at v2.6.37 2590 lines 76 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4/* 5 * cloning flags: 6 */ 7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8#define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15#define CLONE_THREAD 0x00010000 /* Same thread group? */ 16#define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24#define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25#define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26#define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27#define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28#define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29#define CLONE_NEWNET 0x40000000 /* New network namespace */ 30#define CLONE_IO 0x80000000 /* Clone io context */ 31 32/* 33 * Scheduling policies 34 */ 35#define SCHED_NORMAL 0 36#define SCHED_FIFO 1 37#define SCHED_RR 2 38#define SCHED_BATCH 3 39/* SCHED_ISO: reserved but not implemented yet */ 40#define SCHED_IDLE 5 41/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 42#define SCHED_RESET_ON_FORK 0x40000000 43 44#ifdef __KERNEL__ 45 46struct sched_param { 47 int sched_priority; 48}; 49 50#include <asm/param.h> /* for HZ */ 51 52#include <linux/capability.h> 53#include <linux/threads.h> 54#include <linux/kernel.h> 55#include <linux/types.h> 56#include <linux/timex.h> 57#include <linux/jiffies.h> 58#include <linux/rbtree.h> 59#include <linux/thread_info.h> 60#include <linux/cpumask.h> 61#include <linux/errno.h> 62#include <linux/nodemask.h> 63#include <linux/mm_types.h> 64 65#include <asm/system.h> 66#include <asm/page.h> 67#include <asm/ptrace.h> 68#include <asm/cputime.h> 69 70#include <linux/smp.h> 71#include <linux/sem.h> 72#include <linux/signal.h> 73#include <linux/path.h> 74#include <linux/compiler.h> 75#include <linux/completion.h> 76#include <linux/pid.h> 77#include <linux/percpu.h> 78#include <linux/topology.h> 79#include <linux/proportions.h> 80#include <linux/seccomp.h> 81#include <linux/rcupdate.h> 82#include <linux/rculist.h> 83#include <linux/rtmutex.h> 84 85#include <linux/time.h> 86#include <linux/param.h> 87#include <linux/resource.h> 88#include <linux/timer.h> 89#include <linux/hrtimer.h> 90#include <linux/task_io_accounting.h> 91#include <linux/kobject.h> 92#include <linux/latencytop.h> 93#include <linux/cred.h> 94 95#include <asm/processor.h> 96 97struct exec_domain; 98struct futex_pi_state; 99struct robust_list_head; 100struct bio_list; 101struct fs_struct; 102struct perf_event_context; 103 104/* 105 * List of flags we want to share for kernel threads, 106 * if only because they are not used by them anyway. 107 */ 108#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 109 110/* 111 * These are the constant used to fake the fixed-point load-average 112 * counting. Some notes: 113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 114 * a load-average precision of 10 bits integer + 11 bits fractional 115 * - if you want to count load-averages more often, you need more 116 * precision, or rounding will get you. With 2-second counting freq, 117 * the EXP_n values would be 1981, 2034 and 2043 if still using only 118 * 11 bit fractions. 119 */ 120extern unsigned long avenrun[]; /* Load averages */ 121extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 122 123#define FSHIFT 11 /* nr of bits of precision */ 124#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 125#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 126#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 127#define EXP_5 2014 /* 1/exp(5sec/5min) */ 128#define EXP_15 2037 /* 1/exp(5sec/15min) */ 129 130#define CALC_LOAD(load,exp,n) \ 131 load *= exp; \ 132 load += n*(FIXED_1-exp); \ 133 load >>= FSHIFT; 134 135extern unsigned long total_forks; 136extern int nr_threads; 137DECLARE_PER_CPU(unsigned long, process_counts); 138extern int nr_processes(void); 139extern unsigned long nr_running(void); 140extern unsigned long nr_uninterruptible(void); 141extern unsigned long nr_iowait(void); 142extern unsigned long nr_iowait_cpu(int cpu); 143extern unsigned long this_cpu_load(void); 144 145 146extern void calc_global_load(unsigned long ticks); 147 148extern unsigned long get_parent_ip(unsigned long addr); 149 150struct seq_file; 151struct cfs_rq; 152struct task_group; 153#ifdef CONFIG_SCHED_DEBUG 154extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 155extern void proc_sched_set_task(struct task_struct *p); 156extern void 157print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 158#else 159static inline void 160proc_sched_show_task(struct task_struct *p, struct seq_file *m) 161{ 162} 163static inline void proc_sched_set_task(struct task_struct *p) 164{ 165} 166static inline void 167print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 168{ 169} 170#endif 171 172/* 173 * Task state bitmask. NOTE! These bits are also 174 * encoded in fs/proc/array.c: get_task_state(). 175 * 176 * We have two separate sets of flags: task->state 177 * is about runnability, while task->exit_state are 178 * about the task exiting. Confusing, but this way 179 * modifying one set can't modify the other one by 180 * mistake. 181 */ 182#define TASK_RUNNING 0 183#define TASK_INTERRUPTIBLE 1 184#define TASK_UNINTERRUPTIBLE 2 185#define __TASK_STOPPED 4 186#define __TASK_TRACED 8 187/* in tsk->exit_state */ 188#define EXIT_ZOMBIE 16 189#define EXIT_DEAD 32 190/* in tsk->state again */ 191#define TASK_DEAD 64 192#define TASK_WAKEKILL 128 193#define TASK_WAKING 256 194#define TASK_STATE_MAX 512 195 196#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 197 198extern char ___assert_task_state[1 - 2*!!( 199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 200 201/* Convenience macros for the sake of set_task_state */ 202#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 203#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 204#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 205 206/* Convenience macros for the sake of wake_up */ 207#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 208#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 209 210/* get_task_state() */ 211#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 213 __TASK_TRACED) 214 215#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 216#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 217#define task_is_dead(task) ((task)->exit_state != 0) 218#define task_is_stopped_or_traced(task) \ 219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 220#define task_contributes_to_load(task) \ 221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 222 (task->flags & PF_FREEZING) == 0) 223 224#define __set_task_state(tsk, state_value) \ 225 do { (tsk)->state = (state_value); } while (0) 226#define set_task_state(tsk, state_value) \ 227 set_mb((tsk)->state, (state_value)) 228 229/* 230 * set_current_state() includes a barrier so that the write of current->state 231 * is correctly serialised wrt the caller's subsequent test of whether to 232 * actually sleep: 233 * 234 * set_current_state(TASK_UNINTERRUPTIBLE); 235 * if (do_i_need_to_sleep()) 236 * schedule(); 237 * 238 * If the caller does not need such serialisation then use __set_current_state() 239 */ 240#define __set_current_state(state_value) \ 241 do { current->state = (state_value); } while (0) 242#define set_current_state(state_value) \ 243 set_mb(current->state, (state_value)) 244 245/* Task command name length */ 246#define TASK_COMM_LEN 16 247 248#include <linux/spinlock.h> 249 250/* 251 * This serializes "schedule()" and also protects 252 * the run-queue from deletions/modifications (but 253 * _adding_ to the beginning of the run-queue has 254 * a separate lock). 255 */ 256extern rwlock_t tasklist_lock; 257extern spinlock_t mmlist_lock; 258 259struct task_struct; 260 261#ifdef CONFIG_PROVE_RCU 262extern int lockdep_tasklist_lock_is_held(void); 263#endif /* #ifdef CONFIG_PROVE_RCU */ 264 265extern void sched_init(void); 266extern void sched_init_smp(void); 267extern asmlinkage void schedule_tail(struct task_struct *prev); 268extern void init_idle(struct task_struct *idle, int cpu); 269extern void init_idle_bootup_task(struct task_struct *idle); 270 271extern int runqueue_is_locked(int cpu); 272 273extern cpumask_var_t nohz_cpu_mask; 274#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 275extern void select_nohz_load_balancer(int stop_tick); 276extern int get_nohz_timer_target(void); 277#else 278static inline void select_nohz_load_balancer(int stop_tick) { } 279#endif 280 281/* 282 * Only dump TASK_* tasks. (0 for all tasks) 283 */ 284extern void show_state_filter(unsigned long state_filter); 285 286static inline void show_state(void) 287{ 288 show_state_filter(0); 289} 290 291extern void show_regs(struct pt_regs *); 292 293/* 294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 295 * task), SP is the stack pointer of the first frame that should be shown in the back 296 * trace (or NULL if the entire call-chain of the task should be shown). 297 */ 298extern void show_stack(struct task_struct *task, unsigned long *sp); 299 300void io_schedule(void); 301long io_schedule_timeout(long timeout); 302 303extern void cpu_init (void); 304extern void trap_init(void); 305extern void update_process_times(int user); 306extern void scheduler_tick(void); 307 308extern void sched_show_task(struct task_struct *p); 309 310#ifdef CONFIG_LOCKUP_DETECTOR 311extern void touch_softlockup_watchdog(void); 312extern void touch_softlockup_watchdog_sync(void); 313extern void touch_all_softlockup_watchdogs(void); 314extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 315 void __user *buffer, 316 size_t *lenp, loff_t *ppos); 317extern unsigned int softlockup_panic; 318extern int softlockup_thresh; 319#else 320static inline void touch_softlockup_watchdog(void) 321{ 322} 323static inline void touch_softlockup_watchdog_sync(void) 324{ 325} 326static inline void touch_all_softlockup_watchdogs(void) 327{ 328} 329#endif 330 331#ifdef CONFIG_DETECT_HUNG_TASK 332extern unsigned int sysctl_hung_task_panic; 333extern unsigned long sysctl_hung_task_check_count; 334extern unsigned long sysctl_hung_task_timeout_secs; 335extern unsigned long sysctl_hung_task_warnings; 336extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 337 void __user *buffer, 338 size_t *lenp, loff_t *ppos); 339#else 340/* Avoid need for ifdefs elsewhere in the code */ 341enum { sysctl_hung_task_timeout_secs = 0 }; 342#endif 343 344/* Attach to any functions which should be ignored in wchan output. */ 345#define __sched __attribute__((__section__(".sched.text"))) 346 347/* Linker adds these: start and end of __sched functions */ 348extern char __sched_text_start[], __sched_text_end[]; 349 350/* Is this address in the __sched functions? */ 351extern int in_sched_functions(unsigned long addr); 352 353#define MAX_SCHEDULE_TIMEOUT LONG_MAX 354extern signed long schedule_timeout(signed long timeout); 355extern signed long schedule_timeout_interruptible(signed long timeout); 356extern signed long schedule_timeout_killable(signed long timeout); 357extern signed long schedule_timeout_uninterruptible(signed long timeout); 358asmlinkage void schedule(void); 359extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner); 360 361struct nsproxy; 362struct user_namespace; 363 364/* 365 * Default maximum number of active map areas, this limits the number of vmas 366 * per mm struct. Users can overwrite this number by sysctl but there is a 367 * problem. 368 * 369 * When a program's coredump is generated as ELF format, a section is created 370 * per a vma. In ELF, the number of sections is represented in unsigned short. 371 * This means the number of sections should be smaller than 65535 at coredump. 372 * Because the kernel adds some informative sections to a image of program at 373 * generating coredump, we need some margin. The number of extra sections is 374 * 1-3 now and depends on arch. We use "5" as safe margin, here. 375 */ 376#define MAPCOUNT_ELF_CORE_MARGIN (5) 377#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 378 379extern int sysctl_max_map_count; 380 381#include <linux/aio.h> 382 383#ifdef CONFIG_MMU 384extern void arch_pick_mmap_layout(struct mm_struct *mm); 385extern unsigned long 386arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 387 unsigned long, unsigned long); 388extern unsigned long 389arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 390 unsigned long len, unsigned long pgoff, 391 unsigned long flags); 392extern void arch_unmap_area(struct mm_struct *, unsigned long); 393extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 394#else 395static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 396#endif 397 398 399extern void set_dumpable(struct mm_struct *mm, int value); 400extern int get_dumpable(struct mm_struct *mm); 401 402/* mm flags */ 403/* dumpable bits */ 404#define MMF_DUMPABLE 0 /* core dump is permitted */ 405#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 406 407#define MMF_DUMPABLE_BITS 2 408#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 409 410/* coredump filter bits */ 411#define MMF_DUMP_ANON_PRIVATE 2 412#define MMF_DUMP_ANON_SHARED 3 413#define MMF_DUMP_MAPPED_PRIVATE 4 414#define MMF_DUMP_MAPPED_SHARED 5 415#define MMF_DUMP_ELF_HEADERS 6 416#define MMF_DUMP_HUGETLB_PRIVATE 7 417#define MMF_DUMP_HUGETLB_SHARED 8 418 419#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 420#define MMF_DUMP_FILTER_BITS 7 421#define MMF_DUMP_FILTER_MASK \ 422 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 423#define MMF_DUMP_FILTER_DEFAULT \ 424 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 425 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 426 427#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 428# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 429#else 430# define MMF_DUMP_MASK_DEFAULT_ELF 0 431#endif 432 /* leave room for more dump flags */ 433#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 434 435#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 436 437struct sighand_struct { 438 atomic_t count; 439 struct k_sigaction action[_NSIG]; 440 spinlock_t siglock; 441 wait_queue_head_t signalfd_wqh; 442}; 443 444struct pacct_struct { 445 int ac_flag; 446 long ac_exitcode; 447 unsigned long ac_mem; 448 cputime_t ac_utime, ac_stime; 449 unsigned long ac_minflt, ac_majflt; 450}; 451 452struct cpu_itimer { 453 cputime_t expires; 454 cputime_t incr; 455 u32 error; 456 u32 incr_error; 457}; 458 459/** 460 * struct task_cputime - collected CPU time counts 461 * @utime: time spent in user mode, in &cputime_t units 462 * @stime: time spent in kernel mode, in &cputime_t units 463 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 464 * 465 * This structure groups together three kinds of CPU time that are 466 * tracked for threads and thread groups. Most things considering 467 * CPU time want to group these counts together and treat all three 468 * of them in parallel. 469 */ 470struct task_cputime { 471 cputime_t utime; 472 cputime_t stime; 473 unsigned long long sum_exec_runtime; 474}; 475/* Alternate field names when used to cache expirations. */ 476#define prof_exp stime 477#define virt_exp utime 478#define sched_exp sum_exec_runtime 479 480#define INIT_CPUTIME \ 481 (struct task_cputime) { \ 482 .utime = cputime_zero, \ 483 .stime = cputime_zero, \ 484 .sum_exec_runtime = 0, \ 485 } 486 487/* 488 * Disable preemption until the scheduler is running. 489 * Reset by start_kernel()->sched_init()->init_idle(). 490 * 491 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 492 * before the scheduler is active -- see should_resched(). 493 */ 494#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 495 496/** 497 * struct thread_group_cputimer - thread group interval timer counts 498 * @cputime: thread group interval timers. 499 * @running: non-zero when there are timers running and 500 * @cputime receives updates. 501 * @lock: lock for fields in this struct. 502 * 503 * This structure contains the version of task_cputime, above, that is 504 * used for thread group CPU timer calculations. 505 */ 506struct thread_group_cputimer { 507 struct task_cputime cputime; 508 int running; 509 spinlock_t lock; 510}; 511 512/* 513 * NOTE! "signal_struct" does not have it's own 514 * locking, because a shared signal_struct always 515 * implies a shared sighand_struct, so locking 516 * sighand_struct is always a proper superset of 517 * the locking of signal_struct. 518 */ 519struct signal_struct { 520 atomic_t sigcnt; 521 atomic_t live; 522 int nr_threads; 523 524 wait_queue_head_t wait_chldexit; /* for wait4() */ 525 526 /* current thread group signal load-balancing target: */ 527 struct task_struct *curr_target; 528 529 /* shared signal handling: */ 530 struct sigpending shared_pending; 531 532 /* thread group exit support */ 533 int group_exit_code; 534 /* overloaded: 535 * - notify group_exit_task when ->count is equal to notify_count 536 * - everyone except group_exit_task is stopped during signal delivery 537 * of fatal signals, group_exit_task processes the signal. 538 */ 539 int notify_count; 540 struct task_struct *group_exit_task; 541 542 /* thread group stop support, overloads group_exit_code too */ 543 int group_stop_count; 544 unsigned int flags; /* see SIGNAL_* flags below */ 545 546 /* POSIX.1b Interval Timers */ 547 struct list_head posix_timers; 548 549 /* ITIMER_REAL timer for the process */ 550 struct hrtimer real_timer; 551 struct pid *leader_pid; 552 ktime_t it_real_incr; 553 554 /* 555 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 556 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 557 * values are defined to 0 and 1 respectively 558 */ 559 struct cpu_itimer it[2]; 560 561 /* 562 * Thread group totals for process CPU timers. 563 * See thread_group_cputimer(), et al, for details. 564 */ 565 struct thread_group_cputimer cputimer; 566 567 /* Earliest-expiration cache. */ 568 struct task_cputime cputime_expires; 569 570 struct list_head cpu_timers[3]; 571 572 struct pid *tty_old_pgrp; 573 574 /* boolean value for session group leader */ 575 int leader; 576 577 struct tty_struct *tty; /* NULL if no tty */ 578 579 /* 580 * Cumulative resource counters for dead threads in the group, 581 * and for reaped dead child processes forked by this group. 582 * Live threads maintain their own counters and add to these 583 * in __exit_signal, except for the group leader. 584 */ 585 cputime_t utime, stime, cutime, cstime; 586 cputime_t gtime; 587 cputime_t cgtime; 588#ifndef CONFIG_VIRT_CPU_ACCOUNTING 589 cputime_t prev_utime, prev_stime; 590#endif 591 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 592 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 593 unsigned long inblock, oublock, cinblock, coublock; 594 unsigned long maxrss, cmaxrss; 595 struct task_io_accounting ioac; 596 597 /* 598 * Cumulative ns of schedule CPU time fo dead threads in the 599 * group, not including a zombie group leader, (This only differs 600 * from jiffies_to_ns(utime + stime) if sched_clock uses something 601 * other than jiffies.) 602 */ 603 unsigned long long sum_sched_runtime; 604 605 /* 606 * We don't bother to synchronize most readers of this at all, 607 * because there is no reader checking a limit that actually needs 608 * to get both rlim_cur and rlim_max atomically, and either one 609 * alone is a single word that can safely be read normally. 610 * getrlimit/setrlimit use task_lock(current->group_leader) to 611 * protect this instead of the siglock, because they really 612 * have no need to disable irqs. 613 */ 614 struct rlimit rlim[RLIM_NLIMITS]; 615 616#ifdef CONFIG_BSD_PROCESS_ACCT 617 struct pacct_struct pacct; /* per-process accounting information */ 618#endif 619#ifdef CONFIG_TASKSTATS 620 struct taskstats *stats; 621#endif 622#ifdef CONFIG_AUDIT 623 unsigned audit_tty; 624 struct tty_audit_buf *tty_audit_buf; 625#endif 626 627 int oom_adj; /* OOM kill score adjustment (bit shift) */ 628 int oom_score_adj; /* OOM kill score adjustment */ 629 630 struct mutex cred_guard_mutex; /* guard against foreign influences on 631 * credential calculations 632 * (notably. ptrace) */ 633}; 634 635/* Context switch must be unlocked if interrupts are to be enabled */ 636#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 637# define __ARCH_WANT_UNLOCKED_CTXSW 638#endif 639 640/* 641 * Bits in flags field of signal_struct. 642 */ 643#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 644#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 645#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 646#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 647/* 648 * Pending notifications to parent. 649 */ 650#define SIGNAL_CLD_STOPPED 0x00000010 651#define SIGNAL_CLD_CONTINUED 0x00000020 652#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 653 654#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 655 656/* If true, all threads except ->group_exit_task have pending SIGKILL */ 657static inline int signal_group_exit(const struct signal_struct *sig) 658{ 659 return (sig->flags & SIGNAL_GROUP_EXIT) || 660 (sig->group_exit_task != NULL); 661} 662 663/* 664 * Some day this will be a full-fledged user tracking system.. 665 */ 666struct user_struct { 667 atomic_t __count; /* reference count */ 668 atomic_t processes; /* How many processes does this user have? */ 669 atomic_t files; /* How many open files does this user have? */ 670 atomic_t sigpending; /* How many pending signals does this user have? */ 671#ifdef CONFIG_INOTIFY_USER 672 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 673 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 674#endif 675#ifdef CONFIG_FANOTIFY 676 atomic_t fanotify_listeners; 677#endif 678#ifdef CONFIG_EPOLL 679 atomic_t epoll_watches; /* The number of file descriptors currently watched */ 680#endif 681#ifdef CONFIG_POSIX_MQUEUE 682 /* protected by mq_lock */ 683 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 684#endif 685 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 686 687#ifdef CONFIG_KEYS 688 struct key *uid_keyring; /* UID specific keyring */ 689 struct key *session_keyring; /* UID's default session keyring */ 690#endif 691 692 /* Hash table maintenance information */ 693 struct hlist_node uidhash_node; 694 uid_t uid; 695 struct user_namespace *user_ns; 696 697#ifdef CONFIG_PERF_EVENTS 698 atomic_long_t locked_vm; 699#endif 700}; 701 702extern int uids_sysfs_init(void); 703 704extern struct user_struct *find_user(uid_t); 705 706extern struct user_struct root_user; 707#define INIT_USER (&root_user) 708 709 710struct backing_dev_info; 711struct reclaim_state; 712 713#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 714struct sched_info { 715 /* cumulative counters */ 716 unsigned long pcount; /* # of times run on this cpu */ 717 unsigned long long run_delay; /* time spent waiting on a runqueue */ 718 719 /* timestamps */ 720 unsigned long long last_arrival,/* when we last ran on a cpu */ 721 last_queued; /* when we were last queued to run */ 722#ifdef CONFIG_SCHEDSTATS 723 /* BKL stats */ 724 unsigned int bkl_count; 725#endif 726}; 727#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 728 729#ifdef CONFIG_TASK_DELAY_ACCT 730struct task_delay_info { 731 spinlock_t lock; 732 unsigned int flags; /* Private per-task flags */ 733 734 /* For each stat XXX, add following, aligned appropriately 735 * 736 * struct timespec XXX_start, XXX_end; 737 * u64 XXX_delay; 738 * u32 XXX_count; 739 * 740 * Atomicity of updates to XXX_delay, XXX_count protected by 741 * single lock above (split into XXX_lock if contention is an issue). 742 */ 743 744 /* 745 * XXX_count is incremented on every XXX operation, the delay 746 * associated with the operation is added to XXX_delay. 747 * XXX_delay contains the accumulated delay time in nanoseconds. 748 */ 749 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 750 u64 blkio_delay; /* wait for sync block io completion */ 751 u64 swapin_delay; /* wait for swapin block io completion */ 752 u32 blkio_count; /* total count of the number of sync block */ 753 /* io operations performed */ 754 u32 swapin_count; /* total count of the number of swapin block */ 755 /* io operations performed */ 756 757 struct timespec freepages_start, freepages_end; 758 u64 freepages_delay; /* wait for memory reclaim */ 759 u32 freepages_count; /* total count of memory reclaim */ 760}; 761#endif /* CONFIG_TASK_DELAY_ACCT */ 762 763static inline int sched_info_on(void) 764{ 765#ifdef CONFIG_SCHEDSTATS 766 return 1; 767#elif defined(CONFIG_TASK_DELAY_ACCT) 768 extern int delayacct_on; 769 return delayacct_on; 770#else 771 return 0; 772#endif 773} 774 775enum cpu_idle_type { 776 CPU_IDLE, 777 CPU_NOT_IDLE, 778 CPU_NEWLY_IDLE, 779 CPU_MAX_IDLE_TYPES 780}; 781 782/* 783 * sched-domains (multiprocessor balancing) declarations: 784 */ 785 786/* 787 * Increase resolution of nice-level calculations: 788 */ 789#define SCHED_LOAD_SHIFT 10 790#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 791 792#define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 793 794#ifdef CONFIG_SMP 795#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 796#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 797#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 798#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 799#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 800#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 801#define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 802#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 803#define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ 804#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 805#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 806#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 807#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 808 809enum powersavings_balance_level { 810 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 811 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 812 * first for long running threads 813 */ 814 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 815 * cpu package for power savings 816 */ 817 MAX_POWERSAVINGS_BALANCE_LEVELS 818}; 819 820extern int sched_mc_power_savings, sched_smt_power_savings; 821 822static inline int sd_balance_for_mc_power(void) 823{ 824 if (sched_smt_power_savings) 825 return SD_POWERSAVINGS_BALANCE; 826 827 if (!sched_mc_power_savings) 828 return SD_PREFER_SIBLING; 829 830 return 0; 831} 832 833static inline int sd_balance_for_package_power(void) 834{ 835 if (sched_mc_power_savings | sched_smt_power_savings) 836 return SD_POWERSAVINGS_BALANCE; 837 838 return SD_PREFER_SIBLING; 839} 840 841extern int __weak arch_sd_sibiling_asym_packing(void); 842 843/* 844 * Optimise SD flags for power savings: 845 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings. 846 * Keep default SD flags if sched_{smt,mc}_power_saving=0 847 */ 848 849static inline int sd_power_saving_flags(void) 850{ 851 if (sched_mc_power_savings | sched_smt_power_savings) 852 return SD_BALANCE_NEWIDLE; 853 854 return 0; 855} 856 857struct sched_group { 858 struct sched_group *next; /* Must be a circular list */ 859 860 /* 861 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 862 * single CPU. 863 */ 864 unsigned int cpu_power, cpu_power_orig; 865 unsigned int group_weight; 866 867 /* 868 * The CPUs this group covers. 869 * 870 * NOTE: this field is variable length. (Allocated dynamically 871 * by attaching extra space to the end of the structure, 872 * depending on how many CPUs the kernel has booted up with) 873 * 874 * It is also be embedded into static data structures at build 875 * time. (See 'struct static_sched_group' in kernel/sched.c) 876 */ 877 unsigned long cpumask[0]; 878}; 879 880static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 881{ 882 return to_cpumask(sg->cpumask); 883} 884 885enum sched_domain_level { 886 SD_LV_NONE = 0, 887 SD_LV_SIBLING, 888 SD_LV_MC, 889 SD_LV_BOOK, 890 SD_LV_CPU, 891 SD_LV_NODE, 892 SD_LV_ALLNODES, 893 SD_LV_MAX 894}; 895 896struct sched_domain_attr { 897 int relax_domain_level; 898}; 899 900#define SD_ATTR_INIT (struct sched_domain_attr) { \ 901 .relax_domain_level = -1, \ 902} 903 904struct sched_domain { 905 /* These fields must be setup */ 906 struct sched_domain *parent; /* top domain must be null terminated */ 907 struct sched_domain *child; /* bottom domain must be null terminated */ 908 struct sched_group *groups; /* the balancing groups of the domain */ 909 unsigned long min_interval; /* Minimum balance interval ms */ 910 unsigned long max_interval; /* Maximum balance interval ms */ 911 unsigned int busy_factor; /* less balancing by factor if busy */ 912 unsigned int imbalance_pct; /* No balance until over watermark */ 913 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 914 unsigned int busy_idx; 915 unsigned int idle_idx; 916 unsigned int newidle_idx; 917 unsigned int wake_idx; 918 unsigned int forkexec_idx; 919 unsigned int smt_gain; 920 int flags; /* See SD_* */ 921 enum sched_domain_level level; 922 923 /* Runtime fields. */ 924 unsigned long last_balance; /* init to jiffies. units in jiffies */ 925 unsigned int balance_interval; /* initialise to 1. units in ms. */ 926 unsigned int nr_balance_failed; /* initialise to 0 */ 927 928 u64 last_update; 929 930#ifdef CONFIG_SCHEDSTATS 931 /* load_balance() stats */ 932 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 933 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 934 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 935 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 936 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 937 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 938 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 939 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 940 941 /* Active load balancing */ 942 unsigned int alb_count; 943 unsigned int alb_failed; 944 unsigned int alb_pushed; 945 946 /* SD_BALANCE_EXEC stats */ 947 unsigned int sbe_count; 948 unsigned int sbe_balanced; 949 unsigned int sbe_pushed; 950 951 /* SD_BALANCE_FORK stats */ 952 unsigned int sbf_count; 953 unsigned int sbf_balanced; 954 unsigned int sbf_pushed; 955 956 /* try_to_wake_up() stats */ 957 unsigned int ttwu_wake_remote; 958 unsigned int ttwu_move_affine; 959 unsigned int ttwu_move_balance; 960#endif 961#ifdef CONFIG_SCHED_DEBUG 962 char *name; 963#endif 964 965 unsigned int span_weight; 966 /* 967 * Span of all CPUs in this domain. 968 * 969 * NOTE: this field is variable length. (Allocated dynamically 970 * by attaching extra space to the end of the structure, 971 * depending on how many CPUs the kernel has booted up with) 972 * 973 * It is also be embedded into static data structures at build 974 * time. (See 'struct static_sched_domain' in kernel/sched.c) 975 */ 976 unsigned long span[0]; 977}; 978 979static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 980{ 981 return to_cpumask(sd->span); 982} 983 984extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 985 struct sched_domain_attr *dattr_new); 986 987/* Allocate an array of sched domains, for partition_sched_domains(). */ 988cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 989void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 990 991/* Test a flag in parent sched domain */ 992static inline int test_sd_parent(struct sched_domain *sd, int flag) 993{ 994 if (sd->parent && (sd->parent->flags & flag)) 995 return 1; 996 997 return 0; 998} 999 1000unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1001unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1002 1003#else /* CONFIG_SMP */ 1004 1005struct sched_domain_attr; 1006 1007static inline void 1008partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1009 struct sched_domain_attr *dattr_new) 1010{ 1011} 1012#endif /* !CONFIG_SMP */ 1013 1014 1015struct io_context; /* See blkdev.h */ 1016 1017 1018#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1019extern void prefetch_stack(struct task_struct *t); 1020#else 1021static inline void prefetch_stack(struct task_struct *t) { } 1022#endif 1023 1024struct audit_context; /* See audit.c */ 1025struct mempolicy; 1026struct pipe_inode_info; 1027struct uts_namespace; 1028 1029struct rq; 1030struct sched_domain; 1031 1032/* 1033 * wake flags 1034 */ 1035#define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1036#define WF_FORK 0x02 /* child wakeup after fork */ 1037 1038#define ENQUEUE_WAKEUP 1 1039#define ENQUEUE_WAKING 2 1040#define ENQUEUE_HEAD 4 1041 1042#define DEQUEUE_SLEEP 1 1043 1044struct sched_class { 1045 const struct sched_class *next; 1046 1047 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1048 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1049 void (*yield_task) (struct rq *rq); 1050 1051 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1052 1053 struct task_struct * (*pick_next_task) (struct rq *rq); 1054 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1055 1056#ifdef CONFIG_SMP 1057 int (*select_task_rq)(struct rq *rq, struct task_struct *p, 1058 int sd_flag, int flags); 1059 1060 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1061 void (*post_schedule) (struct rq *this_rq); 1062 void (*task_waking) (struct rq *this_rq, struct task_struct *task); 1063 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1064 1065 void (*set_cpus_allowed)(struct task_struct *p, 1066 const struct cpumask *newmask); 1067 1068 void (*rq_online)(struct rq *rq); 1069 void (*rq_offline)(struct rq *rq); 1070#endif 1071 1072 void (*set_curr_task) (struct rq *rq); 1073 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1074 void (*task_fork) (struct task_struct *p); 1075 1076 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 1077 int running); 1078 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 1079 int running); 1080 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1081 int oldprio, int running); 1082 1083 unsigned int (*get_rr_interval) (struct rq *rq, 1084 struct task_struct *task); 1085 1086#ifdef CONFIG_FAIR_GROUP_SCHED 1087 void (*task_move_group) (struct task_struct *p, int on_rq); 1088#endif 1089}; 1090 1091struct load_weight { 1092 unsigned long weight, inv_weight; 1093}; 1094 1095#ifdef CONFIG_SCHEDSTATS 1096struct sched_statistics { 1097 u64 wait_start; 1098 u64 wait_max; 1099 u64 wait_count; 1100 u64 wait_sum; 1101 u64 iowait_count; 1102 u64 iowait_sum; 1103 1104 u64 sleep_start; 1105 u64 sleep_max; 1106 s64 sum_sleep_runtime; 1107 1108 u64 block_start; 1109 u64 block_max; 1110 u64 exec_max; 1111 u64 slice_max; 1112 1113 u64 nr_migrations_cold; 1114 u64 nr_failed_migrations_affine; 1115 u64 nr_failed_migrations_running; 1116 u64 nr_failed_migrations_hot; 1117 u64 nr_forced_migrations; 1118 1119 u64 nr_wakeups; 1120 u64 nr_wakeups_sync; 1121 u64 nr_wakeups_migrate; 1122 u64 nr_wakeups_local; 1123 u64 nr_wakeups_remote; 1124 u64 nr_wakeups_affine; 1125 u64 nr_wakeups_affine_attempts; 1126 u64 nr_wakeups_passive; 1127 u64 nr_wakeups_idle; 1128}; 1129#endif 1130 1131struct sched_entity { 1132 struct load_weight load; /* for load-balancing */ 1133 struct rb_node run_node; 1134 struct list_head group_node; 1135 unsigned int on_rq; 1136 1137 u64 exec_start; 1138 u64 sum_exec_runtime; 1139 u64 vruntime; 1140 u64 prev_sum_exec_runtime; 1141 1142 u64 nr_migrations; 1143 1144#ifdef CONFIG_SCHEDSTATS 1145 struct sched_statistics statistics; 1146#endif 1147 1148#ifdef CONFIG_FAIR_GROUP_SCHED 1149 struct sched_entity *parent; 1150 /* rq on which this entity is (to be) queued: */ 1151 struct cfs_rq *cfs_rq; 1152 /* rq "owned" by this entity/group: */ 1153 struct cfs_rq *my_q; 1154#endif 1155}; 1156 1157struct sched_rt_entity { 1158 struct list_head run_list; 1159 unsigned long timeout; 1160 unsigned int time_slice; 1161 int nr_cpus_allowed; 1162 1163 struct sched_rt_entity *back; 1164#ifdef CONFIG_RT_GROUP_SCHED 1165 struct sched_rt_entity *parent; 1166 /* rq on which this entity is (to be) queued: */ 1167 struct rt_rq *rt_rq; 1168 /* rq "owned" by this entity/group: */ 1169 struct rt_rq *my_q; 1170#endif 1171}; 1172 1173struct rcu_node; 1174 1175enum perf_event_task_context { 1176 perf_invalid_context = -1, 1177 perf_hw_context = 0, 1178 perf_sw_context, 1179 perf_nr_task_contexts, 1180}; 1181 1182struct task_struct { 1183 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1184 void *stack; 1185 atomic_t usage; 1186 unsigned int flags; /* per process flags, defined below */ 1187 unsigned int ptrace; 1188 1189 int lock_depth; /* BKL lock depth */ 1190 1191#ifdef CONFIG_SMP 1192#ifdef __ARCH_WANT_UNLOCKED_CTXSW 1193 int oncpu; 1194#endif 1195#endif 1196 1197 int prio, static_prio, normal_prio; 1198 unsigned int rt_priority; 1199 const struct sched_class *sched_class; 1200 struct sched_entity se; 1201 struct sched_rt_entity rt; 1202 1203#ifdef CONFIG_PREEMPT_NOTIFIERS 1204 /* list of struct preempt_notifier: */ 1205 struct hlist_head preempt_notifiers; 1206#endif 1207 1208 /* 1209 * fpu_counter contains the number of consecutive context switches 1210 * that the FPU is used. If this is over a threshold, the lazy fpu 1211 * saving becomes unlazy to save the trap. This is an unsigned char 1212 * so that after 256 times the counter wraps and the behavior turns 1213 * lazy again; this to deal with bursty apps that only use FPU for 1214 * a short time 1215 */ 1216 unsigned char fpu_counter; 1217#ifdef CONFIG_BLK_DEV_IO_TRACE 1218 unsigned int btrace_seq; 1219#endif 1220 1221 unsigned int policy; 1222 cpumask_t cpus_allowed; 1223 1224#ifdef CONFIG_PREEMPT_RCU 1225 int rcu_read_lock_nesting; 1226 char rcu_read_unlock_special; 1227 struct list_head rcu_node_entry; 1228#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1229#ifdef CONFIG_TREE_PREEMPT_RCU 1230 struct rcu_node *rcu_blocked_node; 1231#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1232 1233#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1234 struct sched_info sched_info; 1235#endif 1236 1237 struct list_head tasks; 1238 struct plist_node pushable_tasks; 1239 1240 struct mm_struct *mm, *active_mm; 1241#if defined(SPLIT_RSS_COUNTING) 1242 struct task_rss_stat rss_stat; 1243#endif 1244/* task state */ 1245 int exit_state; 1246 int exit_code, exit_signal; 1247 int pdeath_signal; /* The signal sent when the parent dies */ 1248 /* ??? */ 1249 unsigned int personality; 1250 unsigned did_exec:1; 1251 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1252 * execve */ 1253 unsigned in_iowait:1; 1254 1255 1256 /* Revert to default priority/policy when forking */ 1257 unsigned sched_reset_on_fork:1; 1258 1259 pid_t pid; 1260 pid_t tgid; 1261 1262#ifdef CONFIG_CC_STACKPROTECTOR 1263 /* Canary value for the -fstack-protector gcc feature */ 1264 unsigned long stack_canary; 1265#endif 1266 1267 /* 1268 * pointers to (original) parent process, youngest child, younger sibling, 1269 * older sibling, respectively. (p->father can be replaced with 1270 * p->real_parent->pid) 1271 */ 1272 struct task_struct *real_parent; /* real parent process */ 1273 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1274 /* 1275 * children/sibling forms the list of my natural children 1276 */ 1277 struct list_head children; /* list of my children */ 1278 struct list_head sibling; /* linkage in my parent's children list */ 1279 struct task_struct *group_leader; /* threadgroup leader */ 1280 1281 /* 1282 * ptraced is the list of tasks this task is using ptrace on. 1283 * This includes both natural children and PTRACE_ATTACH targets. 1284 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1285 */ 1286 struct list_head ptraced; 1287 struct list_head ptrace_entry; 1288 1289 /* PID/PID hash table linkage. */ 1290 struct pid_link pids[PIDTYPE_MAX]; 1291 struct list_head thread_group; 1292 1293 struct completion *vfork_done; /* for vfork() */ 1294 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1295 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1296 1297 cputime_t utime, stime, utimescaled, stimescaled; 1298 cputime_t gtime; 1299#ifndef CONFIG_VIRT_CPU_ACCOUNTING 1300 cputime_t prev_utime, prev_stime; 1301#endif 1302 unsigned long nvcsw, nivcsw; /* context switch counts */ 1303 struct timespec start_time; /* monotonic time */ 1304 struct timespec real_start_time; /* boot based time */ 1305/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1306 unsigned long min_flt, maj_flt; 1307 1308 struct task_cputime cputime_expires; 1309 struct list_head cpu_timers[3]; 1310 1311/* process credentials */ 1312 const struct cred __rcu *real_cred; /* objective and real subjective task 1313 * credentials (COW) */ 1314 const struct cred __rcu *cred; /* effective (overridable) subjective task 1315 * credentials (COW) */ 1316 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ 1317 1318 char comm[TASK_COMM_LEN]; /* executable name excluding path 1319 - access with [gs]et_task_comm (which lock 1320 it with task_lock()) 1321 - initialized normally by setup_new_exec */ 1322/* file system info */ 1323 int link_count, total_link_count; 1324#ifdef CONFIG_SYSVIPC 1325/* ipc stuff */ 1326 struct sysv_sem sysvsem; 1327#endif 1328#ifdef CONFIG_DETECT_HUNG_TASK 1329/* hung task detection */ 1330 unsigned long last_switch_count; 1331#endif 1332/* CPU-specific state of this task */ 1333 struct thread_struct thread; 1334/* filesystem information */ 1335 struct fs_struct *fs; 1336/* open file information */ 1337 struct files_struct *files; 1338/* namespaces */ 1339 struct nsproxy *nsproxy; 1340/* signal handlers */ 1341 struct signal_struct *signal; 1342 struct sighand_struct *sighand; 1343 1344 sigset_t blocked, real_blocked; 1345 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1346 struct sigpending pending; 1347 1348 unsigned long sas_ss_sp; 1349 size_t sas_ss_size; 1350 int (*notifier)(void *priv); 1351 void *notifier_data; 1352 sigset_t *notifier_mask; 1353 struct audit_context *audit_context; 1354#ifdef CONFIG_AUDITSYSCALL 1355 uid_t loginuid; 1356 unsigned int sessionid; 1357#endif 1358 seccomp_t seccomp; 1359 1360/* Thread group tracking */ 1361 u32 parent_exec_id; 1362 u32 self_exec_id; 1363/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1364 * mempolicy */ 1365 spinlock_t alloc_lock; 1366 1367#ifdef CONFIG_GENERIC_HARDIRQS 1368 /* IRQ handler threads */ 1369 struct irqaction *irqaction; 1370#endif 1371 1372 /* Protection of the PI data structures: */ 1373 raw_spinlock_t pi_lock; 1374 1375#ifdef CONFIG_RT_MUTEXES 1376 /* PI waiters blocked on a rt_mutex held by this task */ 1377 struct plist_head pi_waiters; 1378 /* Deadlock detection and priority inheritance handling */ 1379 struct rt_mutex_waiter *pi_blocked_on; 1380#endif 1381 1382#ifdef CONFIG_DEBUG_MUTEXES 1383 /* mutex deadlock detection */ 1384 struct mutex_waiter *blocked_on; 1385#endif 1386#ifdef CONFIG_TRACE_IRQFLAGS 1387 unsigned int irq_events; 1388 unsigned long hardirq_enable_ip; 1389 unsigned long hardirq_disable_ip; 1390 unsigned int hardirq_enable_event; 1391 unsigned int hardirq_disable_event; 1392 int hardirqs_enabled; 1393 int hardirq_context; 1394 unsigned long softirq_disable_ip; 1395 unsigned long softirq_enable_ip; 1396 unsigned int softirq_disable_event; 1397 unsigned int softirq_enable_event; 1398 int softirqs_enabled; 1399 int softirq_context; 1400#endif 1401#ifdef CONFIG_LOCKDEP 1402# define MAX_LOCK_DEPTH 48UL 1403 u64 curr_chain_key; 1404 int lockdep_depth; 1405 unsigned int lockdep_recursion; 1406 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1407 gfp_t lockdep_reclaim_gfp; 1408#endif 1409 1410/* journalling filesystem info */ 1411 void *journal_info; 1412 1413/* stacked block device info */ 1414 struct bio_list *bio_list; 1415 1416/* VM state */ 1417 struct reclaim_state *reclaim_state; 1418 1419 struct backing_dev_info *backing_dev_info; 1420 1421 struct io_context *io_context; 1422 1423 unsigned long ptrace_message; 1424 siginfo_t *last_siginfo; /* For ptrace use. */ 1425 struct task_io_accounting ioac; 1426#if defined(CONFIG_TASK_XACCT) 1427 u64 acct_rss_mem1; /* accumulated rss usage */ 1428 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1429 cputime_t acct_timexpd; /* stime + utime since last update */ 1430#endif 1431#ifdef CONFIG_CPUSETS 1432 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1433 int mems_allowed_change_disable; 1434 int cpuset_mem_spread_rotor; 1435 int cpuset_slab_spread_rotor; 1436#endif 1437#ifdef CONFIG_CGROUPS 1438 /* Control Group info protected by css_set_lock */ 1439 struct css_set __rcu *cgroups; 1440 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1441 struct list_head cg_list; 1442#endif 1443#ifdef CONFIG_FUTEX 1444 struct robust_list_head __user *robust_list; 1445#ifdef CONFIG_COMPAT 1446 struct compat_robust_list_head __user *compat_robust_list; 1447#endif 1448 struct list_head pi_state_list; 1449 struct futex_pi_state *pi_state_cache; 1450#endif 1451#ifdef CONFIG_PERF_EVENTS 1452 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1453 struct mutex perf_event_mutex; 1454 struct list_head perf_event_list; 1455#endif 1456#ifdef CONFIG_NUMA 1457 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1458 short il_next; 1459#endif 1460 atomic_t fs_excl; /* holding fs exclusive resources */ 1461 struct rcu_head rcu; 1462 1463 /* 1464 * cache last used pipe for splice 1465 */ 1466 struct pipe_inode_info *splice_pipe; 1467#ifdef CONFIG_TASK_DELAY_ACCT 1468 struct task_delay_info *delays; 1469#endif 1470#ifdef CONFIG_FAULT_INJECTION 1471 int make_it_fail; 1472#endif 1473 struct prop_local_single dirties; 1474#ifdef CONFIG_LATENCYTOP 1475 int latency_record_count; 1476 struct latency_record latency_record[LT_SAVECOUNT]; 1477#endif 1478 /* 1479 * time slack values; these are used to round up poll() and 1480 * select() etc timeout values. These are in nanoseconds. 1481 */ 1482 unsigned long timer_slack_ns; 1483 unsigned long default_timer_slack_ns; 1484 1485 struct list_head *scm_work_list; 1486#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1487 /* Index of current stored address in ret_stack */ 1488 int curr_ret_stack; 1489 /* Stack of return addresses for return function tracing */ 1490 struct ftrace_ret_stack *ret_stack; 1491 /* time stamp for last schedule */ 1492 unsigned long long ftrace_timestamp; 1493 /* 1494 * Number of functions that haven't been traced 1495 * because of depth overrun. 1496 */ 1497 atomic_t trace_overrun; 1498 /* Pause for the tracing */ 1499 atomic_t tracing_graph_pause; 1500#endif 1501#ifdef CONFIG_TRACING 1502 /* state flags for use by tracers */ 1503 unsigned long trace; 1504 /* bitmask of trace recursion */ 1505 unsigned long trace_recursion; 1506#endif /* CONFIG_TRACING */ 1507#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ 1508 struct memcg_batch_info { 1509 int do_batch; /* incremented when batch uncharge started */ 1510 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1511 unsigned long bytes; /* uncharged usage */ 1512 unsigned long memsw_bytes; /* uncharged mem+swap usage */ 1513 } memcg_batch; 1514#endif 1515}; 1516 1517/* Future-safe accessor for struct task_struct's cpus_allowed. */ 1518#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1519 1520/* 1521 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1522 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1523 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1524 * values are inverted: lower p->prio value means higher priority. 1525 * 1526 * The MAX_USER_RT_PRIO value allows the actual maximum 1527 * RT priority to be separate from the value exported to 1528 * user-space. This allows kernel threads to set their 1529 * priority to a value higher than any user task. Note: 1530 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1531 */ 1532 1533#define MAX_USER_RT_PRIO 100 1534#define MAX_RT_PRIO MAX_USER_RT_PRIO 1535 1536#define MAX_PRIO (MAX_RT_PRIO + 40) 1537#define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1538 1539static inline int rt_prio(int prio) 1540{ 1541 if (unlikely(prio < MAX_RT_PRIO)) 1542 return 1; 1543 return 0; 1544} 1545 1546static inline int rt_task(struct task_struct *p) 1547{ 1548 return rt_prio(p->prio); 1549} 1550 1551static inline struct pid *task_pid(struct task_struct *task) 1552{ 1553 return task->pids[PIDTYPE_PID].pid; 1554} 1555 1556static inline struct pid *task_tgid(struct task_struct *task) 1557{ 1558 return task->group_leader->pids[PIDTYPE_PID].pid; 1559} 1560 1561/* 1562 * Without tasklist or rcu lock it is not safe to dereference 1563 * the result of task_pgrp/task_session even if task == current, 1564 * we can race with another thread doing sys_setsid/sys_setpgid. 1565 */ 1566static inline struct pid *task_pgrp(struct task_struct *task) 1567{ 1568 return task->group_leader->pids[PIDTYPE_PGID].pid; 1569} 1570 1571static inline struct pid *task_session(struct task_struct *task) 1572{ 1573 return task->group_leader->pids[PIDTYPE_SID].pid; 1574} 1575 1576struct pid_namespace; 1577 1578/* 1579 * the helpers to get the task's different pids as they are seen 1580 * from various namespaces 1581 * 1582 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1583 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1584 * current. 1585 * task_xid_nr_ns() : id seen from the ns specified; 1586 * 1587 * set_task_vxid() : assigns a virtual id to a task; 1588 * 1589 * see also pid_nr() etc in include/linux/pid.h 1590 */ 1591pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1592 struct pid_namespace *ns); 1593 1594static inline pid_t task_pid_nr(struct task_struct *tsk) 1595{ 1596 return tsk->pid; 1597} 1598 1599static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1600 struct pid_namespace *ns) 1601{ 1602 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1603} 1604 1605static inline pid_t task_pid_vnr(struct task_struct *tsk) 1606{ 1607 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1608} 1609 1610 1611static inline pid_t task_tgid_nr(struct task_struct *tsk) 1612{ 1613 return tsk->tgid; 1614} 1615 1616pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1617 1618static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1619{ 1620 return pid_vnr(task_tgid(tsk)); 1621} 1622 1623 1624static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1625 struct pid_namespace *ns) 1626{ 1627 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1628} 1629 1630static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1631{ 1632 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1633} 1634 1635 1636static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1637 struct pid_namespace *ns) 1638{ 1639 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1640} 1641 1642static inline pid_t task_session_vnr(struct task_struct *tsk) 1643{ 1644 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1645} 1646 1647/* obsolete, do not use */ 1648static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1649{ 1650 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1651} 1652 1653/** 1654 * pid_alive - check that a task structure is not stale 1655 * @p: Task structure to be checked. 1656 * 1657 * Test if a process is not yet dead (at most zombie state) 1658 * If pid_alive fails, then pointers within the task structure 1659 * can be stale and must not be dereferenced. 1660 */ 1661static inline int pid_alive(struct task_struct *p) 1662{ 1663 return p->pids[PIDTYPE_PID].pid != NULL; 1664} 1665 1666/** 1667 * is_global_init - check if a task structure is init 1668 * @tsk: Task structure to be checked. 1669 * 1670 * Check if a task structure is the first user space task the kernel created. 1671 */ 1672static inline int is_global_init(struct task_struct *tsk) 1673{ 1674 return tsk->pid == 1; 1675} 1676 1677/* 1678 * is_container_init: 1679 * check whether in the task is init in its own pid namespace. 1680 */ 1681extern int is_container_init(struct task_struct *tsk); 1682 1683extern struct pid *cad_pid; 1684 1685extern void free_task(struct task_struct *tsk); 1686#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1687 1688extern void __put_task_struct(struct task_struct *t); 1689 1690static inline void put_task_struct(struct task_struct *t) 1691{ 1692 if (atomic_dec_and_test(&t->usage)) 1693 __put_task_struct(t); 1694} 1695 1696extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1697extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1698 1699/* 1700 * Per process flags 1701 */ 1702#define PF_KSOFTIRQD 0x00000001 /* I am ksoftirqd */ 1703#define PF_STARTING 0x00000002 /* being created */ 1704#define PF_EXITING 0x00000004 /* getting shut down */ 1705#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1706#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1707#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1708#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1709#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1710#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1711#define PF_DUMPCORE 0x00000200 /* dumped core */ 1712#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1713#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1714#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1715#define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ 1716#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1717#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1718#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1719#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1720#define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */ 1721#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1722#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1723#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1724#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1725#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1726#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1727#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1728#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1729#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1730#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1731#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1732#define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1733 1734/* 1735 * Only the _current_ task can read/write to tsk->flags, but other 1736 * tasks can access tsk->flags in readonly mode for example 1737 * with tsk_used_math (like during threaded core dumping). 1738 * There is however an exception to this rule during ptrace 1739 * or during fork: the ptracer task is allowed to write to the 1740 * child->flags of its traced child (same goes for fork, the parent 1741 * can write to the child->flags), because we're guaranteed the 1742 * child is not running and in turn not changing child->flags 1743 * at the same time the parent does it. 1744 */ 1745#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1746#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1747#define clear_used_math() clear_stopped_child_used_math(current) 1748#define set_used_math() set_stopped_child_used_math(current) 1749#define conditional_stopped_child_used_math(condition, child) \ 1750 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1751#define conditional_used_math(condition) \ 1752 conditional_stopped_child_used_math(condition, current) 1753#define copy_to_stopped_child_used_math(child) \ 1754 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1755/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1756#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1757#define used_math() tsk_used_math(current) 1758 1759#ifdef CONFIG_PREEMPT_RCU 1760 1761#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1762#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1763 1764static inline void rcu_copy_process(struct task_struct *p) 1765{ 1766 p->rcu_read_lock_nesting = 0; 1767 p->rcu_read_unlock_special = 0; 1768#ifdef CONFIG_TREE_PREEMPT_RCU 1769 p->rcu_blocked_node = NULL; 1770#endif 1771 INIT_LIST_HEAD(&p->rcu_node_entry); 1772} 1773 1774#else 1775 1776static inline void rcu_copy_process(struct task_struct *p) 1777{ 1778} 1779 1780#endif 1781 1782#ifdef CONFIG_SMP 1783extern int set_cpus_allowed_ptr(struct task_struct *p, 1784 const struct cpumask *new_mask); 1785#else 1786static inline int set_cpus_allowed_ptr(struct task_struct *p, 1787 const struct cpumask *new_mask) 1788{ 1789 if (!cpumask_test_cpu(0, new_mask)) 1790 return -EINVAL; 1791 return 0; 1792} 1793#endif 1794 1795#ifndef CONFIG_CPUMASK_OFFSTACK 1796static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1797{ 1798 return set_cpus_allowed_ptr(p, &new_mask); 1799} 1800#endif 1801 1802/* 1803 * Do not use outside of architecture code which knows its limitations. 1804 * 1805 * sched_clock() has no promise of monotonicity or bounded drift between 1806 * CPUs, use (which you should not) requires disabling IRQs. 1807 * 1808 * Please use one of the three interfaces below. 1809 */ 1810extern unsigned long long notrace sched_clock(void); 1811/* 1812 * See the comment in kernel/sched_clock.c 1813 */ 1814extern u64 cpu_clock(int cpu); 1815extern u64 local_clock(void); 1816extern u64 sched_clock_cpu(int cpu); 1817 1818 1819extern void sched_clock_init(void); 1820 1821#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1822static inline void sched_clock_tick(void) 1823{ 1824} 1825 1826static inline void sched_clock_idle_sleep_event(void) 1827{ 1828} 1829 1830static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1831{ 1832} 1833#else 1834/* 1835 * Architectures can set this to 1 if they have specified 1836 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1837 * but then during bootup it turns out that sched_clock() 1838 * is reliable after all: 1839 */ 1840extern int sched_clock_stable; 1841 1842extern void sched_clock_tick(void); 1843extern void sched_clock_idle_sleep_event(void); 1844extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1845#endif 1846 1847#ifdef CONFIG_IRQ_TIME_ACCOUNTING 1848/* 1849 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1850 * The reason for this explicit opt-in is not to have perf penalty with 1851 * slow sched_clocks. 1852 */ 1853extern void enable_sched_clock_irqtime(void); 1854extern void disable_sched_clock_irqtime(void); 1855#else 1856static inline void enable_sched_clock_irqtime(void) {} 1857static inline void disable_sched_clock_irqtime(void) {} 1858#endif 1859 1860extern unsigned long long 1861task_sched_runtime(struct task_struct *task); 1862extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1863 1864/* sched_exec is called by processes performing an exec */ 1865#ifdef CONFIG_SMP 1866extern void sched_exec(void); 1867#else 1868#define sched_exec() {} 1869#endif 1870 1871extern void sched_clock_idle_sleep_event(void); 1872extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1873 1874#ifdef CONFIG_HOTPLUG_CPU 1875extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p); 1876extern void idle_task_exit(void); 1877#else 1878static inline void idle_task_exit(void) {} 1879#endif 1880 1881extern void sched_idle_next(void); 1882 1883#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1884extern void wake_up_idle_cpu(int cpu); 1885#else 1886static inline void wake_up_idle_cpu(int cpu) { } 1887#endif 1888 1889extern unsigned int sysctl_sched_latency; 1890extern unsigned int sysctl_sched_min_granularity; 1891extern unsigned int sysctl_sched_wakeup_granularity; 1892extern unsigned int sysctl_sched_shares_ratelimit; 1893extern unsigned int sysctl_sched_shares_thresh; 1894extern unsigned int sysctl_sched_child_runs_first; 1895 1896enum sched_tunable_scaling { 1897 SCHED_TUNABLESCALING_NONE, 1898 SCHED_TUNABLESCALING_LOG, 1899 SCHED_TUNABLESCALING_LINEAR, 1900 SCHED_TUNABLESCALING_END, 1901}; 1902extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 1903 1904#ifdef CONFIG_SCHED_DEBUG 1905extern unsigned int sysctl_sched_migration_cost; 1906extern unsigned int sysctl_sched_nr_migrate; 1907extern unsigned int sysctl_sched_time_avg; 1908extern unsigned int sysctl_timer_migration; 1909 1910int sched_proc_update_handler(struct ctl_table *table, int write, 1911 void __user *buffer, size_t *length, 1912 loff_t *ppos); 1913#endif 1914#ifdef CONFIG_SCHED_DEBUG 1915static inline unsigned int get_sysctl_timer_migration(void) 1916{ 1917 return sysctl_timer_migration; 1918} 1919#else 1920static inline unsigned int get_sysctl_timer_migration(void) 1921{ 1922 return 1; 1923} 1924#endif 1925extern unsigned int sysctl_sched_rt_period; 1926extern int sysctl_sched_rt_runtime; 1927 1928int sched_rt_handler(struct ctl_table *table, int write, 1929 void __user *buffer, size_t *lenp, 1930 loff_t *ppos); 1931 1932extern unsigned int sysctl_sched_compat_yield; 1933 1934#ifdef CONFIG_RT_MUTEXES 1935extern int rt_mutex_getprio(struct task_struct *p); 1936extern void rt_mutex_setprio(struct task_struct *p, int prio); 1937extern void rt_mutex_adjust_pi(struct task_struct *p); 1938#else 1939static inline int rt_mutex_getprio(struct task_struct *p) 1940{ 1941 return p->normal_prio; 1942} 1943# define rt_mutex_adjust_pi(p) do { } while (0) 1944#endif 1945 1946extern void set_user_nice(struct task_struct *p, long nice); 1947extern int task_prio(const struct task_struct *p); 1948extern int task_nice(const struct task_struct *p); 1949extern int can_nice(const struct task_struct *p, const int nice); 1950extern int task_curr(const struct task_struct *p); 1951extern int idle_cpu(int cpu); 1952extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1953extern int sched_setscheduler_nocheck(struct task_struct *, int, 1954 struct sched_param *); 1955extern struct task_struct *idle_task(int cpu); 1956extern struct task_struct *curr_task(int cpu); 1957extern void set_curr_task(int cpu, struct task_struct *p); 1958 1959void yield(void); 1960 1961/* 1962 * The default (Linux) execution domain. 1963 */ 1964extern struct exec_domain default_exec_domain; 1965 1966union thread_union { 1967 struct thread_info thread_info; 1968 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1969}; 1970 1971#ifndef __HAVE_ARCH_KSTACK_END 1972static inline int kstack_end(void *addr) 1973{ 1974 /* Reliable end of stack detection: 1975 * Some APM bios versions misalign the stack 1976 */ 1977 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1978} 1979#endif 1980 1981extern union thread_union init_thread_union; 1982extern struct task_struct init_task; 1983 1984extern struct mm_struct init_mm; 1985 1986extern struct pid_namespace init_pid_ns; 1987 1988/* 1989 * find a task by one of its numerical ids 1990 * 1991 * find_task_by_pid_ns(): 1992 * finds a task by its pid in the specified namespace 1993 * find_task_by_vpid(): 1994 * finds a task by its virtual pid 1995 * 1996 * see also find_vpid() etc in include/linux/pid.h 1997 */ 1998 1999extern struct task_struct *find_task_by_vpid(pid_t nr); 2000extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2001 struct pid_namespace *ns); 2002 2003extern void __set_special_pids(struct pid *pid); 2004 2005/* per-UID process charging. */ 2006extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 2007static inline struct user_struct *get_uid(struct user_struct *u) 2008{ 2009 atomic_inc(&u->__count); 2010 return u; 2011} 2012extern void free_uid(struct user_struct *); 2013extern void release_uids(struct user_namespace *ns); 2014 2015#include <asm/current.h> 2016 2017extern void do_timer(unsigned long ticks); 2018 2019extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2020extern int wake_up_process(struct task_struct *tsk); 2021extern void wake_up_new_task(struct task_struct *tsk, 2022 unsigned long clone_flags); 2023#ifdef CONFIG_SMP 2024 extern void kick_process(struct task_struct *tsk); 2025#else 2026 static inline void kick_process(struct task_struct *tsk) { } 2027#endif 2028extern void sched_fork(struct task_struct *p, int clone_flags); 2029extern void sched_dead(struct task_struct *p); 2030 2031extern void proc_caches_init(void); 2032extern void flush_signals(struct task_struct *); 2033extern void __flush_signals(struct task_struct *); 2034extern void ignore_signals(struct task_struct *); 2035extern void flush_signal_handlers(struct task_struct *, int force_default); 2036extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2037 2038static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2039{ 2040 unsigned long flags; 2041 int ret; 2042 2043 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2044 ret = dequeue_signal(tsk, mask, info); 2045 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2046 2047 return ret; 2048} 2049 2050extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2051 sigset_t *mask); 2052extern void unblock_all_signals(void); 2053extern void release_task(struct task_struct * p); 2054extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2055extern int force_sigsegv(int, struct task_struct *); 2056extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2057extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2058extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2059extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 2060extern int kill_pgrp(struct pid *pid, int sig, int priv); 2061extern int kill_pid(struct pid *pid, int sig, int priv); 2062extern int kill_proc_info(int, struct siginfo *, pid_t); 2063extern int do_notify_parent(struct task_struct *, int); 2064extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2065extern void force_sig(int, struct task_struct *); 2066extern int send_sig(int, struct task_struct *, int); 2067extern int zap_other_threads(struct task_struct *p); 2068extern struct sigqueue *sigqueue_alloc(void); 2069extern void sigqueue_free(struct sigqueue *); 2070extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2071extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2072extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2073 2074static inline int kill_cad_pid(int sig, int priv) 2075{ 2076 return kill_pid(cad_pid, sig, priv); 2077} 2078 2079/* These can be the second arg to send_sig_info/send_group_sig_info. */ 2080#define SEND_SIG_NOINFO ((struct siginfo *) 0) 2081#define SEND_SIG_PRIV ((struct siginfo *) 1) 2082#define SEND_SIG_FORCED ((struct siginfo *) 2) 2083 2084/* 2085 * True if we are on the alternate signal stack. 2086 */ 2087static inline int on_sig_stack(unsigned long sp) 2088{ 2089#ifdef CONFIG_STACK_GROWSUP 2090 return sp >= current->sas_ss_sp && 2091 sp - current->sas_ss_sp < current->sas_ss_size; 2092#else 2093 return sp > current->sas_ss_sp && 2094 sp - current->sas_ss_sp <= current->sas_ss_size; 2095#endif 2096} 2097 2098static inline int sas_ss_flags(unsigned long sp) 2099{ 2100 return (current->sas_ss_size == 0 ? SS_DISABLE 2101 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2102} 2103 2104/* 2105 * Routines for handling mm_structs 2106 */ 2107extern struct mm_struct * mm_alloc(void); 2108 2109/* mmdrop drops the mm and the page tables */ 2110extern void __mmdrop(struct mm_struct *); 2111static inline void mmdrop(struct mm_struct * mm) 2112{ 2113 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2114 __mmdrop(mm); 2115} 2116 2117/* mmput gets rid of the mappings and all user-space */ 2118extern void mmput(struct mm_struct *); 2119/* Grab a reference to a task's mm, if it is not already going away */ 2120extern struct mm_struct *get_task_mm(struct task_struct *task); 2121/* Remove the current tasks stale references to the old mm_struct */ 2122extern void mm_release(struct task_struct *, struct mm_struct *); 2123/* Allocate a new mm structure and copy contents from tsk->mm */ 2124extern struct mm_struct *dup_mm(struct task_struct *tsk); 2125 2126extern int copy_thread(unsigned long, unsigned long, unsigned long, 2127 struct task_struct *, struct pt_regs *); 2128extern void flush_thread(void); 2129extern void exit_thread(void); 2130 2131extern void exit_files(struct task_struct *); 2132extern void __cleanup_sighand(struct sighand_struct *); 2133 2134extern void exit_itimers(struct signal_struct *); 2135extern void flush_itimer_signals(void); 2136 2137extern NORET_TYPE void do_group_exit(int); 2138 2139extern void daemonize(const char *, ...); 2140extern int allow_signal(int); 2141extern int disallow_signal(int); 2142 2143extern int do_execve(const char *, 2144 const char __user * const __user *, 2145 const char __user * const __user *, struct pt_regs *); 2146extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2147struct task_struct *fork_idle(int); 2148 2149extern void set_task_comm(struct task_struct *tsk, char *from); 2150extern char *get_task_comm(char *to, struct task_struct *tsk); 2151 2152#ifdef CONFIG_SMP 2153extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2154#else 2155static inline unsigned long wait_task_inactive(struct task_struct *p, 2156 long match_state) 2157{ 2158 return 1; 2159} 2160#endif 2161 2162#define next_task(p) \ 2163 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2164 2165#define for_each_process(p) \ 2166 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2167 2168extern bool current_is_single_threaded(void); 2169 2170/* 2171 * Careful: do_each_thread/while_each_thread is a double loop so 2172 * 'break' will not work as expected - use goto instead. 2173 */ 2174#define do_each_thread(g, t) \ 2175 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2176 2177#define while_each_thread(g, t) \ 2178 while ((t = next_thread(t)) != g) 2179 2180static inline int get_nr_threads(struct task_struct *tsk) 2181{ 2182 return tsk->signal->nr_threads; 2183} 2184 2185/* de_thread depends on thread_group_leader not being a pid based check */ 2186#define thread_group_leader(p) (p == p->group_leader) 2187 2188/* Do to the insanities of de_thread it is possible for a process 2189 * to have the pid of the thread group leader without actually being 2190 * the thread group leader. For iteration through the pids in proc 2191 * all we care about is that we have a task with the appropriate 2192 * pid, we don't actually care if we have the right task. 2193 */ 2194static inline int has_group_leader_pid(struct task_struct *p) 2195{ 2196 return p->pid == p->tgid; 2197} 2198 2199static inline 2200int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2201{ 2202 return p1->tgid == p2->tgid; 2203} 2204 2205static inline struct task_struct *next_thread(const struct task_struct *p) 2206{ 2207 return list_entry_rcu(p->thread_group.next, 2208 struct task_struct, thread_group); 2209} 2210 2211static inline int thread_group_empty(struct task_struct *p) 2212{ 2213 return list_empty(&p->thread_group); 2214} 2215 2216#define delay_group_leader(p) \ 2217 (thread_group_leader(p) && !thread_group_empty(p)) 2218 2219static inline int task_detached(struct task_struct *p) 2220{ 2221 return p->exit_signal == -1; 2222} 2223 2224/* 2225 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2226 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2227 * pins the final release of task.io_context. Also protects ->cpuset and 2228 * ->cgroup.subsys[]. 2229 * 2230 * Nests both inside and outside of read_lock(&tasklist_lock). 2231 * It must not be nested with write_lock_irq(&tasklist_lock), 2232 * neither inside nor outside. 2233 */ 2234static inline void task_lock(struct task_struct *p) 2235{ 2236 spin_lock(&p->alloc_lock); 2237} 2238 2239static inline void task_unlock(struct task_struct *p) 2240{ 2241 spin_unlock(&p->alloc_lock); 2242} 2243 2244extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2245 unsigned long *flags); 2246 2247#define lock_task_sighand(tsk, flags) \ 2248({ struct sighand_struct *__ss; \ 2249 __cond_lock(&(tsk)->sighand->siglock, \ 2250 (__ss = __lock_task_sighand(tsk, flags))); \ 2251 __ss; \ 2252}) \ 2253 2254static inline void unlock_task_sighand(struct task_struct *tsk, 2255 unsigned long *flags) 2256{ 2257 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2258} 2259 2260#ifndef __HAVE_THREAD_FUNCTIONS 2261 2262#define task_thread_info(task) ((struct thread_info *)(task)->stack) 2263#define task_stack_page(task) ((task)->stack) 2264 2265static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2266{ 2267 *task_thread_info(p) = *task_thread_info(org); 2268 task_thread_info(p)->task = p; 2269} 2270 2271static inline unsigned long *end_of_stack(struct task_struct *p) 2272{ 2273 return (unsigned long *)(task_thread_info(p) + 1); 2274} 2275 2276#endif 2277 2278static inline int object_is_on_stack(void *obj) 2279{ 2280 void *stack = task_stack_page(current); 2281 2282 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2283} 2284 2285extern void thread_info_cache_init(void); 2286 2287#ifdef CONFIG_DEBUG_STACK_USAGE 2288static inline unsigned long stack_not_used(struct task_struct *p) 2289{ 2290 unsigned long *n = end_of_stack(p); 2291 2292 do { /* Skip over canary */ 2293 n++; 2294 } while (!*n); 2295 2296 return (unsigned long)n - (unsigned long)end_of_stack(p); 2297} 2298#endif 2299 2300/* set thread flags in other task's structures 2301 * - see asm/thread_info.h for TIF_xxxx flags available 2302 */ 2303static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2304{ 2305 set_ti_thread_flag(task_thread_info(tsk), flag); 2306} 2307 2308static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2309{ 2310 clear_ti_thread_flag(task_thread_info(tsk), flag); 2311} 2312 2313static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2314{ 2315 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2316} 2317 2318static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2319{ 2320 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2321} 2322 2323static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2324{ 2325 return test_ti_thread_flag(task_thread_info(tsk), flag); 2326} 2327 2328static inline void set_tsk_need_resched(struct task_struct *tsk) 2329{ 2330 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2331} 2332 2333static inline void clear_tsk_need_resched(struct task_struct *tsk) 2334{ 2335 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2336} 2337 2338static inline int test_tsk_need_resched(struct task_struct *tsk) 2339{ 2340 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2341} 2342 2343static inline int restart_syscall(void) 2344{ 2345 set_tsk_thread_flag(current, TIF_SIGPENDING); 2346 return -ERESTARTNOINTR; 2347} 2348 2349static inline int signal_pending(struct task_struct *p) 2350{ 2351 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2352} 2353 2354static inline int __fatal_signal_pending(struct task_struct *p) 2355{ 2356 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2357} 2358 2359static inline int fatal_signal_pending(struct task_struct *p) 2360{ 2361 return signal_pending(p) && __fatal_signal_pending(p); 2362} 2363 2364static inline int signal_pending_state(long state, struct task_struct *p) 2365{ 2366 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2367 return 0; 2368 if (!signal_pending(p)) 2369 return 0; 2370 2371 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2372} 2373 2374static inline int need_resched(void) 2375{ 2376 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2377} 2378 2379/* 2380 * cond_resched() and cond_resched_lock(): latency reduction via 2381 * explicit rescheduling in places that are safe. The return 2382 * value indicates whether a reschedule was done in fact. 2383 * cond_resched_lock() will drop the spinlock before scheduling, 2384 * cond_resched_softirq() will enable bhs before scheduling. 2385 */ 2386extern int _cond_resched(void); 2387 2388#define cond_resched() ({ \ 2389 __might_sleep(__FILE__, __LINE__, 0); \ 2390 _cond_resched(); \ 2391}) 2392 2393extern int __cond_resched_lock(spinlock_t *lock); 2394 2395#ifdef CONFIG_PREEMPT 2396#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2397#else 2398#define PREEMPT_LOCK_OFFSET 0 2399#endif 2400 2401#define cond_resched_lock(lock) ({ \ 2402 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2403 __cond_resched_lock(lock); \ 2404}) 2405 2406extern int __cond_resched_softirq(void); 2407 2408#define cond_resched_softirq() ({ \ 2409 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2410 __cond_resched_softirq(); \ 2411}) 2412 2413/* 2414 * Does a critical section need to be broken due to another 2415 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2416 * but a general need for low latency) 2417 */ 2418static inline int spin_needbreak(spinlock_t *lock) 2419{ 2420#ifdef CONFIG_PREEMPT 2421 return spin_is_contended(lock); 2422#else 2423 return 0; 2424#endif 2425} 2426 2427/* 2428 * Thread group CPU time accounting. 2429 */ 2430void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2431void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2432 2433static inline void thread_group_cputime_init(struct signal_struct *sig) 2434{ 2435 spin_lock_init(&sig->cputimer.lock); 2436} 2437 2438/* 2439 * Reevaluate whether the task has signals pending delivery. 2440 * Wake the task if so. 2441 * This is required every time the blocked sigset_t changes. 2442 * callers must hold sighand->siglock. 2443 */ 2444extern void recalc_sigpending_and_wake(struct task_struct *t); 2445extern void recalc_sigpending(void); 2446 2447extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2448 2449/* 2450 * Wrappers for p->thread_info->cpu access. No-op on UP. 2451 */ 2452#ifdef CONFIG_SMP 2453 2454static inline unsigned int task_cpu(const struct task_struct *p) 2455{ 2456 return task_thread_info(p)->cpu; 2457} 2458 2459extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2460 2461#else 2462 2463static inline unsigned int task_cpu(const struct task_struct *p) 2464{ 2465 return 0; 2466} 2467 2468static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2469{ 2470} 2471 2472#endif /* CONFIG_SMP */ 2473 2474extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2475extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2476 2477extern void normalize_rt_tasks(void); 2478 2479#ifdef CONFIG_CGROUP_SCHED 2480 2481extern struct task_group init_task_group; 2482 2483extern struct task_group *sched_create_group(struct task_group *parent); 2484extern void sched_destroy_group(struct task_group *tg); 2485extern void sched_move_task(struct task_struct *tsk); 2486#ifdef CONFIG_FAIR_GROUP_SCHED 2487extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2488extern unsigned long sched_group_shares(struct task_group *tg); 2489#endif 2490#ifdef CONFIG_RT_GROUP_SCHED 2491extern int sched_group_set_rt_runtime(struct task_group *tg, 2492 long rt_runtime_us); 2493extern long sched_group_rt_runtime(struct task_group *tg); 2494extern int sched_group_set_rt_period(struct task_group *tg, 2495 long rt_period_us); 2496extern long sched_group_rt_period(struct task_group *tg); 2497extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2498#endif 2499#endif 2500 2501extern int task_can_switch_user(struct user_struct *up, 2502 struct task_struct *tsk); 2503 2504#ifdef CONFIG_TASK_XACCT 2505static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2506{ 2507 tsk->ioac.rchar += amt; 2508} 2509 2510static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2511{ 2512 tsk->ioac.wchar += amt; 2513} 2514 2515static inline void inc_syscr(struct task_struct *tsk) 2516{ 2517 tsk->ioac.syscr++; 2518} 2519 2520static inline void inc_syscw(struct task_struct *tsk) 2521{ 2522 tsk->ioac.syscw++; 2523} 2524#else 2525static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2526{ 2527} 2528 2529static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2530{ 2531} 2532 2533static inline void inc_syscr(struct task_struct *tsk) 2534{ 2535} 2536 2537static inline void inc_syscw(struct task_struct *tsk) 2538{ 2539} 2540#endif 2541 2542#ifndef TASK_SIZE_OF 2543#define TASK_SIZE_OF(tsk) TASK_SIZE 2544#endif 2545 2546/* 2547 * Call the function if the target task is executing on a CPU right now: 2548 */ 2549extern void task_oncpu_function_call(struct task_struct *p, 2550 void (*func) (void *info), void *info); 2551 2552 2553#ifdef CONFIG_MM_OWNER 2554extern void mm_update_next_owner(struct mm_struct *mm); 2555extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2556#else 2557static inline void mm_update_next_owner(struct mm_struct *mm) 2558{ 2559} 2560 2561static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2562{ 2563} 2564#endif /* CONFIG_MM_OWNER */ 2565 2566static inline unsigned long task_rlimit(const struct task_struct *tsk, 2567 unsigned int limit) 2568{ 2569 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2570} 2571 2572static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2573 unsigned int limit) 2574{ 2575 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2576} 2577 2578static inline unsigned long rlimit(unsigned int limit) 2579{ 2580 return task_rlimit(current, limit); 2581} 2582 2583static inline unsigned long rlimit_max(unsigned int limit) 2584{ 2585 return task_rlimit_max(current, limit); 2586} 2587 2588#endif /* __KERNEL__ */ 2589 2590#endif