at v2.6.37 1158 lines 30 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <linux/types.h> 18#include <linux/ioctl.h> 19#include <asm/byteorder.h> 20 21/* 22 * User-space ABI bits: 23 */ 24 25/* 26 * attr.type 27 */ 28enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 PERF_TYPE_BREAKPOINT = 5, 35 36 PERF_TYPE_MAX, /* non-ABI */ 37}; 38 39/* 40 * Generalized performance event event_id types, used by the 41 * attr.event_id parameter of the sys_perf_event_open() 42 * syscall: 43 */ 44enum perf_hw_id { 45 /* 46 * Common hardware events, generalized by the kernel: 47 */ 48 PERF_COUNT_HW_CPU_CYCLES = 0, 49 PERF_COUNT_HW_INSTRUCTIONS = 1, 50 PERF_COUNT_HW_CACHE_REFERENCES = 2, 51 PERF_COUNT_HW_CACHE_MISSES = 3, 52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 53 PERF_COUNT_HW_BRANCH_MISSES = 5, 54 PERF_COUNT_HW_BUS_CYCLES = 6, 55 56 PERF_COUNT_HW_MAX, /* non-ABI */ 57}; 58 59/* 60 * Generalized hardware cache events: 61 * 62 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x 63 * { read, write, prefetch } x 64 * { accesses, misses } 65 */ 66enum perf_hw_cache_id { 67 PERF_COUNT_HW_CACHE_L1D = 0, 68 PERF_COUNT_HW_CACHE_L1I = 1, 69 PERF_COUNT_HW_CACHE_LL = 2, 70 PERF_COUNT_HW_CACHE_DTLB = 3, 71 PERF_COUNT_HW_CACHE_ITLB = 4, 72 PERF_COUNT_HW_CACHE_BPU = 5, 73 74 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 75}; 76 77enum perf_hw_cache_op_id { 78 PERF_COUNT_HW_CACHE_OP_READ = 0, 79 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 80 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 81 82 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 83}; 84 85enum perf_hw_cache_op_result_id { 86 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 87 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 88 89 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 90}; 91 92/* 93 * Special "software" events provided by the kernel, even if the hardware 94 * does not support performance events. These events measure various 95 * physical and sw events of the kernel (and allow the profiling of them as 96 * well): 97 */ 98enum perf_sw_ids { 99 PERF_COUNT_SW_CPU_CLOCK = 0, 100 PERF_COUNT_SW_TASK_CLOCK = 1, 101 PERF_COUNT_SW_PAGE_FAULTS = 2, 102 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 103 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 104 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 105 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 106 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 107 PERF_COUNT_SW_EMULATION_FAULTS = 8, 108 109 PERF_COUNT_SW_MAX, /* non-ABI */ 110}; 111 112/* 113 * Bits that can be set in attr.sample_type to request information 114 * in the overflow packets. 115 */ 116enum perf_event_sample_format { 117 PERF_SAMPLE_IP = 1U << 0, 118 PERF_SAMPLE_TID = 1U << 1, 119 PERF_SAMPLE_TIME = 1U << 2, 120 PERF_SAMPLE_ADDR = 1U << 3, 121 PERF_SAMPLE_READ = 1U << 4, 122 PERF_SAMPLE_CALLCHAIN = 1U << 5, 123 PERF_SAMPLE_ID = 1U << 6, 124 PERF_SAMPLE_CPU = 1U << 7, 125 PERF_SAMPLE_PERIOD = 1U << 8, 126 PERF_SAMPLE_STREAM_ID = 1U << 9, 127 PERF_SAMPLE_RAW = 1U << 10, 128 129 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */ 130}; 131 132/* 133 * The format of the data returned by read() on a perf event fd, 134 * as specified by attr.read_format: 135 * 136 * struct read_format { 137 * { u64 value; 138 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 139 * { u64 time_running; } && PERF_FORMAT_RUNNING 140 * { u64 id; } && PERF_FORMAT_ID 141 * } && !PERF_FORMAT_GROUP 142 * 143 * { u64 nr; 144 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 145 * { u64 time_running; } && PERF_FORMAT_RUNNING 146 * { u64 value; 147 * { u64 id; } && PERF_FORMAT_ID 148 * } cntr[nr]; 149 * } && PERF_FORMAT_GROUP 150 * }; 151 */ 152enum perf_event_read_format { 153 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 154 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 155 PERF_FORMAT_ID = 1U << 2, 156 PERF_FORMAT_GROUP = 1U << 3, 157 158 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 159}; 160 161#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 162 163/* 164 * Hardware event_id to monitor via a performance monitoring event: 165 */ 166struct perf_event_attr { 167 168 /* 169 * Major type: hardware/software/tracepoint/etc. 170 */ 171 __u32 type; 172 173 /* 174 * Size of the attr structure, for fwd/bwd compat. 175 */ 176 __u32 size; 177 178 /* 179 * Type specific configuration information. 180 */ 181 __u64 config; 182 183 union { 184 __u64 sample_period; 185 __u64 sample_freq; 186 }; 187 188 __u64 sample_type; 189 __u64 read_format; 190 191 __u64 disabled : 1, /* off by default */ 192 inherit : 1, /* children inherit it */ 193 pinned : 1, /* must always be on PMU */ 194 exclusive : 1, /* only group on PMU */ 195 exclude_user : 1, /* don't count user */ 196 exclude_kernel : 1, /* ditto kernel */ 197 exclude_hv : 1, /* ditto hypervisor */ 198 exclude_idle : 1, /* don't count when idle */ 199 mmap : 1, /* include mmap data */ 200 comm : 1, /* include comm data */ 201 freq : 1, /* use freq, not period */ 202 inherit_stat : 1, /* per task counts */ 203 enable_on_exec : 1, /* next exec enables */ 204 task : 1, /* trace fork/exit */ 205 watermark : 1, /* wakeup_watermark */ 206 /* 207 * precise_ip: 208 * 209 * 0 - SAMPLE_IP can have arbitrary skid 210 * 1 - SAMPLE_IP must have constant skid 211 * 2 - SAMPLE_IP requested to have 0 skid 212 * 3 - SAMPLE_IP must have 0 skid 213 * 214 * See also PERF_RECORD_MISC_EXACT_IP 215 */ 216 precise_ip : 2, /* skid constraint */ 217 mmap_data : 1, /* non-exec mmap data */ 218 219 __reserved_1 : 46; 220 221 union { 222 __u32 wakeup_events; /* wakeup every n events */ 223 __u32 wakeup_watermark; /* bytes before wakeup */ 224 }; 225 226 __u32 bp_type; 227 __u64 bp_addr; 228 __u64 bp_len; 229}; 230 231/* 232 * Ioctls that can be done on a perf event fd: 233 */ 234#define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 235#define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 236#define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 237#define PERF_EVENT_IOC_RESET _IO ('$', 3) 238#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 239#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 240#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 241 242enum perf_event_ioc_flags { 243 PERF_IOC_FLAG_GROUP = 1U << 0, 244}; 245 246/* 247 * Structure of the page that can be mapped via mmap 248 */ 249struct perf_event_mmap_page { 250 __u32 version; /* version number of this structure */ 251 __u32 compat_version; /* lowest version this is compat with */ 252 253 /* 254 * Bits needed to read the hw events in user-space. 255 * 256 * u32 seq; 257 * s64 count; 258 * 259 * do { 260 * seq = pc->lock; 261 * 262 * barrier() 263 * if (pc->index) { 264 * count = pmc_read(pc->index - 1); 265 * count += pc->offset; 266 * } else 267 * goto regular_read; 268 * 269 * barrier(); 270 * } while (pc->lock != seq); 271 * 272 * NOTE: for obvious reason this only works on self-monitoring 273 * processes. 274 */ 275 __u32 lock; /* seqlock for synchronization */ 276 __u32 index; /* hardware event identifier */ 277 __s64 offset; /* add to hardware event value */ 278 __u64 time_enabled; /* time event active */ 279 __u64 time_running; /* time event on cpu */ 280 281 /* 282 * Hole for extension of the self monitor capabilities 283 */ 284 285 __u64 __reserved[123]; /* align to 1k */ 286 287 /* 288 * Control data for the mmap() data buffer. 289 * 290 * User-space reading the @data_head value should issue an rmb(), on 291 * SMP capable platforms, after reading this value -- see 292 * perf_event_wakeup(). 293 * 294 * When the mapping is PROT_WRITE the @data_tail value should be 295 * written by userspace to reflect the last read data. In this case 296 * the kernel will not over-write unread data. 297 */ 298 __u64 data_head; /* head in the data section */ 299 __u64 data_tail; /* user-space written tail */ 300}; 301 302#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 303#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 304#define PERF_RECORD_MISC_KERNEL (1 << 0) 305#define PERF_RECORD_MISC_USER (2 << 0) 306#define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 307#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 308#define PERF_RECORD_MISC_GUEST_USER (5 << 0) 309 310/* 311 * Indicates that the content of PERF_SAMPLE_IP points to 312 * the actual instruction that triggered the event. See also 313 * perf_event_attr::precise_ip. 314 */ 315#define PERF_RECORD_MISC_EXACT_IP (1 << 14) 316/* 317 * Reserve the last bit to indicate some extended misc field 318 */ 319#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 320 321struct perf_event_header { 322 __u32 type; 323 __u16 misc; 324 __u16 size; 325}; 326 327enum perf_event_type { 328 329 /* 330 * The MMAP events record the PROT_EXEC mappings so that we can 331 * correlate userspace IPs to code. They have the following structure: 332 * 333 * struct { 334 * struct perf_event_header header; 335 * 336 * u32 pid, tid; 337 * u64 addr; 338 * u64 len; 339 * u64 pgoff; 340 * char filename[]; 341 * }; 342 */ 343 PERF_RECORD_MMAP = 1, 344 345 /* 346 * struct { 347 * struct perf_event_header header; 348 * u64 id; 349 * u64 lost; 350 * }; 351 */ 352 PERF_RECORD_LOST = 2, 353 354 /* 355 * struct { 356 * struct perf_event_header header; 357 * 358 * u32 pid, tid; 359 * char comm[]; 360 * }; 361 */ 362 PERF_RECORD_COMM = 3, 363 364 /* 365 * struct { 366 * struct perf_event_header header; 367 * u32 pid, ppid; 368 * u32 tid, ptid; 369 * u64 time; 370 * }; 371 */ 372 PERF_RECORD_EXIT = 4, 373 374 /* 375 * struct { 376 * struct perf_event_header header; 377 * u64 time; 378 * u64 id; 379 * u64 stream_id; 380 * }; 381 */ 382 PERF_RECORD_THROTTLE = 5, 383 PERF_RECORD_UNTHROTTLE = 6, 384 385 /* 386 * struct { 387 * struct perf_event_header header; 388 * u32 pid, ppid; 389 * u32 tid, ptid; 390 * u64 time; 391 * }; 392 */ 393 PERF_RECORD_FORK = 7, 394 395 /* 396 * struct { 397 * struct perf_event_header header; 398 * u32 pid, tid; 399 * 400 * struct read_format values; 401 * }; 402 */ 403 PERF_RECORD_READ = 8, 404 405 /* 406 * struct { 407 * struct perf_event_header header; 408 * 409 * { u64 ip; } && PERF_SAMPLE_IP 410 * { u32 pid, tid; } && PERF_SAMPLE_TID 411 * { u64 time; } && PERF_SAMPLE_TIME 412 * { u64 addr; } && PERF_SAMPLE_ADDR 413 * { u64 id; } && PERF_SAMPLE_ID 414 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 415 * { u32 cpu, res; } && PERF_SAMPLE_CPU 416 * { u64 period; } && PERF_SAMPLE_PERIOD 417 * 418 * { struct read_format values; } && PERF_SAMPLE_READ 419 * 420 * { u64 nr, 421 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 422 * 423 * # 424 * # The RAW record below is opaque data wrt the ABI 425 * # 426 * # That is, the ABI doesn't make any promises wrt to 427 * # the stability of its content, it may vary depending 428 * # on event, hardware, kernel version and phase of 429 * # the moon. 430 * # 431 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 432 * # 433 * 434 * { u32 size; 435 * char data[size];}&& PERF_SAMPLE_RAW 436 * }; 437 */ 438 PERF_RECORD_SAMPLE = 9, 439 440 PERF_RECORD_MAX, /* non-ABI */ 441}; 442 443enum perf_callchain_context { 444 PERF_CONTEXT_HV = (__u64)-32, 445 PERF_CONTEXT_KERNEL = (__u64)-128, 446 PERF_CONTEXT_USER = (__u64)-512, 447 448 PERF_CONTEXT_GUEST = (__u64)-2048, 449 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 450 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 451 452 PERF_CONTEXT_MAX = (__u64)-4095, 453}; 454 455#define PERF_FLAG_FD_NO_GROUP (1U << 0) 456#define PERF_FLAG_FD_OUTPUT (1U << 1) 457 458#ifdef __KERNEL__ 459/* 460 * Kernel-internal data types and definitions: 461 */ 462 463#ifdef CONFIG_PERF_EVENTS 464# include <asm/perf_event.h> 465# include <asm/local64.h> 466#endif 467 468struct perf_guest_info_callbacks { 469 int (*is_in_guest) (void); 470 int (*is_user_mode) (void); 471 unsigned long (*get_guest_ip) (void); 472}; 473 474#ifdef CONFIG_HAVE_HW_BREAKPOINT 475#include <asm/hw_breakpoint.h> 476#endif 477 478#include <linux/list.h> 479#include <linux/mutex.h> 480#include <linux/rculist.h> 481#include <linux/rcupdate.h> 482#include <linux/spinlock.h> 483#include <linux/hrtimer.h> 484#include <linux/fs.h> 485#include <linux/pid_namespace.h> 486#include <linux/workqueue.h> 487#include <linux/ftrace.h> 488#include <linux/cpu.h> 489#include <linux/irq_work.h> 490#include <linux/jump_label_ref.h> 491#include <asm/atomic.h> 492#include <asm/local.h> 493 494#define PERF_MAX_STACK_DEPTH 255 495 496struct perf_callchain_entry { 497 __u64 nr; 498 __u64 ip[PERF_MAX_STACK_DEPTH]; 499}; 500 501struct perf_raw_record { 502 u32 size; 503 void *data; 504}; 505 506struct perf_branch_entry { 507 __u64 from; 508 __u64 to; 509 __u64 flags; 510}; 511 512struct perf_branch_stack { 513 __u64 nr; 514 struct perf_branch_entry entries[0]; 515}; 516 517struct task_struct; 518 519/** 520 * struct hw_perf_event - performance event hardware details: 521 */ 522struct hw_perf_event { 523#ifdef CONFIG_PERF_EVENTS 524 union { 525 struct { /* hardware */ 526 u64 config; 527 u64 last_tag; 528 unsigned long config_base; 529 unsigned long event_base; 530 int idx; 531 int last_cpu; 532 }; 533 struct { /* software */ 534 struct hrtimer hrtimer; 535 }; 536#ifdef CONFIG_HAVE_HW_BREAKPOINT 537 struct { /* breakpoint */ 538 struct arch_hw_breakpoint info; 539 struct list_head bp_list; 540 /* 541 * Crufty hack to avoid the chicken and egg 542 * problem hw_breakpoint has with context 543 * creation and event initalization. 544 */ 545 struct task_struct *bp_target; 546 }; 547#endif 548 }; 549 int state; 550 local64_t prev_count; 551 u64 sample_period; 552 u64 last_period; 553 local64_t period_left; 554 u64 interrupts; 555 556 u64 freq_time_stamp; 557 u64 freq_count_stamp; 558#endif 559}; 560 561/* 562 * hw_perf_event::state flags 563 */ 564#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 565#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 566#define PERF_HES_ARCH 0x04 567 568struct perf_event; 569 570/* 571 * Common implementation detail of pmu::{start,commit,cancel}_txn 572 */ 573#define PERF_EVENT_TXN 0x1 574 575/** 576 * struct pmu - generic performance monitoring unit 577 */ 578struct pmu { 579 struct list_head entry; 580 581 int * __percpu pmu_disable_count; 582 struct perf_cpu_context * __percpu pmu_cpu_context; 583 int task_ctx_nr; 584 585 /* 586 * Fully disable/enable this PMU, can be used to protect from the PMI 587 * as well as for lazy/batch writing of the MSRs. 588 */ 589 void (*pmu_enable) (struct pmu *pmu); /* optional */ 590 void (*pmu_disable) (struct pmu *pmu); /* optional */ 591 592 /* 593 * Try and initialize the event for this PMU. 594 * Should return -ENOENT when the @event doesn't match this PMU. 595 */ 596 int (*event_init) (struct perf_event *event); 597 598#define PERF_EF_START 0x01 /* start the counter when adding */ 599#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 600#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 601 602 /* 603 * Adds/Removes a counter to/from the PMU, can be done inside 604 * a transaction, see the ->*_txn() methods. 605 */ 606 int (*add) (struct perf_event *event, int flags); 607 void (*del) (struct perf_event *event, int flags); 608 609 /* 610 * Starts/Stops a counter present on the PMU. The PMI handler 611 * should stop the counter when perf_event_overflow() returns 612 * !0. ->start() will be used to continue. 613 */ 614 void (*start) (struct perf_event *event, int flags); 615 void (*stop) (struct perf_event *event, int flags); 616 617 /* 618 * Updates the counter value of the event. 619 */ 620 void (*read) (struct perf_event *event); 621 622 /* 623 * Group events scheduling is treated as a transaction, add 624 * group events as a whole and perform one schedulability test. 625 * If the test fails, roll back the whole group 626 * 627 * Start the transaction, after this ->add() doesn't need to 628 * do schedulability tests. 629 */ 630 void (*start_txn) (struct pmu *pmu); /* optional */ 631 /* 632 * If ->start_txn() disabled the ->add() schedulability test 633 * then ->commit_txn() is required to perform one. On success 634 * the transaction is closed. On error the transaction is kept 635 * open until ->cancel_txn() is called. 636 */ 637 int (*commit_txn) (struct pmu *pmu); /* optional */ 638 /* 639 * Will cancel the transaction, assumes ->del() is called 640 * for each successfull ->add() during the transaction. 641 */ 642 void (*cancel_txn) (struct pmu *pmu); /* optional */ 643}; 644 645/** 646 * enum perf_event_active_state - the states of a event 647 */ 648enum perf_event_active_state { 649 PERF_EVENT_STATE_ERROR = -2, 650 PERF_EVENT_STATE_OFF = -1, 651 PERF_EVENT_STATE_INACTIVE = 0, 652 PERF_EVENT_STATE_ACTIVE = 1, 653}; 654 655struct file; 656 657#define PERF_BUFFER_WRITABLE 0x01 658 659struct perf_buffer { 660 atomic_t refcount; 661 struct rcu_head rcu_head; 662#ifdef CONFIG_PERF_USE_VMALLOC 663 struct work_struct work; 664 int page_order; /* allocation order */ 665#endif 666 int nr_pages; /* nr of data pages */ 667 int writable; /* are we writable */ 668 669 atomic_t poll; /* POLL_ for wakeups */ 670 671 local_t head; /* write position */ 672 local_t nest; /* nested writers */ 673 local_t events; /* event limit */ 674 local_t wakeup; /* wakeup stamp */ 675 local_t lost; /* nr records lost */ 676 677 long watermark; /* wakeup watermark */ 678 679 struct perf_event_mmap_page *user_page; 680 void *data_pages[0]; 681}; 682 683struct perf_sample_data; 684 685typedef void (*perf_overflow_handler_t)(struct perf_event *, int, 686 struct perf_sample_data *, 687 struct pt_regs *regs); 688 689enum perf_group_flag { 690 PERF_GROUP_SOFTWARE = 0x1, 691}; 692 693#define SWEVENT_HLIST_BITS 8 694#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 695 696struct swevent_hlist { 697 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 698 struct rcu_head rcu_head; 699}; 700 701#define PERF_ATTACH_CONTEXT 0x01 702#define PERF_ATTACH_GROUP 0x02 703#define PERF_ATTACH_TASK 0x04 704 705/** 706 * struct perf_event - performance event kernel representation: 707 */ 708struct perf_event { 709#ifdef CONFIG_PERF_EVENTS 710 struct list_head group_entry; 711 struct list_head event_entry; 712 struct list_head sibling_list; 713 struct hlist_node hlist_entry; 714 int nr_siblings; 715 int group_flags; 716 struct perf_event *group_leader; 717 struct pmu *pmu; 718 719 enum perf_event_active_state state; 720 unsigned int attach_state; 721 local64_t count; 722 atomic64_t child_count; 723 724 /* 725 * These are the total time in nanoseconds that the event 726 * has been enabled (i.e. eligible to run, and the task has 727 * been scheduled in, if this is a per-task event) 728 * and running (scheduled onto the CPU), respectively. 729 * 730 * They are computed from tstamp_enabled, tstamp_running and 731 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 732 */ 733 u64 total_time_enabled; 734 u64 total_time_running; 735 736 /* 737 * These are timestamps used for computing total_time_enabled 738 * and total_time_running when the event is in INACTIVE or 739 * ACTIVE state, measured in nanoseconds from an arbitrary point 740 * in time. 741 * tstamp_enabled: the notional time when the event was enabled 742 * tstamp_running: the notional time when the event was scheduled on 743 * tstamp_stopped: in INACTIVE state, the notional time when the 744 * event was scheduled off. 745 */ 746 u64 tstamp_enabled; 747 u64 tstamp_running; 748 u64 tstamp_stopped; 749 750 /* 751 * timestamp shadows the actual context timing but it can 752 * be safely used in NMI interrupt context. It reflects the 753 * context time as it was when the event was last scheduled in. 754 * 755 * ctx_time already accounts for ctx->timestamp. Therefore to 756 * compute ctx_time for a sample, simply add perf_clock(). 757 */ 758 u64 shadow_ctx_time; 759 760 struct perf_event_attr attr; 761 struct hw_perf_event hw; 762 763 struct perf_event_context *ctx; 764 struct file *filp; 765 766 /* 767 * These accumulate total time (in nanoseconds) that children 768 * events have been enabled and running, respectively. 769 */ 770 atomic64_t child_total_time_enabled; 771 atomic64_t child_total_time_running; 772 773 /* 774 * Protect attach/detach and child_list: 775 */ 776 struct mutex child_mutex; 777 struct list_head child_list; 778 struct perf_event *parent; 779 780 int oncpu; 781 int cpu; 782 783 struct list_head owner_entry; 784 struct task_struct *owner; 785 786 /* mmap bits */ 787 struct mutex mmap_mutex; 788 atomic_t mmap_count; 789 int mmap_locked; 790 struct user_struct *mmap_user; 791 struct perf_buffer *buffer; 792 793 /* poll related */ 794 wait_queue_head_t waitq; 795 struct fasync_struct *fasync; 796 797 /* delayed work for NMIs and such */ 798 int pending_wakeup; 799 int pending_kill; 800 int pending_disable; 801 struct irq_work pending; 802 803 atomic_t event_limit; 804 805 void (*destroy)(struct perf_event *); 806 struct rcu_head rcu_head; 807 808 struct pid_namespace *ns; 809 u64 id; 810 811 perf_overflow_handler_t overflow_handler; 812 813#ifdef CONFIG_EVENT_TRACING 814 struct ftrace_event_call *tp_event; 815 struct event_filter *filter; 816#endif 817 818#endif /* CONFIG_PERF_EVENTS */ 819}; 820 821enum perf_event_context_type { 822 task_context, 823 cpu_context, 824}; 825 826/** 827 * struct perf_event_context - event context structure 828 * 829 * Used as a container for task events and CPU events as well: 830 */ 831struct perf_event_context { 832 enum perf_event_context_type type; 833 struct pmu *pmu; 834 /* 835 * Protect the states of the events in the list, 836 * nr_active, and the list: 837 */ 838 raw_spinlock_t lock; 839 /* 840 * Protect the list of events. Locking either mutex or lock 841 * is sufficient to ensure the list doesn't change; to change 842 * the list you need to lock both the mutex and the spinlock. 843 */ 844 struct mutex mutex; 845 846 struct list_head pinned_groups; 847 struct list_head flexible_groups; 848 struct list_head event_list; 849 int nr_events; 850 int nr_active; 851 int is_active; 852 int nr_stat; 853 int rotate_disable; 854 atomic_t refcount; 855 struct task_struct *task; 856 857 /* 858 * Context clock, runs when context enabled. 859 */ 860 u64 time; 861 u64 timestamp; 862 863 /* 864 * These fields let us detect when two contexts have both 865 * been cloned (inherited) from a common ancestor. 866 */ 867 struct perf_event_context *parent_ctx; 868 u64 parent_gen; 869 u64 generation; 870 int pin_count; 871 struct rcu_head rcu_head; 872}; 873 874/* 875 * Number of contexts where an event can trigger: 876 * task, softirq, hardirq, nmi. 877 */ 878#define PERF_NR_CONTEXTS 4 879 880/** 881 * struct perf_event_cpu_context - per cpu event context structure 882 */ 883struct perf_cpu_context { 884 struct perf_event_context ctx; 885 struct perf_event_context *task_ctx; 886 int active_oncpu; 887 int exclusive; 888 struct list_head rotation_list; 889 int jiffies_interval; 890 struct pmu *active_pmu; 891}; 892 893struct perf_output_handle { 894 struct perf_event *event; 895 struct perf_buffer *buffer; 896 unsigned long wakeup; 897 unsigned long size; 898 void *addr; 899 int page; 900 int nmi; 901 int sample; 902}; 903 904#ifdef CONFIG_PERF_EVENTS 905 906extern int perf_pmu_register(struct pmu *pmu); 907extern void perf_pmu_unregister(struct pmu *pmu); 908 909extern int perf_num_counters(void); 910extern const char *perf_pmu_name(void); 911extern void __perf_event_task_sched_in(struct task_struct *task); 912extern void __perf_event_task_sched_out(struct task_struct *task, struct task_struct *next); 913extern int perf_event_init_task(struct task_struct *child); 914extern void perf_event_exit_task(struct task_struct *child); 915extern void perf_event_free_task(struct task_struct *task); 916extern void perf_event_delayed_put(struct task_struct *task); 917extern void perf_event_print_debug(void); 918extern void perf_pmu_disable(struct pmu *pmu); 919extern void perf_pmu_enable(struct pmu *pmu); 920extern int perf_event_task_disable(void); 921extern int perf_event_task_enable(void); 922extern void perf_event_update_userpage(struct perf_event *event); 923extern int perf_event_release_kernel(struct perf_event *event); 924extern struct perf_event * 925perf_event_create_kernel_counter(struct perf_event_attr *attr, 926 int cpu, 927 struct task_struct *task, 928 perf_overflow_handler_t callback); 929extern u64 perf_event_read_value(struct perf_event *event, 930 u64 *enabled, u64 *running); 931 932struct perf_sample_data { 933 u64 type; 934 935 u64 ip; 936 struct { 937 u32 pid; 938 u32 tid; 939 } tid_entry; 940 u64 time; 941 u64 addr; 942 u64 id; 943 u64 stream_id; 944 struct { 945 u32 cpu; 946 u32 reserved; 947 } cpu_entry; 948 u64 period; 949 struct perf_callchain_entry *callchain; 950 struct perf_raw_record *raw; 951}; 952 953static inline 954void perf_sample_data_init(struct perf_sample_data *data, u64 addr) 955{ 956 data->addr = addr; 957 data->raw = NULL; 958} 959 960extern void perf_output_sample(struct perf_output_handle *handle, 961 struct perf_event_header *header, 962 struct perf_sample_data *data, 963 struct perf_event *event); 964extern void perf_prepare_sample(struct perf_event_header *header, 965 struct perf_sample_data *data, 966 struct perf_event *event, 967 struct pt_regs *regs); 968 969extern int perf_event_overflow(struct perf_event *event, int nmi, 970 struct perf_sample_data *data, 971 struct pt_regs *regs); 972 973/* 974 * Return 1 for a software event, 0 for a hardware event 975 */ 976static inline int is_software_event(struct perf_event *event) 977{ 978 return event->pmu->task_ctx_nr == perf_sw_context; 979} 980 981extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; 982 983extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64); 984 985#ifndef perf_arch_fetch_caller_regs 986static inline void 987perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 988#endif 989 990/* 991 * Take a snapshot of the regs. Skip ip and frame pointer to 992 * the nth caller. We only need a few of the regs: 993 * - ip for PERF_SAMPLE_IP 994 * - cs for user_mode() tests 995 * - bp for callchains 996 * - eflags, for future purposes, just in case 997 */ 998static inline void perf_fetch_caller_regs(struct pt_regs *regs) 999{ 1000 memset(regs, 0, sizeof(*regs)); 1001 1002 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1003} 1004 1005static __always_inline void 1006perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr) 1007{ 1008 struct pt_regs hot_regs; 1009 1010 JUMP_LABEL(&perf_swevent_enabled[event_id], have_event); 1011 return; 1012 1013have_event: 1014 if (!regs) { 1015 perf_fetch_caller_regs(&hot_regs); 1016 regs = &hot_regs; 1017 } 1018 __perf_sw_event(event_id, nr, nmi, regs, addr); 1019} 1020 1021extern atomic_t perf_task_events; 1022 1023static inline void perf_event_task_sched_in(struct task_struct *task) 1024{ 1025 COND_STMT(&perf_task_events, __perf_event_task_sched_in(task)); 1026} 1027 1028static inline 1029void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next) 1030{ 1031 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0); 1032 1033 COND_STMT(&perf_task_events, __perf_event_task_sched_out(task, next)); 1034} 1035 1036extern void perf_event_mmap(struct vm_area_struct *vma); 1037extern struct perf_guest_info_callbacks *perf_guest_cbs; 1038extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1039extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1040 1041extern void perf_event_comm(struct task_struct *tsk); 1042extern void perf_event_fork(struct task_struct *tsk); 1043 1044/* Callchains */ 1045DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1046 1047extern void perf_callchain_user(struct perf_callchain_entry *entry, 1048 struct pt_regs *regs); 1049extern void perf_callchain_kernel(struct perf_callchain_entry *entry, 1050 struct pt_regs *regs); 1051 1052 1053static inline void 1054perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 1055{ 1056 if (entry->nr < PERF_MAX_STACK_DEPTH) 1057 entry->ip[entry->nr++] = ip; 1058} 1059 1060extern int sysctl_perf_event_paranoid; 1061extern int sysctl_perf_event_mlock; 1062extern int sysctl_perf_event_sample_rate; 1063 1064static inline bool perf_paranoid_tracepoint_raw(void) 1065{ 1066 return sysctl_perf_event_paranoid > -1; 1067} 1068 1069static inline bool perf_paranoid_cpu(void) 1070{ 1071 return sysctl_perf_event_paranoid > 0; 1072} 1073 1074static inline bool perf_paranoid_kernel(void) 1075{ 1076 return sysctl_perf_event_paranoid > 1; 1077} 1078 1079extern void perf_event_init(void); 1080extern void perf_tp_event(u64 addr, u64 count, void *record, 1081 int entry_size, struct pt_regs *regs, 1082 struct hlist_head *head, int rctx); 1083extern void perf_bp_event(struct perf_event *event, void *data); 1084 1085#ifndef perf_misc_flags 1086#define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \ 1087 PERF_RECORD_MISC_KERNEL) 1088#define perf_instruction_pointer(regs) instruction_pointer(regs) 1089#endif 1090 1091extern int perf_output_begin(struct perf_output_handle *handle, 1092 struct perf_event *event, unsigned int size, 1093 int nmi, int sample); 1094extern void perf_output_end(struct perf_output_handle *handle); 1095extern void perf_output_copy(struct perf_output_handle *handle, 1096 const void *buf, unsigned int len); 1097extern int perf_swevent_get_recursion_context(void); 1098extern void perf_swevent_put_recursion_context(int rctx); 1099extern void perf_event_enable(struct perf_event *event); 1100extern void perf_event_disable(struct perf_event *event); 1101extern void perf_event_task_tick(void); 1102#else 1103static inline void 1104perf_event_task_sched_in(struct task_struct *task) { } 1105static inline void 1106perf_event_task_sched_out(struct task_struct *task, 1107 struct task_struct *next) { } 1108static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1109static inline void perf_event_exit_task(struct task_struct *child) { } 1110static inline void perf_event_free_task(struct task_struct *task) { } 1111static inline void perf_event_delayed_put(struct task_struct *task) { } 1112static inline void perf_event_print_debug(void) { } 1113static inline int perf_event_task_disable(void) { return -EINVAL; } 1114static inline int perf_event_task_enable(void) { return -EINVAL; } 1115 1116static inline void 1117perf_sw_event(u32 event_id, u64 nr, int nmi, 1118 struct pt_regs *regs, u64 addr) { } 1119static inline void 1120perf_bp_event(struct perf_event *event, void *data) { } 1121 1122static inline int perf_register_guest_info_callbacks 1123(struct perf_guest_info_callbacks *callbacks) { return 0; } 1124static inline int perf_unregister_guest_info_callbacks 1125(struct perf_guest_info_callbacks *callbacks) { return 0; } 1126 1127static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1128static inline void perf_event_comm(struct task_struct *tsk) { } 1129static inline void perf_event_fork(struct task_struct *tsk) { } 1130static inline void perf_event_init(void) { } 1131static inline int perf_swevent_get_recursion_context(void) { return -1; } 1132static inline void perf_swevent_put_recursion_context(int rctx) { } 1133static inline void perf_event_enable(struct perf_event *event) { } 1134static inline void perf_event_disable(struct perf_event *event) { } 1135static inline void perf_event_task_tick(void) { } 1136#endif 1137 1138#define perf_output_put(handle, x) \ 1139 perf_output_copy((handle), &(x), sizeof(x)) 1140 1141/* 1142 * This has to have a higher priority than migration_notifier in sched.c. 1143 */ 1144#define perf_cpu_notifier(fn) \ 1145do { \ 1146 static struct notifier_block fn##_nb __cpuinitdata = \ 1147 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1148 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1149 (void *)(unsigned long)smp_processor_id()); \ 1150 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1151 (void *)(unsigned long)smp_processor_id()); \ 1152 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1153 (void *)(unsigned long)smp_processor_id()); \ 1154 register_cpu_notifier(&fn##_nb); \ 1155} while (0) 1156 1157#endif /* __KERNEL__ */ 1158#endif /* _LINUX_PERF_EVENT_H */