at v2.6.37 20 kB view raw
1#ifndef __LINUX_PERCPU_H 2#define __LINUX_PERCPU_H 3 4#include <linux/preempt.h> 5#include <linux/smp.h> 6#include <linux/cpumask.h> 7#include <linux/pfn.h> 8#include <linux/init.h> 9 10#include <asm/percpu.h> 11 12/* enough to cover all DEFINE_PER_CPUs in modules */ 13#ifdef CONFIG_MODULES 14#define PERCPU_MODULE_RESERVE (8 << 10) 15#else 16#define PERCPU_MODULE_RESERVE 0 17#endif 18 19#ifndef PERCPU_ENOUGH_ROOM 20#define PERCPU_ENOUGH_ROOM \ 21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 22 PERCPU_MODULE_RESERVE) 23#endif 24 25/* 26 * Must be an lvalue. Since @var must be a simple identifier, 27 * we force a syntax error here if it isn't. 28 */ 29#define get_cpu_var(var) (*({ \ 30 preempt_disable(); \ 31 &__get_cpu_var(var); })) 32 33/* 34 * The weird & is necessary because sparse considers (void)(var) to be 35 * a direct dereference of percpu variable (var). 36 */ 37#define put_cpu_var(var) do { \ 38 (void)&(var); \ 39 preempt_enable(); \ 40} while (0) 41 42#define get_cpu_ptr(var) ({ \ 43 preempt_disable(); \ 44 this_cpu_ptr(var); }) 45 46#define put_cpu_ptr(var) do { \ 47 (void)(var); \ 48 preempt_enable(); \ 49} while (0) 50 51/* minimum unit size, also is the maximum supported allocation size */ 52#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10) 53 54/* 55 * Percpu allocator can serve percpu allocations before slab is 56 * initialized which allows slab to depend on the percpu allocator. 57 * The following two parameters decide how much resource to 58 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or 59 * larger than PERCPU_DYNAMIC_EARLY_SIZE. 60 */ 61#define PERCPU_DYNAMIC_EARLY_SLOTS 128 62#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10) 63 64/* 65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 66 * back on the first chunk for dynamic percpu allocation if arch is 67 * manually allocating and mapping it for faster access (as a part of 68 * large page mapping for example). 69 * 70 * The following values give between one and two pages of free space 71 * after typical minimal boot (2-way SMP, single disk and NIC) with 72 * both defconfig and a distro config on x86_64 and 32. More 73 * intelligent way to determine this would be nice. 74 */ 75#if BITS_PER_LONG > 32 76#define PERCPU_DYNAMIC_RESERVE (20 << 10) 77#else 78#define PERCPU_DYNAMIC_RESERVE (12 << 10) 79#endif 80 81extern void *pcpu_base_addr; 82extern const unsigned long *pcpu_unit_offsets; 83 84struct pcpu_group_info { 85 int nr_units; /* aligned # of units */ 86 unsigned long base_offset; /* base address offset */ 87 unsigned int *cpu_map; /* unit->cpu map, empty 88 * entries contain NR_CPUS */ 89}; 90 91struct pcpu_alloc_info { 92 size_t static_size; 93 size_t reserved_size; 94 size_t dyn_size; 95 size_t unit_size; 96 size_t atom_size; 97 size_t alloc_size; 98 size_t __ai_size; /* internal, don't use */ 99 int nr_groups; /* 0 if grouping unnecessary */ 100 struct pcpu_group_info groups[]; 101}; 102 103enum pcpu_fc { 104 PCPU_FC_AUTO, 105 PCPU_FC_EMBED, 106 PCPU_FC_PAGE, 107 108 PCPU_FC_NR, 109}; 110extern const char *pcpu_fc_names[PCPU_FC_NR]; 111 112extern enum pcpu_fc pcpu_chosen_fc; 113 114typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 115 size_t align); 116typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 117typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 118typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 119 120extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 121 int nr_units); 122extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 123 124extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 125 void *base_addr); 126 127#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 128extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 129 size_t atom_size, 130 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 131 pcpu_fc_alloc_fn_t alloc_fn, 132 pcpu_fc_free_fn_t free_fn); 133#endif 134 135#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 136extern int __init pcpu_page_first_chunk(size_t reserved_size, 137 pcpu_fc_alloc_fn_t alloc_fn, 138 pcpu_fc_free_fn_t free_fn, 139 pcpu_fc_populate_pte_fn_t populate_pte_fn); 140#endif 141 142/* 143 * Use this to get to a cpu's version of the per-cpu object 144 * dynamically allocated. Non-atomic access to the current CPU's 145 * version should probably be combined with get_cpu()/put_cpu(). 146 */ 147#ifdef CONFIG_SMP 148#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 149#else 150#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); }) 151#endif 152 153extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); 154extern bool is_kernel_percpu_address(unsigned long addr); 155 156#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 157extern void __init setup_per_cpu_areas(void); 158#endif 159extern void __init percpu_init_late(void); 160 161extern void __percpu *__alloc_percpu(size_t size, size_t align); 162extern void free_percpu(void __percpu *__pdata); 163extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 164 165#define alloc_percpu(type) \ 166 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) 167 168/* 169 * Optional methods for optimized non-lvalue per-cpu variable access. 170 * 171 * @var can be a percpu variable or a field of it and its size should 172 * equal char, int or long. percpu_read() evaluates to a lvalue and 173 * all others to void. 174 * 175 * These operations are guaranteed to be atomic w.r.t. preemption. 176 * The generic versions use plain get/put_cpu_var(). Archs are 177 * encouraged to implement single-instruction alternatives which don't 178 * require preemption protection. 179 */ 180#ifndef percpu_read 181# define percpu_read(var) \ 182 ({ \ 183 typeof(var) *pr_ptr__ = &(var); \ 184 typeof(var) pr_ret__; \ 185 pr_ret__ = get_cpu_var(*pr_ptr__); \ 186 put_cpu_var(*pr_ptr__); \ 187 pr_ret__; \ 188 }) 189#endif 190 191#define __percpu_generic_to_op(var, val, op) \ 192do { \ 193 typeof(var) *pgto_ptr__ = &(var); \ 194 get_cpu_var(*pgto_ptr__) op val; \ 195 put_cpu_var(*pgto_ptr__); \ 196} while (0) 197 198#ifndef percpu_write 199# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) 200#endif 201 202#ifndef percpu_add 203# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) 204#endif 205 206#ifndef percpu_sub 207# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) 208#endif 209 210#ifndef percpu_and 211# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) 212#endif 213 214#ifndef percpu_or 215# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) 216#endif 217 218#ifndef percpu_xor 219# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) 220#endif 221 222/* 223 * Branching function to split up a function into a set of functions that 224 * are called for different scalar sizes of the objects handled. 225 */ 226 227extern void __bad_size_call_parameter(void); 228 229#define __pcpu_size_call_return(stem, variable) \ 230({ typeof(variable) pscr_ret__; \ 231 __verify_pcpu_ptr(&(variable)); \ 232 switch(sizeof(variable)) { \ 233 case 1: pscr_ret__ = stem##1(variable);break; \ 234 case 2: pscr_ret__ = stem##2(variable);break; \ 235 case 4: pscr_ret__ = stem##4(variable);break; \ 236 case 8: pscr_ret__ = stem##8(variable);break; \ 237 default: \ 238 __bad_size_call_parameter();break; \ 239 } \ 240 pscr_ret__; \ 241}) 242 243#define __pcpu_size_call(stem, variable, ...) \ 244do { \ 245 __verify_pcpu_ptr(&(variable)); \ 246 switch(sizeof(variable)) { \ 247 case 1: stem##1(variable, __VA_ARGS__);break; \ 248 case 2: stem##2(variable, __VA_ARGS__);break; \ 249 case 4: stem##4(variable, __VA_ARGS__);break; \ 250 case 8: stem##8(variable, __VA_ARGS__);break; \ 251 default: \ 252 __bad_size_call_parameter();break; \ 253 } \ 254} while (0) 255 256/* 257 * Optimized manipulation for memory allocated through the per cpu 258 * allocator or for addresses of per cpu variables. 259 * 260 * These operation guarantee exclusivity of access for other operations 261 * on the *same* processor. The assumption is that per cpu data is only 262 * accessed by a single processor instance (the current one). 263 * 264 * The first group is used for accesses that must be done in a 265 * preemption safe way since we know that the context is not preempt 266 * safe. Interrupts may occur. If the interrupt modifies the variable 267 * too then RMW actions will not be reliable. 268 * 269 * The arch code can provide optimized functions in two ways: 270 * 271 * 1. Override the function completely. F.e. define this_cpu_add(). 272 * The arch must then ensure that the various scalar format passed 273 * are handled correctly. 274 * 275 * 2. Provide functions for certain scalar sizes. F.e. provide 276 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 277 * sized RMW actions. If arch code does not provide operations for 278 * a scalar size then the fallback in the generic code will be 279 * used. 280 */ 281 282#define _this_cpu_generic_read(pcp) \ 283({ typeof(pcp) ret__; \ 284 preempt_disable(); \ 285 ret__ = *this_cpu_ptr(&(pcp)); \ 286 preempt_enable(); \ 287 ret__; \ 288}) 289 290#ifndef this_cpu_read 291# ifndef this_cpu_read_1 292# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 293# endif 294# ifndef this_cpu_read_2 295# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 296# endif 297# ifndef this_cpu_read_4 298# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 299# endif 300# ifndef this_cpu_read_8 301# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 302# endif 303# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 304#endif 305 306#define _this_cpu_generic_to_op(pcp, val, op) \ 307do { \ 308 preempt_disable(); \ 309 *__this_cpu_ptr(&(pcp)) op val; \ 310 preempt_enable(); \ 311} while (0) 312 313#ifndef this_cpu_write 314# ifndef this_cpu_write_1 315# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 316# endif 317# ifndef this_cpu_write_2 318# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 319# endif 320# ifndef this_cpu_write_4 321# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 322# endif 323# ifndef this_cpu_write_8 324# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 325# endif 326# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 327#endif 328 329#ifndef this_cpu_add 330# ifndef this_cpu_add_1 331# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 332# endif 333# ifndef this_cpu_add_2 334# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 335# endif 336# ifndef this_cpu_add_4 337# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 338# endif 339# ifndef this_cpu_add_8 340# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 341# endif 342# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 343#endif 344 345#ifndef this_cpu_sub 346# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) 347#endif 348 349#ifndef this_cpu_inc 350# define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 351#endif 352 353#ifndef this_cpu_dec 354# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 355#endif 356 357#ifndef this_cpu_and 358# ifndef this_cpu_and_1 359# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 360# endif 361# ifndef this_cpu_and_2 362# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 363# endif 364# ifndef this_cpu_and_4 365# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 366# endif 367# ifndef this_cpu_and_8 368# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 369# endif 370# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 371#endif 372 373#ifndef this_cpu_or 374# ifndef this_cpu_or_1 375# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 376# endif 377# ifndef this_cpu_or_2 378# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 379# endif 380# ifndef this_cpu_or_4 381# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 382# endif 383# ifndef this_cpu_or_8 384# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 385# endif 386# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 387#endif 388 389#ifndef this_cpu_xor 390# ifndef this_cpu_xor_1 391# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 392# endif 393# ifndef this_cpu_xor_2 394# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 395# endif 396# ifndef this_cpu_xor_4 397# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 398# endif 399# ifndef this_cpu_xor_8 400# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 401# endif 402# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 403#endif 404 405/* 406 * Generic percpu operations that do not require preemption handling. 407 * Either we do not care about races or the caller has the 408 * responsibility of handling preemptions issues. Arch code can still 409 * override these instructions since the arch per cpu code may be more 410 * efficient and may actually get race freeness for free (that is the 411 * case for x86 for example). 412 * 413 * If there is no other protection through preempt disable and/or 414 * disabling interupts then one of these RMW operations can show unexpected 415 * behavior because the execution thread was rescheduled on another processor 416 * or an interrupt occurred and the same percpu variable was modified from 417 * the interrupt context. 418 */ 419#ifndef __this_cpu_read 420# ifndef __this_cpu_read_1 421# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) 422# endif 423# ifndef __this_cpu_read_2 424# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) 425# endif 426# ifndef __this_cpu_read_4 427# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) 428# endif 429# ifndef __this_cpu_read_8 430# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) 431# endif 432# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) 433#endif 434 435#define __this_cpu_generic_to_op(pcp, val, op) \ 436do { \ 437 *__this_cpu_ptr(&(pcp)) op val; \ 438} while (0) 439 440#ifndef __this_cpu_write 441# ifndef __this_cpu_write_1 442# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 443# endif 444# ifndef __this_cpu_write_2 445# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 446# endif 447# ifndef __this_cpu_write_4 448# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 449# endif 450# ifndef __this_cpu_write_8 451# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 452# endif 453# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) 454#endif 455 456#ifndef __this_cpu_add 457# ifndef __this_cpu_add_1 458# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 459# endif 460# ifndef __this_cpu_add_2 461# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 462# endif 463# ifndef __this_cpu_add_4 464# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 465# endif 466# ifndef __this_cpu_add_8 467# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 468# endif 469# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) 470#endif 471 472#ifndef __this_cpu_sub 473# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) 474#endif 475 476#ifndef __this_cpu_inc 477# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 478#endif 479 480#ifndef __this_cpu_dec 481# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 482#endif 483 484#ifndef __this_cpu_and 485# ifndef __this_cpu_and_1 486# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 487# endif 488# ifndef __this_cpu_and_2 489# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 490# endif 491# ifndef __this_cpu_and_4 492# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 493# endif 494# ifndef __this_cpu_and_8 495# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 496# endif 497# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) 498#endif 499 500#ifndef __this_cpu_or 501# ifndef __this_cpu_or_1 502# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 503# endif 504# ifndef __this_cpu_or_2 505# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 506# endif 507# ifndef __this_cpu_or_4 508# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 509# endif 510# ifndef __this_cpu_or_8 511# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 512# endif 513# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) 514#endif 515 516#ifndef __this_cpu_xor 517# ifndef __this_cpu_xor_1 518# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 519# endif 520# ifndef __this_cpu_xor_2 521# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 522# endif 523# ifndef __this_cpu_xor_4 524# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 525# endif 526# ifndef __this_cpu_xor_8 527# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 528# endif 529# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) 530#endif 531 532/* 533 * IRQ safe versions of the per cpu RMW operations. Note that these operations 534 * are *not* safe against modification of the same variable from another 535 * processors (which one gets when using regular atomic operations) 536 . They are guaranteed to be atomic vs. local interrupts and 537 * preemption only. 538 */ 539#define irqsafe_cpu_generic_to_op(pcp, val, op) \ 540do { \ 541 unsigned long flags; \ 542 local_irq_save(flags); \ 543 *__this_cpu_ptr(&(pcp)) op val; \ 544 local_irq_restore(flags); \ 545} while (0) 546 547#ifndef irqsafe_cpu_add 548# ifndef irqsafe_cpu_add_1 549# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 550# endif 551# ifndef irqsafe_cpu_add_2 552# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 553# endif 554# ifndef irqsafe_cpu_add_4 555# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 556# endif 557# ifndef irqsafe_cpu_add_8 558# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 559# endif 560# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val)) 561#endif 562 563#ifndef irqsafe_cpu_sub 564# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val)) 565#endif 566 567#ifndef irqsafe_cpu_inc 568# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1) 569#endif 570 571#ifndef irqsafe_cpu_dec 572# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1) 573#endif 574 575#ifndef irqsafe_cpu_and 576# ifndef irqsafe_cpu_and_1 577# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 578# endif 579# ifndef irqsafe_cpu_and_2 580# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 581# endif 582# ifndef irqsafe_cpu_and_4 583# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 584# endif 585# ifndef irqsafe_cpu_and_8 586# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 587# endif 588# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val)) 589#endif 590 591#ifndef irqsafe_cpu_or 592# ifndef irqsafe_cpu_or_1 593# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 594# endif 595# ifndef irqsafe_cpu_or_2 596# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 597# endif 598# ifndef irqsafe_cpu_or_4 599# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 600# endif 601# ifndef irqsafe_cpu_or_8 602# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 603# endif 604# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val)) 605#endif 606 607#ifndef irqsafe_cpu_xor 608# ifndef irqsafe_cpu_xor_1 609# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 610# endif 611# ifndef irqsafe_cpu_xor_2 612# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 613# endif 614# ifndef irqsafe_cpu_xor_4 615# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 616# endif 617# ifndef irqsafe_cpu_xor_8 618# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 619# endif 620# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val)) 621#endif 622 623#endif /* __LINUX_PERCPU_H */