at v2.6.36 20 kB view raw
1#ifndef __LINUX_PERCPU_H 2#define __LINUX_PERCPU_H 3 4#include <linux/preempt.h> 5#include <linux/smp.h> 6#include <linux/cpumask.h> 7#include <linux/pfn.h> 8#include <linux/init.h> 9 10#include <asm/percpu.h> 11 12/* enough to cover all DEFINE_PER_CPUs in modules */ 13#ifdef CONFIG_MODULES 14#define PERCPU_MODULE_RESERVE (8 << 10) 15#else 16#define PERCPU_MODULE_RESERVE 0 17#endif 18 19#ifndef PERCPU_ENOUGH_ROOM 20#define PERCPU_ENOUGH_ROOM \ 21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 22 PERCPU_MODULE_RESERVE) 23#endif 24 25/* 26 * Must be an lvalue. Since @var must be a simple identifier, 27 * we force a syntax error here if it isn't. 28 */ 29#define get_cpu_var(var) (*({ \ 30 preempt_disable(); \ 31 &__get_cpu_var(var); })) 32 33/* 34 * The weird & is necessary because sparse considers (void)(var) to be 35 * a direct dereference of percpu variable (var). 36 */ 37#define put_cpu_var(var) do { \ 38 (void)&(var); \ 39 preempt_enable(); \ 40} while (0) 41 42#ifdef CONFIG_SMP 43 44/* minimum unit size, also is the maximum supported allocation size */ 45#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10) 46 47/* 48 * Percpu allocator can serve percpu allocations before slab is 49 * initialized which allows slab to depend on the percpu allocator. 50 * The following two parameters decide how much resource to 51 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or 52 * larger than PERCPU_DYNAMIC_EARLY_SIZE. 53 */ 54#define PERCPU_DYNAMIC_EARLY_SLOTS 128 55#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10) 56 57/* 58 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 59 * back on the first chunk for dynamic percpu allocation if arch is 60 * manually allocating and mapping it for faster access (as a part of 61 * large page mapping for example). 62 * 63 * The following values give between one and two pages of free space 64 * after typical minimal boot (2-way SMP, single disk and NIC) with 65 * both defconfig and a distro config on x86_64 and 32. More 66 * intelligent way to determine this would be nice. 67 */ 68#if BITS_PER_LONG > 32 69#define PERCPU_DYNAMIC_RESERVE (20 << 10) 70#else 71#define PERCPU_DYNAMIC_RESERVE (12 << 10) 72#endif 73 74extern void *pcpu_base_addr; 75extern const unsigned long *pcpu_unit_offsets; 76 77struct pcpu_group_info { 78 int nr_units; /* aligned # of units */ 79 unsigned long base_offset; /* base address offset */ 80 unsigned int *cpu_map; /* unit->cpu map, empty 81 * entries contain NR_CPUS */ 82}; 83 84struct pcpu_alloc_info { 85 size_t static_size; 86 size_t reserved_size; 87 size_t dyn_size; 88 size_t unit_size; 89 size_t atom_size; 90 size_t alloc_size; 91 size_t __ai_size; /* internal, don't use */ 92 int nr_groups; /* 0 if grouping unnecessary */ 93 struct pcpu_group_info groups[]; 94}; 95 96enum pcpu_fc { 97 PCPU_FC_AUTO, 98 PCPU_FC_EMBED, 99 PCPU_FC_PAGE, 100 101 PCPU_FC_NR, 102}; 103extern const char *pcpu_fc_names[PCPU_FC_NR]; 104 105extern enum pcpu_fc pcpu_chosen_fc; 106 107typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 108 size_t align); 109typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 110typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 111typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 112 113extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 114 int nr_units); 115extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 116 117extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 118 void *base_addr); 119 120#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 121extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 122 size_t atom_size, 123 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 124 pcpu_fc_alloc_fn_t alloc_fn, 125 pcpu_fc_free_fn_t free_fn); 126#endif 127 128#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 129extern int __init pcpu_page_first_chunk(size_t reserved_size, 130 pcpu_fc_alloc_fn_t alloc_fn, 131 pcpu_fc_free_fn_t free_fn, 132 pcpu_fc_populate_pte_fn_t populate_pte_fn); 133#endif 134 135/* 136 * Use this to get to a cpu's version of the per-cpu object 137 * dynamically allocated. Non-atomic access to the current CPU's 138 * version should probably be combined with get_cpu()/put_cpu(). 139 */ 140#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 141 142extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); 143extern bool is_kernel_percpu_address(unsigned long addr); 144 145#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 146extern void __init setup_per_cpu_areas(void); 147#endif 148extern void __init percpu_init_late(void); 149 150#else /* CONFIG_SMP */ 151 152#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); }) 153 154/* can't distinguish from other static vars, always false */ 155static inline bool is_kernel_percpu_address(unsigned long addr) 156{ 157 return false; 158} 159 160static inline void __init setup_per_cpu_areas(void) { } 161 162static inline void __init percpu_init_late(void) { } 163 164static inline void *pcpu_lpage_remapped(void *kaddr) 165{ 166 return NULL; 167} 168 169#endif /* CONFIG_SMP */ 170 171extern void __percpu *__alloc_percpu(size_t size, size_t align); 172extern void free_percpu(void __percpu *__pdata); 173extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 174 175#define alloc_percpu(type) \ 176 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) 177 178/* 179 * Optional methods for optimized non-lvalue per-cpu variable access. 180 * 181 * @var can be a percpu variable or a field of it and its size should 182 * equal char, int or long. percpu_read() evaluates to a lvalue and 183 * all others to void. 184 * 185 * These operations are guaranteed to be atomic w.r.t. preemption. 186 * The generic versions use plain get/put_cpu_var(). Archs are 187 * encouraged to implement single-instruction alternatives which don't 188 * require preemption protection. 189 */ 190#ifndef percpu_read 191# define percpu_read(var) \ 192 ({ \ 193 typeof(var) *pr_ptr__ = &(var); \ 194 typeof(var) pr_ret__; \ 195 pr_ret__ = get_cpu_var(*pr_ptr__); \ 196 put_cpu_var(*pr_ptr__); \ 197 pr_ret__; \ 198 }) 199#endif 200 201#define __percpu_generic_to_op(var, val, op) \ 202do { \ 203 typeof(var) *pgto_ptr__ = &(var); \ 204 get_cpu_var(*pgto_ptr__) op val; \ 205 put_cpu_var(*pgto_ptr__); \ 206} while (0) 207 208#ifndef percpu_write 209# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) 210#endif 211 212#ifndef percpu_add 213# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) 214#endif 215 216#ifndef percpu_sub 217# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) 218#endif 219 220#ifndef percpu_and 221# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) 222#endif 223 224#ifndef percpu_or 225# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) 226#endif 227 228#ifndef percpu_xor 229# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) 230#endif 231 232/* 233 * Branching function to split up a function into a set of functions that 234 * are called for different scalar sizes of the objects handled. 235 */ 236 237extern void __bad_size_call_parameter(void); 238 239#define __pcpu_size_call_return(stem, variable) \ 240({ typeof(variable) pscr_ret__; \ 241 __verify_pcpu_ptr(&(variable)); \ 242 switch(sizeof(variable)) { \ 243 case 1: pscr_ret__ = stem##1(variable);break; \ 244 case 2: pscr_ret__ = stem##2(variable);break; \ 245 case 4: pscr_ret__ = stem##4(variable);break; \ 246 case 8: pscr_ret__ = stem##8(variable);break; \ 247 default: \ 248 __bad_size_call_parameter();break; \ 249 } \ 250 pscr_ret__; \ 251}) 252 253#define __pcpu_size_call(stem, variable, ...) \ 254do { \ 255 __verify_pcpu_ptr(&(variable)); \ 256 switch(sizeof(variable)) { \ 257 case 1: stem##1(variable, __VA_ARGS__);break; \ 258 case 2: stem##2(variable, __VA_ARGS__);break; \ 259 case 4: stem##4(variable, __VA_ARGS__);break; \ 260 case 8: stem##8(variable, __VA_ARGS__);break; \ 261 default: \ 262 __bad_size_call_parameter();break; \ 263 } \ 264} while (0) 265 266/* 267 * Optimized manipulation for memory allocated through the per cpu 268 * allocator or for addresses of per cpu variables. 269 * 270 * These operation guarantee exclusivity of access for other operations 271 * on the *same* processor. The assumption is that per cpu data is only 272 * accessed by a single processor instance (the current one). 273 * 274 * The first group is used for accesses that must be done in a 275 * preemption safe way since we know that the context is not preempt 276 * safe. Interrupts may occur. If the interrupt modifies the variable 277 * too then RMW actions will not be reliable. 278 * 279 * The arch code can provide optimized functions in two ways: 280 * 281 * 1. Override the function completely. F.e. define this_cpu_add(). 282 * The arch must then ensure that the various scalar format passed 283 * are handled correctly. 284 * 285 * 2. Provide functions for certain scalar sizes. F.e. provide 286 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 287 * sized RMW actions. If arch code does not provide operations for 288 * a scalar size then the fallback in the generic code will be 289 * used. 290 */ 291 292#define _this_cpu_generic_read(pcp) \ 293({ typeof(pcp) ret__; \ 294 preempt_disable(); \ 295 ret__ = *this_cpu_ptr(&(pcp)); \ 296 preempt_enable(); \ 297 ret__; \ 298}) 299 300#ifndef this_cpu_read 301# ifndef this_cpu_read_1 302# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 303# endif 304# ifndef this_cpu_read_2 305# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 306# endif 307# ifndef this_cpu_read_4 308# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 309# endif 310# ifndef this_cpu_read_8 311# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 312# endif 313# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 314#endif 315 316#define _this_cpu_generic_to_op(pcp, val, op) \ 317do { \ 318 preempt_disable(); \ 319 *__this_cpu_ptr(&(pcp)) op val; \ 320 preempt_enable(); \ 321} while (0) 322 323#ifndef this_cpu_write 324# ifndef this_cpu_write_1 325# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 326# endif 327# ifndef this_cpu_write_2 328# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 329# endif 330# ifndef this_cpu_write_4 331# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 332# endif 333# ifndef this_cpu_write_8 334# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 335# endif 336# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 337#endif 338 339#ifndef this_cpu_add 340# ifndef this_cpu_add_1 341# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 342# endif 343# ifndef this_cpu_add_2 344# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 345# endif 346# ifndef this_cpu_add_4 347# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 348# endif 349# ifndef this_cpu_add_8 350# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 351# endif 352# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 353#endif 354 355#ifndef this_cpu_sub 356# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) 357#endif 358 359#ifndef this_cpu_inc 360# define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 361#endif 362 363#ifndef this_cpu_dec 364# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 365#endif 366 367#ifndef this_cpu_and 368# ifndef this_cpu_and_1 369# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 370# endif 371# ifndef this_cpu_and_2 372# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 373# endif 374# ifndef this_cpu_and_4 375# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 376# endif 377# ifndef this_cpu_and_8 378# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 379# endif 380# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 381#endif 382 383#ifndef this_cpu_or 384# ifndef this_cpu_or_1 385# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 386# endif 387# ifndef this_cpu_or_2 388# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 389# endif 390# ifndef this_cpu_or_4 391# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 392# endif 393# ifndef this_cpu_or_8 394# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 395# endif 396# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 397#endif 398 399#ifndef this_cpu_xor 400# ifndef this_cpu_xor_1 401# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 402# endif 403# ifndef this_cpu_xor_2 404# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 405# endif 406# ifndef this_cpu_xor_4 407# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 408# endif 409# ifndef this_cpu_xor_8 410# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 411# endif 412# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 413#endif 414 415/* 416 * Generic percpu operations that do not require preemption handling. 417 * Either we do not care about races or the caller has the 418 * responsibility of handling preemptions issues. Arch code can still 419 * override these instructions since the arch per cpu code may be more 420 * efficient and may actually get race freeness for free (that is the 421 * case for x86 for example). 422 * 423 * If there is no other protection through preempt disable and/or 424 * disabling interupts then one of these RMW operations can show unexpected 425 * behavior because the execution thread was rescheduled on another processor 426 * or an interrupt occurred and the same percpu variable was modified from 427 * the interrupt context. 428 */ 429#ifndef __this_cpu_read 430# ifndef __this_cpu_read_1 431# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) 432# endif 433# ifndef __this_cpu_read_2 434# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) 435# endif 436# ifndef __this_cpu_read_4 437# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) 438# endif 439# ifndef __this_cpu_read_8 440# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) 441# endif 442# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) 443#endif 444 445#define __this_cpu_generic_to_op(pcp, val, op) \ 446do { \ 447 *__this_cpu_ptr(&(pcp)) op val; \ 448} while (0) 449 450#ifndef __this_cpu_write 451# ifndef __this_cpu_write_1 452# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 453# endif 454# ifndef __this_cpu_write_2 455# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 456# endif 457# ifndef __this_cpu_write_4 458# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 459# endif 460# ifndef __this_cpu_write_8 461# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 462# endif 463# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) 464#endif 465 466#ifndef __this_cpu_add 467# ifndef __this_cpu_add_1 468# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 469# endif 470# ifndef __this_cpu_add_2 471# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 472# endif 473# ifndef __this_cpu_add_4 474# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 475# endif 476# ifndef __this_cpu_add_8 477# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 478# endif 479# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) 480#endif 481 482#ifndef __this_cpu_sub 483# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) 484#endif 485 486#ifndef __this_cpu_inc 487# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 488#endif 489 490#ifndef __this_cpu_dec 491# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 492#endif 493 494#ifndef __this_cpu_and 495# ifndef __this_cpu_and_1 496# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 497# endif 498# ifndef __this_cpu_and_2 499# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 500# endif 501# ifndef __this_cpu_and_4 502# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 503# endif 504# ifndef __this_cpu_and_8 505# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 506# endif 507# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) 508#endif 509 510#ifndef __this_cpu_or 511# ifndef __this_cpu_or_1 512# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 513# endif 514# ifndef __this_cpu_or_2 515# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 516# endif 517# ifndef __this_cpu_or_4 518# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 519# endif 520# ifndef __this_cpu_or_8 521# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 522# endif 523# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) 524#endif 525 526#ifndef __this_cpu_xor 527# ifndef __this_cpu_xor_1 528# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 529# endif 530# ifndef __this_cpu_xor_2 531# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 532# endif 533# ifndef __this_cpu_xor_4 534# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 535# endif 536# ifndef __this_cpu_xor_8 537# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 538# endif 539# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) 540#endif 541 542/* 543 * IRQ safe versions of the per cpu RMW operations. Note that these operations 544 * are *not* safe against modification of the same variable from another 545 * processors (which one gets when using regular atomic operations) 546 . They are guaranteed to be atomic vs. local interrupts and 547 * preemption only. 548 */ 549#define irqsafe_cpu_generic_to_op(pcp, val, op) \ 550do { \ 551 unsigned long flags; \ 552 local_irq_save(flags); \ 553 *__this_cpu_ptr(&(pcp)) op val; \ 554 local_irq_restore(flags); \ 555} while (0) 556 557#ifndef irqsafe_cpu_add 558# ifndef irqsafe_cpu_add_1 559# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 560# endif 561# ifndef irqsafe_cpu_add_2 562# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 563# endif 564# ifndef irqsafe_cpu_add_4 565# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 566# endif 567# ifndef irqsafe_cpu_add_8 568# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 569# endif 570# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val)) 571#endif 572 573#ifndef irqsafe_cpu_sub 574# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val)) 575#endif 576 577#ifndef irqsafe_cpu_inc 578# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1) 579#endif 580 581#ifndef irqsafe_cpu_dec 582# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1) 583#endif 584 585#ifndef irqsafe_cpu_and 586# ifndef irqsafe_cpu_and_1 587# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 588# endif 589# ifndef irqsafe_cpu_and_2 590# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 591# endif 592# ifndef irqsafe_cpu_and_4 593# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 594# endif 595# ifndef irqsafe_cpu_and_8 596# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 597# endif 598# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val)) 599#endif 600 601#ifndef irqsafe_cpu_or 602# ifndef irqsafe_cpu_or_1 603# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 604# endif 605# ifndef irqsafe_cpu_or_2 606# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 607# endif 608# ifndef irqsafe_cpu_or_4 609# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 610# endif 611# ifndef irqsafe_cpu_or_8 612# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 613# endif 614# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val)) 615#endif 616 617#ifndef irqsafe_cpu_xor 618# ifndef irqsafe_cpu_xor_1 619# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 620# endif 621# ifndef irqsafe_cpu_xor_2 622# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 623# endif 624# ifndef irqsafe_cpu_xor_4 625# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 626# endif 627# ifndef irqsafe_cpu_xor_8 628# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 629# endif 630# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val)) 631#endif 632 633#endif /* __LINUX_PERCPU_H */