at v2.6.37 52 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/list.h> 10#include <linux/mmzone.h> 11#include <linux/rbtree.h> 12#include <linux/prio_tree.h> 13#include <linux/debug_locks.h> 14#include <linux/mm_types.h> 15#include <linux/range.h> 16#include <linux/pfn.h> 17 18struct mempolicy; 19struct anon_vma; 20struct file_ra_state; 21struct user_struct; 22struct writeback_control; 23 24#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 25extern unsigned long max_mapnr; 26#endif 27 28extern unsigned long num_physpages; 29extern unsigned long totalram_pages; 30extern void * high_memory; 31extern int page_cluster; 32 33#ifdef CONFIG_SYSCTL 34extern int sysctl_legacy_va_layout; 35#else 36#define sysctl_legacy_va_layout 0 37#endif 38 39#include <asm/page.h> 40#include <asm/pgtable.h> 41#include <asm/processor.h> 42 43#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 44 45/* to align the pointer to the (next) page boundary */ 46#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 47 48/* 49 * Linux kernel virtual memory manager primitives. 50 * The idea being to have a "virtual" mm in the same way 51 * we have a virtual fs - giving a cleaner interface to the 52 * mm details, and allowing different kinds of memory mappings 53 * (from shared memory to executable loading to arbitrary 54 * mmap() functions). 55 */ 56 57extern struct kmem_cache *vm_area_cachep; 58 59#ifndef CONFIG_MMU 60extern struct rb_root nommu_region_tree; 61extern struct rw_semaphore nommu_region_sem; 62 63extern unsigned int kobjsize(const void *objp); 64#endif 65 66/* 67 * vm_flags in vm_area_struct, see mm_types.h. 68 */ 69#define VM_READ 0x00000001 /* currently active flags */ 70#define VM_WRITE 0x00000002 71#define VM_EXEC 0x00000004 72#define VM_SHARED 0x00000008 73 74/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 75#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 76#define VM_MAYWRITE 0x00000020 77#define VM_MAYEXEC 0x00000040 78#define VM_MAYSHARE 0x00000080 79 80#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 81#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 82#define VM_GROWSUP 0x00000200 83#else 84#define VM_GROWSUP 0x00000000 85#endif 86#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 87#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 88 89#define VM_EXECUTABLE 0x00001000 90#define VM_LOCKED 0x00002000 91#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 92 93 /* Used by sys_madvise() */ 94#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 95#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 96 97#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 98#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 99#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 100#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 101#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 102#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 103#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 104#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 105#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 106#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 107 108#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 109#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 110#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 111#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ 112#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 113 114/* Bits set in the VMA until the stack is in its final location */ 115#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 116 117#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 118#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 119#endif 120 121#ifdef CONFIG_STACK_GROWSUP 122#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 123#else 124#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 125#endif 126 127#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 128#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 129#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 130#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 131#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 132 133/* 134 * special vmas that are non-mergable, non-mlock()able 135 */ 136#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 137 138/* 139 * mapping from the currently active vm_flags protection bits (the 140 * low four bits) to a page protection mask.. 141 */ 142extern pgprot_t protection_map[16]; 143 144#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 145#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 146#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 147#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 148 149/* 150 * This interface is used by x86 PAT code to identify a pfn mapping that is 151 * linear over entire vma. This is to optimize PAT code that deals with 152 * marking the physical region with a particular prot. This is not for generic 153 * mm use. Note also that this check will not work if the pfn mapping is 154 * linear for a vma starting at physical address 0. In which case PAT code 155 * falls back to slow path of reserving physical range page by page. 156 */ 157static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) 158{ 159 return (vma->vm_flags & VM_PFN_AT_MMAP); 160} 161 162static inline int is_pfn_mapping(struct vm_area_struct *vma) 163{ 164 return (vma->vm_flags & VM_PFNMAP); 165} 166 167/* 168 * vm_fault is filled by the the pagefault handler and passed to the vma's 169 * ->fault function. The vma's ->fault is responsible for returning a bitmask 170 * of VM_FAULT_xxx flags that give details about how the fault was handled. 171 * 172 * pgoff should be used in favour of virtual_address, if possible. If pgoff 173 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 174 * mapping support. 175 */ 176struct vm_fault { 177 unsigned int flags; /* FAULT_FLAG_xxx flags */ 178 pgoff_t pgoff; /* Logical page offset based on vma */ 179 void __user *virtual_address; /* Faulting virtual address */ 180 181 struct page *page; /* ->fault handlers should return a 182 * page here, unless VM_FAULT_NOPAGE 183 * is set (which is also implied by 184 * VM_FAULT_ERROR). 185 */ 186}; 187 188/* 189 * These are the virtual MM functions - opening of an area, closing and 190 * unmapping it (needed to keep files on disk up-to-date etc), pointer 191 * to the functions called when a no-page or a wp-page exception occurs. 192 */ 193struct vm_operations_struct { 194 void (*open)(struct vm_area_struct * area); 195 void (*close)(struct vm_area_struct * area); 196 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 197 198 /* notification that a previously read-only page is about to become 199 * writable, if an error is returned it will cause a SIGBUS */ 200 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 201 202 /* called by access_process_vm when get_user_pages() fails, typically 203 * for use by special VMAs that can switch between memory and hardware 204 */ 205 int (*access)(struct vm_area_struct *vma, unsigned long addr, 206 void *buf, int len, int write); 207#ifdef CONFIG_NUMA 208 /* 209 * set_policy() op must add a reference to any non-NULL @new mempolicy 210 * to hold the policy upon return. Caller should pass NULL @new to 211 * remove a policy and fall back to surrounding context--i.e. do not 212 * install a MPOL_DEFAULT policy, nor the task or system default 213 * mempolicy. 214 */ 215 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 216 217 /* 218 * get_policy() op must add reference [mpol_get()] to any policy at 219 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 220 * in mm/mempolicy.c will do this automatically. 221 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 222 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 223 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 224 * must return NULL--i.e., do not "fallback" to task or system default 225 * policy. 226 */ 227 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 228 unsigned long addr); 229 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 230 const nodemask_t *to, unsigned long flags); 231#endif 232}; 233 234struct mmu_gather; 235struct inode; 236 237#define page_private(page) ((page)->private) 238#define set_page_private(page, v) ((page)->private = (v)) 239 240/* 241 * FIXME: take this include out, include page-flags.h in 242 * files which need it (119 of them) 243 */ 244#include <linux/page-flags.h> 245 246/* 247 * Methods to modify the page usage count. 248 * 249 * What counts for a page usage: 250 * - cache mapping (page->mapping) 251 * - private data (page->private) 252 * - page mapped in a task's page tables, each mapping 253 * is counted separately 254 * 255 * Also, many kernel routines increase the page count before a critical 256 * routine so they can be sure the page doesn't go away from under them. 257 */ 258 259/* 260 * Drop a ref, return true if the refcount fell to zero (the page has no users) 261 */ 262static inline int put_page_testzero(struct page *page) 263{ 264 VM_BUG_ON(atomic_read(&page->_count) == 0); 265 return atomic_dec_and_test(&page->_count); 266} 267 268/* 269 * Try to grab a ref unless the page has a refcount of zero, return false if 270 * that is the case. 271 */ 272static inline int get_page_unless_zero(struct page *page) 273{ 274 return atomic_inc_not_zero(&page->_count); 275} 276 277extern int page_is_ram(unsigned long pfn); 278 279/* Support for virtually mapped pages */ 280struct page *vmalloc_to_page(const void *addr); 281unsigned long vmalloc_to_pfn(const void *addr); 282 283/* 284 * Determine if an address is within the vmalloc range 285 * 286 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 287 * is no special casing required. 288 */ 289static inline int is_vmalloc_addr(const void *x) 290{ 291#ifdef CONFIG_MMU 292 unsigned long addr = (unsigned long)x; 293 294 return addr >= VMALLOC_START && addr < VMALLOC_END; 295#else 296 return 0; 297#endif 298} 299#ifdef CONFIG_MMU 300extern int is_vmalloc_or_module_addr(const void *x); 301#else 302static inline int is_vmalloc_or_module_addr(const void *x) 303{ 304 return 0; 305} 306#endif 307 308static inline struct page *compound_head(struct page *page) 309{ 310 if (unlikely(PageTail(page))) 311 return page->first_page; 312 return page; 313} 314 315static inline int page_count(struct page *page) 316{ 317 return atomic_read(&compound_head(page)->_count); 318} 319 320static inline void get_page(struct page *page) 321{ 322 page = compound_head(page); 323 VM_BUG_ON(atomic_read(&page->_count) == 0); 324 atomic_inc(&page->_count); 325} 326 327static inline struct page *virt_to_head_page(const void *x) 328{ 329 struct page *page = virt_to_page(x); 330 return compound_head(page); 331} 332 333/* 334 * Setup the page count before being freed into the page allocator for 335 * the first time (boot or memory hotplug) 336 */ 337static inline void init_page_count(struct page *page) 338{ 339 atomic_set(&page->_count, 1); 340} 341 342void put_page(struct page *page); 343void put_pages_list(struct list_head *pages); 344 345void split_page(struct page *page, unsigned int order); 346int split_free_page(struct page *page); 347 348/* 349 * Compound pages have a destructor function. Provide a 350 * prototype for that function and accessor functions. 351 * These are _only_ valid on the head of a PG_compound page. 352 */ 353typedef void compound_page_dtor(struct page *); 354 355static inline void set_compound_page_dtor(struct page *page, 356 compound_page_dtor *dtor) 357{ 358 page[1].lru.next = (void *)dtor; 359} 360 361static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 362{ 363 return (compound_page_dtor *)page[1].lru.next; 364} 365 366static inline int compound_order(struct page *page) 367{ 368 if (!PageHead(page)) 369 return 0; 370 return (unsigned long)page[1].lru.prev; 371} 372 373static inline void set_compound_order(struct page *page, unsigned long order) 374{ 375 page[1].lru.prev = (void *)order; 376} 377 378/* 379 * Multiple processes may "see" the same page. E.g. for untouched 380 * mappings of /dev/null, all processes see the same page full of 381 * zeroes, and text pages of executables and shared libraries have 382 * only one copy in memory, at most, normally. 383 * 384 * For the non-reserved pages, page_count(page) denotes a reference count. 385 * page_count() == 0 means the page is free. page->lru is then used for 386 * freelist management in the buddy allocator. 387 * page_count() > 0 means the page has been allocated. 388 * 389 * Pages are allocated by the slab allocator in order to provide memory 390 * to kmalloc and kmem_cache_alloc. In this case, the management of the 391 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 392 * unless a particular usage is carefully commented. (the responsibility of 393 * freeing the kmalloc memory is the caller's, of course). 394 * 395 * A page may be used by anyone else who does a __get_free_page(). 396 * In this case, page_count still tracks the references, and should only 397 * be used through the normal accessor functions. The top bits of page->flags 398 * and page->virtual store page management information, but all other fields 399 * are unused and could be used privately, carefully. The management of this 400 * page is the responsibility of the one who allocated it, and those who have 401 * subsequently been given references to it. 402 * 403 * The other pages (we may call them "pagecache pages") are completely 404 * managed by the Linux memory manager: I/O, buffers, swapping etc. 405 * The following discussion applies only to them. 406 * 407 * A pagecache page contains an opaque `private' member, which belongs to the 408 * page's address_space. Usually, this is the address of a circular list of 409 * the page's disk buffers. PG_private must be set to tell the VM to call 410 * into the filesystem to release these pages. 411 * 412 * A page may belong to an inode's memory mapping. In this case, page->mapping 413 * is the pointer to the inode, and page->index is the file offset of the page, 414 * in units of PAGE_CACHE_SIZE. 415 * 416 * If pagecache pages are not associated with an inode, they are said to be 417 * anonymous pages. These may become associated with the swapcache, and in that 418 * case PG_swapcache is set, and page->private is an offset into the swapcache. 419 * 420 * In either case (swapcache or inode backed), the pagecache itself holds one 421 * reference to the page. Setting PG_private should also increment the 422 * refcount. The each user mapping also has a reference to the page. 423 * 424 * The pagecache pages are stored in a per-mapping radix tree, which is 425 * rooted at mapping->page_tree, and indexed by offset. 426 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 427 * lists, we instead now tag pages as dirty/writeback in the radix tree. 428 * 429 * All pagecache pages may be subject to I/O: 430 * - inode pages may need to be read from disk, 431 * - inode pages which have been modified and are MAP_SHARED may need 432 * to be written back to the inode on disk, 433 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 434 * modified may need to be swapped out to swap space and (later) to be read 435 * back into memory. 436 */ 437 438/* 439 * The zone field is never updated after free_area_init_core() 440 * sets it, so none of the operations on it need to be atomic. 441 */ 442 443 444/* 445 * page->flags layout: 446 * 447 * There are three possibilities for how page->flags get 448 * laid out. The first is for the normal case, without 449 * sparsemem. The second is for sparsemem when there is 450 * plenty of space for node and section. The last is when 451 * we have run out of space and have to fall back to an 452 * alternate (slower) way of determining the node. 453 * 454 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 455 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 456 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 457 */ 458#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 459#define SECTIONS_WIDTH SECTIONS_SHIFT 460#else 461#define SECTIONS_WIDTH 0 462#endif 463 464#define ZONES_WIDTH ZONES_SHIFT 465 466#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 467#define NODES_WIDTH NODES_SHIFT 468#else 469#ifdef CONFIG_SPARSEMEM_VMEMMAP 470#error "Vmemmap: No space for nodes field in page flags" 471#endif 472#define NODES_WIDTH 0 473#endif 474 475/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 476#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 477#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 478#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 479 480/* 481 * We are going to use the flags for the page to node mapping if its in 482 * there. This includes the case where there is no node, so it is implicit. 483 */ 484#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 485#define NODE_NOT_IN_PAGE_FLAGS 486#endif 487 488#ifndef PFN_SECTION_SHIFT 489#define PFN_SECTION_SHIFT 0 490#endif 491 492/* 493 * Define the bit shifts to access each section. For non-existant 494 * sections we define the shift as 0; that plus a 0 mask ensures 495 * the compiler will optimise away reference to them. 496 */ 497#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 498#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 499#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 500 501/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 502#ifdef NODE_NOT_IN_PAGE_FLAGS 503#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 504#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 505 SECTIONS_PGOFF : ZONES_PGOFF) 506#else 507#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 508#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 509 NODES_PGOFF : ZONES_PGOFF) 510#endif 511 512#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 513 514#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 515#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 516#endif 517 518#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 519#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 520#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 521#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 522 523static inline enum zone_type page_zonenum(struct page *page) 524{ 525 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 526} 527 528/* 529 * The identification function is only used by the buddy allocator for 530 * determining if two pages could be buddies. We are not really 531 * identifying a zone since we could be using a the section number 532 * id if we have not node id available in page flags. 533 * We guarantee only that it will return the same value for two 534 * combinable pages in a zone. 535 */ 536static inline int page_zone_id(struct page *page) 537{ 538 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 539} 540 541static inline int zone_to_nid(struct zone *zone) 542{ 543#ifdef CONFIG_NUMA 544 return zone->node; 545#else 546 return 0; 547#endif 548} 549 550#ifdef NODE_NOT_IN_PAGE_FLAGS 551extern int page_to_nid(struct page *page); 552#else 553static inline int page_to_nid(struct page *page) 554{ 555 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 556} 557#endif 558 559static inline struct zone *page_zone(struct page *page) 560{ 561 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 562} 563 564#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 565static inline unsigned long page_to_section(struct page *page) 566{ 567 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 568} 569#endif 570 571static inline void set_page_zone(struct page *page, enum zone_type zone) 572{ 573 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 574 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 575} 576 577static inline void set_page_node(struct page *page, unsigned long node) 578{ 579 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 580 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 581} 582 583static inline void set_page_section(struct page *page, unsigned long section) 584{ 585 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 586 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 587} 588 589static inline void set_page_links(struct page *page, enum zone_type zone, 590 unsigned long node, unsigned long pfn) 591{ 592 set_page_zone(page, zone); 593 set_page_node(page, node); 594 set_page_section(page, pfn_to_section_nr(pfn)); 595} 596 597/* 598 * Some inline functions in vmstat.h depend on page_zone() 599 */ 600#include <linux/vmstat.h> 601 602static __always_inline void *lowmem_page_address(struct page *page) 603{ 604 return __va(PFN_PHYS(page_to_pfn(page))); 605} 606 607#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 608#define HASHED_PAGE_VIRTUAL 609#endif 610 611#if defined(WANT_PAGE_VIRTUAL) 612#define page_address(page) ((page)->virtual) 613#define set_page_address(page, address) \ 614 do { \ 615 (page)->virtual = (address); \ 616 } while(0) 617#define page_address_init() do { } while(0) 618#endif 619 620#if defined(HASHED_PAGE_VIRTUAL) 621void *page_address(struct page *page); 622void set_page_address(struct page *page, void *virtual); 623void page_address_init(void); 624#endif 625 626#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 627#define page_address(page) lowmem_page_address(page) 628#define set_page_address(page, address) do { } while(0) 629#define page_address_init() do { } while(0) 630#endif 631 632/* 633 * On an anonymous page mapped into a user virtual memory area, 634 * page->mapping points to its anon_vma, not to a struct address_space; 635 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 636 * 637 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 638 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 639 * and then page->mapping points, not to an anon_vma, but to a private 640 * structure which KSM associates with that merged page. See ksm.h. 641 * 642 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 643 * 644 * Please note that, confusingly, "page_mapping" refers to the inode 645 * address_space which maps the page from disk; whereas "page_mapped" 646 * refers to user virtual address space into which the page is mapped. 647 */ 648#define PAGE_MAPPING_ANON 1 649#define PAGE_MAPPING_KSM 2 650#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 651 652extern struct address_space swapper_space; 653static inline struct address_space *page_mapping(struct page *page) 654{ 655 struct address_space *mapping = page->mapping; 656 657 VM_BUG_ON(PageSlab(page)); 658 if (unlikely(PageSwapCache(page))) 659 mapping = &swapper_space; 660 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 661 mapping = NULL; 662 return mapping; 663} 664 665/* Neutral page->mapping pointer to address_space or anon_vma or other */ 666static inline void *page_rmapping(struct page *page) 667{ 668 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 669} 670 671static inline int PageAnon(struct page *page) 672{ 673 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 674} 675 676/* 677 * Return the pagecache index of the passed page. Regular pagecache pages 678 * use ->index whereas swapcache pages use ->private 679 */ 680static inline pgoff_t page_index(struct page *page) 681{ 682 if (unlikely(PageSwapCache(page))) 683 return page_private(page); 684 return page->index; 685} 686 687/* 688 * The atomic page->_mapcount, like _count, starts from -1: 689 * so that transitions both from it and to it can be tracked, 690 * using atomic_inc_and_test and atomic_add_negative(-1). 691 */ 692static inline void reset_page_mapcount(struct page *page) 693{ 694 atomic_set(&(page)->_mapcount, -1); 695} 696 697static inline int page_mapcount(struct page *page) 698{ 699 return atomic_read(&(page)->_mapcount) + 1; 700} 701 702/* 703 * Return true if this page is mapped into pagetables. 704 */ 705static inline int page_mapped(struct page *page) 706{ 707 return atomic_read(&(page)->_mapcount) >= 0; 708} 709 710/* 711 * Different kinds of faults, as returned by handle_mm_fault(). 712 * Used to decide whether a process gets delivered SIGBUS or 713 * just gets major/minor fault counters bumped up. 714 */ 715 716#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 717 718#define VM_FAULT_OOM 0x0001 719#define VM_FAULT_SIGBUS 0x0002 720#define VM_FAULT_MAJOR 0x0004 721#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 722#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 723#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 724 725#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 726#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 727#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 728 729#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 730 731#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 732 VM_FAULT_HWPOISON_LARGE) 733 734/* Encode hstate index for a hwpoisoned large page */ 735#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 736#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 737 738/* 739 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 740 */ 741extern void pagefault_out_of_memory(void); 742 743#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 744 745extern void show_free_areas(void); 746 747int shmem_lock(struct file *file, int lock, struct user_struct *user); 748struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); 749int shmem_zero_setup(struct vm_area_struct *); 750 751#ifndef CONFIG_MMU 752extern unsigned long shmem_get_unmapped_area(struct file *file, 753 unsigned long addr, 754 unsigned long len, 755 unsigned long pgoff, 756 unsigned long flags); 757#endif 758 759extern int can_do_mlock(void); 760extern int user_shm_lock(size_t, struct user_struct *); 761extern void user_shm_unlock(size_t, struct user_struct *); 762 763/* 764 * Parameter block passed down to zap_pte_range in exceptional cases. 765 */ 766struct zap_details { 767 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 768 struct address_space *check_mapping; /* Check page->mapping if set */ 769 pgoff_t first_index; /* Lowest page->index to unmap */ 770 pgoff_t last_index; /* Highest page->index to unmap */ 771 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 772 unsigned long truncate_count; /* Compare vm_truncate_count */ 773}; 774 775struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 776 pte_t pte); 777 778int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 779 unsigned long size); 780unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 781 unsigned long size, struct zap_details *); 782unsigned long unmap_vmas(struct mmu_gather **tlb, 783 struct vm_area_struct *start_vma, unsigned long start_addr, 784 unsigned long end_addr, unsigned long *nr_accounted, 785 struct zap_details *); 786 787/** 788 * mm_walk - callbacks for walk_page_range 789 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 790 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 791 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 792 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 793 * @pte_hole: if set, called for each hole at all levels 794 * @hugetlb_entry: if set, called for each hugetlb entry 795 * 796 * (see walk_page_range for more details) 797 */ 798struct mm_walk { 799 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 800 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 801 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 802 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 803 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 804 int (*hugetlb_entry)(pte_t *, unsigned long, 805 unsigned long, unsigned long, struct mm_walk *); 806 struct mm_struct *mm; 807 void *private; 808}; 809 810int walk_page_range(unsigned long addr, unsigned long end, 811 struct mm_walk *walk); 812void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 813 unsigned long end, unsigned long floor, unsigned long ceiling); 814int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 815 struct vm_area_struct *vma); 816void unmap_mapping_range(struct address_space *mapping, 817 loff_t const holebegin, loff_t const holelen, int even_cows); 818int follow_pfn(struct vm_area_struct *vma, unsigned long address, 819 unsigned long *pfn); 820int follow_phys(struct vm_area_struct *vma, unsigned long address, 821 unsigned int flags, unsigned long *prot, resource_size_t *phys); 822int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 823 void *buf, int len, int write); 824 825static inline void unmap_shared_mapping_range(struct address_space *mapping, 826 loff_t const holebegin, loff_t const holelen) 827{ 828 unmap_mapping_range(mapping, holebegin, holelen, 0); 829} 830 831extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 832extern void truncate_setsize(struct inode *inode, loff_t newsize); 833extern int vmtruncate(struct inode *inode, loff_t offset); 834extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end); 835 836int truncate_inode_page(struct address_space *mapping, struct page *page); 837int generic_error_remove_page(struct address_space *mapping, struct page *page); 838 839int invalidate_inode_page(struct page *page); 840 841#ifdef CONFIG_MMU 842extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 843 unsigned long address, unsigned int flags); 844#else 845static inline int handle_mm_fault(struct mm_struct *mm, 846 struct vm_area_struct *vma, unsigned long address, 847 unsigned int flags) 848{ 849 /* should never happen if there's no MMU */ 850 BUG(); 851 return VM_FAULT_SIGBUS; 852} 853#endif 854 855extern int make_pages_present(unsigned long addr, unsigned long end); 856extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 857 858int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 859 unsigned long start, int nr_pages, int write, int force, 860 struct page **pages, struct vm_area_struct **vmas); 861int get_user_pages_fast(unsigned long start, int nr_pages, int write, 862 struct page **pages); 863struct page *get_dump_page(unsigned long addr); 864 865extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 866extern void do_invalidatepage(struct page *page, unsigned long offset); 867 868int __set_page_dirty_nobuffers(struct page *page); 869int __set_page_dirty_no_writeback(struct page *page); 870int redirty_page_for_writepage(struct writeback_control *wbc, 871 struct page *page); 872void account_page_dirtied(struct page *page, struct address_space *mapping); 873void account_page_writeback(struct page *page); 874int set_page_dirty(struct page *page); 875int set_page_dirty_lock(struct page *page); 876int clear_page_dirty_for_io(struct page *page); 877 878/* Is the vma a continuation of the stack vma above it? */ 879static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr) 880{ 881 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 882} 883 884extern unsigned long move_page_tables(struct vm_area_struct *vma, 885 unsigned long old_addr, struct vm_area_struct *new_vma, 886 unsigned long new_addr, unsigned long len); 887extern unsigned long do_mremap(unsigned long addr, 888 unsigned long old_len, unsigned long new_len, 889 unsigned long flags, unsigned long new_addr); 890extern int mprotect_fixup(struct vm_area_struct *vma, 891 struct vm_area_struct **pprev, unsigned long start, 892 unsigned long end, unsigned long newflags); 893 894/* 895 * doesn't attempt to fault and will return short. 896 */ 897int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 898 struct page **pages); 899/* 900 * per-process(per-mm_struct) statistics. 901 */ 902#if defined(SPLIT_RSS_COUNTING) 903/* 904 * The mm counters are not protected by its page_table_lock, 905 * so must be incremented atomically. 906 */ 907static inline void set_mm_counter(struct mm_struct *mm, int member, long value) 908{ 909 atomic_long_set(&mm->rss_stat.count[member], value); 910} 911 912unsigned long get_mm_counter(struct mm_struct *mm, int member); 913 914static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 915{ 916 atomic_long_add(value, &mm->rss_stat.count[member]); 917} 918 919static inline void inc_mm_counter(struct mm_struct *mm, int member) 920{ 921 atomic_long_inc(&mm->rss_stat.count[member]); 922} 923 924static inline void dec_mm_counter(struct mm_struct *mm, int member) 925{ 926 atomic_long_dec(&mm->rss_stat.count[member]); 927} 928 929#else /* !USE_SPLIT_PTLOCKS */ 930/* 931 * The mm counters are protected by its page_table_lock, 932 * so can be incremented directly. 933 */ 934static inline void set_mm_counter(struct mm_struct *mm, int member, long value) 935{ 936 mm->rss_stat.count[member] = value; 937} 938 939static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 940{ 941 return mm->rss_stat.count[member]; 942} 943 944static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 945{ 946 mm->rss_stat.count[member] += value; 947} 948 949static inline void inc_mm_counter(struct mm_struct *mm, int member) 950{ 951 mm->rss_stat.count[member]++; 952} 953 954static inline void dec_mm_counter(struct mm_struct *mm, int member) 955{ 956 mm->rss_stat.count[member]--; 957} 958 959#endif /* !USE_SPLIT_PTLOCKS */ 960 961static inline unsigned long get_mm_rss(struct mm_struct *mm) 962{ 963 return get_mm_counter(mm, MM_FILEPAGES) + 964 get_mm_counter(mm, MM_ANONPAGES); 965} 966 967static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 968{ 969 return max(mm->hiwater_rss, get_mm_rss(mm)); 970} 971 972static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 973{ 974 return max(mm->hiwater_vm, mm->total_vm); 975} 976 977static inline void update_hiwater_rss(struct mm_struct *mm) 978{ 979 unsigned long _rss = get_mm_rss(mm); 980 981 if ((mm)->hiwater_rss < _rss) 982 (mm)->hiwater_rss = _rss; 983} 984 985static inline void update_hiwater_vm(struct mm_struct *mm) 986{ 987 if (mm->hiwater_vm < mm->total_vm) 988 mm->hiwater_vm = mm->total_vm; 989} 990 991static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 992 struct mm_struct *mm) 993{ 994 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 995 996 if (*maxrss < hiwater_rss) 997 *maxrss = hiwater_rss; 998} 999 1000#if defined(SPLIT_RSS_COUNTING) 1001void sync_mm_rss(struct task_struct *task, struct mm_struct *mm); 1002#else 1003static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 1004{ 1005} 1006#endif 1007 1008/* 1009 * A callback you can register to apply pressure to ageable caches. 1010 * 1011 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 1012 * look through the least-recently-used 'nr_to_scan' entries and 1013 * attempt to free them up. It should return the number of objects 1014 * which remain in the cache. If it returns -1, it means it cannot do 1015 * any scanning at this time (eg. there is a risk of deadlock). 1016 * 1017 * The 'gfpmask' refers to the allocation we are currently trying to 1018 * fulfil. 1019 * 1020 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 1021 * querying the cache size, so a fastpath for that case is appropriate. 1022 */ 1023struct shrinker { 1024 int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask); 1025 int seeks; /* seeks to recreate an obj */ 1026 1027 /* These are for internal use */ 1028 struct list_head list; 1029 long nr; /* objs pending delete */ 1030}; 1031#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 1032extern void register_shrinker(struct shrinker *); 1033extern void unregister_shrinker(struct shrinker *); 1034 1035int vma_wants_writenotify(struct vm_area_struct *vma); 1036 1037extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1038 spinlock_t **ptl); 1039static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1040 spinlock_t **ptl) 1041{ 1042 pte_t *ptep; 1043 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1044 return ptep; 1045} 1046 1047#ifdef __PAGETABLE_PUD_FOLDED 1048static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1049 unsigned long address) 1050{ 1051 return 0; 1052} 1053#else 1054int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1055#endif 1056 1057#ifdef __PAGETABLE_PMD_FOLDED 1058static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1059 unsigned long address) 1060{ 1061 return 0; 1062} 1063#else 1064int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1065#endif 1066 1067int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1068int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1069 1070/* 1071 * The following ifdef needed to get the 4level-fixup.h header to work. 1072 * Remove it when 4level-fixup.h has been removed. 1073 */ 1074#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1075static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1076{ 1077 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1078 NULL: pud_offset(pgd, address); 1079} 1080 1081static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1082{ 1083 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1084 NULL: pmd_offset(pud, address); 1085} 1086#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1087 1088#if USE_SPLIT_PTLOCKS 1089/* 1090 * We tuck a spinlock to guard each pagetable page into its struct page, 1091 * at page->private, with BUILD_BUG_ON to make sure that this will not 1092 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1093 * When freeing, reset page->mapping so free_pages_check won't complain. 1094 */ 1095#define __pte_lockptr(page) &((page)->ptl) 1096#define pte_lock_init(_page) do { \ 1097 spin_lock_init(__pte_lockptr(_page)); \ 1098} while (0) 1099#define pte_lock_deinit(page) ((page)->mapping = NULL) 1100#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1101#else /* !USE_SPLIT_PTLOCKS */ 1102/* 1103 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1104 */ 1105#define pte_lock_init(page) do {} while (0) 1106#define pte_lock_deinit(page) do {} while (0) 1107#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1108#endif /* USE_SPLIT_PTLOCKS */ 1109 1110static inline void pgtable_page_ctor(struct page *page) 1111{ 1112 pte_lock_init(page); 1113 inc_zone_page_state(page, NR_PAGETABLE); 1114} 1115 1116static inline void pgtable_page_dtor(struct page *page) 1117{ 1118 pte_lock_deinit(page); 1119 dec_zone_page_state(page, NR_PAGETABLE); 1120} 1121 1122#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1123({ \ 1124 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1125 pte_t *__pte = pte_offset_map(pmd, address); \ 1126 *(ptlp) = __ptl; \ 1127 spin_lock(__ptl); \ 1128 __pte; \ 1129}) 1130 1131#define pte_unmap_unlock(pte, ptl) do { \ 1132 spin_unlock(ptl); \ 1133 pte_unmap(pte); \ 1134} while (0) 1135 1136#define pte_alloc_map(mm, pmd, address) \ 1137 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 1138 NULL: pte_offset_map(pmd, address)) 1139 1140#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1141 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 1142 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1143 1144#define pte_alloc_kernel(pmd, address) \ 1145 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1146 NULL: pte_offset_kernel(pmd, address)) 1147 1148extern void free_area_init(unsigned long * zones_size); 1149extern void free_area_init_node(int nid, unsigned long * zones_size, 1150 unsigned long zone_start_pfn, unsigned long *zholes_size); 1151#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 1152/* 1153 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 1154 * zones, allocate the backing mem_map and account for memory holes in a more 1155 * architecture independent manner. This is a substitute for creating the 1156 * zone_sizes[] and zholes_size[] arrays and passing them to 1157 * free_area_init_node() 1158 * 1159 * An architecture is expected to register range of page frames backed by 1160 * physical memory with add_active_range() before calling 1161 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1162 * usage, an architecture is expected to do something like 1163 * 1164 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1165 * max_highmem_pfn}; 1166 * for_each_valid_physical_page_range() 1167 * add_active_range(node_id, start_pfn, end_pfn) 1168 * free_area_init_nodes(max_zone_pfns); 1169 * 1170 * If the architecture guarantees that there are no holes in the ranges 1171 * registered with add_active_range(), free_bootmem_active_regions() 1172 * will call free_bootmem_node() for each registered physical page range. 1173 * Similarly sparse_memory_present_with_active_regions() calls 1174 * memory_present() for each range when SPARSEMEM is enabled. 1175 * 1176 * See mm/page_alloc.c for more information on each function exposed by 1177 * CONFIG_ARCH_POPULATES_NODE_MAP 1178 */ 1179extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1180extern void add_active_range(unsigned int nid, unsigned long start_pfn, 1181 unsigned long end_pfn); 1182extern void remove_active_range(unsigned int nid, unsigned long start_pfn, 1183 unsigned long end_pfn); 1184extern void remove_all_active_ranges(void); 1185void sort_node_map(void); 1186unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1187 unsigned long end_pfn); 1188extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1189 unsigned long end_pfn); 1190extern void get_pfn_range_for_nid(unsigned int nid, 1191 unsigned long *start_pfn, unsigned long *end_pfn); 1192extern unsigned long find_min_pfn_with_active_regions(void); 1193extern void free_bootmem_with_active_regions(int nid, 1194 unsigned long max_low_pfn); 1195int add_from_early_node_map(struct range *range, int az, 1196 int nr_range, int nid); 1197u64 __init find_memory_core_early(int nid, u64 size, u64 align, 1198 u64 goal, u64 limit); 1199void *__alloc_memory_core_early(int nodeid, u64 size, u64 align, 1200 u64 goal, u64 limit); 1201typedef int (*work_fn_t)(unsigned long, unsigned long, void *); 1202extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); 1203extern void sparse_memory_present_with_active_regions(int nid); 1204#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1205 1206#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \ 1207 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1208static inline int __early_pfn_to_nid(unsigned long pfn) 1209{ 1210 return 0; 1211} 1212#else 1213/* please see mm/page_alloc.c */ 1214extern int __meminit early_pfn_to_nid(unsigned long pfn); 1215#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1216/* there is a per-arch backend function. */ 1217extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1218#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1219#endif 1220 1221extern void set_dma_reserve(unsigned long new_dma_reserve); 1222extern void memmap_init_zone(unsigned long, int, unsigned long, 1223 unsigned long, enum memmap_context); 1224extern void setup_per_zone_wmarks(void); 1225extern void calculate_zone_inactive_ratio(struct zone *zone); 1226extern void mem_init(void); 1227extern void __init mmap_init(void); 1228extern void show_mem(void); 1229extern void si_meminfo(struct sysinfo * val); 1230extern void si_meminfo_node(struct sysinfo *val, int nid); 1231extern int after_bootmem; 1232 1233extern void setup_per_cpu_pageset(void); 1234 1235extern void zone_pcp_update(struct zone *zone); 1236 1237/* nommu.c */ 1238extern atomic_long_t mmap_pages_allocated; 1239extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1240 1241/* prio_tree.c */ 1242void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1243void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1244void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1245struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1246 struct prio_tree_iter *iter); 1247 1248#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1249 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1250 (vma = vma_prio_tree_next(vma, iter)); ) 1251 1252static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1253 struct list_head *list) 1254{ 1255 vma->shared.vm_set.parent = NULL; 1256 list_add_tail(&vma->shared.vm_set.list, list); 1257} 1258 1259/* mmap.c */ 1260extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1261extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1262 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1263extern struct vm_area_struct *vma_merge(struct mm_struct *, 1264 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1265 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1266 struct mempolicy *); 1267extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1268extern int split_vma(struct mm_struct *, 1269 struct vm_area_struct *, unsigned long addr, int new_below); 1270extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1271extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1272 struct rb_node **, struct rb_node *); 1273extern void unlink_file_vma(struct vm_area_struct *); 1274extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1275 unsigned long addr, unsigned long len, pgoff_t pgoff); 1276extern void exit_mmap(struct mm_struct *); 1277 1278extern int mm_take_all_locks(struct mm_struct *mm); 1279extern void mm_drop_all_locks(struct mm_struct *mm); 1280 1281#ifdef CONFIG_PROC_FS 1282/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1283extern void added_exe_file_vma(struct mm_struct *mm); 1284extern void removed_exe_file_vma(struct mm_struct *mm); 1285#else 1286static inline void added_exe_file_vma(struct mm_struct *mm) 1287{} 1288 1289static inline void removed_exe_file_vma(struct mm_struct *mm) 1290{} 1291#endif /* CONFIG_PROC_FS */ 1292 1293extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1294extern int install_special_mapping(struct mm_struct *mm, 1295 unsigned long addr, unsigned long len, 1296 unsigned long flags, struct page **pages); 1297 1298extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1299 1300extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1301 unsigned long len, unsigned long prot, 1302 unsigned long flag, unsigned long pgoff); 1303extern unsigned long mmap_region(struct file *file, unsigned long addr, 1304 unsigned long len, unsigned long flags, 1305 unsigned int vm_flags, unsigned long pgoff); 1306 1307static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1308 unsigned long len, unsigned long prot, 1309 unsigned long flag, unsigned long offset) 1310{ 1311 unsigned long ret = -EINVAL; 1312 if ((offset + PAGE_ALIGN(len)) < offset) 1313 goto out; 1314 if (!(offset & ~PAGE_MASK)) 1315 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1316out: 1317 return ret; 1318} 1319 1320extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1321 1322extern unsigned long do_brk(unsigned long, unsigned long); 1323 1324/* filemap.c */ 1325extern unsigned long page_unuse(struct page *); 1326extern void truncate_inode_pages(struct address_space *, loff_t); 1327extern void truncate_inode_pages_range(struct address_space *, 1328 loff_t lstart, loff_t lend); 1329 1330/* generic vm_area_ops exported for stackable file systems */ 1331extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1332 1333/* mm/page-writeback.c */ 1334int write_one_page(struct page *page, int wait); 1335void task_dirty_inc(struct task_struct *tsk); 1336 1337/* readahead.c */ 1338#define VM_MAX_READAHEAD 128 /* kbytes */ 1339#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1340 1341int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1342 pgoff_t offset, unsigned long nr_to_read); 1343 1344void page_cache_sync_readahead(struct address_space *mapping, 1345 struct file_ra_state *ra, 1346 struct file *filp, 1347 pgoff_t offset, 1348 unsigned long size); 1349 1350void page_cache_async_readahead(struct address_space *mapping, 1351 struct file_ra_state *ra, 1352 struct file *filp, 1353 struct page *pg, 1354 pgoff_t offset, 1355 unsigned long size); 1356 1357unsigned long max_sane_readahead(unsigned long nr); 1358unsigned long ra_submit(struct file_ra_state *ra, 1359 struct address_space *mapping, 1360 struct file *filp); 1361 1362/* Do stack extension */ 1363extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1364#if VM_GROWSUP 1365extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1366#else 1367 #define expand_upwards(vma, address) do { } while (0) 1368#endif 1369extern int expand_stack_downwards(struct vm_area_struct *vma, 1370 unsigned long address); 1371 1372/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1373extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1374extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1375 struct vm_area_struct **pprev); 1376 1377/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1378 NULL if none. Assume start_addr < end_addr. */ 1379static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1380{ 1381 struct vm_area_struct * vma = find_vma(mm,start_addr); 1382 1383 if (vma && end_addr <= vma->vm_start) 1384 vma = NULL; 1385 return vma; 1386} 1387 1388static inline unsigned long vma_pages(struct vm_area_struct *vma) 1389{ 1390 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1391} 1392 1393#ifdef CONFIG_MMU 1394pgprot_t vm_get_page_prot(unsigned long vm_flags); 1395#else 1396static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1397{ 1398 return __pgprot(0); 1399} 1400#endif 1401 1402struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1403int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1404 unsigned long pfn, unsigned long size, pgprot_t); 1405int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1406int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1407 unsigned long pfn); 1408int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1409 unsigned long pfn); 1410 1411struct page *follow_page(struct vm_area_struct *, unsigned long address, 1412 unsigned int foll_flags); 1413#define FOLL_WRITE 0x01 /* check pte is writable */ 1414#define FOLL_TOUCH 0x02 /* mark page accessed */ 1415#define FOLL_GET 0x04 /* do get_page on page */ 1416#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1417#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1418 1419typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1420 void *data); 1421extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1422 unsigned long size, pte_fn_t fn, void *data); 1423 1424#ifdef CONFIG_PROC_FS 1425void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1426#else 1427static inline void vm_stat_account(struct mm_struct *mm, 1428 unsigned long flags, struct file *file, long pages) 1429{ 1430} 1431#endif /* CONFIG_PROC_FS */ 1432 1433#ifdef CONFIG_DEBUG_PAGEALLOC 1434extern int debug_pagealloc_enabled; 1435 1436extern void kernel_map_pages(struct page *page, int numpages, int enable); 1437 1438static inline void enable_debug_pagealloc(void) 1439{ 1440 debug_pagealloc_enabled = 1; 1441} 1442#ifdef CONFIG_HIBERNATION 1443extern bool kernel_page_present(struct page *page); 1444#endif /* CONFIG_HIBERNATION */ 1445#else 1446static inline void 1447kernel_map_pages(struct page *page, int numpages, int enable) {} 1448static inline void enable_debug_pagealloc(void) 1449{ 1450} 1451#ifdef CONFIG_HIBERNATION 1452static inline bool kernel_page_present(struct page *page) { return true; } 1453#endif /* CONFIG_HIBERNATION */ 1454#endif 1455 1456extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1457#ifdef __HAVE_ARCH_GATE_AREA 1458int in_gate_area_no_task(unsigned long addr); 1459int in_gate_area(struct task_struct *task, unsigned long addr); 1460#else 1461int in_gate_area_no_task(unsigned long addr); 1462#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1463#endif /* __HAVE_ARCH_GATE_AREA */ 1464 1465int drop_caches_sysctl_handler(struct ctl_table *, int, 1466 void __user *, size_t *, loff_t *); 1467unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1468 unsigned long lru_pages); 1469 1470#ifndef CONFIG_MMU 1471#define randomize_va_space 0 1472#else 1473extern int randomize_va_space; 1474#endif 1475 1476const char * arch_vma_name(struct vm_area_struct *vma); 1477void print_vma_addr(char *prefix, unsigned long rip); 1478 1479void sparse_mem_maps_populate_node(struct page **map_map, 1480 unsigned long pnum_begin, 1481 unsigned long pnum_end, 1482 unsigned long map_count, 1483 int nodeid); 1484 1485struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1486pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1487pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1488pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1489pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1490void *vmemmap_alloc_block(unsigned long size, int node); 1491void *vmemmap_alloc_block_buf(unsigned long size, int node); 1492void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1493int vmemmap_populate_basepages(struct page *start_page, 1494 unsigned long pages, int node); 1495int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1496void vmemmap_populate_print_last(void); 1497 1498 1499enum mf_flags { 1500 MF_COUNT_INCREASED = 1 << 0, 1501}; 1502extern void memory_failure(unsigned long pfn, int trapno); 1503extern int __memory_failure(unsigned long pfn, int trapno, int flags); 1504extern int unpoison_memory(unsigned long pfn); 1505extern int sysctl_memory_failure_early_kill; 1506extern int sysctl_memory_failure_recovery; 1507extern void shake_page(struct page *p, int access); 1508extern atomic_long_t mce_bad_pages; 1509extern int soft_offline_page(struct page *page, int flags); 1510#ifdef CONFIG_MEMORY_FAILURE 1511int is_hwpoison_address(unsigned long addr); 1512#else 1513static inline int is_hwpoison_address(unsigned long addr) 1514{ 1515 return 0; 1516} 1517#endif 1518 1519extern void dump_page(struct page *page); 1520 1521#endif /* __KERNEL__ */ 1522#endif /* _LINUX_MM_H */