at v2.6.37-rc2 2349 lines 60 kB view raw
1/* 2 * linux/fs/locks.c 3 * 4 * Provide support for fcntl()'s F_GETLK, F_SETLK, and F_SETLKW calls. 5 * Doug Evans (dje@spiff.uucp), August 07, 1992 6 * 7 * Deadlock detection added. 8 * FIXME: one thing isn't handled yet: 9 * - mandatory locks (requires lots of changes elsewhere) 10 * Kelly Carmichael (kelly@[142.24.8.65]), September 17, 1994. 11 * 12 * Miscellaneous edits, and a total rewrite of posix_lock_file() code. 13 * Kai Petzke (wpp@marie.physik.tu-berlin.de), 1994 14 * 15 * Converted file_lock_table to a linked list from an array, which eliminates 16 * the limits on how many active file locks are open. 17 * Chad Page (pageone@netcom.com), November 27, 1994 18 * 19 * Removed dependency on file descriptors. dup()'ed file descriptors now 20 * get the same locks as the original file descriptors, and a close() on 21 * any file descriptor removes ALL the locks on the file for the current 22 * process. Since locks still depend on the process id, locks are inherited 23 * after an exec() but not after a fork(). This agrees with POSIX, and both 24 * BSD and SVR4 practice. 25 * Andy Walker (andy@lysaker.kvaerner.no), February 14, 1995 26 * 27 * Scrapped free list which is redundant now that we allocate locks 28 * dynamically with kmalloc()/kfree(). 29 * Andy Walker (andy@lysaker.kvaerner.no), February 21, 1995 30 * 31 * Implemented two lock personalities - FL_FLOCK and FL_POSIX. 32 * 33 * FL_POSIX locks are created with calls to fcntl() and lockf() through the 34 * fcntl() system call. They have the semantics described above. 35 * 36 * FL_FLOCK locks are created with calls to flock(), through the flock() 37 * system call, which is new. Old C libraries implement flock() via fcntl() 38 * and will continue to use the old, broken implementation. 39 * 40 * FL_FLOCK locks follow the 4.4 BSD flock() semantics. They are associated 41 * with a file pointer (filp). As a result they can be shared by a parent 42 * process and its children after a fork(). They are removed when the last 43 * file descriptor referring to the file pointer is closed (unless explicitly 44 * unlocked). 45 * 46 * FL_FLOCK locks never deadlock, an existing lock is always removed before 47 * upgrading from shared to exclusive (or vice versa). When this happens 48 * any processes blocked by the current lock are woken up and allowed to 49 * run before the new lock is applied. 50 * Andy Walker (andy@lysaker.kvaerner.no), June 09, 1995 51 * 52 * Removed some race conditions in flock_lock_file(), marked other possible 53 * races. Just grep for FIXME to see them. 54 * Dmitry Gorodchanin (pgmdsg@ibi.com), February 09, 1996. 55 * 56 * Addressed Dmitry's concerns. Deadlock checking no longer recursive. 57 * Lock allocation changed to GFP_ATOMIC as we can't afford to sleep 58 * once we've checked for blocking and deadlocking. 59 * Andy Walker (andy@lysaker.kvaerner.no), April 03, 1996. 60 * 61 * Initial implementation of mandatory locks. SunOS turned out to be 62 * a rotten model, so I implemented the "obvious" semantics. 63 * See 'Documentation/mandatory.txt' for details. 64 * Andy Walker (andy@lysaker.kvaerner.no), April 06, 1996. 65 * 66 * Don't allow mandatory locks on mmap()'ed files. Added simple functions to 67 * check if a file has mandatory locks, used by mmap(), open() and creat() to 68 * see if system call should be rejected. Ref. HP-UX/SunOS/Solaris Reference 69 * Manual, Section 2. 70 * Andy Walker (andy@lysaker.kvaerner.no), April 09, 1996. 71 * 72 * Tidied up block list handling. Added '/proc/locks' interface. 73 * Andy Walker (andy@lysaker.kvaerner.no), April 24, 1996. 74 * 75 * Fixed deadlock condition for pathological code that mixes calls to 76 * flock() and fcntl(). 77 * Andy Walker (andy@lysaker.kvaerner.no), April 29, 1996. 78 * 79 * Allow only one type of locking scheme (FL_POSIX or FL_FLOCK) to be in use 80 * for a given file at a time. Changed the CONFIG_LOCK_MANDATORY scheme to 81 * guarantee sensible behaviour in the case where file system modules might 82 * be compiled with different options than the kernel itself. 83 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996. 84 * 85 * Added a couple of missing wake_up() calls. Thanks to Thomas Meckel 86 * (Thomas.Meckel@mni.fh-giessen.de) for spotting this. 87 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996. 88 * 89 * Changed FL_POSIX locks to use the block list in the same way as FL_FLOCK 90 * locks. Changed process synchronisation to avoid dereferencing locks that 91 * have already been freed. 92 * Andy Walker (andy@lysaker.kvaerner.no), Sep 21, 1996. 93 * 94 * Made the block list a circular list to minimise searching in the list. 95 * Andy Walker (andy@lysaker.kvaerner.no), Sep 25, 1996. 96 * 97 * Made mandatory locking a mount option. Default is not to allow mandatory 98 * locking. 99 * Andy Walker (andy@lysaker.kvaerner.no), Oct 04, 1996. 100 * 101 * Some adaptations for NFS support. 102 * Olaf Kirch (okir@monad.swb.de), Dec 1996, 103 * 104 * Fixed /proc/locks interface so that we can't overrun the buffer we are handed. 105 * Andy Walker (andy@lysaker.kvaerner.no), May 12, 1997. 106 * 107 * Use slab allocator instead of kmalloc/kfree. 108 * Use generic list implementation from <linux/list.h>. 109 * Sped up posix_locks_deadlock by only considering blocked locks. 110 * Matthew Wilcox <willy@debian.org>, March, 2000. 111 * 112 * Leases and LOCK_MAND 113 * Matthew Wilcox <willy@debian.org>, June, 2000. 114 * Stephen Rothwell <sfr@canb.auug.org.au>, June, 2000. 115 */ 116 117#include <linux/capability.h> 118#include <linux/file.h> 119#include <linux/fdtable.h> 120#include <linux/fs.h> 121#include <linux/init.h> 122#include <linux/module.h> 123#include <linux/security.h> 124#include <linux/slab.h> 125#include <linux/smp_lock.h> 126#include <linux/syscalls.h> 127#include <linux/time.h> 128#include <linux/rcupdate.h> 129#include <linux/pid_namespace.h> 130 131#include <asm/uaccess.h> 132 133#define IS_POSIX(fl) (fl->fl_flags & FL_POSIX) 134#define IS_FLOCK(fl) (fl->fl_flags & FL_FLOCK) 135#define IS_LEASE(fl) (fl->fl_flags & FL_LEASE) 136 137int leases_enable = 1; 138int lease_break_time = 45; 139 140#define for_each_lock(inode, lockp) \ 141 for (lockp = &inode->i_flock; *lockp != NULL; lockp = &(*lockp)->fl_next) 142 143static LIST_HEAD(file_lock_list); 144static LIST_HEAD(blocked_list); 145static DEFINE_SPINLOCK(file_lock_lock); 146 147/* 148 * Protects the two list heads above, plus the inode->i_flock list 149 * FIXME: should use a spinlock, once lockd and ceph are ready. 150 */ 151void lock_flocks(void) 152{ 153 spin_lock(&file_lock_lock); 154} 155EXPORT_SYMBOL_GPL(lock_flocks); 156 157void unlock_flocks(void) 158{ 159 spin_unlock(&file_lock_lock); 160} 161EXPORT_SYMBOL_GPL(unlock_flocks); 162 163static struct kmem_cache *filelock_cache __read_mostly; 164 165/* Allocate an empty lock structure. */ 166struct file_lock *locks_alloc_lock(void) 167{ 168 return kmem_cache_alloc(filelock_cache, GFP_KERNEL); 169} 170EXPORT_SYMBOL_GPL(locks_alloc_lock); 171 172void locks_release_private(struct file_lock *fl) 173{ 174 if (fl->fl_ops) { 175 if (fl->fl_ops->fl_release_private) 176 fl->fl_ops->fl_release_private(fl); 177 fl->fl_ops = NULL; 178 } 179 if (fl->fl_lmops) { 180 if (fl->fl_lmops->fl_release_private) 181 fl->fl_lmops->fl_release_private(fl); 182 fl->fl_lmops = NULL; 183 } 184 185} 186EXPORT_SYMBOL_GPL(locks_release_private); 187 188/* Free a lock which is not in use. */ 189void locks_free_lock(struct file_lock *fl) 190{ 191 BUG_ON(waitqueue_active(&fl->fl_wait)); 192 BUG_ON(!list_empty(&fl->fl_block)); 193 BUG_ON(!list_empty(&fl->fl_link)); 194 195 locks_release_private(fl); 196 kmem_cache_free(filelock_cache, fl); 197} 198EXPORT_SYMBOL(locks_free_lock); 199 200void locks_init_lock(struct file_lock *fl) 201{ 202 INIT_LIST_HEAD(&fl->fl_link); 203 INIT_LIST_HEAD(&fl->fl_block); 204 init_waitqueue_head(&fl->fl_wait); 205 fl->fl_next = NULL; 206 fl->fl_fasync = NULL; 207 fl->fl_owner = NULL; 208 fl->fl_pid = 0; 209 fl->fl_nspid = NULL; 210 fl->fl_file = NULL; 211 fl->fl_flags = 0; 212 fl->fl_type = 0; 213 fl->fl_start = fl->fl_end = 0; 214 fl->fl_ops = NULL; 215 fl->fl_lmops = NULL; 216} 217 218EXPORT_SYMBOL(locks_init_lock); 219 220/* 221 * Initialises the fields of the file lock which are invariant for 222 * free file_locks. 223 */ 224static void init_once(void *foo) 225{ 226 struct file_lock *lock = (struct file_lock *) foo; 227 228 locks_init_lock(lock); 229} 230 231static void locks_copy_private(struct file_lock *new, struct file_lock *fl) 232{ 233 if (fl->fl_ops) { 234 if (fl->fl_ops->fl_copy_lock) 235 fl->fl_ops->fl_copy_lock(new, fl); 236 new->fl_ops = fl->fl_ops; 237 } 238 if (fl->fl_lmops) 239 new->fl_lmops = fl->fl_lmops; 240} 241 242/* 243 * Initialize a new lock from an existing file_lock structure. 244 */ 245void __locks_copy_lock(struct file_lock *new, const struct file_lock *fl) 246{ 247 new->fl_owner = fl->fl_owner; 248 new->fl_pid = fl->fl_pid; 249 new->fl_file = NULL; 250 new->fl_flags = fl->fl_flags; 251 new->fl_type = fl->fl_type; 252 new->fl_start = fl->fl_start; 253 new->fl_end = fl->fl_end; 254 new->fl_ops = NULL; 255 new->fl_lmops = NULL; 256} 257EXPORT_SYMBOL(__locks_copy_lock); 258 259void locks_copy_lock(struct file_lock *new, struct file_lock *fl) 260{ 261 locks_release_private(new); 262 263 __locks_copy_lock(new, fl); 264 new->fl_file = fl->fl_file; 265 new->fl_ops = fl->fl_ops; 266 new->fl_lmops = fl->fl_lmops; 267 268 locks_copy_private(new, fl); 269} 270 271EXPORT_SYMBOL(locks_copy_lock); 272 273static inline int flock_translate_cmd(int cmd) { 274 if (cmd & LOCK_MAND) 275 return cmd & (LOCK_MAND | LOCK_RW); 276 switch (cmd) { 277 case LOCK_SH: 278 return F_RDLCK; 279 case LOCK_EX: 280 return F_WRLCK; 281 case LOCK_UN: 282 return F_UNLCK; 283 } 284 return -EINVAL; 285} 286 287/* Fill in a file_lock structure with an appropriate FLOCK lock. */ 288static int flock_make_lock(struct file *filp, struct file_lock **lock, 289 unsigned int cmd) 290{ 291 struct file_lock *fl; 292 int type = flock_translate_cmd(cmd); 293 if (type < 0) 294 return type; 295 296 fl = locks_alloc_lock(); 297 if (fl == NULL) 298 return -ENOMEM; 299 300 fl->fl_file = filp; 301 fl->fl_pid = current->tgid; 302 fl->fl_flags = FL_FLOCK; 303 fl->fl_type = type; 304 fl->fl_end = OFFSET_MAX; 305 306 *lock = fl; 307 return 0; 308} 309 310static int assign_type(struct file_lock *fl, int type) 311{ 312 switch (type) { 313 case F_RDLCK: 314 case F_WRLCK: 315 case F_UNLCK: 316 fl->fl_type = type; 317 break; 318 default: 319 return -EINVAL; 320 } 321 return 0; 322} 323 324/* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX 325 * style lock. 326 */ 327static int flock_to_posix_lock(struct file *filp, struct file_lock *fl, 328 struct flock *l) 329{ 330 off_t start, end; 331 332 switch (l->l_whence) { 333 case SEEK_SET: 334 start = 0; 335 break; 336 case SEEK_CUR: 337 start = filp->f_pos; 338 break; 339 case SEEK_END: 340 start = i_size_read(filp->f_path.dentry->d_inode); 341 break; 342 default: 343 return -EINVAL; 344 } 345 346 /* POSIX-1996 leaves the case l->l_len < 0 undefined; 347 POSIX-2001 defines it. */ 348 start += l->l_start; 349 if (start < 0) 350 return -EINVAL; 351 fl->fl_end = OFFSET_MAX; 352 if (l->l_len > 0) { 353 end = start + l->l_len - 1; 354 fl->fl_end = end; 355 } else if (l->l_len < 0) { 356 end = start - 1; 357 fl->fl_end = end; 358 start += l->l_len; 359 if (start < 0) 360 return -EINVAL; 361 } 362 fl->fl_start = start; /* we record the absolute position */ 363 if (fl->fl_end < fl->fl_start) 364 return -EOVERFLOW; 365 366 fl->fl_owner = current->files; 367 fl->fl_pid = current->tgid; 368 fl->fl_file = filp; 369 fl->fl_flags = FL_POSIX; 370 fl->fl_ops = NULL; 371 fl->fl_lmops = NULL; 372 373 return assign_type(fl, l->l_type); 374} 375 376#if BITS_PER_LONG == 32 377static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl, 378 struct flock64 *l) 379{ 380 loff_t start; 381 382 switch (l->l_whence) { 383 case SEEK_SET: 384 start = 0; 385 break; 386 case SEEK_CUR: 387 start = filp->f_pos; 388 break; 389 case SEEK_END: 390 start = i_size_read(filp->f_path.dentry->d_inode); 391 break; 392 default: 393 return -EINVAL; 394 } 395 396 start += l->l_start; 397 if (start < 0) 398 return -EINVAL; 399 fl->fl_end = OFFSET_MAX; 400 if (l->l_len > 0) { 401 fl->fl_end = start + l->l_len - 1; 402 } else if (l->l_len < 0) { 403 fl->fl_end = start - 1; 404 start += l->l_len; 405 if (start < 0) 406 return -EINVAL; 407 } 408 fl->fl_start = start; /* we record the absolute position */ 409 if (fl->fl_end < fl->fl_start) 410 return -EOVERFLOW; 411 412 fl->fl_owner = current->files; 413 fl->fl_pid = current->tgid; 414 fl->fl_file = filp; 415 fl->fl_flags = FL_POSIX; 416 fl->fl_ops = NULL; 417 fl->fl_lmops = NULL; 418 419 switch (l->l_type) { 420 case F_RDLCK: 421 case F_WRLCK: 422 case F_UNLCK: 423 fl->fl_type = l->l_type; 424 break; 425 default: 426 return -EINVAL; 427 } 428 429 return (0); 430} 431#endif 432 433/* default lease lock manager operations */ 434static void lease_break_callback(struct file_lock *fl) 435{ 436 kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG); 437} 438 439static void lease_release_private_callback(struct file_lock *fl) 440{ 441 if (!fl->fl_file) 442 return; 443 444 f_delown(fl->fl_file); 445 fl->fl_file->f_owner.signum = 0; 446} 447 448static int lease_mylease_callback(struct file_lock *fl, struct file_lock *try) 449{ 450 return fl->fl_file == try->fl_file; 451} 452 453static const struct lock_manager_operations lease_manager_ops = { 454 .fl_break = lease_break_callback, 455 .fl_release_private = lease_release_private_callback, 456 .fl_mylease = lease_mylease_callback, 457 .fl_change = lease_modify, 458}; 459 460/* 461 * Initialize a lease, use the default lock manager operations 462 */ 463static int lease_init(struct file *filp, int type, struct file_lock *fl) 464 { 465 if (assign_type(fl, type) != 0) 466 return -EINVAL; 467 468 fl->fl_owner = current->files; 469 fl->fl_pid = current->tgid; 470 471 fl->fl_file = filp; 472 fl->fl_flags = FL_LEASE; 473 fl->fl_start = 0; 474 fl->fl_end = OFFSET_MAX; 475 fl->fl_ops = NULL; 476 fl->fl_lmops = &lease_manager_ops; 477 return 0; 478} 479 480/* Allocate a file_lock initialised to this type of lease */ 481static struct file_lock *lease_alloc(struct file *filp, int type) 482{ 483 struct file_lock *fl = locks_alloc_lock(); 484 int error = -ENOMEM; 485 486 if (fl == NULL) 487 return ERR_PTR(error); 488 489 error = lease_init(filp, type, fl); 490 if (error) { 491 locks_free_lock(fl); 492 return ERR_PTR(error); 493 } 494 return fl; 495} 496 497/* Check if two locks overlap each other. 498 */ 499static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2) 500{ 501 return ((fl1->fl_end >= fl2->fl_start) && 502 (fl2->fl_end >= fl1->fl_start)); 503} 504 505/* 506 * Check whether two locks have the same owner. 507 */ 508static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2) 509{ 510 if (fl1->fl_lmops && fl1->fl_lmops->fl_compare_owner) 511 return fl2->fl_lmops == fl1->fl_lmops && 512 fl1->fl_lmops->fl_compare_owner(fl1, fl2); 513 return fl1->fl_owner == fl2->fl_owner; 514} 515 516/* Remove waiter from blocker's block list. 517 * When blocker ends up pointing to itself then the list is empty. 518 */ 519static void __locks_delete_block(struct file_lock *waiter) 520{ 521 list_del_init(&waiter->fl_block); 522 list_del_init(&waiter->fl_link); 523 waiter->fl_next = NULL; 524} 525 526/* 527 */ 528static void locks_delete_block(struct file_lock *waiter) 529{ 530 lock_flocks(); 531 __locks_delete_block(waiter); 532 unlock_flocks(); 533} 534 535/* Insert waiter into blocker's block list. 536 * We use a circular list so that processes can be easily woken up in 537 * the order they blocked. The documentation doesn't require this but 538 * it seems like the reasonable thing to do. 539 */ 540static void locks_insert_block(struct file_lock *blocker, 541 struct file_lock *waiter) 542{ 543 BUG_ON(!list_empty(&waiter->fl_block)); 544 list_add_tail(&waiter->fl_block, &blocker->fl_block); 545 waiter->fl_next = blocker; 546 if (IS_POSIX(blocker)) 547 list_add(&waiter->fl_link, &blocked_list); 548} 549 550/* Wake up processes blocked waiting for blocker. 551 * If told to wait then schedule the processes until the block list 552 * is empty, otherwise empty the block list ourselves. 553 */ 554static void locks_wake_up_blocks(struct file_lock *blocker) 555{ 556 while (!list_empty(&blocker->fl_block)) { 557 struct file_lock *waiter; 558 559 waiter = list_first_entry(&blocker->fl_block, 560 struct file_lock, fl_block); 561 __locks_delete_block(waiter); 562 if (waiter->fl_lmops && waiter->fl_lmops->fl_notify) 563 waiter->fl_lmops->fl_notify(waiter); 564 else 565 wake_up(&waiter->fl_wait); 566 } 567} 568 569/* Insert file lock fl into an inode's lock list at the position indicated 570 * by pos. At the same time add the lock to the global file lock list. 571 */ 572static void locks_insert_lock(struct file_lock **pos, struct file_lock *fl) 573{ 574 list_add(&fl->fl_link, &file_lock_list); 575 576 fl->fl_nspid = get_pid(task_tgid(current)); 577 578 /* insert into file's list */ 579 fl->fl_next = *pos; 580 *pos = fl; 581} 582 583/* 584 * Delete a lock and then free it. 585 * Wake up processes that are blocked waiting for this lock, 586 * notify the FS that the lock has been cleared and 587 * finally free the lock. 588 */ 589static void locks_delete_lock(struct file_lock **thisfl_p) 590{ 591 struct file_lock *fl = *thisfl_p; 592 593 *thisfl_p = fl->fl_next; 594 fl->fl_next = NULL; 595 list_del_init(&fl->fl_link); 596 597 fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync); 598 if (fl->fl_fasync != NULL) { 599 printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync); 600 fl->fl_fasync = NULL; 601 } 602 603 if (fl->fl_nspid) { 604 put_pid(fl->fl_nspid); 605 fl->fl_nspid = NULL; 606 } 607 608 locks_wake_up_blocks(fl); 609 locks_free_lock(fl); 610} 611 612/* Determine if lock sys_fl blocks lock caller_fl. Common functionality 613 * checks for shared/exclusive status of overlapping locks. 614 */ 615static int locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl) 616{ 617 if (sys_fl->fl_type == F_WRLCK) 618 return 1; 619 if (caller_fl->fl_type == F_WRLCK) 620 return 1; 621 return 0; 622} 623 624/* Determine if lock sys_fl blocks lock caller_fl. POSIX specific 625 * checking before calling the locks_conflict(). 626 */ 627static int posix_locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl) 628{ 629 /* POSIX locks owned by the same process do not conflict with 630 * each other. 631 */ 632 if (!IS_POSIX(sys_fl) || posix_same_owner(caller_fl, sys_fl)) 633 return (0); 634 635 /* Check whether they overlap */ 636 if (!locks_overlap(caller_fl, sys_fl)) 637 return 0; 638 639 return (locks_conflict(caller_fl, sys_fl)); 640} 641 642/* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific 643 * checking before calling the locks_conflict(). 644 */ 645static int flock_locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl) 646{ 647 /* FLOCK locks referring to the same filp do not conflict with 648 * each other. 649 */ 650 if (!IS_FLOCK(sys_fl) || (caller_fl->fl_file == sys_fl->fl_file)) 651 return (0); 652 if ((caller_fl->fl_type & LOCK_MAND) || (sys_fl->fl_type & LOCK_MAND)) 653 return 0; 654 655 return (locks_conflict(caller_fl, sys_fl)); 656} 657 658void 659posix_test_lock(struct file *filp, struct file_lock *fl) 660{ 661 struct file_lock *cfl; 662 663 lock_flocks(); 664 for (cfl = filp->f_path.dentry->d_inode->i_flock; cfl; cfl = cfl->fl_next) { 665 if (!IS_POSIX(cfl)) 666 continue; 667 if (posix_locks_conflict(fl, cfl)) 668 break; 669 } 670 if (cfl) { 671 __locks_copy_lock(fl, cfl); 672 if (cfl->fl_nspid) 673 fl->fl_pid = pid_vnr(cfl->fl_nspid); 674 } else 675 fl->fl_type = F_UNLCK; 676 unlock_flocks(); 677 return; 678} 679EXPORT_SYMBOL(posix_test_lock); 680 681/* 682 * Deadlock detection: 683 * 684 * We attempt to detect deadlocks that are due purely to posix file 685 * locks. 686 * 687 * We assume that a task can be waiting for at most one lock at a time. 688 * So for any acquired lock, the process holding that lock may be 689 * waiting on at most one other lock. That lock in turns may be held by 690 * someone waiting for at most one other lock. Given a requested lock 691 * caller_fl which is about to wait for a conflicting lock block_fl, we 692 * follow this chain of waiters to ensure we are not about to create a 693 * cycle. 694 * 695 * Since we do this before we ever put a process to sleep on a lock, we 696 * are ensured that there is never a cycle; that is what guarantees that 697 * the while() loop in posix_locks_deadlock() eventually completes. 698 * 699 * Note: the above assumption may not be true when handling lock 700 * requests from a broken NFS client. It may also fail in the presence 701 * of tasks (such as posix threads) sharing the same open file table. 702 * 703 * To handle those cases, we just bail out after a few iterations. 704 */ 705 706#define MAX_DEADLK_ITERATIONS 10 707 708/* Find a lock that the owner of the given block_fl is blocking on. */ 709static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl) 710{ 711 struct file_lock *fl; 712 713 list_for_each_entry(fl, &blocked_list, fl_link) { 714 if (posix_same_owner(fl, block_fl)) 715 return fl->fl_next; 716 } 717 return NULL; 718} 719 720static int posix_locks_deadlock(struct file_lock *caller_fl, 721 struct file_lock *block_fl) 722{ 723 int i = 0; 724 725 while ((block_fl = what_owner_is_waiting_for(block_fl))) { 726 if (i++ > MAX_DEADLK_ITERATIONS) 727 return 0; 728 if (posix_same_owner(caller_fl, block_fl)) 729 return 1; 730 } 731 return 0; 732} 733 734/* Try to create a FLOCK lock on filp. We always insert new FLOCK locks 735 * after any leases, but before any posix locks. 736 * 737 * Note that if called with an FL_EXISTS argument, the caller may determine 738 * whether or not a lock was successfully freed by testing the return 739 * value for -ENOENT. 740 */ 741static int flock_lock_file(struct file *filp, struct file_lock *request) 742{ 743 struct file_lock *new_fl = NULL; 744 struct file_lock **before; 745 struct inode * inode = filp->f_path.dentry->d_inode; 746 int error = 0; 747 int found = 0; 748 749 if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) { 750 new_fl = locks_alloc_lock(); 751 if (!new_fl) 752 return -ENOMEM; 753 } 754 755 lock_flocks(); 756 if (request->fl_flags & FL_ACCESS) 757 goto find_conflict; 758 759 for_each_lock(inode, before) { 760 struct file_lock *fl = *before; 761 if (IS_POSIX(fl)) 762 break; 763 if (IS_LEASE(fl)) 764 continue; 765 if (filp != fl->fl_file) 766 continue; 767 if (request->fl_type == fl->fl_type) 768 goto out; 769 found = 1; 770 locks_delete_lock(before); 771 break; 772 } 773 774 if (request->fl_type == F_UNLCK) { 775 if ((request->fl_flags & FL_EXISTS) && !found) 776 error = -ENOENT; 777 goto out; 778 } 779 780 /* 781 * If a higher-priority process was blocked on the old file lock, 782 * give it the opportunity to lock the file. 783 */ 784 if (found) { 785 unlock_flocks(); 786 cond_resched(); 787 lock_flocks(); 788 } 789 790find_conflict: 791 for_each_lock(inode, before) { 792 struct file_lock *fl = *before; 793 if (IS_POSIX(fl)) 794 break; 795 if (IS_LEASE(fl)) 796 continue; 797 if (!flock_locks_conflict(request, fl)) 798 continue; 799 error = -EAGAIN; 800 if (!(request->fl_flags & FL_SLEEP)) 801 goto out; 802 error = FILE_LOCK_DEFERRED; 803 locks_insert_block(fl, request); 804 goto out; 805 } 806 if (request->fl_flags & FL_ACCESS) 807 goto out; 808 locks_copy_lock(new_fl, request); 809 locks_insert_lock(before, new_fl); 810 new_fl = NULL; 811 error = 0; 812 813out: 814 unlock_flocks(); 815 if (new_fl) 816 locks_free_lock(new_fl); 817 return error; 818} 819 820static int __posix_lock_file(struct inode *inode, struct file_lock *request, struct file_lock *conflock) 821{ 822 struct file_lock *fl; 823 struct file_lock *new_fl = NULL; 824 struct file_lock *new_fl2 = NULL; 825 struct file_lock *left = NULL; 826 struct file_lock *right = NULL; 827 struct file_lock **before; 828 int error, added = 0; 829 830 /* 831 * We may need two file_lock structures for this operation, 832 * so we get them in advance to avoid races. 833 * 834 * In some cases we can be sure, that no new locks will be needed 835 */ 836 if (!(request->fl_flags & FL_ACCESS) && 837 (request->fl_type != F_UNLCK || 838 request->fl_start != 0 || request->fl_end != OFFSET_MAX)) { 839 new_fl = locks_alloc_lock(); 840 new_fl2 = locks_alloc_lock(); 841 } 842 843 lock_flocks(); 844 if (request->fl_type != F_UNLCK) { 845 for_each_lock(inode, before) { 846 fl = *before; 847 if (!IS_POSIX(fl)) 848 continue; 849 if (!posix_locks_conflict(request, fl)) 850 continue; 851 if (conflock) 852 __locks_copy_lock(conflock, fl); 853 error = -EAGAIN; 854 if (!(request->fl_flags & FL_SLEEP)) 855 goto out; 856 error = -EDEADLK; 857 if (posix_locks_deadlock(request, fl)) 858 goto out; 859 error = FILE_LOCK_DEFERRED; 860 locks_insert_block(fl, request); 861 goto out; 862 } 863 } 864 865 /* If we're just looking for a conflict, we're done. */ 866 error = 0; 867 if (request->fl_flags & FL_ACCESS) 868 goto out; 869 870 /* 871 * Find the first old lock with the same owner as the new lock. 872 */ 873 874 before = &inode->i_flock; 875 876 /* First skip locks owned by other processes. */ 877 while ((fl = *before) && (!IS_POSIX(fl) || 878 !posix_same_owner(request, fl))) { 879 before = &fl->fl_next; 880 } 881 882 /* Process locks with this owner. */ 883 while ((fl = *before) && posix_same_owner(request, fl)) { 884 /* Detect adjacent or overlapping regions (if same lock type) 885 */ 886 if (request->fl_type == fl->fl_type) { 887 /* In all comparisons of start vs end, use 888 * "start - 1" rather than "end + 1". If end 889 * is OFFSET_MAX, end + 1 will become negative. 890 */ 891 if (fl->fl_end < request->fl_start - 1) 892 goto next_lock; 893 /* If the next lock in the list has entirely bigger 894 * addresses than the new one, insert the lock here. 895 */ 896 if (fl->fl_start - 1 > request->fl_end) 897 break; 898 899 /* If we come here, the new and old lock are of the 900 * same type and adjacent or overlapping. Make one 901 * lock yielding from the lower start address of both 902 * locks to the higher end address. 903 */ 904 if (fl->fl_start > request->fl_start) 905 fl->fl_start = request->fl_start; 906 else 907 request->fl_start = fl->fl_start; 908 if (fl->fl_end < request->fl_end) 909 fl->fl_end = request->fl_end; 910 else 911 request->fl_end = fl->fl_end; 912 if (added) { 913 locks_delete_lock(before); 914 continue; 915 } 916 request = fl; 917 added = 1; 918 } 919 else { 920 /* Processing for different lock types is a bit 921 * more complex. 922 */ 923 if (fl->fl_end < request->fl_start) 924 goto next_lock; 925 if (fl->fl_start > request->fl_end) 926 break; 927 if (request->fl_type == F_UNLCK) 928 added = 1; 929 if (fl->fl_start < request->fl_start) 930 left = fl; 931 /* If the next lock in the list has a higher end 932 * address than the new one, insert the new one here. 933 */ 934 if (fl->fl_end > request->fl_end) { 935 right = fl; 936 break; 937 } 938 if (fl->fl_start >= request->fl_start) { 939 /* The new lock completely replaces an old 940 * one (This may happen several times). 941 */ 942 if (added) { 943 locks_delete_lock(before); 944 continue; 945 } 946 /* Replace the old lock with the new one. 947 * Wake up anybody waiting for the old one, 948 * as the change in lock type might satisfy 949 * their needs. 950 */ 951 locks_wake_up_blocks(fl); 952 fl->fl_start = request->fl_start; 953 fl->fl_end = request->fl_end; 954 fl->fl_type = request->fl_type; 955 locks_release_private(fl); 956 locks_copy_private(fl, request); 957 request = fl; 958 added = 1; 959 } 960 } 961 /* Go on to next lock. 962 */ 963 next_lock: 964 before = &fl->fl_next; 965 } 966 967 /* 968 * The above code only modifies existing locks in case of 969 * merging or replacing. If new lock(s) need to be inserted 970 * all modifications are done bellow this, so it's safe yet to 971 * bail out. 972 */ 973 error = -ENOLCK; /* "no luck" */ 974 if (right && left == right && !new_fl2) 975 goto out; 976 977 error = 0; 978 if (!added) { 979 if (request->fl_type == F_UNLCK) { 980 if (request->fl_flags & FL_EXISTS) 981 error = -ENOENT; 982 goto out; 983 } 984 985 if (!new_fl) { 986 error = -ENOLCK; 987 goto out; 988 } 989 locks_copy_lock(new_fl, request); 990 locks_insert_lock(before, new_fl); 991 new_fl = NULL; 992 } 993 if (right) { 994 if (left == right) { 995 /* The new lock breaks the old one in two pieces, 996 * so we have to use the second new lock. 997 */ 998 left = new_fl2; 999 new_fl2 = NULL; 1000 locks_copy_lock(left, right); 1001 locks_insert_lock(before, left); 1002 } 1003 right->fl_start = request->fl_end + 1; 1004 locks_wake_up_blocks(right); 1005 } 1006 if (left) { 1007 left->fl_end = request->fl_start - 1; 1008 locks_wake_up_blocks(left); 1009 } 1010 out: 1011 unlock_flocks(); 1012 /* 1013 * Free any unused locks. 1014 */ 1015 if (new_fl) 1016 locks_free_lock(new_fl); 1017 if (new_fl2) 1018 locks_free_lock(new_fl2); 1019 return error; 1020} 1021 1022/** 1023 * posix_lock_file - Apply a POSIX-style lock to a file 1024 * @filp: The file to apply the lock to 1025 * @fl: The lock to be applied 1026 * @conflock: Place to return a copy of the conflicting lock, if found. 1027 * 1028 * Add a POSIX style lock to a file. 1029 * We merge adjacent & overlapping locks whenever possible. 1030 * POSIX locks are sorted by owner task, then by starting address 1031 * 1032 * Note that if called with an FL_EXISTS argument, the caller may determine 1033 * whether or not a lock was successfully freed by testing the return 1034 * value for -ENOENT. 1035 */ 1036int posix_lock_file(struct file *filp, struct file_lock *fl, 1037 struct file_lock *conflock) 1038{ 1039 return __posix_lock_file(filp->f_path.dentry->d_inode, fl, conflock); 1040} 1041EXPORT_SYMBOL(posix_lock_file); 1042 1043/** 1044 * posix_lock_file_wait - Apply a POSIX-style lock to a file 1045 * @filp: The file to apply the lock to 1046 * @fl: The lock to be applied 1047 * 1048 * Add a POSIX style lock to a file. 1049 * We merge adjacent & overlapping locks whenever possible. 1050 * POSIX locks are sorted by owner task, then by starting address 1051 */ 1052int posix_lock_file_wait(struct file *filp, struct file_lock *fl) 1053{ 1054 int error; 1055 might_sleep (); 1056 for (;;) { 1057 error = posix_lock_file(filp, fl, NULL); 1058 if (error != FILE_LOCK_DEFERRED) 1059 break; 1060 error = wait_event_interruptible(fl->fl_wait, !fl->fl_next); 1061 if (!error) 1062 continue; 1063 1064 locks_delete_block(fl); 1065 break; 1066 } 1067 return error; 1068} 1069EXPORT_SYMBOL(posix_lock_file_wait); 1070 1071/** 1072 * locks_mandatory_locked - Check for an active lock 1073 * @inode: the file to check 1074 * 1075 * Searches the inode's list of locks to find any POSIX locks which conflict. 1076 * This function is called from locks_verify_locked() only. 1077 */ 1078int locks_mandatory_locked(struct inode *inode) 1079{ 1080 fl_owner_t owner = current->files; 1081 struct file_lock *fl; 1082 1083 /* 1084 * Search the lock list for this inode for any POSIX locks. 1085 */ 1086 lock_flocks(); 1087 for (fl = inode->i_flock; fl != NULL; fl = fl->fl_next) { 1088 if (!IS_POSIX(fl)) 1089 continue; 1090 if (fl->fl_owner != owner) 1091 break; 1092 } 1093 unlock_flocks(); 1094 return fl ? -EAGAIN : 0; 1095} 1096 1097/** 1098 * locks_mandatory_area - Check for a conflicting lock 1099 * @read_write: %FLOCK_VERIFY_WRITE for exclusive access, %FLOCK_VERIFY_READ 1100 * for shared 1101 * @inode: the file to check 1102 * @filp: how the file was opened (if it was) 1103 * @offset: start of area to check 1104 * @count: length of area to check 1105 * 1106 * Searches the inode's list of locks to find any POSIX locks which conflict. 1107 * This function is called from rw_verify_area() and 1108 * locks_verify_truncate(). 1109 */ 1110int locks_mandatory_area(int read_write, struct inode *inode, 1111 struct file *filp, loff_t offset, 1112 size_t count) 1113{ 1114 struct file_lock fl; 1115 int error; 1116 1117 locks_init_lock(&fl); 1118 fl.fl_owner = current->files; 1119 fl.fl_pid = current->tgid; 1120 fl.fl_file = filp; 1121 fl.fl_flags = FL_POSIX | FL_ACCESS; 1122 if (filp && !(filp->f_flags & O_NONBLOCK)) 1123 fl.fl_flags |= FL_SLEEP; 1124 fl.fl_type = (read_write == FLOCK_VERIFY_WRITE) ? F_WRLCK : F_RDLCK; 1125 fl.fl_start = offset; 1126 fl.fl_end = offset + count - 1; 1127 1128 for (;;) { 1129 error = __posix_lock_file(inode, &fl, NULL); 1130 if (error != FILE_LOCK_DEFERRED) 1131 break; 1132 error = wait_event_interruptible(fl.fl_wait, !fl.fl_next); 1133 if (!error) { 1134 /* 1135 * If we've been sleeping someone might have 1136 * changed the permissions behind our back. 1137 */ 1138 if (__mandatory_lock(inode)) 1139 continue; 1140 } 1141 1142 locks_delete_block(&fl); 1143 break; 1144 } 1145 1146 return error; 1147} 1148 1149EXPORT_SYMBOL(locks_mandatory_area); 1150 1151/* We already had a lease on this file; just change its type */ 1152int lease_modify(struct file_lock **before, int arg) 1153{ 1154 struct file_lock *fl = *before; 1155 int error = assign_type(fl, arg); 1156 1157 if (error) 1158 return error; 1159 locks_wake_up_blocks(fl); 1160 if (arg == F_UNLCK) 1161 locks_delete_lock(before); 1162 return 0; 1163} 1164 1165EXPORT_SYMBOL(lease_modify); 1166 1167static void time_out_leases(struct inode *inode) 1168{ 1169 struct file_lock **before; 1170 struct file_lock *fl; 1171 1172 before = &inode->i_flock; 1173 while ((fl = *before) && IS_LEASE(fl) && (fl->fl_type & F_INPROGRESS)) { 1174 if ((fl->fl_break_time == 0) 1175 || time_before(jiffies, fl->fl_break_time)) { 1176 before = &fl->fl_next; 1177 continue; 1178 } 1179 lease_modify(before, fl->fl_type & ~F_INPROGRESS); 1180 if (fl == *before) /* lease_modify may have freed fl */ 1181 before = &fl->fl_next; 1182 } 1183} 1184 1185/** 1186 * __break_lease - revoke all outstanding leases on file 1187 * @inode: the inode of the file to return 1188 * @mode: the open mode (read or write) 1189 * 1190 * break_lease (inlined for speed) has checked there already is at least 1191 * some kind of lock (maybe a lease) on this file. Leases are broken on 1192 * a call to open() or truncate(). This function can sleep unless you 1193 * specified %O_NONBLOCK to your open(). 1194 */ 1195int __break_lease(struct inode *inode, unsigned int mode) 1196{ 1197 int error = 0, future; 1198 struct file_lock *new_fl, *flock; 1199 struct file_lock *fl; 1200 unsigned long break_time; 1201 int i_have_this_lease = 0; 1202 int want_write = (mode & O_ACCMODE) != O_RDONLY; 1203 1204 new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK); 1205 1206 lock_flocks(); 1207 1208 time_out_leases(inode); 1209 1210 flock = inode->i_flock; 1211 if ((flock == NULL) || !IS_LEASE(flock)) 1212 goto out; 1213 1214 for (fl = flock; fl && IS_LEASE(fl); fl = fl->fl_next) 1215 if (fl->fl_owner == current->files) 1216 i_have_this_lease = 1; 1217 1218 if (want_write) { 1219 /* If we want write access, we have to revoke any lease. */ 1220 future = F_UNLCK | F_INPROGRESS; 1221 } else if (flock->fl_type & F_INPROGRESS) { 1222 /* If the lease is already being broken, we just leave it */ 1223 future = flock->fl_type; 1224 } else if (flock->fl_type & F_WRLCK) { 1225 /* Downgrade the exclusive lease to a read-only lease. */ 1226 future = F_RDLCK | F_INPROGRESS; 1227 } else { 1228 /* the existing lease was read-only, so we can read too. */ 1229 goto out; 1230 } 1231 1232 if (IS_ERR(new_fl) && !i_have_this_lease 1233 && ((mode & O_NONBLOCK) == 0)) { 1234 error = PTR_ERR(new_fl); 1235 goto out; 1236 } 1237 1238 break_time = 0; 1239 if (lease_break_time > 0) { 1240 break_time = jiffies + lease_break_time * HZ; 1241 if (break_time == 0) 1242 break_time++; /* so that 0 means no break time */ 1243 } 1244 1245 for (fl = flock; fl && IS_LEASE(fl); fl = fl->fl_next) { 1246 if (fl->fl_type != future) { 1247 fl->fl_type = future; 1248 fl->fl_break_time = break_time; 1249 /* lease must have lmops break callback */ 1250 fl->fl_lmops->fl_break(fl); 1251 } 1252 } 1253 1254 if (i_have_this_lease || (mode & O_NONBLOCK)) { 1255 error = -EWOULDBLOCK; 1256 goto out; 1257 } 1258 1259restart: 1260 break_time = flock->fl_break_time; 1261 if (break_time != 0) { 1262 break_time -= jiffies; 1263 if (break_time == 0) 1264 break_time++; 1265 } 1266 locks_insert_block(flock, new_fl); 1267 unlock_flocks(); 1268 error = wait_event_interruptible_timeout(new_fl->fl_wait, 1269 !new_fl->fl_next, break_time); 1270 lock_flocks(); 1271 __locks_delete_block(new_fl); 1272 if (error >= 0) { 1273 if (error == 0) 1274 time_out_leases(inode); 1275 /* Wait for the next lease that has not been broken yet */ 1276 for (flock = inode->i_flock; flock && IS_LEASE(flock); 1277 flock = flock->fl_next) { 1278 if (flock->fl_type & F_INPROGRESS) 1279 goto restart; 1280 } 1281 error = 0; 1282 } 1283 1284out: 1285 unlock_flocks(); 1286 if (!IS_ERR(new_fl)) 1287 locks_free_lock(new_fl); 1288 return error; 1289} 1290 1291EXPORT_SYMBOL(__break_lease); 1292 1293/** 1294 * lease_get_mtime - get the last modified time of an inode 1295 * @inode: the inode 1296 * @time: pointer to a timespec which will contain the last modified time 1297 * 1298 * This is to force NFS clients to flush their caches for files with 1299 * exclusive leases. The justification is that if someone has an 1300 * exclusive lease, then they could be modifying it. 1301 */ 1302void lease_get_mtime(struct inode *inode, struct timespec *time) 1303{ 1304 struct file_lock *flock = inode->i_flock; 1305 if (flock && IS_LEASE(flock) && (flock->fl_type & F_WRLCK)) 1306 *time = current_fs_time(inode->i_sb); 1307 else 1308 *time = inode->i_mtime; 1309} 1310 1311EXPORT_SYMBOL(lease_get_mtime); 1312 1313/** 1314 * fcntl_getlease - Enquire what lease is currently active 1315 * @filp: the file 1316 * 1317 * The value returned by this function will be one of 1318 * (if no lease break is pending): 1319 * 1320 * %F_RDLCK to indicate a shared lease is held. 1321 * 1322 * %F_WRLCK to indicate an exclusive lease is held. 1323 * 1324 * %F_UNLCK to indicate no lease is held. 1325 * 1326 * (if a lease break is pending): 1327 * 1328 * %F_RDLCK to indicate an exclusive lease needs to be 1329 * changed to a shared lease (or removed). 1330 * 1331 * %F_UNLCK to indicate the lease needs to be removed. 1332 * 1333 * XXX: sfr & willy disagree over whether F_INPROGRESS 1334 * should be returned to userspace. 1335 */ 1336int fcntl_getlease(struct file *filp) 1337{ 1338 struct file_lock *fl; 1339 int type = F_UNLCK; 1340 1341 lock_flocks(); 1342 time_out_leases(filp->f_path.dentry->d_inode); 1343 for (fl = filp->f_path.dentry->d_inode->i_flock; fl && IS_LEASE(fl); 1344 fl = fl->fl_next) { 1345 if (fl->fl_file == filp) { 1346 type = fl->fl_type & ~F_INPROGRESS; 1347 break; 1348 } 1349 } 1350 unlock_flocks(); 1351 return type; 1352} 1353 1354/** 1355 * generic_setlease - sets a lease on an open file 1356 * @filp: file pointer 1357 * @arg: type of lease to obtain 1358 * @flp: input - file_lock to use, output - file_lock inserted 1359 * 1360 * The (input) flp->fl_lmops->fl_break function is required 1361 * by break_lease(). 1362 * 1363 * Called with file_lock_lock held. 1364 */ 1365int generic_setlease(struct file *filp, long arg, struct file_lock **flp) 1366{ 1367 struct file_lock *fl, **before, **my_before = NULL, *lease; 1368 struct dentry *dentry = filp->f_path.dentry; 1369 struct inode *inode = dentry->d_inode; 1370 int error, rdlease_count = 0, wrlease_count = 0; 1371 1372 lease = *flp; 1373 1374 error = -EACCES; 1375 if ((current_fsuid() != inode->i_uid) && !capable(CAP_LEASE)) 1376 goto out; 1377 error = -EINVAL; 1378 if (!S_ISREG(inode->i_mode)) 1379 goto out; 1380 error = security_file_lock(filp, arg); 1381 if (error) 1382 goto out; 1383 1384 time_out_leases(inode); 1385 1386 BUG_ON(!(*flp)->fl_lmops->fl_break); 1387 1388 if (arg != F_UNLCK) { 1389 error = -EAGAIN; 1390 if ((arg == F_RDLCK) && (atomic_read(&inode->i_writecount) > 0)) 1391 goto out; 1392 if ((arg == F_WRLCK) 1393 && ((atomic_read(&dentry->d_count) > 1) 1394 || (atomic_read(&inode->i_count) > 1))) 1395 goto out; 1396 } 1397 1398 /* 1399 * At this point, we know that if there is an exclusive 1400 * lease on this file, then we hold it on this filp 1401 * (otherwise our open of this file would have blocked). 1402 * And if we are trying to acquire an exclusive lease, 1403 * then the file is not open by anyone (including us) 1404 * except for this filp. 1405 */ 1406 for (before = &inode->i_flock; 1407 ((fl = *before) != NULL) && IS_LEASE(fl); 1408 before = &fl->fl_next) { 1409 if (lease->fl_lmops->fl_mylease(fl, lease)) 1410 my_before = before; 1411 else if (fl->fl_type == (F_INPROGRESS | F_UNLCK)) 1412 /* 1413 * Someone is in the process of opening this 1414 * file for writing so we may not take an 1415 * exclusive lease on it. 1416 */ 1417 wrlease_count++; 1418 else 1419 rdlease_count++; 1420 } 1421 1422 error = -EAGAIN; 1423 if ((arg == F_RDLCK && (wrlease_count > 0)) || 1424 (arg == F_WRLCK && ((rdlease_count + wrlease_count) > 0))) 1425 goto out; 1426 1427 if (my_before != NULL) { 1428 error = lease->fl_lmops->fl_change(my_before, arg); 1429 if (!error) 1430 *flp = *my_before; 1431 goto out; 1432 } 1433 1434 if (arg == F_UNLCK) 1435 goto out; 1436 1437 error = -EINVAL; 1438 if (!leases_enable) 1439 goto out; 1440 1441 locks_insert_lock(before, lease); 1442 return 0; 1443 1444out: 1445 return error; 1446} 1447EXPORT_SYMBOL(generic_setlease); 1448 1449static int __vfs_setlease(struct file *filp, long arg, struct file_lock **lease) 1450{ 1451 if (filp->f_op && filp->f_op->setlease) 1452 return filp->f_op->setlease(filp, arg, lease); 1453 else 1454 return generic_setlease(filp, arg, lease); 1455} 1456 1457/** 1458 * vfs_setlease - sets a lease on an open file 1459 * @filp: file pointer 1460 * @arg: type of lease to obtain 1461 * @lease: file_lock to use 1462 * 1463 * Call this to establish a lease on the file. 1464 * The (*lease)->fl_lmops->fl_break operation must be set; if not, 1465 * break_lease will oops! 1466 * 1467 * This will call the filesystem's setlease file method, if 1468 * defined. Note that there is no getlease method; instead, the 1469 * filesystem setlease method should call back to setlease() to 1470 * add a lease to the inode's lease list, where fcntl_getlease() can 1471 * find it. Since fcntl_getlease() only reports whether the current 1472 * task holds a lease, a cluster filesystem need only do this for 1473 * leases held by processes on this node. 1474 * 1475 * There is also no break_lease method; filesystems that 1476 * handle their own leases should break leases themselves from the 1477 * filesystem's open, create, and (on truncate) setattr methods. 1478 * 1479 * Warning: the only current setlease methods exist only to disable 1480 * leases in certain cases. More vfs changes may be required to 1481 * allow a full filesystem lease implementation. 1482 */ 1483 1484int vfs_setlease(struct file *filp, long arg, struct file_lock **lease) 1485{ 1486 int error; 1487 1488 lock_flocks(); 1489 error = __vfs_setlease(filp, arg, lease); 1490 unlock_flocks(); 1491 1492 return error; 1493} 1494EXPORT_SYMBOL_GPL(vfs_setlease); 1495 1496static int do_fcntl_delete_lease(struct file *filp) 1497{ 1498 struct file_lock fl, *flp = &fl; 1499 1500 lease_init(filp, F_UNLCK, flp); 1501 1502 return vfs_setlease(filp, F_UNLCK, &flp); 1503} 1504 1505static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg) 1506{ 1507 struct file_lock *fl, *ret; 1508 struct fasync_struct *new; 1509 int error; 1510 1511 fl = lease_alloc(filp, arg); 1512 if (IS_ERR(fl)) 1513 return PTR_ERR(fl); 1514 1515 new = fasync_alloc(); 1516 if (!new) { 1517 locks_free_lock(fl); 1518 return -ENOMEM; 1519 } 1520 ret = fl; 1521 lock_flocks(); 1522 error = __vfs_setlease(filp, arg, &ret); 1523 if (error) { 1524 unlock_flocks(); 1525 locks_free_lock(fl); 1526 goto out_free_fasync; 1527 } 1528 if (ret != fl) 1529 locks_free_lock(fl); 1530 1531 /* 1532 * fasync_insert_entry() returns the old entry if any. 1533 * If there was no old entry, then it used 'new' and 1534 * inserted it into the fasync list. Clear new so that 1535 * we don't release it here. 1536 */ 1537 if (!fasync_insert_entry(fd, filp, &ret->fl_fasync, new)) 1538 new = NULL; 1539 1540 error = __f_setown(filp, task_pid(current), PIDTYPE_PID, 0); 1541 unlock_flocks(); 1542 1543out_free_fasync: 1544 if (new) 1545 fasync_free(new); 1546 return error; 1547} 1548 1549/** 1550 * fcntl_setlease - sets a lease on an open file 1551 * @fd: open file descriptor 1552 * @filp: file pointer 1553 * @arg: type of lease to obtain 1554 * 1555 * Call this fcntl to establish a lease on the file. 1556 * Note that you also need to call %F_SETSIG to 1557 * receive a signal when the lease is broken. 1558 */ 1559int fcntl_setlease(unsigned int fd, struct file *filp, long arg) 1560{ 1561 if (arg == F_UNLCK) 1562 return do_fcntl_delete_lease(filp); 1563 return do_fcntl_add_lease(fd, filp, arg); 1564} 1565 1566/** 1567 * flock_lock_file_wait - Apply a FLOCK-style lock to a file 1568 * @filp: The file to apply the lock to 1569 * @fl: The lock to be applied 1570 * 1571 * Add a FLOCK style lock to a file. 1572 */ 1573int flock_lock_file_wait(struct file *filp, struct file_lock *fl) 1574{ 1575 int error; 1576 might_sleep(); 1577 for (;;) { 1578 error = flock_lock_file(filp, fl); 1579 if (error != FILE_LOCK_DEFERRED) 1580 break; 1581 error = wait_event_interruptible(fl->fl_wait, !fl->fl_next); 1582 if (!error) 1583 continue; 1584 1585 locks_delete_block(fl); 1586 break; 1587 } 1588 return error; 1589} 1590 1591EXPORT_SYMBOL(flock_lock_file_wait); 1592 1593/** 1594 * sys_flock: - flock() system call. 1595 * @fd: the file descriptor to lock. 1596 * @cmd: the type of lock to apply. 1597 * 1598 * Apply a %FL_FLOCK style lock to an open file descriptor. 1599 * The @cmd can be one of 1600 * 1601 * %LOCK_SH -- a shared lock. 1602 * 1603 * %LOCK_EX -- an exclusive lock. 1604 * 1605 * %LOCK_UN -- remove an existing lock. 1606 * 1607 * %LOCK_MAND -- a `mandatory' flock. This exists to emulate Windows Share Modes. 1608 * 1609 * %LOCK_MAND can be combined with %LOCK_READ or %LOCK_WRITE to allow other 1610 * processes read and write access respectively. 1611 */ 1612SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd) 1613{ 1614 struct file *filp; 1615 struct file_lock *lock; 1616 int can_sleep, unlock; 1617 int error; 1618 1619 error = -EBADF; 1620 filp = fget(fd); 1621 if (!filp) 1622 goto out; 1623 1624 can_sleep = !(cmd & LOCK_NB); 1625 cmd &= ~LOCK_NB; 1626 unlock = (cmd == LOCK_UN); 1627 1628 if (!unlock && !(cmd & LOCK_MAND) && 1629 !(filp->f_mode & (FMODE_READ|FMODE_WRITE))) 1630 goto out_putf; 1631 1632 error = flock_make_lock(filp, &lock, cmd); 1633 if (error) 1634 goto out_putf; 1635 if (can_sleep) 1636 lock->fl_flags |= FL_SLEEP; 1637 1638 error = security_file_lock(filp, lock->fl_type); 1639 if (error) 1640 goto out_free; 1641 1642 if (filp->f_op && filp->f_op->flock) 1643 error = filp->f_op->flock(filp, 1644 (can_sleep) ? F_SETLKW : F_SETLK, 1645 lock); 1646 else 1647 error = flock_lock_file_wait(filp, lock); 1648 1649 out_free: 1650 locks_free_lock(lock); 1651 1652 out_putf: 1653 fput(filp); 1654 out: 1655 return error; 1656} 1657 1658/** 1659 * vfs_test_lock - test file byte range lock 1660 * @filp: The file to test lock for 1661 * @fl: The lock to test; also used to hold result 1662 * 1663 * Returns -ERRNO on failure. Indicates presence of conflicting lock by 1664 * setting conf->fl_type to something other than F_UNLCK. 1665 */ 1666int vfs_test_lock(struct file *filp, struct file_lock *fl) 1667{ 1668 if (filp->f_op && filp->f_op->lock) 1669 return filp->f_op->lock(filp, F_GETLK, fl); 1670 posix_test_lock(filp, fl); 1671 return 0; 1672} 1673EXPORT_SYMBOL_GPL(vfs_test_lock); 1674 1675static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl) 1676{ 1677 flock->l_pid = fl->fl_pid; 1678#if BITS_PER_LONG == 32 1679 /* 1680 * Make sure we can represent the posix lock via 1681 * legacy 32bit flock. 1682 */ 1683 if (fl->fl_start > OFFT_OFFSET_MAX) 1684 return -EOVERFLOW; 1685 if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX) 1686 return -EOVERFLOW; 1687#endif 1688 flock->l_start = fl->fl_start; 1689 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 1690 fl->fl_end - fl->fl_start + 1; 1691 flock->l_whence = 0; 1692 flock->l_type = fl->fl_type; 1693 return 0; 1694} 1695 1696#if BITS_PER_LONG == 32 1697static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl) 1698{ 1699 flock->l_pid = fl->fl_pid; 1700 flock->l_start = fl->fl_start; 1701 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 1702 fl->fl_end - fl->fl_start + 1; 1703 flock->l_whence = 0; 1704 flock->l_type = fl->fl_type; 1705} 1706#endif 1707 1708/* Report the first existing lock that would conflict with l. 1709 * This implements the F_GETLK command of fcntl(). 1710 */ 1711int fcntl_getlk(struct file *filp, struct flock __user *l) 1712{ 1713 struct file_lock file_lock; 1714 struct flock flock; 1715 int error; 1716 1717 error = -EFAULT; 1718 if (copy_from_user(&flock, l, sizeof(flock))) 1719 goto out; 1720 error = -EINVAL; 1721 if ((flock.l_type != F_RDLCK) && (flock.l_type != F_WRLCK)) 1722 goto out; 1723 1724 error = flock_to_posix_lock(filp, &file_lock, &flock); 1725 if (error) 1726 goto out; 1727 1728 error = vfs_test_lock(filp, &file_lock); 1729 if (error) 1730 goto out; 1731 1732 flock.l_type = file_lock.fl_type; 1733 if (file_lock.fl_type != F_UNLCK) { 1734 error = posix_lock_to_flock(&flock, &file_lock); 1735 if (error) 1736 goto out; 1737 } 1738 error = -EFAULT; 1739 if (!copy_to_user(l, &flock, sizeof(flock))) 1740 error = 0; 1741out: 1742 return error; 1743} 1744 1745/** 1746 * vfs_lock_file - file byte range lock 1747 * @filp: The file to apply the lock to 1748 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.) 1749 * @fl: The lock to be applied 1750 * @conf: Place to return a copy of the conflicting lock, if found. 1751 * 1752 * A caller that doesn't care about the conflicting lock may pass NULL 1753 * as the final argument. 1754 * 1755 * If the filesystem defines a private ->lock() method, then @conf will 1756 * be left unchanged; so a caller that cares should initialize it to 1757 * some acceptable default. 1758 * 1759 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX 1760 * locks, the ->lock() interface may return asynchronously, before the lock has 1761 * been granted or denied by the underlying filesystem, if (and only if) 1762 * fl_grant is set. Callers expecting ->lock() to return asynchronously 1763 * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if) 1764 * the request is for a blocking lock. When ->lock() does return asynchronously, 1765 * it must return FILE_LOCK_DEFERRED, and call ->fl_grant() when the lock 1766 * request completes. 1767 * If the request is for non-blocking lock the file system should return 1768 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine 1769 * with the result. If the request timed out the callback routine will return a 1770 * nonzero return code and the file system should release the lock. The file 1771 * system is also responsible to keep a corresponding posix lock when it 1772 * grants a lock so the VFS can find out which locks are locally held and do 1773 * the correct lock cleanup when required. 1774 * The underlying filesystem must not drop the kernel lock or call 1775 * ->fl_grant() before returning to the caller with a FILE_LOCK_DEFERRED 1776 * return code. 1777 */ 1778int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) 1779{ 1780 if (filp->f_op && filp->f_op->lock) 1781 return filp->f_op->lock(filp, cmd, fl); 1782 else 1783 return posix_lock_file(filp, fl, conf); 1784} 1785EXPORT_SYMBOL_GPL(vfs_lock_file); 1786 1787static int do_lock_file_wait(struct file *filp, unsigned int cmd, 1788 struct file_lock *fl) 1789{ 1790 int error; 1791 1792 error = security_file_lock(filp, fl->fl_type); 1793 if (error) 1794 return error; 1795 1796 for (;;) { 1797 error = vfs_lock_file(filp, cmd, fl, NULL); 1798 if (error != FILE_LOCK_DEFERRED) 1799 break; 1800 error = wait_event_interruptible(fl->fl_wait, !fl->fl_next); 1801 if (!error) 1802 continue; 1803 1804 locks_delete_block(fl); 1805 break; 1806 } 1807 1808 return error; 1809} 1810 1811/* Apply the lock described by l to an open file descriptor. 1812 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 1813 */ 1814int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd, 1815 struct flock __user *l) 1816{ 1817 struct file_lock *file_lock = locks_alloc_lock(); 1818 struct flock flock; 1819 struct inode *inode; 1820 struct file *f; 1821 int error; 1822 1823 if (file_lock == NULL) 1824 return -ENOLCK; 1825 1826 /* 1827 * This might block, so we do it before checking the inode. 1828 */ 1829 error = -EFAULT; 1830 if (copy_from_user(&flock, l, sizeof(flock))) 1831 goto out; 1832 1833 inode = filp->f_path.dentry->d_inode; 1834 1835 /* Don't allow mandatory locks on files that may be memory mapped 1836 * and shared. 1837 */ 1838 if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) { 1839 error = -EAGAIN; 1840 goto out; 1841 } 1842 1843again: 1844 error = flock_to_posix_lock(filp, file_lock, &flock); 1845 if (error) 1846 goto out; 1847 if (cmd == F_SETLKW) { 1848 file_lock->fl_flags |= FL_SLEEP; 1849 } 1850 1851 error = -EBADF; 1852 switch (flock.l_type) { 1853 case F_RDLCK: 1854 if (!(filp->f_mode & FMODE_READ)) 1855 goto out; 1856 break; 1857 case F_WRLCK: 1858 if (!(filp->f_mode & FMODE_WRITE)) 1859 goto out; 1860 break; 1861 case F_UNLCK: 1862 break; 1863 default: 1864 error = -EINVAL; 1865 goto out; 1866 } 1867 1868 error = do_lock_file_wait(filp, cmd, file_lock); 1869 1870 /* 1871 * Attempt to detect a close/fcntl race and recover by 1872 * releasing the lock that was just acquired. 1873 */ 1874 /* 1875 * we need that spin_lock here - it prevents reordering between 1876 * update of inode->i_flock and check for it done in close(). 1877 * rcu_read_lock() wouldn't do. 1878 */ 1879 spin_lock(&current->files->file_lock); 1880 f = fcheck(fd); 1881 spin_unlock(&current->files->file_lock); 1882 if (!error && f != filp && flock.l_type != F_UNLCK) { 1883 flock.l_type = F_UNLCK; 1884 goto again; 1885 } 1886 1887out: 1888 locks_free_lock(file_lock); 1889 return error; 1890} 1891 1892#if BITS_PER_LONG == 32 1893/* Report the first existing lock that would conflict with l. 1894 * This implements the F_GETLK command of fcntl(). 1895 */ 1896int fcntl_getlk64(struct file *filp, struct flock64 __user *l) 1897{ 1898 struct file_lock file_lock; 1899 struct flock64 flock; 1900 int error; 1901 1902 error = -EFAULT; 1903 if (copy_from_user(&flock, l, sizeof(flock))) 1904 goto out; 1905 error = -EINVAL; 1906 if ((flock.l_type != F_RDLCK) && (flock.l_type != F_WRLCK)) 1907 goto out; 1908 1909 error = flock64_to_posix_lock(filp, &file_lock, &flock); 1910 if (error) 1911 goto out; 1912 1913 error = vfs_test_lock(filp, &file_lock); 1914 if (error) 1915 goto out; 1916 1917 flock.l_type = file_lock.fl_type; 1918 if (file_lock.fl_type != F_UNLCK) 1919 posix_lock_to_flock64(&flock, &file_lock); 1920 1921 error = -EFAULT; 1922 if (!copy_to_user(l, &flock, sizeof(flock))) 1923 error = 0; 1924 1925out: 1926 return error; 1927} 1928 1929/* Apply the lock described by l to an open file descriptor. 1930 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 1931 */ 1932int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd, 1933 struct flock64 __user *l) 1934{ 1935 struct file_lock *file_lock = locks_alloc_lock(); 1936 struct flock64 flock; 1937 struct inode *inode; 1938 struct file *f; 1939 int error; 1940 1941 if (file_lock == NULL) 1942 return -ENOLCK; 1943 1944 /* 1945 * This might block, so we do it before checking the inode. 1946 */ 1947 error = -EFAULT; 1948 if (copy_from_user(&flock, l, sizeof(flock))) 1949 goto out; 1950 1951 inode = filp->f_path.dentry->d_inode; 1952 1953 /* Don't allow mandatory locks on files that may be memory mapped 1954 * and shared. 1955 */ 1956 if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) { 1957 error = -EAGAIN; 1958 goto out; 1959 } 1960 1961again: 1962 error = flock64_to_posix_lock(filp, file_lock, &flock); 1963 if (error) 1964 goto out; 1965 if (cmd == F_SETLKW64) { 1966 file_lock->fl_flags |= FL_SLEEP; 1967 } 1968 1969 error = -EBADF; 1970 switch (flock.l_type) { 1971 case F_RDLCK: 1972 if (!(filp->f_mode & FMODE_READ)) 1973 goto out; 1974 break; 1975 case F_WRLCK: 1976 if (!(filp->f_mode & FMODE_WRITE)) 1977 goto out; 1978 break; 1979 case F_UNLCK: 1980 break; 1981 default: 1982 error = -EINVAL; 1983 goto out; 1984 } 1985 1986 error = do_lock_file_wait(filp, cmd, file_lock); 1987 1988 /* 1989 * Attempt to detect a close/fcntl race and recover by 1990 * releasing the lock that was just acquired. 1991 */ 1992 spin_lock(&current->files->file_lock); 1993 f = fcheck(fd); 1994 spin_unlock(&current->files->file_lock); 1995 if (!error && f != filp && flock.l_type != F_UNLCK) { 1996 flock.l_type = F_UNLCK; 1997 goto again; 1998 } 1999 2000out: 2001 locks_free_lock(file_lock); 2002 return error; 2003} 2004#endif /* BITS_PER_LONG == 32 */ 2005 2006/* 2007 * This function is called when the file is being removed 2008 * from the task's fd array. POSIX locks belonging to this task 2009 * are deleted at this time. 2010 */ 2011void locks_remove_posix(struct file *filp, fl_owner_t owner) 2012{ 2013 struct file_lock lock; 2014 2015 /* 2016 * If there are no locks held on this file, we don't need to call 2017 * posix_lock_file(). Another process could be setting a lock on this 2018 * file at the same time, but we wouldn't remove that lock anyway. 2019 */ 2020 if (!filp->f_path.dentry->d_inode->i_flock) 2021 return; 2022 2023 lock.fl_type = F_UNLCK; 2024 lock.fl_flags = FL_POSIX | FL_CLOSE; 2025 lock.fl_start = 0; 2026 lock.fl_end = OFFSET_MAX; 2027 lock.fl_owner = owner; 2028 lock.fl_pid = current->tgid; 2029 lock.fl_file = filp; 2030 lock.fl_ops = NULL; 2031 lock.fl_lmops = NULL; 2032 2033 vfs_lock_file(filp, F_SETLK, &lock, NULL); 2034 2035 if (lock.fl_ops && lock.fl_ops->fl_release_private) 2036 lock.fl_ops->fl_release_private(&lock); 2037} 2038 2039EXPORT_SYMBOL(locks_remove_posix); 2040 2041/* 2042 * This function is called on the last close of an open file. 2043 */ 2044void locks_remove_flock(struct file *filp) 2045{ 2046 struct inode * inode = filp->f_path.dentry->d_inode; 2047 struct file_lock *fl; 2048 struct file_lock **before; 2049 2050 if (!inode->i_flock) 2051 return; 2052 2053 if (filp->f_op && filp->f_op->flock) { 2054 struct file_lock fl = { 2055 .fl_pid = current->tgid, 2056 .fl_file = filp, 2057 .fl_flags = FL_FLOCK, 2058 .fl_type = F_UNLCK, 2059 .fl_end = OFFSET_MAX, 2060 }; 2061 filp->f_op->flock(filp, F_SETLKW, &fl); 2062 if (fl.fl_ops && fl.fl_ops->fl_release_private) 2063 fl.fl_ops->fl_release_private(&fl); 2064 } 2065 2066 lock_flocks(); 2067 before = &inode->i_flock; 2068 2069 while ((fl = *before) != NULL) { 2070 if (fl->fl_file == filp) { 2071 if (IS_FLOCK(fl)) { 2072 locks_delete_lock(before); 2073 continue; 2074 } 2075 if (IS_LEASE(fl)) { 2076 lease_modify(before, F_UNLCK); 2077 continue; 2078 } 2079 /* What? */ 2080 BUG(); 2081 } 2082 before = &fl->fl_next; 2083 } 2084 unlock_flocks(); 2085} 2086 2087/** 2088 * posix_unblock_lock - stop waiting for a file lock 2089 * @filp: how the file was opened 2090 * @waiter: the lock which was waiting 2091 * 2092 * lockd needs to block waiting for locks. 2093 */ 2094int 2095posix_unblock_lock(struct file *filp, struct file_lock *waiter) 2096{ 2097 int status = 0; 2098 2099 lock_flocks(); 2100 if (waiter->fl_next) 2101 __locks_delete_block(waiter); 2102 else 2103 status = -ENOENT; 2104 unlock_flocks(); 2105 return status; 2106} 2107 2108EXPORT_SYMBOL(posix_unblock_lock); 2109 2110/** 2111 * vfs_cancel_lock - file byte range unblock lock 2112 * @filp: The file to apply the unblock to 2113 * @fl: The lock to be unblocked 2114 * 2115 * Used by lock managers to cancel blocked requests 2116 */ 2117int vfs_cancel_lock(struct file *filp, struct file_lock *fl) 2118{ 2119 if (filp->f_op && filp->f_op->lock) 2120 return filp->f_op->lock(filp, F_CANCELLK, fl); 2121 return 0; 2122} 2123 2124EXPORT_SYMBOL_GPL(vfs_cancel_lock); 2125 2126#ifdef CONFIG_PROC_FS 2127#include <linux/proc_fs.h> 2128#include <linux/seq_file.h> 2129 2130static void lock_get_status(struct seq_file *f, struct file_lock *fl, 2131 loff_t id, char *pfx) 2132{ 2133 struct inode *inode = NULL; 2134 unsigned int fl_pid; 2135 2136 if (fl->fl_nspid) 2137 fl_pid = pid_vnr(fl->fl_nspid); 2138 else 2139 fl_pid = fl->fl_pid; 2140 2141 if (fl->fl_file != NULL) 2142 inode = fl->fl_file->f_path.dentry->d_inode; 2143 2144 seq_printf(f, "%lld:%s ", id, pfx); 2145 if (IS_POSIX(fl)) { 2146 seq_printf(f, "%6s %s ", 2147 (fl->fl_flags & FL_ACCESS) ? "ACCESS" : "POSIX ", 2148 (inode == NULL) ? "*NOINODE*" : 2149 mandatory_lock(inode) ? "MANDATORY" : "ADVISORY "); 2150 } else if (IS_FLOCK(fl)) { 2151 if (fl->fl_type & LOCK_MAND) { 2152 seq_printf(f, "FLOCK MSNFS "); 2153 } else { 2154 seq_printf(f, "FLOCK ADVISORY "); 2155 } 2156 } else if (IS_LEASE(fl)) { 2157 seq_printf(f, "LEASE "); 2158 if (fl->fl_type & F_INPROGRESS) 2159 seq_printf(f, "BREAKING "); 2160 else if (fl->fl_file) 2161 seq_printf(f, "ACTIVE "); 2162 else 2163 seq_printf(f, "BREAKER "); 2164 } else { 2165 seq_printf(f, "UNKNOWN UNKNOWN "); 2166 } 2167 if (fl->fl_type & LOCK_MAND) { 2168 seq_printf(f, "%s ", 2169 (fl->fl_type & LOCK_READ) 2170 ? (fl->fl_type & LOCK_WRITE) ? "RW " : "READ " 2171 : (fl->fl_type & LOCK_WRITE) ? "WRITE" : "NONE "); 2172 } else { 2173 seq_printf(f, "%s ", 2174 (fl->fl_type & F_INPROGRESS) 2175 ? (fl->fl_type & F_UNLCK) ? "UNLCK" : "READ " 2176 : (fl->fl_type & F_WRLCK) ? "WRITE" : "READ "); 2177 } 2178 if (inode) { 2179#ifdef WE_CAN_BREAK_LSLK_NOW 2180 seq_printf(f, "%d %s:%ld ", fl_pid, 2181 inode->i_sb->s_id, inode->i_ino); 2182#else 2183 /* userspace relies on this representation of dev_t ;-( */ 2184 seq_printf(f, "%d %02x:%02x:%ld ", fl_pid, 2185 MAJOR(inode->i_sb->s_dev), 2186 MINOR(inode->i_sb->s_dev), inode->i_ino); 2187#endif 2188 } else { 2189 seq_printf(f, "%d <none>:0 ", fl_pid); 2190 } 2191 if (IS_POSIX(fl)) { 2192 if (fl->fl_end == OFFSET_MAX) 2193 seq_printf(f, "%Ld EOF\n", fl->fl_start); 2194 else 2195 seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end); 2196 } else { 2197 seq_printf(f, "0 EOF\n"); 2198 } 2199} 2200 2201static int locks_show(struct seq_file *f, void *v) 2202{ 2203 struct file_lock *fl, *bfl; 2204 2205 fl = list_entry(v, struct file_lock, fl_link); 2206 2207 lock_get_status(f, fl, *((loff_t *)f->private), ""); 2208 2209 list_for_each_entry(bfl, &fl->fl_block, fl_block) 2210 lock_get_status(f, bfl, *((loff_t *)f->private), " ->"); 2211 2212 return 0; 2213} 2214 2215static void *locks_start(struct seq_file *f, loff_t *pos) 2216{ 2217 loff_t *p = f->private; 2218 2219 lock_flocks(); 2220 *p = (*pos + 1); 2221 return seq_list_start(&file_lock_list, *pos); 2222} 2223 2224static void *locks_next(struct seq_file *f, void *v, loff_t *pos) 2225{ 2226 loff_t *p = f->private; 2227 ++*p; 2228 return seq_list_next(v, &file_lock_list, pos); 2229} 2230 2231static void locks_stop(struct seq_file *f, void *v) 2232{ 2233 unlock_flocks(); 2234} 2235 2236static const struct seq_operations locks_seq_operations = { 2237 .start = locks_start, 2238 .next = locks_next, 2239 .stop = locks_stop, 2240 .show = locks_show, 2241}; 2242 2243static int locks_open(struct inode *inode, struct file *filp) 2244{ 2245 return seq_open_private(filp, &locks_seq_operations, sizeof(loff_t)); 2246} 2247 2248static const struct file_operations proc_locks_operations = { 2249 .open = locks_open, 2250 .read = seq_read, 2251 .llseek = seq_lseek, 2252 .release = seq_release_private, 2253}; 2254 2255static int __init proc_locks_init(void) 2256{ 2257 proc_create("locks", 0, NULL, &proc_locks_operations); 2258 return 0; 2259} 2260module_init(proc_locks_init); 2261#endif 2262 2263/** 2264 * lock_may_read - checks that the region is free of locks 2265 * @inode: the inode that is being read 2266 * @start: the first byte to read 2267 * @len: the number of bytes to read 2268 * 2269 * Emulates Windows locking requirements. Whole-file 2270 * mandatory locks (share modes) can prohibit a read and 2271 * byte-range POSIX locks can prohibit a read if they overlap. 2272 * 2273 * N.B. this function is only ever called 2274 * from knfsd and ownership of locks is never checked. 2275 */ 2276int lock_may_read(struct inode *inode, loff_t start, unsigned long len) 2277{ 2278 struct file_lock *fl; 2279 int result = 1; 2280 lock_flocks(); 2281 for (fl = inode->i_flock; fl != NULL; fl = fl->fl_next) { 2282 if (IS_POSIX(fl)) { 2283 if (fl->fl_type == F_RDLCK) 2284 continue; 2285 if ((fl->fl_end < start) || (fl->fl_start > (start + len))) 2286 continue; 2287 } else if (IS_FLOCK(fl)) { 2288 if (!(fl->fl_type & LOCK_MAND)) 2289 continue; 2290 if (fl->fl_type & LOCK_READ) 2291 continue; 2292 } else 2293 continue; 2294 result = 0; 2295 break; 2296 } 2297 unlock_flocks(); 2298 return result; 2299} 2300 2301EXPORT_SYMBOL(lock_may_read); 2302 2303/** 2304 * lock_may_write - checks that the region is free of locks 2305 * @inode: the inode that is being written 2306 * @start: the first byte to write 2307 * @len: the number of bytes to write 2308 * 2309 * Emulates Windows locking requirements. Whole-file 2310 * mandatory locks (share modes) can prohibit a write and 2311 * byte-range POSIX locks can prohibit a write if they overlap. 2312 * 2313 * N.B. this function is only ever called 2314 * from knfsd and ownership of locks is never checked. 2315 */ 2316int lock_may_write(struct inode *inode, loff_t start, unsigned long len) 2317{ 2318 struct file_lock *fl; 2319 int result = 1; 2320 lock_flocks(); 2321 for (fl = inode->i_flock; fl != NULL; fl = fl->fl_next) { 2322 if (IS_POSIX(fl)) { 2323 if ((fl->fl_end < start) || (fl->fl_start > (start + len))) 2324 continue; 2325 } else if (IS_FLOCK(fl)) { 2326 if (!(fl->fl_type & LOCK_MAND)) 2327 continue; 2328 if (fl->fl_type & LOCK_WRITE) 2329 continue; 2330 } else 2331 continue; 2332 result = 0; 2333 break; 2334 } 2335 unlock_flocks(); 2336 return result; 2337} 2338 2339EXPORT_SYMBOL(lock_may_write); 2340 2341static int __init filelock_init(void) 2342{ 2343 filelock_cache = kmem_cache_create("file_lock_cache", 2344 sizeof(struct file_lock), 0, SLAB_PANIC, 2345 init_once); 2346 return 0; 2347} 2348 2349core_initcall(filelock_init);