at v2.6.37 36 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <generated/bounds.h> 19#include <asm/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coelesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38#define MIGRATE_UNMOVABLE 0 39#define MIGRATE_RECLAIMABLE 1 40#define MIGRATE_MOVABLE 2 41#define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */ 42#define MIGRATE_RESERVE 3 43#define MIGRATE_ISOLATE 4 /* can't allocate from here */ 44#define MIGRATE_TYPES 5 45 46#define for_each_migratetype_order(order, type) \ 47 for (order = 0; order < MAX_ORDER; order++) \ 48 for (type = 0; type < MIGRATE_TYPES; type++) 49 50extern int page_group_by_mobility_disabled; 51 52static inline int get_pageblock_migratetype(struct page *page) 53{ 54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 55} 56 57struct free_area { 58 struct list_head free_list[MIGRATE_TYPES]; 59 unsigned long nr_free; 60}; 61 62struct pglist_data; 63 64/* 65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 66 * So add a wild amount of padding here to ensure that they fall into separate 67 * cachelines. There are very few zone structures in the machine, so space 68 * consumption is not a concern here. 69 */ 70#if defined(CONFIG_SMP) 71struct zone_padding { 72 char x[0]; 73} ____cacheline_internodealigned_in_smp; 74#define ZONE_PADDING(name) struct zone_padding name; 75#else 76#define ZONE_PADDING(name) 77#endif 78 79enum zone_stat_item { 80 /* First 128 byte cacheline (assuming 64 bit words) */ 81 NR_FREE_PAGES, 82 NR_LRU_BASE, 83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 84 NR_ACTIVE_ANON, /* " " " " " */ 85 NR_INACTIVE_FILE, /* " " " " " */ 86 NR_ACTIVE_FILE, /* " " " " " */ 87 NR_UNEVICTABLE, /* " " " " " */ 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 89 NR_ANON_PAGES, /* Mapped anonymous pages */ 90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 91 only modified from process context */ 92 NR_FILE_PAGES, 93 NR_FILE_DIRTY, 94 NR_WRITEBACK, 95 NR_SLAB_RECLAIMABLE, 96 NR_SLAB_UNRECLAIMABLE, 97 NR_PAGETABLE, /* used for pagetables */ 98 NR_KERNEL_STACK, 99 /* Second 128 byte cacheline */ 100 NR_UNSTABLE_NFS, /* NFS unstable pages */ 101 NR_BOUNCE, 102 NR_VMSCAN_WRITE, 103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 107 NR_DIRTIED, /* page dirtyings since bootup */ 108 NR_WRITTEN, /* page writings since bootup */ 109#ifdef CONFIG_NUMA 110 NUMA_HIT, /* allocated in intended node */ 111 NUMA_MISS, /* allocated in non intended node */ 112 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 113 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 114 NUMA_LOCAL, /* allocation from local node */ 115 NUMA_OTHER, /* allocation from other node */ 116#endif 117 NR_VM_ZONE_STAT_ITEMS }; 118 119/* 120 * We do arithmetic on the LRU lists in various places in the code, 121 * so it is important to keep the active lists LRU_ACTIVE higher in 122 * the array than the corresponding inactive lists, and to keep 123 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 124 * 125 * This has to be kept in sync with the statistics in zone_stat_item 126 * above and the descriptions in vmstat_text in mm/vmstat.c 127 */ 128#define LRU_BASE 0 129#define LRU_ACTIVE 1 130#define LRU_FILE 2 131 132enum lru_list { 133 LRU_INACTIVE_ANON = LRU_BASE, 134 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 135 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 136 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 137 LRU_UNEVICTABLE, 138 NR_LRU_LISTS 139}; 140 141#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++) 142 143#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++) 144 145static inline int is_file_lru(enum lru_list l) 146{ 147 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE); 148} 149 150static inline int is_active_lru(enum lru_list l) 151{ 152 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE); 153} 154 155static inline int is_unevictable_lru(enum lru_list l) 156{ 157 return (l == LRU_UNEVICTABLE); 158} 159 160enum zone_watermarks { 161 WMARK_MIN, 162 WMARK_LOW, 163 WMARK_HIGH, 164 NR_WMARK 165}; 166 167#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 168#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 169#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 170 171struct per_cpu_pages { 172 int count; /* number of pages in the list */ 173 int high; /* high watermark, emptying needed */ 174 int batch; /* chunk size for buddy add/remove */ 175 176 /* Lists of pages, one per migrate type stored on the pcp-lists */ 177 struct list_head lists[MIGRATE_PCPTYPES]; 178}; 179 180struct per_cpu_pageset { 181 struct per_cpu_pages pcp; 182#ifdef CONFIG_NUMA 183 s8 expire; 184#endif 185#ifdef CONFIG_SMP 186 s8 stat_threshold; 187 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 188#endif 189}; 190 191#endif /* !__GENERATING_BOUNDS.H */ 192 193enum zone_type { 194#ifdef CONFIG_ZONE_DMA 195 /* 196 * ZONE_DMA is used when there are devices that are not able 197 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 198 * carve out the portion of memory that is needed for these devices. 199 * The range is arch specific. 200 * 201 * Some examples 202 * 203 * Architecture Limit 204 * --------------------------- 205 * parisc, ia64, sparc <4G 206 * s390 <2G 207 * arm Various 208 * alpha Unlimited or 0-16MB. 209 * 210 * i386, x86_64 and multiple other arches 211 * <16M. 212 */ 213 ZONE_DMA, 214#endif 215#ifdef CONFIG_ZONE_DMA32 216 /* 217 * x86_64 needs two ZONE_DMAs because it supports devices that are 218 * only able to do DMA to the lower 16M but also 32 bit devices that 219 * can only do DMA areas below 4G. 220 */ 221 ZONE_DMA32, 222#endif 223 /* 224 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 225 * performed on pages in ZONE_NORMAL if the DMA devices support 226 * transfers to all addressable memory. 227 */ 228 ZONE_NORMAL, 229#ifdef CONFIG_HIGHMEM 230 /* 231 * A memory area that is only addressable by the kernel through 232 * mapping portions into its own address space. This is for example 233 * used by i386 to allow the kernel to address the memory beyond 234 * 900MB. The kernel will set up special mappings (page 235 * table entries on i386) for each page that the kernel needs to 236 * access. 237 */ 238 ZONE_HIGHMEM, 239#endif 240 ZONE_MOVABLE, 241 __MAX_NR_ZONES 242}; 243 244#ifndef __GENERATING_BOUNDS_H 245 246/* 247 * When a memory allocation must conform to specific limitations (such 248 * as being suitable for DMA) the caller will pass in hints to the 249 * allocator in the gfp_mask, in the zone modifier bits. These bits 250 * are used to select a priority ordered list of memory zones which 251 * match the requested limits. See gfp_zone() in include/linux/gfp.h 252 */ 253 254#if MAX_NR_ZONES < 2 255#define ZONES_SHIFT 0 256#elif MAX_NR_ZONES <= 2 257#define ZONES_SHIFT 1 258#elif MAX_NR_ZONES <= 4 259#define ZONES_SHIFT 2 260#else 261#error ZONES_SHIFT -- too many zones configured adjust calculation 262#endif 263 264struct zone_reclaim_stat { 265 /* 266 * The pageout code in vmscan.c keeps track of how many of the 267 * mem/swap backed and file backed pages are refeferenced. 268 * The higher the rotated/scanned ratio, the more valuable 269 * that cache is. 270 * 271 * The anon LRU stats live in [0], file LRU stats in [1] 272 */ 273 unsigned long recent_rotated[2]; 274 unsigned long recent_scanned[2]; 275 276 /* 277 * accumulated for batching 278 */ 279 unsigned long nr_saved_scan[NR_LRU_LISTS]; 280}; 281 282struct zone { 283 /* Fields commonly accessed by the page allocator */ 284 285 /* zone watermarks, access with *_wmark_pages(zone) macros */ 286 unsigned long watermark[NR_WMARK]; 287 288 /* 289 * When free pages are below this point, additional steps are taken 290 * when reading the number of free pages to avoid per-cpu counter 291 * drift allowing watermarks to be breached 292 */ 293 unsigned long percpu_drift_mark; 294 295 /* 296 * We don't know if the memory that we're going to allocate will be freeable 297 * or/and it will be released eventually, so to avoid totally wasting several 298 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 299 * to run OOM on the lower zones despite there's tons of freeable ram 300 * on the higher zones). This array is recalculated at runtime if the 301 * sysctl_lowmem_reserve_ratio sysctl changes. 302 */ 303 unsigned long lowmem_reserve[MAX_NR_ZONES]; 304 305#ifdef CONFIG_NUMA 306 int node; 307 /* 308 * zone reclaim becomes active if more unmapped pages exist. 309 */ 310 unsigned long min_unmapped_pages; 311 unsigned long min_slab_pages; 312#endif 313 struct per_cpu_pageset __percpu *pageset; 314 /* 315 * free areas of different sizes 316 */ 317 spinlock_t lock; 318 int all_unreclaimable; /* All pages pinned */ 319#ifdef CONFIG_MEMORY_HOTPLUG 320 /* see spanned/present_pages for more description */ 321 seqlock_t span_seqlock; 322#endif 323 struct free_area free_area[MAX_ORDER]; 324 325#ifndef CONFIG_SPARSEMEM 326 /* 327 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 328 * In SPARSEMEM, this map is stored in struct mem_section 329 */ 330 unsigned long *pageblock_flags; 331#endif /* CONFIG_SPARSEMEM */ 332 333#ifdef CONFIG_COMPACTION 334 /* 335 * On compaction failure, 1<<compact_defer_shift compactions 336 * are skipped before trying again. The number attempted since 337 * last failure is tracked with compact_considered. 338 */ 339 unsigned int compact_considered; 340 unsigned int compact_defer_shift; 341#endif 342 343 ZONE_PADDING(_pad1_) 344 345 /* Fields commonly accessed by the page reclaim scanner */ 346 spinlock_t lru_lock; 347 struct zone_lru { 348 struct list_head list; 349 } lru[NR_LRU_LISTS]; 350 351 struct zone_reclaim_stat reclaim_stat; 352 353 unsigned long pages_scanned; /* since last reclaim */ 354 unsigned long flags; /* zone flags, see below */ 355 356 /* Zone statistics */ 357 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 358 359 /* 360 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 361 * this zone's LRU. Maintained by the pageout code. 362 */ 363 unsigned int inactive_ratio; 364 365 366 ZONE_PADDING(_pad2_) 367 /* Rarely used or read-mostly fields */ 368 369 /* 370 * wait_table -- the array holding the hash table 371 * wait_table_hash_nr_entries -- the size of the hash table array 372 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 373 * 374 * The purpose of all these is to keep track of the people 375 * waiting for a page to become available and make them 376 * runnable again when possible. The trouble is that this 377 * consumes a lot of space, especially when so few things 378 * wait on pages at a given time. So instead of using 379 * per-page waitqueues, we use a waitqueue hash table. 380 * 381 * The bucket discipline is to sleep on the same queue when 382 * colliding and wake all in that wait queue when removing. 383 * When something wakes, it must check to be sure its page is 384 * truly available, a la thundering herd. The cost of a 385 * collision is great, but given the expected load of the 386 * table, they should be so rare as to be outweighed by the 387 * benefits from the saved space. 388 * 389 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 390 * primary users of these fields, and in mm/page_alloc.c 391 * free_area_init_core() performs the initialization of them. 392 */ 393 wait_queue_head_t * wait_table; 394 unsigned long wait_table_hash_nr_entries; 395 unsigned long wait_table_bits; 396 397 /* 398 * Discontig memory support fields. 399 */ 400 struct pglist_data *zone_pgdat; 401 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 402 unsigned long zone_start_pfn; 403 404 /* 405 * zone_start_pfn, spanned_pages and present_pages are all 406 * protected by span_seqlock. It is a seqlock because it has 407 * to be read outside of zone->lock, and it is done in the main 408 * allocator path. But, it is written quite infrequently. 409 * 410 * The lock is declared along with zone->lock because it is 411 * frequently read in proximity to zone->lock. It's good to 412 * give them a chance of being in the same cacheline. 413 */ 414 unsigned long spanned_pages; /* total size, including holes */ 415 unsigned long present_pages; /* amount of memory (excluding holes) */ 416 417 /* 418 * rarely used fields: 419 */ 420 const char *name; 421} ____cacheline_internodealigned_in_smp; 422 423typedef enum { 424 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 425 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 426 ZONE_CONGESTED, /* zone has many dirty pages backed by 427 * a congested BDI 428 */ 429} zone_flags_t; 430 431static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 432{ 433 set_bit(flag, &zone->flags); 434} 435 436static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 437{ 438 return test_and_set_bit(flag, &zone->flags); 439} 440 441static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 442{ 443 clear_bit(flag, &zone->flags); 444} 445 446static inline int zone_is_reclaim_congested(const struct zone *zone) 447{ 448 return test_bit(ZONE_CONGESTED, &zone->flags); 449} 450 451static inline int zone_is_reclaim_locked(const struct zone *zone) 452{ 453 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 454} 455 456static inline int zone_is_oom_locked(const struct zone *zone) 457{ 458 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 459} 460 461#ifdef CONFIG_SMP 462unsigned long zone_nr_free_pages(struct zone *zone); 463#else 464#define zone_nr_free_pages(zone) zone_page_state(zone, NR_FREE_PAGES) 465#endif /* CONFIG_SMP */ 466 467/* 468 * The "priority" of VM scanning is how much of the queues we will scan in one 469 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 470 * queues ("queue_length >> 12") during an aging round. 471 */ 472#define DEF_PRIORITY 12 473 474/* Maximum number of zones on a zonelist */ 475#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 476 477#ifdef CONFIG_NUMA 478 479/* 480 * The NUMA zonelists are doubled becausse we need zonelists that restrict the 481 * allocations to a single node for GFP_THISNODE. 482 * 483 * [0] : Zonelist with fallback 484 * [1] : No fallback (GFP_THISNODE) 485 */ 486#define MAX_ZONELISTS 2 487 488 489/* 490 * We cache key information from each zonelist for smaller cache 491 * footprint when scanning for free pages in get_page_from_freelist(). 492 * 493 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 494 * up short of free memory since the last time (last_fullzone_zap) 495 * we zero'd fullzones. 496 * 2) The array z_to_n[] maps each zone in the zonelist to its node 497 * id, so that we can efficiently evaluate whether that node is 498 * set in the current tasks mems_allowed. 499 * 500 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 501 * indexed by a zones offset in the zonelist zones[] array. 502 * 503 * The get_page_from_freelist() routine does two scans. During the 504 * first scan, we skip zones whose corresponding bit in 'fullzones' 505 * is set or whose corresponding node in current->mems_allowed (which 506 * comes from cpusets) is not set. During the second scan, we bypass 507 * this zonelist_cache, to ensure we look methodically at each zone. 508 * 509 * Once per second, we zero out (zap) fullzones, forcing us to 510 * reconsider nodes that might have regained more free memory. 511 * The field last_full_zap is the time we last zapped fullzones. 512 * 513 * This mechanism reduces the amount of time we waste repeatedly 514 * reexaming zones for free memory when they just came up low on 515 * memory momentarilly ago. 516 * 517 * The zonelist_cache struct members logically belong in struct 518 * zonelist. However, the mempolicy zonelists constructed for 519 * MPOL_BIND are intentionally variable length (and usually much 520 * shorter). A general purpose mechanism for handling structs with 521 * multiple variable length members is more mechanism than we want 522 * here. We resort to some special case hackery instead. 523 * 524 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 525 * part because they are shorter), so we put the fixed length stuff 526 * at the front of the zonelist struct, ending in a variable length 527 * zones[], as is needed by MPOL_BIND. 528 * 529 * Then we put the optional zonelist cache on the end of the zonelist 530 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 531 * the fixed length portion at the front of the struct. This pointer 532 * both enables us to find the zonelist cache, and in the case of 533 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 534 * to know that the zonelist cache is not there. 535 * 536 * The end result is that struct zonelists come in two flavors: 537 * 1) The full, fixed length version, shown below, and 538 * 2) The custom zonelists for MPOL_BIND. 539 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 540 * 541 * Even though there may be multiple CPU cores on a node modifying 542 * fullzones or last_full_zap in the same zonelist_cache at the same 543 * time, we don't lock it. This is just hint data - if it is wrong now 544 * and then, the allocator will still function, perhaps a bit slower. 545 */ 546 547 548struct zonelist_cache { 549 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 550 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 551 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 552}; 553#else 554#define MAX_ZONELISTS 1 555struct zonelist_cache; 556#endif 557 558/* 559 * This struct contains information about a zone in a zonelist. It is stored 560 * here to avoid dereferences into large structures and lookups of tables 561 */ 562struct zoneref { 563 struct zone *zone; /* Pointer to actual zone */ 564 int zone_idx; /* zone_idx(zoneref->zone) */ 565}; 566 567/* 568 * One allocation request operates on a zonelist. A zonelist 569 * is a list of zones, the first one is the 'goal' of the 570 * allocation, the other zones are fallback zones, in decreasing 571 * priority. 572 * 573 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 574 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 575 * * 576 * To speed the reading of the zonelist, the zonerefs contain the zone index 577 * of the entry being read. Helper functions to access information given 578 * a struct zoneref are 579 * 580 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 581 * zonelist_zone_idx() - Return the index of the zone for an entry 582 * zonelist_node_idx() - Return the index of the node for an entry 583 */ 584struct zonelist { 585 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 586 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 587#ifdef CONFIG_NUMA 588 struct zonelist_cache zlcache; // optional ... 589#endif 590}; 591 592#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 593struct node_active_region { 594 unsigned long start_pfn; 595 unsigned long end_pfn; 596 int nid; 597}; 598#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 599 600#ifndef CONFIG_DISCONTIGMEM 601/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 602extern struct page *mem_map; 603#endif 604 605/* 606 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 607 * (mostly NUMA machines?) to denote a higher-level memory zone than the 608 * zone denotes. 609 * 610 * On NUMA machines, each NUMA node would have a pg_data_t to describe 611 * it's memory layout. 612 * 613 * Memory statistics and page replacement data structures are maintained on a 614 * per-zone basis. 615 */ 616struct bootmem_data; 617typedef struct pglist_data { 618 struct zone node_zones[MAX_NR_ZONES]; 619 struct zonelist node_zonelists[MAX_ZONELISTS]; 620 int nr_zones; 621#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 622 struct page *node_mem_map; 623#ifdef CONFIG_CGROUP_MEM_RES_CTLR 624 struct page_cgroup *node_page_cgroup; 625#endif 626#endif 627#ifndef CONFIG_NO_BOOTMEM 628 struct bootmem_data *bdata; 629#endif 630#ifdef CONFIG_MEMORY_HOTPLUG 631 /* 632 * Must be held any time you expect node_start_pfn, node_present_pages 633 * or node_spanned_pages stay constant. Holding this will also 634 * guarantee that any pfn_valid() stays that way. 635 * 636 * Nests above zone->lock and zone->size_seqlock. 637 */ 638 spinlock_t node_size_lock; 639#endif 640 unsigned long node_start_pfn; 641 unsigned long node_present_pages; /* total number of physical pages */ 642 unsigned long node_spanned_pages; /* total size of physical page 643 range, including holes */ 644 int node_id; 645 wait_queue_head_t kswapd_wait; 646 struct task_struct *kswapd; 647 int kswapd_max_order; 648} pg_data_t; 649 650#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 651#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 652#ifdef CONFIG_FLAT_NODE_MEM_MAP 653#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 654#else 655#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 656#endif 657#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 658 659#include <linux/memory_hotplug.h> 660 661extern struct mutex zonelists_mutex; 662void build_all_zonelists(void *data); 663void wakeup_kswapd(struct zone *zone, int order); 664int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 665 int classzone_idx, int alloc_flags); 666enum memmap_context { 667 MEMMAP_EARLY, 668 MEMMAP_HOTPLUG, 669}; 670extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 671 unsigned long size, 672 enum memmap_context context); 673 674#ifdef CONFIG_HAVE_MEMORY_PRESENT 675void memory_present(int nid, unsigned long start, unsigned long end); 676#else 677static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 678#endif 679 680#ifdef CONFIG_HAVE_MEMORYLESS_NODES 681int local_memory_node(int node_id); 682#else 683static inline int local_memory_node(int node_id) { return node_id; }; 684#endif 685 686#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 687unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 688#endif 689 690/* 691 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 692 */ 693#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 694 695static inline int populated_zone(struct zone *zone) 696{ 697 return (!!zone->present_pages); 698} 699 700extern int movable_zone; 701 702static inline int zone_movable_is_highmem(void) 703{ 704#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) 705 return movable_zone == ZONE_HIGHMEM; 706#else 707 return 0; 708#endif 709} 710 711static inline int is_highmem_idx(enum zone_type idx) 712{ 713#ifdef CONFIG_HIGHMEM 714 return (idx == ZONE_HIGHMEM || 715 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 716#else 717 return 0; 718#endif 719} 720 721static inline int is_normal_idx(enum zone_type idx) 722{ 723 return (idx == ZONE_NORMAL); 724} 725 726/** 727 * is_highmem - helper function to quickly check if a struct zone is a 728 * highmem zone or not. This is an attempt to keep references 729 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 730 * @zone - pointer to struct zone variable 731 */ 732static inline int is_highmem(struct zone *zone) 733{ 734#ifdef CONFIG_HIGHMEM 735 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 736 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 737 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 738 zone_movable_is_highmem()); 739#else 740 return 0; 741#endif 742} 743 744static inline int is_normal(struct zone *zone) 745{ 746 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 747} 748 749static inline int is_dma32(struct zone *zone) 750{ 751#ifdef CONFIG_ZONE_DMA32 752 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 753#else 754 return 0; 755#endif 756} 757 758static inline int is_dma(struct zone *zone) 759{ 760#ifdef CONFIG_ZONE_DMA 761 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 762#else 763 return 0; 764#endif 765} 766 767/* These two functions are used to setup the per zone pages min values */ 768struct ctl_table; 769int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 770 void __user *, size_t *, loff_t *); 771extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 772int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 773 void __user *, size_t *, loff_t *); 774int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 775 void __user *, size_t *, loff_t *); 776int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 777 void __user *, size_t *, loff_t *); 778int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 779 void __user *, size_t *, loff_t *); 780 781extern int numa_zonelist_order_handler(struct ctl_table *, int, 782 void __user *, size_t *, loff_t *); 783extern char numa_zonelist_order[]; 784#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 785 786#ifndef CONFIG_NEED_MULTIPLE_NODES 787 788extern struct pglist_data contig_page_data; 789#define NODE_DATA(nid) (&contig_page_data) 790#define NODE_MEM_MAP(nid) mem_map 791 792#else /* CONFIG_NEED_MULTIPLE_NODES */ 793 794#include <asm/mmzone.h> 795 796#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 797 798extern struct pglist_data *first_online_pgdat(void); 799extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 800extern struct zone *next_zone(struct zone *zone); 801 802/** 803 * for_each_online_pgdat - helper macro to iterate over all online nodes 804 * @pgdat - pointer to a pg_data_t variable 805 */ 806#define for_each_online_pgdat(pgdat) \ 807 for (pgdat = first_online_pgdat(); \ 808 pgdat; \ 809 pgdat = next_online_pgdat(pgdat)) 810/** 811 * for_each_zone - helper macro to iterate over all memory zones 812 * @zone - pointer to struct zone variable 813 * 814 * The user only needs to declare the zone variable, for_each_zone 815 * fills it in. 816 */ 817#define for_each_zone(zone) \ 818 for (zone = (first_online_pgdat())->node_zones; \ 819 zone; \ 820 zone = next_zone(zone)) 821 822#define for_each_populated_zone(zone) \ 823 for (zone = (first_online_pgdat())->node_zones; \ 824 zone; \ 825 zone = next_zone(zone)) \ 826 if (!populated_zone(zone)) \ 827 ; /* do nothing */ \ 828 else 829 830static inline struct zone *zonelist_zone(struct zoneref *zoneref) 831{ 832 return zoneref->zone; 833} 834 835static inline int zonelist_zone_idx(struct zoneref *zoneref) 836{ 837 return zoneref->zone_idx; 838} 839 840static inline int zonelist_node_idx(struct zoneref *zoneref) 841{ 842#ifdef CONFIG_NUMA 843 /* zone_to_nid not available in this context */ 844 return zoneref->zone->node; 845#else 846 return 0; 847#endif /* CONFIG_NUMA */ 848} 849 850/** 851 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 852 * @z - The cursor used as a starting point for the search 853 * @highest_zoneidx - The zone index of the highest zone to return 854 * @nodes - An optional nodemask to filter the zonelist with 855 * @zone - The first suitable zone found is returned via this parameter 856 * 857 * This function returns the next zone at or below a given zone index that is 858 * within the allowed nodemask using a cursor as the starting point for the 859 * search. The zoneref returned is a cursor that represents the current zone 860 * being examined. It should be advanced by one before calling 861 * next_zones_zonelist again. 862 */ 863struct zoneref *next_zones_zonelist(struct zoneref *z, 864 enum zone_type highest_zoneidx, 865 nodemask_t *nodes, 866 struct zone **zone); 867 868/** 869 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 870 * @zonelist - The zonelist to search for a suitable zone 871 * @highest_zoneidx - The zone index of the highest zone to return 872 * @nodes - An optional nodemask to filter the zonelist with 873 * @zone - The first suitable zone found is returned via this parameter 874 * 875 * This function returns the first zone at or below a given zone index that is 876 * within the allowed nodemask. The zoneref returned is a cursor that can be 877 * used to iterate the zonelist with next_zones_zonelist by advancing it by 878 * one before calling. 879 */ 880static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 881 enum zone_type highest_zoneidx, 882 nodemask_t *nodes, 883 struct zone **zone) 884{ 885 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 886 zone); 887} 888 889/** 890 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 891 * @zone - The current zone in the iterator 892 * @z - The current pointer within zonelist->zones being iterated 893 * @zlist - The zonelist being iterated 894 * @highidx - The zone index of the highest zone to return 895 * @nodemask - Nodemask allowed by the allocator 896 * 897 * This iterator iterates though all zones at or below a given zone index and 898 * within a given nodemask 899 */ 900#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 901 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 902 zone; \ 903 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 904 905/** 906 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 907 * @zone - The current zone in the iterator 908 * @z - The current pointer within zonelist->zones being iterated 909 * @zlist - The zonelist being iterated 910 * @highidx - The zone index of the highest zone to return 911 * 912 * This iterator iterates though all zones at or below a given zone index. 913 */ 914#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 915 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 916 917#ifdef CONFIG_SPARSEMEM 918#include <asm/sparsemem.h> 919#endif 920 921#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 922 !defined(CONFIG_ARCH_POPULATES_NODE_MAP) 923static inline unsigned long early_pfn_to_nid(unsigned long pfn) 924{ 925 return 0; 926} 927#endif 928 929#ifdef CONFIG_FLATMEM 930#define pfn_to_nid(pfn) (0) 931#endif 932 933#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 934#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 935 936#ifdef CONFIG_SPARSEMEM 937 938/* 939 * SECTION_SHIFT #bits space required to store a section # 940 * 941 * PA_SECTION_SHIFT physical address to/from section number 942 * PFN_SECTION_SHIFT pfn to/from section number 943 */ 944#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 945 946#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 947#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 948 949#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 950 951#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 952#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 953 954#define SECTION_BLOCKFLAGS_BITS \ 955 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 956 957#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 958#error Allocator MAX_ORDER exceeds SECTION_SIZE 959#endif 960 961struct page; 962struct page_cgroup; 963struct mem_section { 964 /* 965 * This is, logically, a pointer to an array of struct 966 * pages. However, it is stored with some other magic. 967 * (see sparse.c::sparse_init_one_section()) 968 * 969 * Additionally during early boot we encode node id of 970 * the location of the section here to guide allocation. 971 * (see sparse.c::memory_present()) 972 * 973 * Making it a UL at least makes someone do a cast 974 * before using it wrong. 975 */ 976 unsigned long section_mem_map; 977 978 /* See declaration of similar field in struct zone */ 979 unsigned long *pageblock_flags; 980#ifdef CONFIG_CGROUP_MEM_RES_CTLR 981 /* 982 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 983 * section. (see memcontrol.h/page_cgroup.h about this.) 984 */ 985 struct page_cgroup *page_cgroup; 986 unsigned long pad; 987#endif 988}; 989 990#ifdef CONFIG_SPARSEMEM_EXTREME 991#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 992#else 993#define SECTIONS_PER_ROOT 1 994#endif 995 996#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 997#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 998#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 999 1000#ifdef CONFIG_SPARSEMEM_EXTREME 1001extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1002#else 1003extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1004#endif 1005 1006static inline struct mem_section *__nr_to_section(unsigned long nr) 1007{ 1008 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1009 return NULL; 1010 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1011} 1012extern int __section_nr(struct mem_section* ms); 1013extern unsigned long usemap_size(void); 1014 1015/* 1016 * We use the lower bits of the mem_map pointer to store 1017 * a little bit of information. There should be at least 1018 * 3 bits here due to 32-bit alignment. 1019 */ 1020#define SECTION_MARKED_PRESENT (1UL<<0) 1021#define SECTION_HAS_MEM_MAP (1UL<<1) 1022#define SECTION_MAP_LAST_BIT (1UL<<2) 1023#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1024#define SECTION_NID_SHIFT 2 1025 1026static inline struct page *__section_mem_map_addr(struct mem_section *section) 1027{ 1028 unsigned long map = section->section_mem_map; 1029 map &= SECTION_MAP_MASK; 1030 return (struct page *)map; 1031} 1032 1033static inline int present_section(struct mem_section *section) 1034{ 1035 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1036} 1037 1038static inline int present_section_nr(unsigned long nr) 1039{ 1040 return present_section(__nr_to_section(nr)); 1041} 1042 1043static inline int valid_section(struct mem_section *section) 1044{ 1045 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1046} 1047 1048static inline int valid_section_nr(unsigned long nr) 1049{ 1050 return valid_section(__nr_to_section(nr)); 1051} 1052 1053static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1054{ 1055 return __nr_to_section(pfn_to_section_nr(pfn)); 1056} 1057 1058static inline int pfn_valid(unsigned long pfn) 1059{ 1060 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1061 return 0; 1062 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1063} 1064 1065static inline int pfn_present(unsigned long pfn) 1066{ 1067 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1068 return 0; 1069 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1070} 1071 1072/* 1073 * These are _only_ used during initialisation, therefore they 1074 * can use __initdata ... They could have names to indicate 1075 * this restriction. 1076 */ 1077#ifdef CONFIG_NUMA 1078#define pfn_to_nid(pfn) \ 1079({ \ 1080 unsigned long __pfn_to_nid_pfn = (pfn); \ 1081 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1082}) 1083#else 1084#define pfn_to_nid(pfn) (0) 1085#endif 1086 1087#define early_pfn_valid(pfn) pfn_valid(pfn) 1088void sparse_init(void); 1089#else 1090#define sparse_init() do {} while (0) 1091#define sparse_index_init(_sec, _nid) do {} while (0) 1092#endif /* CONFIG_SPARSEMEM */ 1093 1094#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1095bool early_pfn_in_nid(unsigned long pfn, int nid); 1096#else 1097#define early_pfn_in_nid(pfn, nid) (1) 1098#endif 1099 1100#ifndef early_pfn_valid 1101#define early_pfn_valid(pfn) (1) 1102#endif 1103 1104void memory_present(int nid, unsigned long start, unsigned long end); 1105unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1106 1107/* 1108 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1109 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1110 * pfn_valid_within() should be used in this case; we optimise this away 1111 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1112 */ 1113#ifdef CONFIG_HOLES_IN_ZONE 1114#define pfn_valid_within(pfn) pfn_valid(pfn) 1115#else 1116#define pfn_valid_within(pfn) (1) 1117#endif 1118 1119#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1120/* 1121 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1122 * associated with it or not. In FLATMEM, it is expected that holes always 1123 * have valid memmap as long as there is valid PFNs either side of the hole. 1124 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1125 * entire section. 1126 * 1127 * However, an ARM, and maybe other embedded architectures in the future 1128 * free memmap backing holes to save memory on the assumption the memmap is 1129 * never used. The page_zone linkages are then broken even though pfn_valid() 1130 * returns true. A walker of the full memmap must then do this additional 1131 * check to ensure the memmap they are looking at is sane by making sure 1132 * the zone and PFN linkages are still valid. This is expensive, but walkers 1133 * of the full memmap are extremely rare. 1134 */ 1135int memmap_valid_within(unsigned long pfn, 1136 struct page *page, struct zone *zone); 1137#else 1138static inline int memmap_valid_within(unsigned long pfn, 1139 struct page *page, struct zone *zone) 1140{ 1141 return 1; 1142} 1143#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1144 1145#endif /* !__GENERATING_BOUNDS.H */ 1146#endif /* !__ASSEMBLY__ */ 1147#endif /* _LINUX_MMZONE_H */