offset pair) 276 * @csum_start: Offset from skb->head where checksumming should start 277 * @csum_offset: Offset from csum_start where checksum should be stored 278 * @local_df: allow local fragmentation 279 * @cloned: Head may be cloned (check refcnt to be sure) 280 * @nohdr: Payload reference only, must not modify header 281 * @pkt_type: Packet class 282 * @fclone: skbuff clone status 283 * @ip_summed: Driver fed us an IP checksum 284 * @priority: Packet queueing priority 285 * @users: User count - see {datagram,tcp}.c 286 * @protocol: Packet protocol from driver 287 * @truesize: Buffer size 288 * @head: Head of buffer 289 * @data: Data head pointer 290 * @tail: Tail pointer 291 * @end: End pointer 292 * @destructor: Destruct function 293 * @mark: Generic packet mark 294 * @nfct: Associated connection, if any 295 * @ipvs_property: skbuff is owned by ipvs 296 * @peeked: this packet has been seen already, so stats have been 297 * done for it, don't do them again 298 * @nf_trace: netfilter packet trace flag 299 * @nfctinfo: Relationship of this skb to the connection 300 * @nfct_reasm: netfilter conntrack re-assembly pointer 301 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 302 * @skb_iif: ifindex of device we arrived on 303 * @rxhash: the packet hash computed on receive 304 * @queue_mapping: Queue mapping for multiqueue devices 305 * @tc_index: Traffic control index 306 * @tc_verd: traffic control verdict 307 * @ndisc_nodetype: router type (from link layer) 308 * @dma_cookie: a cookie to one of several possible DMA operations 309 * done by skb DMA functions 310 * @secmark: security marking 311 * @vlan_tci: vlan tag control information 312 */ 313 314struct sk_buff { 315 /* These two members must be first. */ 316 struct sk_buff *next; 317 struct sk_buff *prev; 318 319 ktime_t tstamp; 320 321 struct sock *sk; 322 struct net_device *dev; 323 324 /* 325 * This is the control buffer. It is free to use for every 326 * layer. Please put your private variables there. If you 327 * want to keep them across layers you have to do a skb_clone() 328 * first. This is owned by whoever has the skb queued ATM. 329 */ 330 char cb[48] __aligned(8); 331 332 unsigned long _skb_refdst; 333#ifdef CONFIG_XFRM 334 struct sec_path *sp; 335#endif 336 unsigned int len, 337 data_len; 338 __u16 mac_len, 339 hdr_len; 340 union { 341 __wsum csum; 342 struct { 343 __u16 csum_start; 344 __u16 csum_offset; 345 }; 346 }; 347 __u32 priority; 348 kmemcheck_bitfield_begin(flags1); 349 __u8 local_df:1, 350 cloned:1, 351 ip_summed:2, 352 nohdr:1, 353 nfctinfo:3; 354 __u8 pkt_type:3, 355 fclone:2, 356 ipvs_property:1, 357 peeked:1, 358 nf_trace:1; 359 kmemcheck_bitfield_end(flags1); 360 __be16 protocol; 361 362 void (*destructor)(struct sk_buff *skb); 363#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 364 struct nf_conntrack *nfct; 365 struct sk_buff *nfct_reasm; 366#endif 367#ifdef CONFIG_BRIDGE_NETFILTER 368 struct nf_bridge_info *nf_bridge; 369#endif 370 371 int skb_iif; 372#ifdef CONFIG_NET_SCHED 373 __u16 tc_index; /* traffic control index */ 374#ifdef CONFIG_NET_CLS_ACT 375 __u16 tc_verd; /* traffic control verdict */ 376#endif 377#endif 378 379 __u32 rxhash; 380 381 kmemcheck_bitfield_begin(flags2); 382 __u16 queue_mapping:16; 383#ifdef CONFIG_IPV6_NDISC_NODETYPE 384 __u8 ndisc_nodetype:2, 385 deliver_no_wcard:1; 386#else 387 __u8 deliver_no_wcard:1; 388#endif 389 kmemcheck_bitfield_end(flags2); 390 391 /* 0/14 bit hole */ 392 393#ifdef CONFIG_NET_DMA 394 dma_cookie_t dma_cookie; 395#endif 396#ifdef CONFIG_NETWORK_SECMARK 397 __u32 secmark; 398#endif 399 union { 400 __u32 mark; 401 __u32 dropcount; 402 }; 403 404 __u16 vlan_tci; 405 406 sk_buff_data_t transport_header; 407 sk_buff_data_t network_header; 408 sk_buff_data_t mac_header; 409 /* These elements must be at the end, see alloc_skb() for details. */ 410 sk_buff_data_t tail; 411 sk_buff_data_t end; 412 unsigned char *head, 413 *data; 414 unsigned int truesize; 415 atomic_t users; 416}; 417 418#ifdef __KERNEL__ 419/* 420 * Handling routines are only of interest to the kernel 421 */ 422#include <linux/slab.h> 423 424#include <asm/system.h> 425 426/* 427 * skb might have a dst pointer attached, refcounted or not. 428 * _skb_refdst low order bit is set if refcount was _not_ taken 429 */ 430#define SKB_DST_NOREF 1UL 431#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 432 433/** 434 * skb_dst - returns skb dst_entry 435 * @skb: buffer 436 * 437 * Returns skb dst_entry, regardless of reference taken or not. 438 */ 439static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 440{ 441 /* If refdst was not refcounted, check we still are in a 442 * rcu_read_lock section 443 */ 444 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 445 !rcu_read_lock_held() && 446 !rcu_read_lock_bh_held()); 447 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 448} 449 450/** 451 * skb_dst_set - sets skb dst 452 * @skb: buffer 453 * @dst: dst entry 454 * 455 * Sets skb dst, assuming a reference was taken on dst and should 456 * be released by skb_dst_drop() 457 */ 458static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 459{ 460 skb->_skb_refdst = (unsigned long)dst; 461} 462 463extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst); 464 465/** 466 * skb_dst_is_noref - Test if skb dst isnt refcounted 467 * @skb: buffer 468 */ 469static inline bool skb_dst_is_noref(const struct sk_buff *skb) 470{ 471 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 472} 473 474static inline struct rtable *skb_rtable(const struct sk_buff *skb) 475{ 476 return (struct rtable *)skb_dst(skb); 477} 478 479extern void kfree_skb(struct sk_buff *skb); 480extern void consume_skb(struct sk_buff *skb); 481extern void __kfree_skb(struct sk_buff *skb); 482extern struct sk_buff *__alloc_skb(unsigned int size, 483 gfp_t priority, int fclone, int node); 484static inline struct sk_buff *alloc_skb(unsigned int size, 485 gfp_t priority) 486{ 487 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 488} 489 490static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 491 gfp_t priority) 492{ 493 return __alloc_skb(size, priority, 1, NUMA_NO_NODE); 494} 495 496extern bool skb_recycle_check(struct sk_buff *skb, int skb_size); 497 498extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 499extern struct sk_buff *skb_clone(struct sk_buff *skb, 500 gfp_t priority); 501extern struct sk_buff *skb_copy(const struct sk_buff *skb, 502 gfp_t priority); 503extern struct sk_buff *pskb_copy(struct sk_buff *skb, 504 gfp_t gfp_mask); 505extern int pskb_expand_head(struct sk_buff *skb, 506 int nhead, int ntail, 507 gfp_t gfp_mask); 508extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 509 unsigned int headroom); 510extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 511 int newheadroom, int newtailroom, 512 gfp_t priority); 513extern int skb_to_sgvec(struct sk_buff *skb, 514 struct scatterlist *sg, int offset, 515 int len); 516extern int skb_cow_data(struct sk_buff *skb, int tailbits, 517 struct sk_buff **trailer); 518extern int skb_pad(struct sk_buff *skb, int pad); 519#define dev_kfree_skb(a) consume_skb(a) 520 521extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 522 int getfrag(void *from, char *to, int offset, 523 int len,int odd, struct sk_buff *skb), 524 void *from, int length); 525 526struct skb_seq_state { 527 __u32 lower_offset; 528 __u32 upper_offset; 529 __u32 frag_idx; 530 __u32 stepped_offset; 531 struct sk_buff *root_skb; 532 struct sk_buff *cur_skb; 533 __u8 *frag_data; 534}; 535 536extern void skb_prepare_seq_read(struct sk_buff *skb, 537 unsigned int from, unsigned int to, 538 struct skb_seq_state *st); 539extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 540 struct skb_seq_state *st); 541extern void skb_abort_seq_read(struct skb_seq_state *st); 542 543extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 544 unsigned int to, struct ts_config *config, 545 struct ts_state *state); 546 547extern __u32 __skb_get_rxhash(struct sk_buff *skb); 548static inline __u32 skb_get_rxhash(struct sk_buff *skb) 549{ 550 if (!skb->rxhash) 551 skb->rxhash = __skb_get_rxhash(skb); 552 553 return skb->rxhash; 554} 555 556#ifdef NET_SKBUFF_DATA_USES_OFFSET 557static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 558{ 559 return skb->head + skb->end; 560} 561#else 562static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 563{ 564 return skb->end; 565} 566#endif 567 568/* Internal */ 569#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 570 571static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 572{ 573 return &skb_shinfo(skb)->hwtstamps; 574} 575 576/** 577 * skb_queue_empty - check if a queue is empty 578 * @list: queue head 579 * 580 * Returns true if the queue is empty, false otherwise. 581 */ 582static inline int skb_queue_empty(const struct sk_buff_head *list) 583{ 584 return list->next == (struct sk_buff *)list; 585} 586 587/** 588 * skb_queue_is_last - check if skb is the last entry in the queue 589 * @list: queue head 590 * @skb: buffer 591 * 592 * Returns true if @skb is the last buffer on the list. 593 */ 594static inline bool skb_queue_is_last(const struct sk_buff_head *list, 595 const struct sk_buff *skb) 596{ 597 return skb->next == (struct sk_buff *)list; 598} 599 600/** 601 * skb_queue_is_first - check if skb is the first entry in the queue 602 * @list: queue head 603 * @skb: buffer 604 * 605 * Returns true if @skb is the first buffer on the list. 606 */ 607static inline bool skb_queue_is_first(const struct sk_buff_head *list, 608 const struct sk_buff *skb) 609{ 610 return skb->prev == (struct sk_buff *)list; 611} 612 613/** 614 * skb_queue_next - return the next packet in the queue 615 * @list: queue head 616 * @skb: current buffer 617 * 618 * Return the next packet in @list after @skb. It is only valid to 619 * call this if skb_queue_is_last() evaluates to false. 620 */ 621static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 622 const struct sk_buff *skb) 623{ 624 /* This BUG_ON may seem severe, but if we just return then we 625 * are going to dereference garbage. 626 */ 627 BUG_ON(skb_queue_is_last(list, skb)); 628 return skb->next; 629} 630 631/** 632 * skb_queue_prev - return the prev packet in the queue 633 * @list: queue head 634 * @skb: current buffer 635 * 636 * Return the prev packet in @list before @skb. It is only valid to 637 * call this if skb_queue_is_first() evaluates to false. 638 */ 639static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 640 const struct sk_buff *skb) 641{ 642 /* This BUG_ON may seem severe, but if we just return then we 643 * are going to dereference garbage. 644 */ 645 BUG_ON(skb_queue_is_first(list, skb)); 646 return skb->prev; 647} 648 649/** 650 * skb_get - reference buffer 651 * @skb: buffer to reference 652 * 653 * Makes another reference to a socket buffer and returns a pointer 654 * to the buffer. 655 */ 656static inline struct sk_buff *skb_get(struct sk_buff *skb) 657{ 658 atomic_inc(&skb->users); 659 return skb; 660} 661 662/* 663 * If users == 1, we are the only owner and are can avoid redundant 664 * atomic change. 665 */ 666 667/** 668 * skb_cloned - is the buffer a clone 669 * @skb: buffer to check 670 * 671 * Returns true if the buffer was generated with skb_clone() and is 672 * one of multiple shared copies of the buffer. Cloned buffers are 673 * shared data so must not be written to under normal circumstances. 674 */ 675static inline int skb_cloned(const struct sk_buff *skb) 676{ 677 return skb->cloned && 678 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 679} 680 681/** 682 * skb_header_cloned - is the header a clone 683 * @skb: buffer to check 684 * 685 * Returns true if modifying the header part of the buffer requires 686 * the data to be copied. 687 */ 688static inline int skb_header_cloned(const struct sk_buff *skb) 689{ 690 int dataref; 691 692 if (!skb->cloned) 693 return 0; 694 695 dataref = atomic_read(&skb_shinfo(skb)->dataref); 696 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 697 return dataref != 1; 698} 699 700/** 701 * skb_header_release - release reference to header 702 * @skb: buffer to operate on 703 * 704 * Drop a reference to the header part of the buffer. This is done 705 * by acquiring a payload reference. You must not read from the header 706 * part of skb->data after this. 707 */ 708static inline void skb_header_release(struct sk_buff *skb) 709{ 710 BUG_ON(skb->nohdr); 711 skb->nohdr = 1; 712 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 713} 714 715/** 716 * skb_shared - is the buffer shared 717 * @skb: buffer to check 718 * 719 * Returns true if more than one person has a reference to this 720 * buffer. 721 */ 722static inline int skb_shared(const struct sk_buff *skb) 723{ 724 return atomic_read(&skb->users) != 1; 725} 726 727/** 728 * skb_share_check - check if buffer is shared and if so clone it 729 * @skb: buffer to check 730 * @pri: priority for memory allocation 731 * 732 * If the buffer is shared the buffer is cloned and the old copy 733 * drops a reference. A new clone with a single reference is returned. 734 * If the buffer is not shared the original buffer is returned. When 735 * being called from interrupt status or with spinlocks held pri must 736 * be GFP_ATOMIC. 737 * 738 * NULL is returned on a memory allocation failure. 739 */ 740static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 741 gfp_t pri) 742{ 743 might_sleep_if(pri & __GFP_WAIT); 744 if (skb_shared(skb)) { 745 struct sk_buff *nskb = skb_clone(skb, pri); 746 kfree_skb(skb); 747 skb = nskb; 748 } 749 return skb; 750} 751 752/* 753 * Copy shared buffers into a new sk_buff. We effectively do COW on 754 * packets to handle cases where we have a local reader and forward 755 * and a couple of other messy ones. The normal one is tcpdumping 756 * a packet thats being forwarded. 757 */ 758 759/** 760 * skb_unshare - make a copy of a shared buffer 761 * @skb: buffer to check 762 * @pri: priority for memory allocation 763 * 764 * If the socket buffer is a clone then this function creates a new 765 * copy of the data, drops a reference count on the old copy and returns 766 * the new copy with the reference count at 1. If the buffer is not a clone 767 * the original buffer is returned. When called with a spinlock held or 768 * from interrupt state @pri must be %GFP_ATOMIC 769 * 770 * %NULL is returned on a memory allocation failure. 771 */ 772static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 773 gfp_t pri) 774{ 775 might_sleep_if(pri & __GFP_WAIT); 776 if (skb_cloned(skb)) { 777 struct sk_buff *nskb = skb_copy(skb, pri); 778 kfree_skb(skb); /* Free our shared copy */ 779 skb = nskb; 780 } 781 return skb; 782} 783 784/** 785 * skb_peek - peek at the head of an &sk_buff_head 786 * @list_: list to peek at 787 * 788 * Peek an &sk_buff. Unlike most other operations you _MUST_ 789 * be careful with this one. A peek leaves the buffer on the 790 * list and someone else may run off with it. You must hold 791 * the appropriate locks or have a private queue to do this. 792 * 793 * Returns %NULL for an empty list or a pointer to the head element. 794 * The reference count is not incremented and the reference is therefore 795 * volatile. Use with caution. 796 */ 797static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 798{ 799 struct sk_buff *list = ((struct sk_buff *)list_)->next; 800 if (list == (struct sk_buff *)list_) 801 list = NULL; 802 return list; 803} 804 805/** 806 * skb_peek_tail - peek at the tail of an &sk_buff_head 807 * @list_: list to peek at 808 * 809 * Peek an &sk_buff. Unlike most other operations you _MUST_ 810 * be careful with this one. A peek leaves the buffer on the 811 * list and someone else may run off with it. You must hold 812 * the appropriate locks or have a private queue to do this. 813 * 814 * Returns %NULL for an empty list or a pointer to the tail element. 815 * The reference count is not incremented and the reference is therefore 816 * volatile. Use with caution. 817 */ 818static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 819{ 820 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 821 if (list == (struct sk_buff *)list_) 822 list = NULL; 823 return list; 824} 825 826/** 827 * skb_queue_len - get queue length 828 * @list_: list to measure 829 * 830 * Return the length of an &sk_buff queue. 831 */ 832static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 833{ 834 return list_->qlen; 835} 836 837/** 838 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 839 * @list: queue to initialize 840 * 841 * This initializes only the list and queue length aspects of 842 * an sk_buff_head object. This allows to initialize the list 843 * aspects of an sk_buff_head without reinitializing things like 844 * the spinlock. It can also be used for on-stack sk_buff_head 845 * objects where the spinlock is known to not be used. 846 */ 847static inline void __skb_queue_head_init(struct sk_buff_head *list) 848{ 849 list->prev = list->next = (struct sk_buff *)list; 850 list->qlen = 0; 851} 852 853/* 854 * This function creates a split out lock class for each invocation; 855 * this is needed for now since a whole lot of users of the skb-queue 856 * infrastructure in drivers have different locking usage (in hardirq) 857 * than the networking core (in softirq only). In the long run either the 858 * network layer or drivers should need annotation to consolidate the 859 * main types of usage into 3 classes. 860 */ 861static inline void skb_queue_head_init(struct sk_buff_head *list) 862{ 863 spin_lock_init(&list->lock); 864 __skb_queue_head_init(list); 865} 866 867static inline void skb_queue_head_init_class(struct sk_buff_head *list, 868 struct lock_class_key *class) 869{ 870 skb_queue_head_init(list); 871 lockdep_set_class(&list->lock, class); 872} 873 874/* 875 * Insert an sk_buff on a list. 876 * 877 * The "__skb_xxxx()" functions are the non-atomic ones that 878 * can only be called with interrupts disabled. 879 */ 880extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 881static inline void __skb_insert(struct sk_buff *newsk, 882 struct sk_buff *prev, struct sk_buff *next, 883 struct sk_buff_head *list) 884{ 885 newsk->next = next; 886 newsk->prev = prev; 887 next->prev = prev->next = newsk; 888 list->qlen++; 889} 890 891static inline void __skb_queue_splice(const struct sk_buff_head *list, 892 struct sk_buff *prev, 893 struct sk_buff *next) 894{ 895 struct sk_buff *first = list->next; 896 struct sk_buff *last = list->prev; 897 898 first->prev = prev; 899 prev->next = first; 900 901 last->next = next; 902 next->prev = last; 903} 904 905/** 906 * skb_queue_splice - join two skb lists, this is designed for stacks 907 * @list: the new list to add 908 * @head: the place to add it in the first list 909 */ 910static inline void skb_queue_splice(const struct sk_buff_head *list, 911 struct sk_buff_head *head) 912{ 913 if (!skb_queue_empty(list)) { 914 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 915 head->qlen += list->qlen; 916 } 917} 918 919/** 920 * skb_queue_splice - join two skb lists and reinitialise the emptied list 921 * @list: the new list to add 922 * @head: the place to add it in the first list 923 * 924 * The list at @list is reinitialised 925 */ 926static inline void skb_queue_splice_init(struct sk_buff_head *list, 927 struct sk_buff_head *head) 928{ 929 if (!skb_queue_empty(list)) { 930 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 931 head->qlen += list->qlen; 932 __skb_queue_head_init(list); 933 } 934} 935 936/** 937 * skb_queue_splice_tail - join two skb lists, each list being a queue 938 * @list: the new list to add 939 * @head: the place to add it in the first list 940 */ 941static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 942 struct sk_buff_head *head) 943{ 944 if (!skb_queue_empty(list)) { 945 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 946 head->qlen += list->qlen; 947 } 948} 949 950/** 951 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list 952 * @list: the new list to add 953 * @head: the place to add it in the first list 954 * 955 * Each of the lists is a queue. 956 * The list at @list is reinitialised 957 */ 958static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 959 struct sk_buff_head *head) 960{ 961 if (!skb_queue_empty(list)) { 962 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 963 head->qlen += list->qlen; 964 __skb_queue_head_init(list); 965 } 966} 967 968/** 969 * __skb_queue_after - queue a buffer at the list head 970 * @list: list to use 971 * @prev: place after this buffer 972 * @newsk: buffer to queue 973 * 974 * Queue a buffer int the middle of a list. This function takes no locks 975 * and you must therefore hold required locks before calling it. 976 * 977 * A buffer cannot be placed on two lists at the same time. 978 */ 979static inline void __skb_queue_after(struct sk_buff_head *list, 980 struct sk_buff *prev, 981 struct sk_buff *newsk) 982{ 983 __skb_insert(newsk, prev, prev->next, list); 984} 985 986extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 987 struct sk_buff_head *list); 988 989static inline void __skb_queue_before(struct sk_buff_head *list, 990 struct sk_buff *next, 991 struct sk_buff *newsk) 992{ 993 __skb_insert(newsk, next->prev, next, list); 994} 995 996/** 997 * __skb_queue_head - queue a buffer at the list head 998 * @list: list to use 999 * @newsk: buffer to queue 1000 * 1001 * Queue a buffer at the start of a list. This function takes no locks 1002 * and you must therefore hold required locks before calling it. 1003 * 1004 * A buffer cannot be placed on two lists at the same time. 1005 */ 1006extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1007static inline void __skb_queue_head(struct sk_buff_head *list, 1008 struct sk_buff *newsk) 1009{ 1010 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1011} 1012 1013/** 1014 * __skb_queue_tail - queue a buffer at the list tail 1015 * @list: list to use 1016 * @newsk: buffer to queue 1017 * 1018 * Queue a buffer at the end of a list. This function takes no locks 1019 * and you must therefore hold required locks before calling it. 1020 * 1021 * A buffer cannot be placed on two lists at the same time. 1022 */ 1023extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1024static inline void __skb_queue_tail(struct sk_buff_head *list, 1025 struct sk_buff *newsk) 1026{ 1027 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1028} 1029 1030/* 1031 * remove sk_buff from list. _Must_ be called atomically, and with 1032 * the list known.. 1033 */ 1034extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1035static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1036{ 1037 struct sk_buff *next, *prev; 1038 1039 list->qlen--; 1040 next = skb->next; 1041 prev = skb->prev; 1042 skb->next = skb->prev = NULL; 1043 next->prev = prev; 1044 prev->next = next; 1045} 1046 1047/** 1048 * __skb_dequeue - remove from the head of the queue 1049 * @list: list to dequeue from 1050 * 1051 * Remove the head of the list. This function does not take any locks 1052 * so must be used with appropriate locks held only. The head item is 1053 * returned or %NULL if the list is empty. 1054 */ 1055extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1056static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1057{ 1058 struct sk_buff *skb = skb_peek(list); 1059 if (skb) 1060 __skb_unlink(skb, list); 1061 return skb; 1062} 1063 1064/** 1065 * __skb_dequeue_tail - remove from the tail of the queue 1066 * @list: list to dequeue from 1067 * 1068 * Remove the tail of the list. This function does not take any locks 1069 * so must be used with appropriate locks held only. The tail item is 1070 * returned or %NULL if the list is empty. 1071 */ 1072extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1073static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1074{ 1075 struct sk_buff *skb = skb_peek_tail(list); 1076 if (skb) 1077 __skb_unlink(skb, list); 1078 return skb; 1079} 1080 1081 1082static inline int skb_is_nonlinear(const struct sk_buff *skb) 1083{ 1084 return skb->data_len; 1085} 1086 1087static inline unsigned int skb_headlen(const struct sk_buff *skb) 1088{ 1089 return skb->len - skb->data_len; 1090} 1091 1092static inline int skb_pagelen(const struct sk_buff *skb) 1093{ 1094 int i, len = 0; 1095 1096 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1097 len += skb_shinfo(skb)->frags[i].size; 1098 return len + skb_headlen(skb); 1099} 1100 1101static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1102 struct page *page, int off, int size) 1103{ 1104 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1105 1106 frag->page = page; 1107 frag->page_offset = off; 1108 frag->size = size; 1109 skb_shinfo(skb)->nr_frags = i + 1; 1110} 1111 1112extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1113 int off, int size); 1114 1115#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1116#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1117#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1118 1119#ifdef NET_SKBUFF_DATA_USES_OFFSET 1120static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1121{ 1122 return skb->head + skb->tail; 1123} 1124 1125static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1126{ 1127 skb->tail = skb->data - skb->head; 1128} 1129 1130static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1131{ 1132 skb_reset_tail_pointer(skb); 1133 skb->tail += offset; 1134} 1135#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1136static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1137{ 1138 return skb->tail; 1139} 1140 1141static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1142{ 1143 skb->tail = skb->data; 1144} 1145 1146static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1147{ 1148 skb->tail = skb->data + offset; 1149} 1150 1151#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1152 1153/* 1154 * Add data to an sk_buff 1155 */ 1156extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1157static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1158{ 1159 unsigned char *tmp = skb_tail_pointer(skb); 1160 SKB_LINEAR_ASSERT(skb); 1161 skb->tail += len; 1162 skb->len += len; 1163 return tmp; 1164} 1165 1166extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1167static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1168{ 1169 skb->data -= len; 1170 skb->len += len; 1171 return skb->data; 1172} 1173 1174extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1175static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1176{ 1177 skb->len -= len; 1178 BUG_ON(skb->len < skb->data_len); 1179 return skb->data += len; 1180} 1181 1182static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1183{ 1184 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1185} 1186 1187extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1188 1189static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1190{ 1191 if (len > skb_headlen(skb) && 1192 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1193 return NULL; 1194 skb->len -= len; 1195 return skb->data += len; 1196} 1197 1198static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1199{ 1200 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1201} 1202 1203static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1204{ 1205 if (likely(len <= skb_headlen(skb))) 1206 return 1; 1207 if (unlikely(len > skb->len)) 1208 return 0; 1209 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1210} 1211 1212/** 1213 * skb_headroom - bytes at buffer head 1214 * @skb: buffer to check 1215 * 1216 * Return the number of bytes of free space at the head of an &sk_buff. 1217 */ 1218static inline unsigned int skb_headroom(const struct sk_buff *skb) 1219{ 1220 return skb->data - skb->head; 1221} 1222 1223/** 1224 * skb_tailroom - bytes at buffer end 1225 * @skb: buffer to check 1226 * 1227 * Return the number of bytes of free space at the tail of an sk_buff 1228 */ 1229static inline int skb_tailroom(const struct sk_buff *skb) 1230{ 1231 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1232} 1233 1234/** 1235 * skb_reserve - adjust headroom 1236 * @skb: buffer to alter 1237 * @len: bytes to move 1238 * 1239 * Increase the headroom of an empty &sk_buff by reducing the tail 1240 * room. This is only allowed for an empty buffer. 1241 */ 1242static inline void skb_reserve(struct sk_buff *skb, int len) 1243{ 1244 skb->data += len; 1245 skb->tail += len; 1246} 1247 1248#ifdef NET_SKBUFF_DATA_USES_OFFSET 1249static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1250{ 1251 return skb->head + skb->transport_header; 1252} 1253 1254static inline void skb_reset_transport_header(struct sk_buff *skb) 1255{ 1256 skb->transport_header = skb->data - skb->head; 1257} 1258 1259static inline void skb_set_transport_header(struct sk_buff *skb, 1260 const int offset) 1261{ 1262 skb_reset_transport_header(skb); 1263 skb->transport_header += offset; 1264} 1265 1266static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1267{ 1268 return skb->head + skb->network_header; 1269} 1270 1271static inline void skb_reset_network_header(struct sk_buff *skb) 1272{ 1273 skb->network_header = skb->data - skb->head; 1274} 1275 1276static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1277{ 1278 skb_reset_network_header(skb); 1279 skb->network_header += offset; 1280} 1281 1282static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1283{ 1284 return skb->head + skb->mac_header; 1285} 1286 1287static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1288{ 1289 return skb->mac_header != ~0U; 1290} 1291 1292static inline void skb_reset_mac_header(struct sk_buff *skb) 1293{ 1294 skb->mac_header = skb->data - skb->head; 1295} 1296 1297static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1298{ 1299 skb_reset_mac_header(skb); 1300 skb->mac_header += offset; 1301} 1302 1303#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1304 1305static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1306{ 1307 return skb->transport_header; 1308} 1309 1310static inline void skb_reset_transport_header(struct sk_buff *skb) 1311{ 1312 skb->transport_header = skb->data; 1313} 1314 1315static inline void skb_set_transport_header(struct sk_buff *skb, 1316 const int offset) 1317{ 1318 skb->transport_header = skb->data + offset; 1319} 1320 1321static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1322{ 1323 return skb->network_header; 1324} 1325 1326static inline void skb_reset_network_header(struct sk_buff *skb) 1327{ 1328 skb->network_header = skb->data; 1329} 1330 1331static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1332{ 1333 skb->network_header = skb->data + offset; 1334} 1335 1336static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1337{ 1338 return skb->mac_header; 1339} 1340 1341static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1342{ 1343 return skb->mac_header != NULL; 1344} 1345 1346static inline void skb_reset_mac_header(struct sk_buff *skb) 1347{ 1348 skb->mac_header = skb->data; 1349} 1350 1351static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1352{ 1353 skb->mac_header = skb->data + offset; 1354} 1355#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1356 1357static inline int skb_transport_offset(const struct sk_buff *skb) 1358{ 1359 return skb_transport_header(skb) - skb->data; 1360} 1361 1362static inline u32 skb_network_header_len(const struct sk_buff *skb) 1363{ 1364 return skb->transport_header - skb->network_header; 1365} 1366 1367static inline int skb_network_offset(const struct sk_buff *skb) 1368{ 1369 return skb_network_header(skb) - skb->data; 1370} 1371 1372static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1373{ 1374 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1375} 1376 1377/* 1378 * CPUs often take a performance hit when accessing unaligned memory 1379 * locations. The actual performance hit varies, it can be small if the 1380 * hardware handles it or large if we have to take an exception and fix it 1381 * in software. 1382 * 1383 * Since an ethernet header is 14 bytes network drivers often end up with 1384 * the IP header at an unaligned offset. The IP header can be aligned by 1385 * shifting the start of the packet by 2 bytes. Drivers should do this 1386 * with: 1387 * 1388 * skb_reserve(skb, NET_IP_ALIGN); 1389 * 1390 * The downside to this alignment of the IP header is that the DMA is now 1391 * unaligned. On some architectures the cost of an unaligned DMA is high 1392 * and this cost outweighs the gains made by aligning the IP header. 1393 * 1394 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1395 * to be overridden. 1396 */ 1397#ifndef NET_IP_ALIGN 1398#define NET_IP_ALIGN 2 1399#endif 1400 1401/* 1402 * The networking layer reserves some headroom in skb data (via 1403 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1404 * the header has to grow. In the default case, if the header has to grow 1405 * 32 bytes or less we avoid the reallocation. 1406 * 1407 * Unfortunately this headroom changes the DMA alignment of the resulting 1408 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1409 * on some architectures. An architecture can override this value, 1410 * perhaps setting it to a cacheline in size (since that will maintain 1411 * cacheline alignment of the DMA). It must be a power of 2. 1412 * 1413 * Various parts of the networking layer expect at least 32 bytes of 1414 * headroom, you should not reduce this. 1415 * 1416 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1417 * to reduce average number of cache lines per packet. 1418 * get_rps_cpus() for example only access one 64 bytes aligned block : 1419 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1420 */ 1421#ifndef NET_SKB_PAD 1422#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1423#endif 1424 1425extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1426 1427static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1428{ 1429 if (unlikely(skb->data_len)) { 1430 WARN_ON(1); 1431 return; 1432 } 1433 skb->len = len; 1434 skb_set_tail_pointer(skb, len); 1435} 1436 1437extern void skb_trim(struct sk_buff *skb, unsigned int len); 1438 1439static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1440{ 1441 if (skb->data_len) 1442 return ___pskb_trim(skb, len); 1443 __skb_trim(skb, len); 1444 return 0; 1445} 1446 1447static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1448{ 1449 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1450} 1451 1452/** 1453 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1454 * @skb: buffer to alter 1455 * @len: new length 1456 * 1457 * This is identical to pskb_trim except that the caller knows that 1458 * the skb is not cloned so we should never get an error due to out- 1459 * of-memory. 1460 */ 1461static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1462{ 1463 int err = pskb_trim(skb, len); 1464 BUG_ON(err); 1465} 1466 1467/** 1468 * skb_orphan - orphan a buffer 1469 * @skb: buffer to orphan 1470 * 1471 * If a buffer currently has an owner then we call the owner's 1472 * destructor function and make the @skb unowned. The buffer continues 1473 * to exist but is no longer charged to its former owner. 1474 */ 1475static inline void skb_orphan(struct sk_buff *skb) 1476{ 1477 if (skb->destructor) 1478 skb->destructor(skb); 1479 skb->destructor = NULL; 1480 skb->sk = NULL; 1481} 1482 1483/** 1484 * __skb_queue_purge - empty a list 1485 * @list: list to empty 1486 * 1487 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1488 * the list and one reference dropped. This function does not take the 1489 * list lock and the caller must hold the relevant locks to use it. 1490 */ 1491extern void skb_queue_purge(struct sk_buff_head *list); 1492static inline void __skb_queue_purge(struct sk_buff_head *list) 1493{ 1494 struct sk_buff *skb; 1495 while ((skb = __skb_dequeue(list)) != NULL) 1496 kfree_skb(skb); 1497} 1498 1499/** 1500 * __dev_alloc_skb - allocate an skbuff for receiving 1501 * @length: length to allocate 1502 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1503 * 1504 * Allocate a new &sk_buff and assign it a usage count of one. The 1505 * buffer has unspecified headroom built in. Users should allocate 1506 * the headroom they think they need without accounting for the 1507 * built in space. The built in space is used for optimisations. 1508 * 1509 * %NULL is returned if there is no free memory. 1510 */ 1511static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1512 gfp_t gfp_mask) 1513{ 1514 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1515 if (likely(skb)) 1516 skb_reserve(skb, NET_SKB_PAD); 1517 return skb; 1518} 1519 1520extern struct sk_buff *dev_alloc_skb(unsigned int length); 1521 1522extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1523 unsigned int length, gfp_t gfp_mask); 1524 1525/** 1526 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1527 * @dev: network device to receive on 1528 * @length: length to allocate 1529 * 1530 * Allocate a new &sk_buff and assign it a usage count of one. The 1531 * buffer has unspecified headroom built in. Users should allocate 1532 * the headroom they think they need without accounting for the 1533 * built in space. The built in space is used for optimisations. 1534 * 1535 * %NULL is returned if there is no free memory. Although this function 1536 * allocates memory it can be called from an interrupt. 1537 */ 1538static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1539 unsigned int length) 1540{ 1541 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1542} 1543 1544static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1545 unsigned int length) 1546{ 1547 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN); 1548 1549 if (NET_IP_ALIGN && skb) 1550 skb_reserve(skb, NET_IP_ALIGN); 1551 return skb; 1552} 1553 1554/** 1555 * __netdev_alloc_page - allocate a page for ps-rx on a specific device 1556 * @dev: network device to receive on 1557 * @gfp_mask: alloc_pages_node mask 1558 * 1559 * Allocate a new page. dev currently unused. 1560 * 1561 * %NULL is returned if there is no free memory. 1562 */ 1563static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask) 1564{ 1565 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0); 1566} 1567 1568/** 1569 * netdev_alloc_page - allocate a page for ps-rx on a specific device 1570 * @dev: network device to receive on 1571 * 1572 * Allocate a new page. dev currently unused. 1573 * 1574 * %NULL is returned if there is no free memory. 1575 */ 1576static inline struct page *netdev_alloc_page(struct net_device *dev) 1577{ 1578 return __netdev_alloc_page(dev, GFP_ATOMIC); 1579} 1580 1581static inline void netdev_free_page(struct net_device *dev, struct page *page) 1582{ 1583 __free_page(page); 1584} 1585 1586/** 1587 * skb_clone_writable - is the header of a clone writable 1588 * @skb: buffer to check 1589 * @len: length up to which to write 1590 * 1591 * Returns true if modifying the header part of the cloned buffer 1592 * does not requires the data to be copied. 1593 */ 1594static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1595{ 1596 return !skb_header_cloned(skb) && 1597 skb_headroom(skb) + len <= skb->hdr_len; 1598} 1599 1600static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1601 int cloned) 1602{ 1603 int delta = 0; 1604 1605 if (headroom < NET_SKB_PAD) 1606 headroom = NET_SKB_PAD; 1607 if (headroom > skb_headroom(skb)) 1608 delta = headroom - skb_headroom(skb); 1609 1610 if (delta || cloned) 1611 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1612 GFP_ATOMIC); 1613 return 0; 1614} 1615 1616/** 1617 * skb_cow - copy header of skb when it is required 1618 * @skb: buffer to cow 1619 * @headroom: needed headroom 1620 * 1621 * If the skb passed lacks sufficient headroom or its data part 1622 * is shared, data is reallocated. If reallocation fails, an error 1623 * is returned and original skb is not changed. 1624 * 1625 * The result is skb with writable area skb->head...skb->tail 1626 * and at least @headroom of space at head. 1627 */ 1628static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1629{ 1630 return __skb_cow(skb, headroom, skb_cloned(skb)); 1631} 1632 1633/** 1634 * skb_cow_head - skb_cow but only making the head writable 1635 * @skb: buffer to cow 1636 * @headroom: needed headroom 1637 * 1638 * This function is identical to skb_cow except that we replace the 1639 * skb_cloned check by skb_header_cloned. It should be used when 1640 * you only need to push on some header and do not need to modify 1641 * the data. 1642 */ 1643static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1644{ 1645 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1646} 1647 1648/** 1649 * skb_padto - pad an skbuff up to a minimal size 1650 * @skb: buffer to pad 1651 * @len: minimal length 1652 * 1653 * Pads up a buffer to ensure the trailing bytes exist and are 1654 * blanked. If the buffer already contains sufficient data it 1655 * is untouched. Otherwise it is extended. Returns zero on 1656 * success. The skb is freed on error. 1657 */ 1658 1659static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1660{ 1661 unsigned int size = skb->len; 1662 if (likely(size >= len)) 1663 return 0; 1664 return skb_pad(skb, len - size); 1665} 1666 1667static inline int skb_add_data(struct sk_buff *skb, 1668 char __user *from, int copy) 1669{ 1670 const int off = skb->len; 1671 1672 if (skb->ip_summed == CHECKSUM_NONE) { 1673 int err = 0; 1674 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1675 copy, 0, &err); 1676 if (!err) { 1677 skb->csum = csum_block_add(skb->csum, csum, off); 1678 return 0; 1679 } 1680 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1681 return 0; 1682 1683 __skb_trim(skb, off); 1684 return -EFAULT; 1685} 1686 1687static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1688 struct page *page, int off) 1689{ 1690 if (i) { 1691 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1692 1693 return page == frag->page && 1694 off == frag->page_offset + frag->size; 1695 } 1696 return 0; 1697} 1698 1699static inline int __skb_linearize(struct sk_buff *skb) 1700{ 1701 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1702} 1703 1704/** 1705 * skb_linearize - convert paged skb to linear one 1706 * @skb: buffer to linarize 1707 * 1708 * If there is no free memory -ENOMEM is returned, otherwise zero 1709 * is returned and the old skb data released. 1710 */ 1711static inline int skb_linearize(struct sk_buff *skb) 1712{ 1713 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1714} 1715 1716/** 1717 * skb_linearize_cow - make sure skb is linear and writable 1718 * @skb: buffer to process 1719 * 1720 * If there is no free memory -ENOMEM is returned, otherwise zero 1721 * is returned and the old skb data released. 1722 */ 1723static inline int skb_linearize_cow(struct sk_buff *skb) 1724{ 1725 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1726 __skb_linearize(skb) : 0; 1727} 1728 1729/** 1730 * skb_postpull_rcsum - update checksum for received skb after pull 1731 * @skb: buffer to update 1732 * @start: start of data before pull 1733 * @len: length of data pulled 1734 * 1735 * After doing a pull on a received packet, you need to call this to 1736 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1737 * CHECKSUM_NONE so that it can be recomputed from scratch. 1738 */ 1739 1740static inline void skb_postpull_rcsum(struct sk_buff *skb, 1741 const void *start, unsigned int len) 1742{ 1743 if (skb->ip_summed == CHECKSUM_COMPLETE) 1744 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1745} 1746 1747unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1748 1749/** 1750 * pskb_trim_rcsum - trim received skb and update checksum 1751 * @skb: buffer to trim 1752 * @len: new length 1753 * 1754 * This is exactly the same as pskb_trim except that it ensures the 1755 * checksum of received packets are still valid after the operation. 1756 */ 1757 1758static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1759{ 1760 if (likely(len >= skb->len)) 1761 return 0; 1762 if (skb->ip_summed == CHECKSUM_COMPLETE) 1763 skb->ip_summed = CHECKSUM_NONE; 1764 return __pskb_trim(skb, len); 1765} 1766 1767#define skb_queue_walk(queue, skb) \ 1768 for (skb = (queue)->next; \ 1769 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1770 skb = skb->next) 1771 1772#define skb_queue_walk_safe(queue, skb, tmp) \ 1773 for (skb = (queue)->next, tmp = skb->next; \ 1774 skb != (struct sk_buff *)(queue); \ 1775 skb = tmp, tmp = skb->next) 1776 1777#define skb_queue_walk_from(queue, skb) \ 1778 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1779 skb = skb->next) 1780 1781#define skb_queue_walk_from_safe(queue, skb, tmp) \ 1782 for (tmp = skb->next; \ 1783 skb != (struct sk_buff *)(queue); \ 1784 skb = tmp, tmp = skb->next) 1785 1786#define skb_queue_reverse_walk(queue, skb) \ 1787 for (skb = (queue)->prev; \ 1788 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1789 skb = skb->prev) 1790 1791 1792static inline bool skb_has_frag_list(const struct sk_buff *skb) 1793{ 1794 return skb_shinfo(skb)->frag_list != NULL; 1795} 1796 1797static inline void skb_frag_list_init(struct sk_buff *skb) 1798{ 1799 skb_shinfo(skb)->frag_list = NULL; 1800} 1801 1802static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 1803{ 1804 frag->next = skb_shinfo(skb)->frag_list; 1805 skb_shinfo(skb)->frag_list = frag; 1806} 1807 1808#define skb_walk_frags(skb, iter) \ 1809 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 1810 1811extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1812 int *peeked, int *err); 1813extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1814 int noblock, int *err); 1815extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1816 struct poll_table_struct *wait); 1817extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1818 int offset, struct iovec *to, 1819 int size); 1820extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1821 int hlen, 1822 struct iovec *iov); 1823extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 1824 int offset, 1825 const struct iovec *from, 1826 int from_offset, 1827 int len); 1828extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 1829 int offset, 1830 const struct iovec *to, 1831 int to_offset, 1832 int size); 1833extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1834extern void skb_free_datagram_locked(struct sock *sk, 1835 struct sk_buff *skb); 1836extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1837 unsigned int flags); 1838extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1839 int len, __wsum csum); 1840extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1841 void *to, int len); 1842extern int skb_store_bits(struct sk_buff *skb, int offset, 1843 const void *from, int len); 1844extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1845 int offset, u8 *to, int len, 1846 __wsum csum); 1847extern int skb_splice_bits(struct sk_buff *skb, 1848 unsigned int offset, 1849 struct pipe_inode_info *pipe, 1850 unsigned int len, 1851 unsigned int flags); 1852extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1853extern void skb_split(struct sk_buff *skb, 1854 struct sk_buff *skb1, const u32 len); 1855extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 1856 int shiftlen); 1857 1858extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1859 1860static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1861 int len, void *buffer) 1862{ 1863 int hlen = skb_headlen(skb); 1864 1865 if (hlen - offset >= len) 1866 return skb->data + offset; 1867 1868 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1869 return NULL; 1870 1871 return buffer; 1872} 1873 1874static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1875 void *to, 1876 const unsigned int len) 1877{ 1878 memcpy(to, skb->data, len); 1879} 1880 1881static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1882 const int offset, void *to, 1883 const unsigned int len) 1884{ 1885 memcpy(to, skb->data + offset, len); 1886} 1887 1888static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1889 const void *from, 1890 const unsigned int len) 1891{ 1892 memcpy(skb->data, from, len); 1893} 1894 1895static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1896 const int offset, 1897 const void *from, 1898 const unsigned int len) 1899{ 1900 memcpy(skb->data + offset, from, len); 1901} 1902 1903extern void skb_init(void); 1904 1905static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 1906{ 1907 return skb->tstamp; 1908} 1909 1910/** 1911 * skb_get_timestamp - get timestamp from a skb 1912 * @skb: skb to get stamp from 1913 * @stamp: pointer to struct timeval to store stamp in 1914 * 1915 * Timestamps are stored in the skb as offsets to a base timestamp. 1916 * This function converts the offset back to a struct timeval and stores 1917 * it in stamp. 1918 */ 1919static inline void skb_get_timestamp(const struct sk_buff *skb, 1920 struct timeval *stamp) 1921{ 1922 *stamp = ktime_to_timeval(skb->tstamp); 1923} 1924 1925static inline void skb_get_timestampns(const struct sk_buff *skb, 1926 struct timespec *stamp) 1927{ 1928 *stamp = ktime_to_timespec(skb->tstamp); 1929} 1930 1931static inline void __net_timestamp(struct sk_buff *skb) 1932{ 1933 skb->tstamp = ktime_get_real(); 1934} 1935 1936static inline ktime_t net_timedelta(ktime_t t) 1937{ 1938 return ktime_sub(ktime_get_real(), t); 1939} 1940 1941static inline ktime_t net_invalid_timestamp(void) 1942{ 1943 return ktime_set(0, 0); 1944} 1945 1946extern void skb_timestamping_init(void); 1947 1948#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 1949 1950extern void skb_clone_tx_timestamp(struct sk_buff *skb); 1951extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 1952 1953#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 1954 1955static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 1956{ 1957} 1958 1959static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 1960{ 1961 return false; 1962} 1963 1964#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 1965 1966/** 1967 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 1968 * 1969 * @skb: clone of the the original outgoing packet 1970 * @hwtstamps: hardware time stamps 1971 * 1972 */ 1973void skb_complete_tx_timestamp(struct sk_buff *skb, 1974 struct skb_shared_hwtstamps *hwtstamps); 1975 1976/** 1977 * skb_tstamp_tx - queue clone of skb with send time stamps 1978 * @orig_skb: the original outgoing packet 1979 * @hwtstamps: hardware time stamps, may be NULL if not available 1980 * 1981 * If the skb has a socket associated, then this function clones the 1982 * skb (thus sharing the actual data and optional structures), stores 1983 * the optional hardware time stamping information (if non NULL) or 1984 * generates a software time stamp (otherwise), then queues the clone 1985 * to the error queue of the socket. Errors are silently ignored. 1986 */ 1987extern void skb_tstamp_tx(struct sk_buff *orig_skb, 1988 struct skb_shared_hwtstamps *hwtstamps); 1989 1990static inline void sw_tx_timestamp(struct sk_buff *skb) 1991{ 1992 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 1993 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 1994 skb_tstamp_tx(skb, NULL); 1995} 1996 1997/** 1998 * skb_tx_timestamp() - Driver hook for transmit timestamping 1999 * 2000 * Ethernet MAC Drivers should call this function in their hard_xmit() 2001 * function as soon as possible after giving the sk_buff to the MAC 2002 * hardware, but before freeing the sk_buff. 2003 * 2004 * @skb: A socket buffer. 2005 */ 2006static inline void skb_tx_timestamp(struct sk_buff *skb) 2007{ 2008 skb_clone_tx_timestamp(skb); 2009 sw_tx_timestamp(skb); 2010} 2011 2012extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2013extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2014 2015static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2016{ 2017 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2018} 2019 2020/** 2021 * skb_checksum_complete - Calculate checksum of an entire packet 2022 * @skb: packet to process 2023 * 2024 * This function calculates the checksum over the entire packet plus 2025 * the value of skb->csum. The latter can be used to supply the 2026 * checksum of a pseudo header as used by TCP/UDP. It returns the 2027 * checksum. 2028 * 2029 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2030 * this function can be used to verify that checksum on received 2031 * packets. In that case the function should return zero if the 2032 * checksum is correct. In particular, this function will return zero 2033 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2034 * hardware has already verified the correctness of the checksum. 2035 */ 2036static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2037{ 2038 return skb_csum_unnecessary(skb) ? 2039 0 : __skb_checksum_complete(skb); 2040} 2041 2042#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2043extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2044static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2045{ 2046 if (nfct && atomic_dec_and_test(&nfct->use)) 2047 nf_conntrack_destroy(nfct); 2048} 2049static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2050{ 2051 if (nfct) 2052 atomic_inc(&nfct->use); 2053} 2054static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2055{ 2056 if (skb) 2057 atomic_inc(&skb->users); 2058} 2059static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2060{ 2061 if (skb) 2062 kfree_skb(skb); 2063} 2064#endif 2065#ifdef CONFIG_BRIDGE_NETFILTER 2066static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2067{ 2068 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2069 kfree(nf_bridge); 2070} 2071static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2072{ 2073 if (nf_bridge) 2074 atomic_inc(&nf_bridge->use); 2075} 2076#endif /* CONFIG_BRIDGE_NETFILTER */ 2077static inline void nf_reset(struct sk_buff *skb) 2078{ 2079#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2080 nf_conntrack_put(skb->nfct); 2081 skb->nfct = NULL; 2082 nf_conntrack_put_reasm(skb->nfct_reasm); 2083 skb->nfct_reasm = NULL; 2084#endif 2085#ifdef CONFIG_BRIDGE_NETFILTER 2086 nf_bridge_put(skb->nf_bridge); 2087 skb->nf_bridge = NULL; 2088#endif 2089} 2090 2091/* Note: This doesn't put any conntrack and bridge info in dst. */ 2092static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2093{ 2094#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2095 dst->nfct = src->nfct; 2096 nf_conntrack_get(src->nfct); 2097 dst->nfctinfo = src->nfctinfo; 2098 dst->nfct_reasm = src->nfct_reasm; 2099 nf_conntrack_get_reasm(src->nfct_reasm); 2100#endif 2101#ifdef CONFIG_BRIDGE_NETFILTER 2102 dst->nf_bridge = src->nf_bridge; 2103 nf_bridge_get(src->nf_bridge); 2104#endif 2105} 2106 2107static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2108{ 2109#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2110 nf_conntrack_put(dst->nfct); 2111 nf_conntrack_put_reasm(dst->nfct_reasm); 2112#endif 2113#ifdef CONFIG_BRIDGE_NETFILTER 2114 nf_bridge_put(dst->nf_bridge); 2115#endif 2116 __nf_copy(dst, src); 2117} 2118 2119#ifdef CONFIG_NETWORK_SECMARK 2120static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2121{ 2122 to->secmark = from->secmark; 2123} 2124 2125static inline void skb_init_secmark(struct sk_buff *skb) 2126{ 2127 skb->secmark = 0; 2128} 2129#else 2130static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2131{ } 2132 2133static inline void skb_init_secmark(struct sk_buff *skb) 2134{ } 2135#endif 2136 2137static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2138{ 2139 skb->queue_mapping = queue_mapping; 2140} 2141 2142static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2143{ 2144 return skb->queue_mapping; 2145} 2146 2147static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2148{ 2149 to->queue_mapping = from->queue_mapping; 2150} 2151 2152static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2153{ 2154 skb->queue_mapping = rx_queue + 1; 2155} 2156 2157static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2158{ 2159 return skb->queue_mapping - 1; 2160} 2161 2162static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2163{ 2164 return skb->queue_mapping != 0; 2165} 2166 2167extern u16 skb_tx_hash(const struct net_device *dev, 2168 const struct sk_buff *skb); 2169 2170#ifdef CONFIG_XFRM 2171static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2172{ 2173 return skb->sp; 2174} 2175#else 2176static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2177{ 2178 return NULL; 2179} 2180#endif 2181 2182static inline int skb_is_gso(const struct sk_buff *skb) 2183{ 2184 return skb_shinfo(skb)->gso_size; 2185} 2186 2187static inline int skb_is_gso_v6(const struct sk_buff *skb) 2188{ 2189 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2190} 2191 2192extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2193 2194static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2195{ 2196 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2197 * wanted then gso_type will be set. */ 2198 struct skb_shared_info *shinfo = skb_shinfo(skb); 2199 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2200 unlikely(shinfo->gso_type == 0)) { 2201 __skb_warn_lro_forwarding(skb); 2202 return true; 2203 } 2204 return false; 2205} 2206 2207static inline void skb_forward_csum(struct sk_buff *skb) 2208{ 2209 /* Unfortunately we don't support this one. Any brave souls? */ 2210 if (skb->ip_summed == CHECKSUM_COMPLETE) 2211 skb->ip_summed = CHECKSUM_NONE; 2212} 2213 2214/** 2215 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2216 * @skb: skb to check 2217 * 2218 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2219 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2220 * use this helper, to document places where we make this assertion. 2221 */ 2222static inline void skb_checksum_none_assert(struct sk_buff *skb) 2223{ 2224#ifdef DEBUG 2225 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2226#endif 2227} 2228 2229bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2230#endif /* __KERNEL__ */ 2231#endif /* _LINUX_SKBUFF_H */