at v2.6.36 36 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <generated/bounds.h> 19#include <asm/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coelesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38#define MIGRATE_UNMOVABLE 0 39#define MIGRATE_RECLAIMABLE 1 40#define MIGRATE_MOVABLE 2 41#define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */ 42#define MIGRATE_RESERVE 3 43#define MIGRATE_ISOLATE 4 /* can't allocate from here */ 44#define MIGRATE_TYPES 5 45 46#define for_each_migratetype_order(order, type) \ 47 for (order = 0; order < MAX_ORDER; order++) \ 48 for (type = 0; type < MIGRATE_TYPES; type++) 49 50extern int page_group_by_mobility_disabled; 51 52static inline int get_pageblock_migratetype(struct page *page) 53{ 54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 55} 56 57struct free_area { 58 struct list_head free_list[MIGRATE_TYPES]; 59 unsigned long nr_free; 60}; 61 62struct pglist_data; 63 64/* 65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 66 * So add a wild amount of padding here to ensure that they fall into separate 67 * cachelines. There are very few zone structures in the machine, so space 68 * consumption is not a concern here. 69 */ 70#if defined(CONFIG_SMP) 71struct zone_padding { 72 char x[0]; 73} ____cacheline_internodealigned_in_smp; 74#define ZONE_PADDING(name) struct zone_padding name; 75#else 76#define ZONE_PADDING(name) 77#endif 78 79enum zone_stat_item { 80 /* First 128 byte cacheline (assuming 64 bit words) */ 81 NR_FREE_PAGES, 82 NR_LRU_BASE, 83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 84 NR_ACTIVE_ANON, /* " " " " " */ 85 NR_INACTIVE_FILE, /* " " " " " */ 86 NR_ACTIVE_FILE, /* " " " " " */ 87 NR_UNEVICTABLE, /* " " " " " */ 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 89 NR_ANON_PAGES, /* Mapped anonymous pages */ 90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 91 only modified from process context */ 92 NR_FILE_PAGES, 93 NR_FILE_DIRTY, 94 NR_WRITEBACK, 95 NR_SLAB_RECLAIMABLE, 96 NR_SLAB_UNRECLAIMABLE, 97 NR_PAGETABLE, /* used for pagetables */ 98 NR_KERNEL_STACK, 99 /* Second 128 byte cacheline */ 100 NR_UNSTABLE_NFS, /* NFS unstable pages */ 101 NR_BOUNCE, 102 NR_VMSCAN_WRITE, 103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 107#ifdef CONFIG_NUMA 108 NUMA_HIT, /* allocated in intended node */ 109 NUMA_MISS, /* allocated in non intended node */ 110 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 111 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 112 NUMA_LOCAL, /* allocation from local node */ 113 NUMA_OTHER, /* allocation from other node */ 114#endif 115 NR_VM_ZONE_STAT_ITEMS }; 116 117/* 118 * We do arithmetic on the LRU lists in various places in the code, 119 * so it is important to keep the active lists LRU_ACTIVE higher in 120 * the array than the corresponding inactive lists, and to keep 121 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 122 * 123 * This has to be kept in sync with the statistics in zone_stat_item 124 * above and the descriptions in vmstat_text in mm/vmstat.c 125 */ 126#define LRU_BASE 0 127#define LRU_ACTIVE 1 128#define LRU_FILE 2 129 130enum lru_list { 131 LRU_INACTIVE_ANON = LRU_BASE, 132 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 133 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 134 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 135 LRU_UNEVICTABLE, 136 NR_LRU_LISTS 137}; 138 139#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++) 140 141#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++) 142 143static inline int is_file_lru(enum lru_list l) 144{ 145 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE); 146} 147 148static inline int is_active_lru(enum lru_list l) 149{ 150 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE); 151} 152 153static inline int is_unevictable_lru(enum lru_list l) 154{ 155 return (l == LRU_UNEVICTABLE); 156} 157 158enum zone_watermarks { 159 WMARK_MIN, 160 WMARK_LOW, 161 WMARK_HIGH, 162 NR_WMARK 163}; 164 165#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 166#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 167#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 168 169struct per_cpu_pages { 170 int count; /* number of pages in the list */ 171 int high; /* high watermark, emptying needed */ 172 int batch; /* chunk size for buddy add/remove */ 173 174 /* Lists of pages, one per migrate type stored on the pcp-lists */ 175 struct list_head lists[MIGRATE_PCPTYPES]; 176}; 177 178struct per_cpu_pageset { 179 struct per_cpu_pages pcp; 180#ifdef CONFIG_NUMA 181 s8 expire; 182#endif 183#ifdef CONFIG_SMP 184 s8 stat_threshold; 185 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 186#endif 187}; 188 189#endif /* !__GENERATING_BOUNDS.H */ 190 191enum zone_type { 192#ifdef CONFIG_ZONE_DMA 193 /* 194 * ZONE_DMA is used when there are devices that are not able 195 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 196 * carve out the portion of memory that is needed for these devices. 197 * The range is arch specific. 198 * 199 * Some examples 200 * 201 * Architecture Limit 202 * --------------------------- 203 * parisc, ia64, sparc <4G 204 * s390 <2G 205 * arm Various 206 * alpha Unlimited or 0-16MB. 207 * 208 * i386, x86_64 and multiple other arches 209 * <16M. 210 */ 211 ZONE_DMA, 212#endif 213#ifdef CONFIG_ZONE_DMA32 214 /* 215 * x86_64 needs two ZONE_DMAs because it supports devices that are 216 * only able to do DMA to the lower 16M but also 32 bit devices that 217 * can only do DMA areas below 4G. 218 */ 219 ZONE_DMA32, 220#endif 221 /* 222 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 223 * performed on pages in ZONE_NORMAL if the DMA devices support 224 * transfers to all addressable memory. 225 */ 226 ZONE_NORMAL, 227#ifdef CONFIG_HIGHMEM 228 /* 229 * A memory area that is only addressable by the kernel through 230 * mapping portions into its own address space. This is for example 231 * used by i386 to allow the kernel to address the memory beyond 232 * 900MB. The kernel will set up special mappings (page 233 * table entries on i386) for each page that the kernel needs to 234 * access. 235 */ 236 ZONE_HIGHMEM, 237#endif 238 ZONE_MOVABLE, 239 __MAX_NR_ZONES 240}; 241 242#ifndef __GENERATING_BOUNDS_H 243 244/* 245 * When a memory allocation must conform to specific limitations (such 246 * as being suitable for DMA) the caller will pass in hints to the 247 * allocator in the gfp_mask, in the zone modifier bits. These bits 248 * are used to select a priority ordered list of memory zones which 249 * match the requested limits. See gfp_zone() in include/linux/gfp.h 250 */ 251 252#if MAX_NR_ZONES < 2 253#define ZONES_SHIFT 0 254#elif MAX_NR_ZONES <= 2 255#define ZONES_SHIFT 1 256#elif MAX_NR_ZONES <= 4 257#define ZONES_SHIFT 2 258#else 259#error ZONES_SHIFT -- too many zones configured adjust calculation 260#endif 261 262struct zone_reclaim_stat { 263 /* 264 * The pageout code in vmscan.c keeps track of how many of the 265 * mem/swap backed and file backed pages are refeferenced. 266 * The higher the rotated/scanned ratio, the more valuable 267 * that cache is. 268 * 269 * The anon LRU stats live in [0], file LRU stats in [1] 270 */ 271 unsigned long recent_rotated[2]; 272 unsigned long recent_scanned[2]; 273 274 /* 275 * accumulated for batching 276 */ 277 unsigned long nr_saved_scan[NR_LRU_LISTS]; 278}; 279 280struct zone { 281 /* Fields commonly accessed by the page allocator */ 282 283 /* zone watermarks, access with *_wmark_pages(zone) macros */ 284 unsigned long watermark[NR_WMARK]; 285 286 /* 287 * When free pages are below this point, additional steps are taken 288 * when reading the number of free pages to avoid per-cpu counter 289 * drift allowing watermarks to be breached 290 */ 291 unsigned long percpu_drift_mark; 292 293 /* 294 * We don't know if the memory that we're going to allocate will be freeable 295 * or/and it will be released eventually, so to avoid totally wasting several 296 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 297 * to run OOM on the lower zones despite there's tons of freeable ram 298 * on the higher zones). This array is recalculated at runtime if the 299 * sysctl_lowmem_reserve_ratio sysctl changes. 300 */ 301 unsigned long lowmem_reserve[MAX_NR_ZONES]; 302 303#ifdef CONFIG_NUMA 304 int node; 305 /* 306 * zone reclaim becomes active if more unmapped pages exist. 307 */ 308 unsigned long min_unmapped_pages; 309 unsigned long min_slab_pages; 310#endif 311 struct per_cpu_pageset __percpu *pageset; 312 /* 313 * free areas of different sizes 314 */ 315 spinlock_t lock; 316 int all_unreclaimable; /* All pages pinned */ 317#ifdef CONFIG_MEMORY_HOTPLUG 318 /* see spanned/present_pages for more description */ 319 seqlock_t span_seqlock; 320#endif 321 struct free_area free_area[MAX_ORDER]; 322 323#ifndef CONFIG_SPARSEMEM 324 /* 325 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 326 * In SPARSEMEM, this map is stored in struct mem_section 327 */ 328 unsigned long *pageblock_flags; 329#endif /* CONFIG_SPARSEMEM */ 330 331#ifdef CONFIG_COMPACTION 332 /* 333 * On compaction failure, 1<<compact_defer_shift compactions 334 * are skipped before trying again. The number attempted since 335 * last failure is tracked with compact_considered. 336 */ 337 unsigned int compact_considered; 338 unsigned int compact_defer_shift; 339#endif 340 341 ZONE_PADDING(_pad1_) 342 343 /* Fields commonly accessed by the page reclaim scanner */ 344 spinlock_t lru_lock; 345 struct zone_lru { 346 struct list_head list; 347 } lru[NR_LRU_LISTS]; 348 349 struct zone_reclaim_stat reclaim_stat; 350 351 unsigned long pages_scanned; /* since last reclaim */ 352 unsigned long flags; /* zone flags, see below */ 353 354 /* Zone statistics */ 355 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 356 357 /* 358 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 359 * this zone's LRU. Maintained by the pageout code. 360 */ 361 unsigned int inactive_ratio; 362 363 364 ZONE_PADDING(_pad2_) 365 /* Rarely used or read-mostly fields */ 366 367 /* 368 * wait_table -- the array holding the hash table 369 * wait_table_hash_nr_entries -- the size of the hash table array 370 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 371 * 372 * The purpose of all these is to keep track of the people 373 * waiting for a page to become available and make them 374 * runnable again when possible. The trouble is that this 375 * consumes a lot of space, especially when so few things 376 * wait on pages at a given time. So instead of using 377 * per-page waitqueues, we use a waitqueue hash table. 378 * 379 * The bucket discipline is to sleep on the same queue when 380 * colliding and wake all in that wait queue when removing. 381 * When something wakes, it must check to be sure its page is 382 * truly available, a la thundering herd. The cost of a 383 * collision is great, but given the expected load of the 384 * table, they should be so rare as to be outweighed by the 385 * benefits from the saved space. 386 * 387 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 388 * primary users of these fields, and in mm/page_alloc.c 389 * free_area_init_core() performs the initialization of them. 390 */ 391 wait_queue_head_t * wait_table; 392 unsigned long wait_table_hash_nr_entries; 393 unsigned long wait_table_bits; 394 395 /* 396 * Discontig memory support fields. 397 */ 398 struct pglist_data *zone_pgdat; 399 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 400 unsigned long zone_start_pfn; 401 402 /* 403 * zone_start_pfn, spanned_pages and present_pages are all 404 * protected by span_seqlock. It is a seqlock because it has 405 * to be read outside of zone->lock, and it is done in the main 406 * allocator path. But, it is written quite infrequently. 407 * 408 * The lock is declared along with zone->lock because it is 409 * frequently read in proximity to zone->lock. It's good to 410 * give them a chance of being in the same cacheline. 411 */ 412 unsigned long spanned_pages; /* total size, including holes */ 413 unsigned long present_pages; /* amount of memory (excluding holes) */ 414 415 /* 416 * rarely used fields: 417 */ 418 const char *name; 419} ____cacheline_internodealigned_in_smp; 420 421typedef enum { 422 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 423 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 424} zone_flags_t; 425 426static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 427{ 428 set_bit(flag, &zone->flags); 429} 430 431static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 432{ 433 return test_and_set_bit(flag, &zone->flags); 434} 435 436static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 437{ 438 clear_bit(flag, &zone->flags); 439} 440 441static inline int zone_is_reclaim_locked(const struct zone *zone) 442{ 443 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 444} 445 446static inline int zone_is_oom_locked(const struct zone *zone) 447{ 448 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 449} 450 451#ifdef CONFIG_SMP 452unsigned long zone_nr_free_pages(struct zone *zone); 453#else 454#define zone_nr_free_pages(zone) zone_page_state(zone, NR_FREE_PAGES) 455#endif /* CONFIG_SMP */ 456 457/* 458 * The "priority" of VM scanning is how much of the queues we will scan in one 459 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 460 * queues ("queue_length >> 12") during an aging round. 461 */ 462#define DEF_PRIORITY 12 463 464/* Maximum number of zones on a zonelist */ 465#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 466 467#ifdef CONFIG_NUMA 468 469/* 470 * The NUMA zonelists are doubled becausse we need zonelists that restrict the 471 * allocations to a single node for GFP_THISNODE. 472 * 473 * [0] : Zonelist with fallback 474 * [1] : No fallback (GFP_THISNODE) 475 */ 476#define MAX_ZONELISTS 2 477 478 479/* 480 * We cache key information from each zonelist for smaller cache 481 * footprint when scanning for free pages in get_page_from_freelist(). 482 * 483 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 484 * up short of free memory since the last time (last_fullzone_zap) 485 * we zero'd fullzones. 486 * 2) The array z_to_n[] maps each zone in the zonelist to its node 487 * id, so that we can efficiently evaluate whether that node is 488 * set in the current tasks mems_allowed. 489 * 490 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 491 * indexed by a zones offset in the zonelist zones[] array. 492 * 493 * The get_page_from_freelist() routine does two scans. During the 494 * first scan, we skip zones whose corresponding bit in 'fullzones' 495 * is set or whose corresponding node in current->mems_allowed (which 496 * comes from cpusets) is not set. During the second scan, we bypass 497 * this zonelist_cache, to ensure we look methodically at each zone. 498 * 499 * Once per second, we zero out (zap) fullzones, forcing us to 500 * reconsider nodes that might have regained more free memory. 501 * The field last_full_zap is the time we last zapped fullzones. 502 * 503 * This mechanism reduces the amount of time we waste repeatedly 504 * reexaming zones for free memory when they just came up low on 505 * memory momentarilly ago. 506 * 507 * The zonelist_cache struct members logically belong in struct 508 * zonelist. However, the mempolicy zonelists constructed for 509 * MPOL_BIND are intentionally variable length (and usually much 510 * shorter). A general purpose mechanism for handling structs with 511 * multiple variable length members is more mechanism than we want 512 * here. We resort to some special case hackery instead. 513 * 514 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 515 * part because they are shorter), so we put the fixed length stuff 516 * at the front of the zonelist struct, ending in a variable length 517 * zones[], as is needed by MPOL_BIND. 518 * 519 * Then we put the optional zonelist cache on the end of the zonelist 520 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 521 * the fixed length portion at the front of the struct. This pointer 522 * both enables us to find the zonelist cache, and in the case of 523 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 524 * to know that the zonelist cache is not there. 525 * 526 * The end result is that struct zonelists come in two flavors: 527 * 1) The full, fixed length version, shown below, and 528 * 2) The custom zonelists for MPOL_BIND. 529 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 530 * 531 * Even though there may be multiple CPU cores on a node modifying 532 * fullzones or last_full_zap in the same zonelist_cache at the same 533 * time, we don't lock it. This is just hint data - if it is wrong now 534 * and then, the allocator will still function, perhaps a bit slower. 535 */ 536 537 538struct zonelist_cache { 539 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 540 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 541 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 542}; 543#else 544#define MAX_ZONELISTS 1 545struct zonelist_cache; 546#endif 547 548/* 549 * This struct contains information about a zone in a zonelist. It is stored 550 * here to avoid dereferences into large structures and lookups of tables 551 */ 552struct zoneref { 553 struct zone *zone; /* Pointer to actual zone */ 554 int zone_idx; /* zone_idx(zoneref->zone) */ 555}; 556 557/* 558 * One allocation request operates on a zonelist. A zonelist 559 * is a list of zones, the first one is the 'goal' of the 560 * allocation, the other zones are fallback zones, in decreasing 561 * priority. 562 * 563 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 564 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 565 * * 566 * To speed the reading of the zonelist, the zonerefs contain the zone index 567 * of the entry being read. Helper functions to access information given 568 * a struct zoneref are 569 * 570 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 571 * zonelist_zone_idx() - Return the index of the zone for an entry 572 * zonelist_node_idx() - Return the index of the node for an entry 573 */ 574struct zonelist { 575 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 576 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 577#ifdef CONFIG_NUMA 578 struct zonelist_cache zlcache; // optional ... 579#endif 580}; 581 582#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 583struct node_active_region { 584 unsigned long start_pfn; 585 unsigned long end_pfn; 586 int nid; 587}; 588#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 589 590#ifndef CONFIG_DISCONTIGMEM 591/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 592extern struct page *mem_map; 593#endif 594 595/* 596 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 597 * (mostly NUMA machines?) to denote a higher-level memory zone than the 598 * zone denotes. 599 * 600 * On NUMA machines, each NUMA node would have a pg_data_t to describe 601 * it's memory layout. 602 * 603 * Memory statistics and page replacement data structures are maintained on a 604 * per-zone basis. 605 */ 606struct bootmem_data; 607typedef struct pglist_data { 608 struct zone node_zones[MAX_NR_ZONES]; 609 struct zonelist node_zonelists[MAX_ZONELISTS]; 610 int nr_zones; 611#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 612 struct page *node_mem_map; 613#ifdef CONFIG_CGROUP_MEM_RES_CTLR 614 struct page_cgroup *node_page_cgroup; 615#endif 616#endif 617#ifndef CONFIG_NO_BOOTMEM 618 struct bootmem_data *bdata; 619#endif 620#ifdef CONFIG_MEMORY_HOTPLUG 621 /* 622 * Must be held any time you expect node_start_pfn, node_present_pages 623 * or node_spanned_pages stay constant. Holding this will also 624 * guarantee that any pfn_valid() stays that way. 625 * 626 * Nests above zone->lock and zone->size_seqlock. 627 */ 628 spinlock_t node_size_lock; 629#endif 630 unsigned long node_start_pfn; 631 unsigned long node_present_pages; /* total number of physical pages */ 632 unsigned long node_spanned_pages; /* total size of physical page 633 range, including holes */ 634 int node_id; 635 wait_queue_head_t kswapd_wait; 636 struct task_struct *kswapd; 637 int kswapd_max_order; 638} pg_data_t; 639 640#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 641#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 642#ifdef CONFIG_FLAT_NODE_MEM_MAP 643#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 644#else 645#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 646#endif 647#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 648 649#include <linux/memory_hotplug.h> 650 651extern struct mutex zonelists_mutex; 652void build_all_zonelists(void *data); 653void wakeup_kswapd(struct zone *zone, int order); 654int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 655 int classzone_idx, int alloc_flags); 656enum memmap_context { 657 MEMMAP_EARLY, 658 MEMMAP_HOTPLUG, 659}; 660extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 661 unsigned long size, 662 enum memmap_context context); 663 664#ifdef CONFIG_HAVE_MEMORY_PRESENT 665void memory_present(int nid, unsigned long start, unsigned long end); 666#else 667static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 668#endif 669 670#ifdef CONFIG_HAVE_MEMORYLESS_NODES 671int local_memory_node(int node_id); 672#else 673static inline int local_memory_node(int node_id) { return node_id; }; 674#endif 675 676#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 677unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 678#endif 679 680/* 681 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 682 */ 683#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 684 685static inline int populated_zone(struct zone *zone) 686{ 687 return (!!zone->present_pages); 688} 689 690extern int movable_zone; 691 692static inline int zone_movable_is_highmem(void) 693{ 694#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) 695 return movable_zone == ZONE_HIGHMEM; 696#else 697 return 0; 698#endif 699} 700 701static inline int is_highmem_idx(enum zone_type idx) 702{ 703#ifdef CONFIG_HIGHMEM 704 return (idx == ZONE_HIGHMEM || 705 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 706#else 707 return 0; 708#endif 709} 710 711static inline int is_normal_idx(enum zone_type idx) 712{ 713 return (idx == ZONE_NORMAL); 714} 715 716/** 717 * is_highmem - helper function to quickly check if a struct zone is a 718 * highmem zone or not. This is an attempt to keep references 719 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 720 * @zone - pointer to struct zone variable 721 */ 722static inline int is_highmem(struct zone *zone) 723{ 724#ifdef CONFIG_HIGHMEM 725 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 726 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 727 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 728 zone_movable_is_highmem()); 729#else 730 return 0; 731#endif 732} 733 734static inline int is_normal(struct zone *zone) 735{ 736 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 737} 738 739static inline int is_dma32(struct zone *zone) 740{ 741#ifdef CONFIG_ZONE_DMA32 742 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 743#else 744 return 0; 745#endif 746} 747 748static inline int is_dma(struct zone *zone) 749{ 750#ifdef CONFIG_ZONE_DMA 751 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 752#else 753 return 0; 754#endif 755} 756 757/* These two functions are used to setup the per zone pages min values */ 758struct ctl_table; 759int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 760 void __user *, size_t *, loff_t *); 761extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 762int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 763 void __user *, size_t *, loff_t *); 764int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 765 void __user *, size_t *, loff_t *); 766int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 767 void __user *, size_t *, loff_t *); 768int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 769 void __user *, size_t *, loff_t *); 770 771extern int numa_zonelist_order_handler(struct ctl_table *, int, 772 void __user *, size_t *, loff_t *); 773extern char numa_zonelist_order[]; 774#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 775 776#ifndef CONFIG_NEED_MULTIPLE_NODES 777 778extern struct pglist_data contig_page_data; 779#define NODE_DATA(nid) (&contig_page_data) 780#define NODE_MEM_MAP(nid) mem_map 781 782#else /* CONFIG_NEED_MULTIPLE_NODES */ 783 784#include <asm/mmzone.h> 785 786#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 787 788extern struct pglist_data *first_online_pgdat(void); 789extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 790extern struct zone *next_zone(struct zone *zone); 791 792/** 793 * for_each_online_pgdat - helper macro to iterate over all online nodes 794 * @pgdat - pointer to a pg_data_t variable 795 */ 796#define for_each_online_pgdat(pgdat) \ 797 for (pgdat = first_online_pgdat(); \ 798 pgdat; \ 799 pgdat = next_online_pgdat(pgdat)) 800/** 801 * for_each_zone - helper macro to iterate over all memory zones 802 * @zone - pointer to struct zone variable 803 * 804 * The user only needs to declare the zone variable, for_each_zone 805 * fills it in. 806 */ 807#define for_each_zone(zone) \ 808 for (zone = (first_online_pgdat())->node_zones; \ 809 zone; \ 810 zone = next_zone(zone)) 811 812#define for_each_populated_zone(zone) \ 813 for (zone = (first_online_pgdat())->node_zones; \ 814 zone; \ 815 zone = next_zone(zone)) \ 816 if (!populated_zone(zone)) \ 817 ; /* do nothing */ \ 818 else 819 820static inline struct zone *zonelist_zone(struct zoneref *zoneref) 821{ 822 return zoneref->zone; 823} 824 825static inline int zonelist_zone_idx(struct zoneref *zoneref) 826{ 827 return zoneref->zone_idx; 828} 829 830static inline int zonelist_node_idx(struct zoneref *zoneref) 831{ 832#ifdef CONFIG_NUMA 833 /* zone_to_nid not available in this context */ 834 return zoneref->zone->node; 835#else 836 return 0; 837#endif /* CONFIG_NUMA */ 838} 839 840/** 841 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 842 * @z - The cursor used as a starting point for the search 843 * @highest_zoneidx - The zone index of the highest zone to return 844 * @nodes - An optional nodemask to filter the zonelist with 845 * @zone - The first suitable zone found is returned via this parameter 846 * 847 * This function returns the next zone at or below a given zone index that is 848 * within the allowed nodemask using a cursor as the starting point for the 849 * search. The zoneref returned is a cursor that represents the current zone 850 * being examined. It should be advanced by one before calling 851 * next_zones_zonelist again. 852 */ 853struct zoneref *next_zones_zonelist(struct zoneref *z, 854 enum zone_type highest_zoneidx, 855 nodemask_t *nodes, 856 struct zone **zone); 857 858/** 859 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 860 * @zonelist - The zonelist to search for a suitable zone 861 * @highest_zoneidx - The zone index of the highest zone to return 862 * @nodes - An optional nodemask to filter the zonelist with 863 * @zone - The first suitable zone found is returned via this parameter 864 * 865 * This function returns the first zone at or below a given zone index that is 866 * within the allowed nodemask. The zoneref returned is a cursor that can be 867 * used to iterate the zonelist with next_zones_zonelist by advancing it by 868 * one before calling. 869 */ 870static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 871 enum zone_type highest_zoneidx, 872 nodemask_t *nodes, 873 struct zone **zone) 874{ 875 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 876 zone); 877} 878 879/** 880 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 881 * @zone - The current zone in the iterator 882 * @z - The current pointer within zonelist->zones being iterated 883 * @zlist - The zonelist being iterated 884 * @highidx - The zone index of the highest zone to return 885 * @nodemask - Nodemask allowed by the allocator 886 * 887 * This iterator iterates though all zones at or below a given zone index and 888 * within a given nodemask 889 */ 890#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 891 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 892 zone; \ 893 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 894 895/** 896 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 897 * @zone - The current zone in the iterator 898 * @z - The current pointer within zonelist->zones being iterated 899 * @zlist - The zonelist being iterated 900 * @highidx - The zone index of the highest zone to return 901 * 902 * This iterator iterates though all zones at or below a given zone index. 903 */ 904#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 905 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 906 907#ifdef CONFIG_SPARSEMEM 908#include <asm/sparsemem.h> 909#endif 910 911#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 912 !defined(CONFIG_ARCH_POPULATES_NODE_MAP) 913static inline unsigned long early_pfn_to_nid(unsigned long pfn) 914{ 915 return 0; 916} 917#endif 918 919#ifdef CONFIG_FLATMEM 920#define pfn_to_nid(pfn) (0) 921#endif 922 923#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 924#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 925 926#ifdef CONFIG_SPARSEMEM 927 928/* 929 * SECTION_SHIFT #bits space required to store a section # 930 * 931 * PA_SECTION_SHIFT physical address to/from section number 932 * PFN_SECTION_SHIFT pfn to/from section number 933 */ 934#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 935 936#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 937#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 938 939#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 940 941#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 942#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 943 944#define SECTION_BLOCKFLAGS_BITS \ 945 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 946 947#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 948#error Allocator MAX_ORDER exceeds SECTION_SIZE 949#endif 950 951struct page; 952struct page_cgroup; 953struct mem_section { 954 /* 955 * This is, logically, a pointer to an array of struct 956 * pages. However, it is stored with some other magic. 957 * (see sparse.c::sparse_init_one_section()) 958 * 959 * Additionally during early boot we encode node id of 960 * the location of the section here to guide allocation. 961 * (see sparse.c::memory_present()) 962 * 963 * Making it a UL at least makes someone do a cast 964 * before using it wrong. 965 */ 966 unsigned long section_mem_map; 967 968 /* See declaration of similar field in struct zone */ 969 unsigned long *pageblock_flags; 970#ifdef CONFIG_CGROUP_MEM_RES_CTLR 971 /* 972 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 973 * section. (see memcontrol.h/page_cgroup.h about this.) 974 */ 975 struct page_cgroup *page_cgroup; 976 unsigned long pad; 977#endif 978}; 979 980#ifdef CONFIG_SPARSEMEM_EXTREME 981#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 982#else 983#define SECTIONS_PER_ROOT 1 984#endif 985 986#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 987#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 988#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 989 990#ifdef CONFIG_SPARSEMEM_EXTREME 991extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 992#else 993extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 994#endif 995 996static inline struct mem_section *__nr_to_section(unsigned long nr) 997{ 998 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 999 return NULL; 1000 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1001} 1002extern int __section_nr(struct mem_section* ms); 1003extern unsigned long usemap_size(void); 1004 1005/* 1006 * We use the lower bits of the mem_map pointer to store 1007 * a little bit of information. There should be at least 1008 * 3 bits here due to 32-bit alignment. 1009 */ 1010#define SECTION_MARKED_PRESENT (1UL<<0) 1011#define SECTION_HAS_MEM_MAP (1UL<<1) 1012#define SECTION_MAP_LAST_BIT (1UL<<2) 1013#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1014#define SECTION_NID_SHIFT 2 1015 1016static inline struct page *__section_mem_map_addr(struct mem_section *section) 1017{ 1018 unsigned long map = section->section_mem_map; 1019 map &= SECTION_MAP_MASK; 1020 return (struct page *)map; 1021} 1022 1023static inline int present_section(struct mem_section *section) 1024{ 1025 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1026} 1027 1028static inline int present_section_nr(unsigned long nr) 1029{ 1030 return present_section(__nr_to_section(nr)); 1031} 1032 1033static inline int valid_section(struct mem_section *section) 1034{ 1035 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1036} 1037 1038static inline int valid_section_nr(unsigned long nr) 1039{ 1040 return valid_section(__nr_to_section(nr)); 1041} 1042 1043static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1044{ 1045 return __nr_to_section(pfn_to_section_nr(pfn)); 1046} 1047 1048static inline int pfn_valid(unsigned long pfn) 1049{ 1050 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1051 return 0; 1052 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1053} 1054 1055static inline int pfn_present(unsigned long pfn) 1056{ 1057 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1058 return 0; 1059 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1060} 1061 1062/* 1063 * These are _only_ used during initialisation, therefore they 1064 * can use __initdata ... They could have names to indicate 1065 * this restriction. 1066 */ 1067#ifdef CONFIG_NUMA 1068#define pfn_to_nid(pfn) \ 1069({ \ 1070 unsigned long __pfn_to_nid_pfn = (pfn); \ 1071 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1072}) 1073#else 1074#define pfn_to_nid(pfn) (0) 1075#endif 1076 1077#define early_pfn_valid(pfn) pfn_valid(pfn) 1078void sparse_init(void); 1079#else 1080#define sparse_init() do {} while (0) 1081#define sparse_index_init(_sec, _nid) do {} while (0) 1082#endif /* CONFIG_SPARSEMEM */ 1083 1084#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1085bool early_pfn_in_nid(unsigned long pfn, int nid); 1086#else 1087#define early_pfn_in_nid(pfn, nid) (1) 1088#endif 1089 1090#ifndef early_pfn_valid 1091#define early_pfn_valid(pfn) (1) 1092#endif 1093 1094void memory_present(int nid, unsigned long start, unsigned long end); 1095unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1096 1097/* 1098 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1099 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1100 * pfn_valid_within() should be used in this case; we optimise this away 1101 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1102 */ 1103#ifdef CONFIG_HOLES_IN_ZONE 1104#define pfn_valid_within(pfn) pfn_valid(pfn) 1105#else 1106#define pfn_valid_within(pfn) (1) 1107#endif 1108 1109#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1110/* 1111 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1112 * associated with it or not. In FLATMEM, it is expected that holes always 1113 * have valid memmap as long as there is valid PFNs either side of the hole. 1114 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1115 * entire section. 1116 * 1117 * However, an ARM, and maybe other embedded architectures in the future 1118 * free memmap backing holes to save memory on the assumption the memmap is 1119 * never used. The page_zone linkages are then broken even though pfn_valid() 1120 * returns true. A walker of the full memmap must then do this additional 1121 * check to ensure the memmap they are looking at is sane by making sure 1122 * the zone and PFN linkages are still valid. This is expensive, but walkers 1123 * of the full memmap are extremely rare. 1124 */ 1125int memmap_valid_within(unsigned long pfn, 1126 struct page *page, struct zone *zone); 1127#else 1128static inline int memmap_valid_within(unsigned long pfn, 1129 struct page *page, struct zone *zone) 1130{ 1131 return 1; 1132} 1133#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1134 1135#endif /* !__GENERATING_BOUNDS.H */ 1136#endif /* !__ASSEMBLY__ */ 1137#endif /* _LINUX_MMZONE_H */