at v2.6.36 1421 lines 38 kB view raw
1/* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Author: Artem Bityutskiy (Битюцкий Артём) 19 */ 20 21/* 22 * UBI scanning sub-system. 23 * 24 * This sub-system is responsible for scanning the flash media, checking UBI 25 * headers and providing complete information about the UBI flash image. 26 * 27 * The scanning information is represented by a &struct ubi_scan_info' object. 28 * Information about found volumes is represented by &struct ubi_scan_volume 29 * objects which are kept in volume RB-tree with root at the @volumes field. 30 * The RB-tree is indexed by the volume ID. 31 * 32 * Found logical eraseblocks are represented by &struct ubi_scan_leb objects. 33 * These objects are kept in per-volume RB-trees with the root at the 34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep 35 * an RB-tree of per-volume objects and each of these objects is the root of 36 * RB-tree of per-eraseblock objects. 37 * 38 * Corrupted physical eraseblocks are put to the @corr list, free physical 39 * eraseblocks are put to the @free list and the physical eraseblock to be 40 * erased are put to the @erase list. 41 */ 42 43#include <linux/err.h> 44#include <linux/slab.h> 45#include <linux/crc32.h> 46#include <linux/math64.h> 47#include <linux/random.h> 48#include "ubi.h" 49 50#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 51static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si); 52#else 53#define paranoid_check_si(ubi, si) 0 54#endif 55 56/* Temporary variables used during scanning */ 57static struct ubi_ec_hdr *ech; 58static struct ubi_vid_hdr *vidh; 59 60/** 61 * add_to_list - add physical eraseblock to a list. 62 * @si: scanning information 63 * @pnum: physical eraseblock number to add 64 * @ec: erase counter of the physical eraseblock 65 * @list: the list to add to 66 * 67 * This function adds physical eraseblock @pnum to free, erase, corrupted or 68 * alien lists. Returns zero in case of success and a negative error code in 69 * case of failure. 70 */ 71static int add_to_list(struct ubi_scan_info *si, int pnum, int ec, 72 struct list_head *list) 73{ 74 struct ubi_scan_leb *seb; 75 76 if (list == &si->free) { 77 dbg_bld("add to free: PEB %d, EC %d", pnum, ec); 78 si->free_peb_count += 1; 79 } else if (list == &si->erase) { 80 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); 81 si->erase_peb_count += 1; 82 } else if (list == &si->corr) { 83 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); 84 si->corr_peb_count += 1; 85 } else if (list == &si->alien) { 86 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); 87 si->alien_peb_count += 1; 88 } else 89 BUG(); 90 91 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); 92 if (!seb) 93 return -ENOMEM; 94 95 seb->pnum = pnum; 96 seb->ec = ec; 97 list_add_tail(&seb->u.list, list); 98 return 0; 99} 100 101/** 102 * validate_vid_hdr - check volume identifier header. 103 * @vid_hdr: the volume identifier header to check 104 * @sv: information about the volume this logical eraseblock belongs to 105 * @pnum: physical eraseblock number the VID header came from 106 * 107 * This function checks that data stored in @vid_hdr is consistent. Returns 108 * non-zero if an inconsistency was found and zero if not. 109 * 110 * Note, UBI does sanity check of everything it reads from the flash media. 111 * Most of the checks are done in the I/O sub-system. Here we check that the 112 * information in the VID header is consistent to the information in other VID 113 * headers of the same volume. 114 */ 115static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr, 116 const struct ubi_scan_volume *sv, int pnum) 117{ 118 int vol_type = vid_hdr->vol_type; 119 int vol_id = be32_to_cpu(vid_hdr->vol_id); 120 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 121 int data_pad = be32_to_cpu(vid_hdr->data_pad); 122 123 if (sv->leb_count != 0) { 124 int sv_vol_type; 125 126 /* 127 * This is not the first logical eraseblock belonging to this 128 * volume. Ensure that the data in its VID header is consistent 129 * to the data in previous logical eraseblock headers. 130 */ 131 132 if (vol_id != sv->vol_id) { 133 dbg_err("inconsistent vol_id"); 134 goto bad; 135 } 136 137 if (sv->vol_type == UBI_STATIC_VOLUME) 138 sv_vol_type = UBI_VID_STATIC; 139 else 140 sv_vol_type = UBI_VID_DYNAMIC; 141 142 if (vol_type != sv_vol_type) { 143 dbg_err("inconsistent vol_type"); 144 goto bad; 145 } 146 147 if (used_ebs != sv->used_ebs) { 148 dbg_err("inconsistent used_ebs"); 149 goto bad; 150 } 151 152 if (data_pad != sv->data_pad) { 153 dbg_err("inconsistent data_pad"); 154 goto bad; 155 } 156 } 157 158 return 0; 159 160bad: 161 ubi_err("inconsistent VID header at PEB %d", pnum); 162 ubi_dbg_dump_vid_hdr(vid_hdr); 163 ubi_dbg_dump_sv(sv); 164 return -EINVAL; 165} 166 167/** 168 * add_volume - add volume to the scanning information. 169 * @si: scanning information 170 * @vol_id: ID of the volume to add 171 * @pnum: physical eraseblock number 172 * @vid_hdr: volume identifier header 173 * 174 * If the volume corresponding to the @vid_hdr logical eraseblock is already 175 * present in the scanning information, this function does nothing. Otherwise 176 * it adds corresponding volume to the scanning information. Returns a pointer 177 * to the scanning volume object in case of success and a negative error code 178 * in case of failure. 179 */ 180static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id, 181 int pnum, 182 const struct ubi_vid_hdr *vid_hdr) 183{ 184 struct ubi_scan_volume *sv; 185 struct rb_node **p = &si->volumes.rb_node, *parent = NULL; 186 187 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); 188 189 /* Walk the volume RB-tree to look if this volume is already present */ 190 while (*p) { 191 parent = *p; 192 sv = rb_entry(parent, struct ubi_scan_volume, rb); 193 194 if (vol_id == sv->vol_id) 195 return sv; 196 197 if (vol_id > sv->vol_id) 198 p = &(*p)->rb_left; 199 else 200 p = &(*p)->rb_right; 201 } 202 203 /* The volume is absent - add it */ 204 sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL); 205 if (!sv) 206 return ERR_PTR(-ENOMEM); 207 208 sv->highest_lnum = sv->leb_count = 0; 209 sv->vol_id = vol_id; 210 sv->root = RB_ROOT; 211 sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs); 212 sv->data_pad = be32_to_cpu(vid_hdr->data_pad); 213 sv->compat = vid_hdr->compat; 214 sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME 215 : UBI_STATIC_VOLUME; 216 if (vol_id > si->highest_vol_id) 217 si->highest_vol_id = vol_id; 218 219 rb_link_node(&sv->rb, parent, p); 220 rb_insert_color(&sv->rb, &si->volumes); 221 si->vols_found += 1; 222 dbg_bld("added volume %d", vol_id); 223 return sv; 224} 225 226/** 227 * compare_lebs - find out which logical eraseblock is newer. 228 * @ubi: UBI device description object 229 * @seb: first logical eraseblock to compare 230 * @pnum: physical eraseblock number of the second logical eraseblock to 231 * compare 232 * @vid_hdr: volume identifier header of the second logical eraseblock 233 * 234 * This function compares 2 copies of a LEB and informs which one is newer. In 235 * case of success this function returns a positive value, in case of failure, a 236 * negative error code is returned. The success return codes use the following 237 * bits: 238 * o bit 0 is cleared: the first PEB (described by @seb) is newer than the 239 * second PEB (described by @pnum and @vid_hdr); 240 * o bit 0 is set: the second PEB is newer; 241 * o bit 1 is cleared: no bit-flips were detected in the newer LEB; 242 * o bit 1 is set: bit-flips were detected in the newer LEB; 243 * o bit 2 is cleared: the older LEB is not corrupted; 244 * o bit 2 is set: the older LEB is corrupted. 245 */ 246static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb, 247 int pnum, const struct ubi_vid_hdr *vid_hdr) 248{ 249 void *buf; 250 int len, err, second_is_newer, bitflips = 0, corrupted = 0; 251 uint32_t data_crc, crc; 252 struct ubi_vid_hdr *vh = NULL; 253 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); 254 255 if (sqnum2 == seb->sqnum) { 256 /* 257 * This must be a really ancient UBI image which has been 258 * created before sequence numbers support has been added. At 259 * that times we used 32-bit LEB versions stored in logical 260 * eraseblocks. That was before UBI got into mainline. We do not 261 * support these images anymore. Well, those images will work 262 * still work, but only if no unclean reboots happened. 263 */ 264 ubi_err("unsupported on-flash UBI format\n"); 265 return -EINVAL; 266 } 267 268 /* Obviously the LEB with lower sequence counter is older */ 269 second_is_newer = !!(sqnum2 > seb->sqnum); 270 271 /* 272 * Now we know which copy is newer. If the copy flag of the PEB with 273 * newer version is not set, then we just return, otherwise we have to 274 * check data CRC. For the second PEB we already have the VID header, 275 * for the first one - we'll need to re-read it from flash. 276 * 277 * Note: this may be optimized so that we wouldn't read twice. 278 */ 279 280 if (second_is_newer) { 281 if (!vid_hdr->copy_flag) { 282 /* It is not a copy, so it is newer */ 283 dbg_bld("second PEB %d is newer, copy_flag is unset", 284 pnum); 285 return 1; 286 } 287 } else { 288 pnum = seb->pnum; 289 290 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 291 if (!vh) 292 return -ENOMEM; 293 294 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); 295 if (err) { 296 if (err == UBI_IO_BITFLIPS) 297 bitflips = 1; 298 else { 299 dbg_err("VID of PEB %d header is bad, but it " 300 "was OK earlier", pnum); 301 if (err > 0) 302 err = -EIO; 303 304 goto out_free_vidh; 305 } 306 } 307 308 if (!vh->copy_flag) { 309 /* It is not a copy, so it is newer */ 310 dbg_bld("first PEB %d is newer, copy_flag is unset", 311 pnum); 312 err = bitflips << 1; 313 goto out_free_vidh; 314 } 315 316 vid_hdr = vh; 317 } 318 319 /* Read the data of the copy and check the CRC */ 320 321 len = be32_to_cpu(vid_hdr->data_size); 322 buf = vmalloc(len); 323 if (!buf) { 324 err = -ENOMEM; 325 goto out_free_vidh; 326 } 327 328 err = ubi_io_read_data(ubi, buf, pnum, 0, len); 329 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) 330 goto out_free_buf; 331 332 data_crc = be32_to_cpu(vid_hdr->data_crc); 333 crc = crc32(UBI_CRC32_INIT, buf, len); 334 if (crc != data_crc) { 335 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", 336 pnum, crc, data_crc); 337 corrupted = 1; 338 bitflips = 0; 339 second_is_newer = !second_is_newer; 340 } else { 341 dbg_bld("PEB %d CRC is OK", pnum); 342 bitflips = !!err; 343 } 344 345 vfree(buf); 346 ubi_free_vid_hdr(ubi, vh); 347 348 if (second_is_newer) 349 dbg_bld("second PEB %d is newer, copy_flag is set", pnum); 350 else 351 dbg_bld("first PEB %d is newer, copy_flag is set", pnum); 352 353 return second_is_newer | (bitflips << 1) | (corrupted << 2); 354 355out_free_buf: 356 vfree(buf); 357out_free_vidh: 358 ubi_free_vid_hdr(ubi, vh); 359 return err; 360} 361 362/** 363 * ubi_scan_add_used - add physical eraseblock to the scanning information. 364 * @ubi: UBI device description object 365 * @si: scanning information 366 * @pnum: the physical eraseblock number 367 * @ec: erase counter 368 * @vid_hdr: the volume identifier header 369 * @bitflips: if bit-flips were detected when this physical eraseblock was read 370 * 371 * This function adds information about a used physical eraseblock to the 372 * 'used' tree of the corresponding volume. The function is rather complex 373 * because it has to handle cases when this is not the first physical 374 * eraseblock belonging to the same logical eraseblock, and the newer one has 375 * to be picked, while the older one has to be dropped. This function returns 376 * zero in case of success and a negative error code in case of failure. 377 */ 378int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, 379 int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, 380 int bitflips) 381{ 382 int err, vol_id, lnum; 383 unsigned long long sqnum; 384 struct ubi_scan_volume *sv; 385 struct ubi_scan_leb *seb; 386 struct rb_node **p, *parent = NULL; 387 388 vol_id = be32_to_cpu(vid_hdr->vol_id); 389 lnum = be32_to_cpu(vid_hdr->lnum); 390 sqnum = be64_to_cpu(vid_hdr->sqnum); 391 392 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", 393 pnum, vol_id, lnum, ec, sqnum, bitflips); 394 395 sv = add_volume(si, vol_id, pnum, vid_hdr); 396 if (IS_ERR(sv)) 397 return PTR_ERR(sv); 398 399 if (si->max_sqnum < sqnum) 400 si->max_sqnum = sqnum; 401 402 /* 403 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look 404 * if this is the first instance of this logical eraseblock or not. 405 */ 406 p = &sv->root.rb_node; 407 while (*p) { 408 int cmp_res; 409 410 parent = *p; 411 seb = rb_entry(parent, struct ubi_scan_leb, u.rb); 412 if (lnum != seb->lnum) { 413 if (lnum < seb->lnum) 414 p = &(*p)->rb_left; 415 else 416 p = &(*p)->rb_right; 417 continue; 418 } 419 420 /* 421 * There is already a physical eraseblock describing the same 422 * logical eraseblock present. 423 */ 424 425 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, " 426 "EC %d", seb->pnum, seb->sqnum, seb->ec); 427 428 /* 429 * Make sure that the logical eraseblocks have different 430 * sequence numbers. Otherwise the image is bad. 431 * 432 * However, if the sequence number is zero, we assume it must 433 * be an ancient UBI image from the era when UBI did not have 434 * sequence numbers. We still can attach these images, unless 435 * there is a need to distinguish between old and new 436 * eraseblocks, in which case we'll refuse the image in 437 * 'compare_lebs()'. In other words, we attach old clean 438 * images, but refuse attaching old images with duplicated 439 * logical eraseblocks because there was an unclean reboot. 440 */ 441 if (seb->sqnum == sqnum && sqnum != 0) { 442 ubi_err("two LEBs with same sequence number %llu", 443 sqnum); 444 ubi_dbg_dump_seb(seb, 0); 445 ubi_dbg_dump_vid_hdr(vid_hdr); 446 return -EINVAL; 447 } 448 449 /* 450 * Now we have to drop the older one and preserve the newer 451 * one. 452 */ 453 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr); 454 if (cmp_res < 0) 455 return cmp_res; 456 457 if (cmp_res & 1) { 458 /* 459 * This logical eraseblock is newer than the one 460 * found earlier. 461 */ 462 err = validate_vid_hdr(vid_hdr, sv, pnum); 463 if (err) 464 return err; 465 466 if (cmp_res & 4) 467 err = add_to_list(si, seb->pnum, seb->ec, 468 &si->corr); 469 else 470 err = add_to_list(si, seb->pnum, seb->ec, 471 &si->erase); 472 if (err) 473 return err; 474 475 seb->ec = ec; 476 seb->pnum = pnum; 477 seb->scrub = ((cmp_res & 2) || bitflips); 478 seb->sqnum = sqnum; 479 480 if (sv->highest_lnum == lnum) 481 sv->last_data_size = 482 be32_to_cpu(vid_hdr->data_size); 483 484 return 0; 485 } else { 486 /* 487 * This logical eraseblock is older than the one found 488 * previously. 489 */ 490 if (cmp_res & 4) 491 return add_to_list(si, pnum, ec, &si->corr); 492 else 493 return add_to_list(si, pnum, ec, &si->erase); 494 } 495 } 496 497 /* 498 * We've met this logical eraseblock for the first time, add it to the 499 * scanning information. 500 */ 501 502 err = validate_vid_hdr(vid_hdr, sv, pnum); 503 if (err) 504 return err; 505 506 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); 507 if (!seb) 508 return -ENOMEM; 509 510 seb->ec = ec; 511 seb->pnum = pnum; 512 seb->lnum = lnum; 513 seb->sqnum = sqnum; 514 seb->scrub = bitflips; 515 516 if (sv->highest_lnum <= lnum) { 517 sv->highest_lnum = lnum; 518 sv->last_data_size = be32_to_cpu(vid_hdr->data_size); 519 } 520 521 sv->leb_count += 1; 522 rb_link_node(&seb->u.rb, parent, p); 523 rb_insert_color(&seb->u.rb, &sv->root); 524 si->used_peb_count += 1; 525 return 0; 526} 527 528/** 529 * ubi_scan_find_sv - find volume in the scanning information. 530 * @si: scanning information 531 * @vol_id: the requested volume ID 532 * 533 * This function returns a pointer to the volume description or %NULL if there 534 * are no data about this volume in the scanning information. 535 */ 536struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si, 537 int vol_id) 538{ 539 struct ubi_scan_volume *sv; 540 struct rb_node *p = si->volumes.rb_node; 541 542 while (p) { 543 sv = rb_entry(p, struct ubi_scan_volume, rb); 544 545 if (vol_id == sv->vol_id) 546 return sv; 547 548 if (vol_id > sv->vol_id) 549 p = p->rb_left; 550 else 551 p = p->rb_right; 552 } 553 554 return NULL; 555} 556 557/** 558 * ubi_scan_find_seb - find LEB in the volume scanning information. 559 * @sv: a pointer to the volume scanning information 560 * @lnum: the requested logical eraseblock 561 * 562 * This function returns a pointer to the scanning logical eraseblock or %NULL 563 * if there are no data about it in the scanning volume information. 564 */ 565struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv, 566 int lnum) 567{ 568 struct ubi_scan_leb *seb; 569 struct rb_node *p = sv->root.rb_node; 570 571 while (p) { 572 seb = rb_entry(p, struct ubi_scan_leb, u.rb); 573 574 if (lnum == seb->lnum) 575 return seb; 576 577 if (lnum > seb->lnum) 578 p = p->rb_left; 579 else 580 p = p->rb_right; 581 } 582 583 return NULL; 584} 585 586/** 587 * ubi_scan_rm_volume - delete scanning information about a volume. 588 * @si: scanning information 589 * @sv: the volume scanning information to delete 590 */ 591void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv) 592{ 593 struct rb_node *rb; 594 struct ubi_scan_leb *seb; 595 596 dbg_bld("remove scanning information about volume %d", sv->vol_id); 597 598 while ((rb = rb_first(&sv->root))) { 599 seb = rb_entry(rb, struct ubi_scan_leb, u.rb); 600 rb_erase(&seb->u.rb, &sv->root); 601 list_add_tail(&seb->u.list, &si->erase); 602 } 603 604 rb_erase(&sv->rb, &si->volumes); 605 kfree(sv); 606 si->vols_found -= 1; 607} 608 609/** 610 * ubi_scan_erase_peb - erase a physical eraseblock. 611 * @ubi: UBI device description object 612 * @si: scanning information 613 * @pnum: physical eraseblock number to erase; 614 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown) 615 * 616 * This function erases physical eraseblock 'pnum', and writes the erase 617 * counter header to it. This function should only be used on UBI device 618 * initialization stages, when the EBA sub-system had not been yet initialized. 619 * This function returns zero in case of success and a negative error code in 620 * case of failure. 621 */ 622int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si, 623 int pnum, int ec) 624{ 625 int err; 626 struct ubi_ec_hdr *ec_hdr; 627 628 if ((long long)ec >= UBI_MAX_ERASECOUNTER) { 629 /* 630 * Erase counter overflow. Upgrade UBI and use 64-bit 631 * erase counters internally. 632 */ 633 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec); 634 return -EINVAL; 635 } 636 637 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 638 if (!ec_hdr) 639 return -ENOMEM; 640 641 ec_hdr->ec = cpu_to_be64(ec); 642 643 err = ubi_io_sync_erase(ubi, pnum, 0); 644 if (err < 0) 645 goto out_free; 646 647 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); 648 649out_free: 650 kfree(ec_hdr); 651 return err; 652} 653 654/** 655 * ubi_scan_get_free_peb - get a free physical eraseblock. 656 * @ubi: UBI device description object 657 * @si: scanning information 658 * 659 * This function returns a free physical eraseblock. It is supposed to be 660 * called on the UBI initialization stages when the wear-leveling sub-system is 661 * not initialized yet. This function picks a physical eraseblocks from one of 662 * the lists, writes the EC header if it is needed, and removes it from the 663 * list. 664 * 665 * This function returns scanning physical eraseblock information in case of 666 * success and an error code in case of failure. 667 */ 668struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi, 669 struct ubi_scan_info *si) 670{ 671 int err = 0, i; 672 struct ubi_scan_leb *seb; 673 674 if (!list_empty(&si->free)) { 675 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list); 676 list_del(&seb->u.list); 677 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec); 678 return seb; 679 } 680 681 for (i = 0; i < 2; i++) { 682 struct list_head *head; 683 struct ubi_scan_leb *tmp_seb; 684 685 if (i == 0) 686 head = &si->erase; 687 else 688 head = &si->corr; 689 690 /* 691 * We try to erase the first physical eraseblock from the @head 692 * list and pick it if we succeed, or try to erase the 693 * next one if not. And so forth. We don't want to take care 694 * about bad eraseblocks here - they'll be handled later. 695 */ 696 list_for_each_entry_safe(seb, tmp_seb, head, u.list) { 697 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 698 seb->ec = si->mean_ec; 699 700 err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1); 701 if (err) 702 continue; 703 704 seb->ec += 1; 705 list_del(&seb->u.list); 706 dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec); 707 return seb; 708 } 709 } 710 711 ubi_err("no eraseblocks found"); 712 return ERR_PTR(-ENOSPC); 713} 714 715/** 716 * process_eb - read, check UBI headers, and add them to scanning information. 717 * @ubi: UBI device description object 718 * @si: scanning information 719 * @pnum: the physical eraseblock number 720 * 721 * This function returns a zero if the physical eraseblock was successfully 722 * handled and a negative error code in case of failure. 723 */ 724static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, 725 int pnum) 726{ 727 long long uninitialized_var(ec); 728 int err, bitflips = 0, vol_id, ec_corr = 0; 729 730 dbg_bld("scan PEB %d", pnum); 731 732 /* Skip bad physical eraseblocks */ 733 err = ubi_io_is_bad(ubi, pnum); 734 if (err < 0) 735 return err; 736 else if (err) { 737 /* 738 * FIXME: this is actually duty of the I/O sub-system to 739 * initialize this, but MTD does not provide enough 740 * information. 741 */ 742 si->bad_peb_count += 1; 743 return 0; 744 } 745 746 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); 747 if (err < 0) 748 return err; 749 else if (err == UBI_IO_BITFLIPS) 750 bitflips = 1; 751 else if (err == UBI_IO_PEB_EMPTY) 752 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase); 753 else if (err == UBI_IO_BAD_HDR_READ || err == UBI_IO_BAD_HDR) { 754 /* 755 * We have to also look at the VID header, possibly it is not 756 * corrupted. Set %bitflips flag in order to make this PEB be 757 * moved and EC be re-created. 758 */ 759 ec_corr = err; 760 ec = UBI_SCAN_UNKNOWN_EC; 761 bitflips = 1; 762 } 763 764 if (!ec_corr) { 765 int image_seq; 766 767 /* Make sure UBI version is OK */ 768 if (ech->version != UBI_VERSION) { 769 ubi_err("this UBI version is %d, image version is %d", 770 UBI_VERSION, (int)ech->version); 771 return -EINVAL; 772 } 773 774 ec = be64_to_cpu(ech->ec); 775 if (ec > UBI_MAX_ERASECOUNTER) { 776 /* 777 * Erase counter overflow. The EC headers have 64 bits 778 * reserved, but we anyway make use of only 31 bit 779 * values, as this seems to be enough for any existing 780 * flash. Upgrade UBI and use 64-bit erase counters 781 * internally. 782 */ 783 ubi_err("erase counter overflow, max is %d", 784 UBI_MAX_ERASECOUNTER); 785 ubi_dbg_dump_ec_hdr(ech); 786 return -EINVAL; 787 } 788 789 /* 790 * Make sure that all PEBs have the same image sequence number. 791 * This allows us to detect situations when users flash UBI 792 * images incorrectly, so that the flash has the new UBI image 793 * and leftovers from the old one. This feature was added 794 * relatively recently, and the sequence number was always 795 * zero, because old UBI implementations always set it to zero. 796 * For this reasons, we do not panic if some PEBs have zero 797 * sequence number, while other PEBs have non-zero sequence 798 * number. 799 */ 800 image_seq = be32_to_cpu(ech->image_seq); 801 if (!ubi->image_seq && image_seq) 802 ubi->image_seq = image_seq; 803 if (ubi->image_seq && image_seq && 804 ubi->image_seq != image_seq) { 805 ubi_err("bad image sequence number %d in PEB %d, " 806 "expected %d", image_seq, pnum, ubi->image_seq); 807 ubi_dbg_dump_ec_hdr(ech); 808 return -EINVAL; 809 } 810 } 811 812 /* OK, we've done with the EC header, let's look at the VID header */ 813 814 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); 815 if (err < 0) 816 return err; 817 else if (err == UBI_IO_BITFLIPS) 818 bitflips = 1; 819 else if (err == UBI_IO_BAD_HDR_READ || err == UBI_IO_BAD_HDR || 820 (err == UBI_IO_PEB_FREE && ec_corr)) { 821 /* VID header is corrupted */ 822 if (err == UBI_IO_BAD_HDR_READ || 823 ec_corr == UBI_IO_BAD_HDR_READ) 824 si->read_err_count += 1; 825 err = add_to_list(si, pnum, ec, &si->corr); 826 if (err) 827 return err; 828 goto adjust_mean_ec; 829 } else if (err == UBI_IO_PEB_FREE) { 830 /* No VID header - the physical eraseblock is free */ 831 err = add_to_list(si, pnum, ec, &si->free); 832 if (err) 833 return err; 834 goto adjust_mean_ec; 835 } 836 837 vol_id = be32_to_cpu(vidh->vol_id); 838 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { 839 int lnum = be32_to_cpu(vidh->lnum); 840 841 /* Unsupported internal volume */ 842 switch (vidh->compat) { 843 case UBI_COMPAT_DELETE: 844 ubi_msg("\"delete\" compatible internal volume %d:%d" 845 " found, will remove it", vol_id, lnum); 846 err = add_to_list(si, pnum, ec, &si->erase); 847 if (err) 848 return err; 849 return 0; 850 851 case UBI_COMPAT_RO: 852 ubi_msg("read-only compatible internal volume %d:%d" 853 " found, switch to read-only mode", 854 vol_id, lnum); 855 ubi->ro_mode = 1; 856 break; 857 858 case UBI_COMPAT_PRESERVE: 859 ubi_msg("\"preserve\" compatible internal volume %d:%d" 860 " found", vol_id, lnum); 861 err = add_to_list(si, pnum, ec, &si->alien); 862 if (err) 863 return err; 864 return 0; 865 866 case UBI_COMPAT_REJECT: 867 ubi_err("incompatible internal volume %d:%d found", 868 vol_id, lnum); 869 return -EINVAL; 870 } 871 } 872 873 if (ec_corr) 874 ubi_warn("valid VID header but corrupted EC header at PEB %d", 875 pnum); 876 err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips); 877 if (err) 878 return err; 879 880adjust_mean_ec: 881 if (!ec_corr) { 882 si->ec_sum += ec; 883 si->ec_count += 1; 884 if (ec > si->max_ec) 885 si->max_ec = ec; 886 if (ec < si->min_ec) 887 si->min_ec = ec; 888 } 889 890 return 0; 891} 892 893/** 894 * check_what_we_have - check what PEB were found by scanning. 895 * @ubi: UBI device description object 896 * @si: scanning information 897 * 898 * This is a helper function which takes a look what PEBs were found by 899 * scanning, and decides whether the flash is empty and should be formatted and 900 * whether there are too many corrupted PEBs and we should not attach this 901 * MTD device. Returns zero if we should proceed with attaching the MTD device, 902 * and %-EINVAL if we should not. 903 */ 904static int check_what_we_have(struct ubi_device *ubi, struct ubi_scan_info *si) 905{ 906 struct ubi_scan_leb *seb; 907 int max_corr; 908 909 max_corr = ubi->peb_count - si->bad_peb_count - si->alien_peb_count; 910 max_corr = max_corr / 20 ?: 8; 911 912 /* 913 * Few corrupted PEBs are not a problem and may be just a result of 914 * unclean reboots. However, many of them may indicate some problems 915 * with the flash HW or driver. 916 */ 917 if (si->corr_peb_count >= 8) { 918 ubi_warn("%d PEBs are corrupted", si->corr_peb_count); 919 printk(KERN_WARNING "corrupted PEBs are:"); 920 list_for_each_entry(seb, &si->corr, u.list) 921 printk(KERN_CONT " %d", seb->pnum); 922 printk(KERN_CONT "\n"); 923 924 /* 925 * If too many PEBs are corrupted, we refuse attaching, 926 * otherwise, only print a warning. 927 */ 928 if (si->corr_peb_count >= max_corr) { 929 ubi_err("too many corrupted PEBs, refusing this device"); 930 return -EINVAL; 931 } 932 } 933 934 if (si->free_peb_count + si->used_peb_count + 935 si->alien_peb_count == 0) { 936 /* No UBI-formatted eraseblocks were found */ 937 if (si->corr_peb_count == si->read_err_count && 938 si->corr_peb_count < 8) { 939 /* No or just few corrupted PEBs, and all of them had a 940 * read error. We assume that those are bad PEBs, which 941 * were just not marked as bad so far. 942 * 943 * This piece of code basically tries to distinguish 944 * between the following 2 situations: 945 * 946 * 1. Flash is empty, but there are few bad PEBs, which 947 * are not marked as bad so far, and which were read 948 * with error. We want to go ahead and format this 949 * flash. While formating, the faulty PEBs will 950 * probably be marked as bad. 951 * 952 * 2. Flash probably contains non-UBI data and we do 953 * not want to format it and destroy possibly needed 954 * data (e.g., consider the case when the bootloader 955 * MTD partition was accidentally fed to UBI). 956 */ 957 si->is_empty = 1; 958 ubi_msg("empty MTD device detected"); 959 get_random_bytes(&ubi->image_seq, sizeof(ubi->image_seq)); 960 } else { 961 ubi_err("MTD device possibly contains non-UBI data, " 962 "refusing it"); 963 return -EINVAL; 964 } 965 } 966 967 if (si->corr_peb_count > 0) 968 ubi_msg("corrupted PEBs will be formatted"); 969 return 0; 970} 971 972/** 973 * ubi_scan - scan an MTD device. 974 * @ubi: UBI device description object 975 * 976 * This function does full scanning of an MTD device and returns complete 977 * information about it. In case of failure, an error code is returned. 978 */ 979struct ubi_scan_info *ubi_scan(struct ubi_device *ubi) 980{ 981 int err, pnum; 982 struct rb_node *rb1, *rb2; 983 struct ubi_scan_volume *sv; 984 struct ubi_scan_leb *seb; 985 struct ubi_scan_info *si; 986 987 si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL); 988 if (!si) 989 return ERR_PTR(-ENOMEM); 990 991 INIT_LIST_HEAD(&si->corr); 992 INIT_LIST_HEAD(&si->free); 993 INIT_LIST_HEAD(&si->erase); 994 INIT_LIST_HEAD(&si->alien); 995 si->volumes = RB_ROOT; 996 997 err = -ENOMEM; 998 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 999 if (!ech) 1000 goto out_si; 1001 1002 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 1003 if (!vidh) 1004 goto out_ech; 1005 1006 for (pnum = 0; pnum < ubi->peb_count; pnum++) { 1007 cond_resched(); 1008 1009 dbg_gen("process PEB %d", pnum); 1010 err = process_eb(ubi, si, pnum); 1011 if (err < 0) 1012 goto out_vidh; 1013 } 1014 1015 dbg_msg("scanning is finished"); 1016 1017 /* Calculate mean erase counter */ 1018 if (si->ec_count) 1019 si->mean_ec = div_u64(si->ec_sum, si->ec_count); 1020 1021 err = check_what_we_have(ubi, si); 1022 if (err) 1023 goto out_vidh; 1024 1025 /* 1026 * In case of unknown erase counter we use the mean erase counter 1027 * value. 1028 */ 1029 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1030 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) 1031 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 1032 seb->ec = si->mean_ec; 1033 } 1034 1035 list_for_each_entry(seb, &si->free, u.list) { 1036 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 1037 seb->ec = si->mean_ec; 1038 } 1039 1040 list_for_each_entry(seb, &si->corr, u.list) 1041 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 1042 seb->ec = si->mean_ec; 1043 1044 list_for_each_entry(seb, &si->erase, u.list) 1045 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 1046 seb->ec = si->mean_ec; 1047 1048 err = paranoid_check_si(ubi, si); 1049 if (err) 1050 goto out_vidh; 1051 1052 ubi_free_vid_hdr(ubi, vidh); 1053 kfree(ech); 1054 1055 return si; 1056 1057out_vidh: 1058 ubi_free_vid_hdr(ubi, vidh); 1059out_ech: 1060 kfree(ech); 1061out_si: 1062 ubi_scan_destroy_si(si); 1063 return ERR_PTR(err); 1064} 1065 1066/** 1067 * destroy_sv - free the scanning volume information 1068 * @sv: scanning volume information 1069 * 1070 * This function destroys the volume RB-tree (@sv->root) and the scanning 1071 * volume information. 1072 */ 1073static void destroy_sv(struct ubi_scan_volume *sv) 1074{ 1075 struct ubi_scan_leb *seb; 1076 struct rb_node *this = sv->root.rb_node; 1077 1078 while (this) { 1079 if (this->rb_left) 1080 this = this->rb_left; 1081 else if (this->rb_right) 1082 this = this->rb_right; 1083 else { 1084 seb = rb_entry(this, struct ubi_scan_leb, u.rb); 1085 this = rb_parent(this); 1086 if (this) { 1087 if (this->rb_left == &seb->u.rb) 1088 this->rb_left = NULL; 1089 else 1090 this->rb_right = NULL; 1091 } 1092 1093 kfree(seb); 1094 } 1095 } 1096 kfree(sv); 1097} 1098 1099/** 1100 * ubi_scan_destroy_si - destroy scanning information. 1101 * @si: scanning information 1102 */ 1103void ubi_scan_destroy_si(struct ubi_scan_info *si) 1104{ 1105 struct ubi_scan_leb *seb, *seb_tmp; 1106 struct ubi_scan_volume *sv; 1107 struct rb_node *rb; 1108 1109 list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) { 1110 list_del(&seb->u.list); 1111 kfree(seb); 1112 } 1113 list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) { 1114 list_del(&seb->u.list); 1115 kfree(seb); 1116 } 1117 list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) { 1118 list_del(&seb->u.list); 1119 kfree(seb); 1120 } 1121 list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) { 1122 list_del(&seb->u.list); 1123 kfree(seb); 1124 } 1125 1126 /* Destroy the volume RB-tree */ 1127 rb = si->volumes.rb_node; 1128 while (rb) { 1129 if (rb->rb_left) 1130 rb = rb->rb_left; 1131 else if (rb->rb_right) 1132 rb = rb->rb_right; 1133 else { 1134 sv = rb_entry(rb, struct ubi_scan_volume, rb); 1135 1136 rb = rb_parent(rb); 1137 if (rb) { 1138 if (rb->rb_left == &sv->rb) 1139 rb->rb_left = NULL; 1140 else 1141 rb->rb_right = NULL; 1142 } 1143 1144 destroy_sv(sv); 1145 } 1146 } 1147 1148 kfree(si); 1149} 1150 1151#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 1152 1153/** 1154 * paranoid_check_si - check the scanning information. 1155 * @ubi: UBI device description object 1156 * @si: scanning information 1157 * 1158 * This function returns zero if the scanning information is all right, and a 1159 * negative error code if not or if an error occurred. 1160 */ 1161static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si) 1162{ 1163 int pnum, err, vols_found = 0; 1164 struct rb_node *rb1, *rb2; 1165 struct ubi_scan_volume *sv; 1166 struct ubi_scan_leb *seb, *last_seb; 1167 uint8_t *buf; 1168 1169 /* 1170 * At first, check that scanning information is OK. 1171 */ 1172 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1173 int leb_count = 0; 1174 1175 cond_resched(); 1176 1177 vols_found += 1; 1178 1179 if (si->is_empty) { 1180 ubi_err("bad is_empty flag"); 1181 goto bad_sv; 1182 } 1183 1184 if (sv->vol_id < 0 || sv->highest_lnum < 0 || 1185 sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 || 1186 sv->data_pad < 0 || sv->last_data_size < 0) { 1187 ubi_err("negative values"); 1188 goto bad_sv; 1189 } 1190 1191 if (sv->vol_id >= UBI_MAX_VOLUMES && 1192 sv->vol_id < UBI_INTERNAL_VOL_START) { 1193 ubi_err("bad vol_id"); 1194 goto bad_sv; 1195 } 1196 1197 if (sv->vol_id > si->highest_vol_id) { 1198 ubi_err("highest_vol_id is %d, but vol_id %d is there", 1199 si->highest_vol_id, sv->vol_id); 1200 goto out; 1201 } 1202 1203 if (sv->vol_type != UBI_DYNAMIC_VOLUME && 1204 sv->vol_type != UBI_STATIC_VOLUME) { 1205 ubi_err("bad vol_type"); 1206 goto bad_sv; 1207 } 1208 1209 if (sv->data_pad > ubi->leb_size / 2) { 1210 ubi_err("bad data_pad"); 1211 goto bad_sv; 1212 } 1213 1214 last_seb = NULL; 1215 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1216 cond_resched(); 1217 1218 last_seb = seb; 1219 leb_count += 1; 1220 1221 if (seb->pnum < 0 || seb->ec < 0) { 1222 ubi_err("negative values"); 1223 goto bad_seb; 1224 } 1225 1226 if (seb->ec < si->min_ec) { 1227 ubi_err("bad si->min_ec (%d), %d found", 1228 si->min_ec, seb->ec); 1229 goto bad_seb; 1230 } 1231 1232 if (seb->ec > si->max_ec) { 1233 ubi_err("bad si->max_ec (%d), %d found", 1234 si->max_ec, seb->ec); 1235 goto bad_seb; 1236 } 1237 1238 if (seb->pnum >= ubi->peb_count) { 1239 ubi_err("too high PEB number %d, total PEBs %d", 1240 seb->pnum, ubi->peb_count); 1241 goto bad_seb; 1242 } 1243 1244 if (sv->vol_type == UBI_STATIC_VOLUME) { 1245 if (seb->lnum >= sv->used_ebs) { 1246 ubi_err("bad lnum or used_ebs"); 1247 goto bad_seb; 1248 } 1249 } else { 1250 if (sv->used_ebs != 0) { 1251 ubi_err("non-zero used_ebs"); 1252 goto bad_seb; 1253 } 1254 } 1255 1256 if (seb->lnum > sv->highest_lnum) { 1257 ubi_err("incorrect highest_lnum or lnum"); 1258 goto bad_seb; 1259 } 1260 } 1261 1262 if (sv->leb_count != leb_count) { 1263 ubi_err("bad leb_count, %d objects in the tree", 1264 leb_count); 1265 goto bad_sv; 1266 } 1267 1268 if (!last_seb) 1269 continue; 1270 1271 seb = last_seb; 1272 1273 if (seb->lnum != sv->highest_lnum) { 1274 ubi_err("bad highest_lnum"); 1275 goto bad_seb; 1276 } 1277 } 1278 1279 if (vols_found != si->vols_found) { 1280 ubi_err("bad si->vols_found %d, should be %d", 1281 si->vols_found, vols_found); 1282 goto out; 1283 } 1284 1285 /* Check that scanning information is correct */ 1286 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1287 last_seb = NULL; 1288 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1289 int vol_type; 1290 1291 cond_resched(); 1292 1293 last_seb = seb; 1294 1295 err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1); 1296 if (err && err != UBI_IO_BITFLIPS) { 1297 ubi_err("VID header is not OK (%d)", err); 1298 if (err > 0) 1299 err = -EIO; 1300 return err; 1301 } 1302 1303 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? 1304 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 1305 if (sv->vol_type != vol_type) { 1306 ubi_err("bad vol_type"); 1307 goto bad_vid_hdr; 1308 } 1309 1310 if (seb->sqnum != be64_to_cpu(vidh->sqnum)) { 1311 ubi_err("bad sqnum %llu", seb->sqnum); 1312 goto bad_vid_hdr; 1313 } 1314 1315 if (sv->vol_id != be32_to_cpu(vidh->vol_id)) { 1316 ubi_err("bad vol_id %d", sv->vol_id); 1317 goto bad_vid_hdr; 1318 } 1319 1320 if (sv->compat != vidh->compat) { 1321 ubi_err("bad compat %d", vidh->compat); 1322 goto bad_vid_hdr; 1323 } 1324 1325 if (seb->lnum != be32_to_cpu(vidh->lnum)) { 1326 ubi_err("bad lnum %d", seb->lnum); 1327 goto bad_vid_hdr; 1328 } 1329 1330 if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) { 1331 ubi_err("bad used_ebs %d", sv->used_ebs); 1332 goto bad_vid_hdr; 1333 } 1334 1335 if (sv->data_pad != be32_to_cpu(vidh->data_pad)) { 1336 ubi_err("bad data_pad %d", sv->data_pad); 1337 goto bad_vid_hdr; 1338 } 1339 } 1340 1341 if (!last_seb) 1342 continue; 1343 1344 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) { 1345 ubi_err("bad highest_lnum %d", sv->highest_lnum); 1346 goto bad_vid_hdr; 1347 } 1348 1349 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) { 1350 ubi_err("bad last_data_size %d", sv->last_data_size); 1351 goto bad_vid_hdr; 1352 } 1353 } 1354 1355 /* 1356 * Make sure that all the physical eraseblocks are in one of the lists 1357 * or trees. 1358 */ 1359 buf = kzalloc(ubi->peb_count, GFP_KERNEL); 1360 if (!buf) 1361 return -ENOMEM; 1362 1363 for (pnum = 0; pnum < ubi->peb_count; pnum++) { 1364 err = ubi_io_is_bad(ubi, pnum); 1365 if (err < 0) { 1366 kfree(buf); 1367 return err; 1368 } else if (err) 1369 buf[pnum] = 1; 1370 } 1371 1372 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) 1373 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) 1374 buf[seb->pnum] = 1; 1375 1376 list_for_each_entry(seb, &si->free, u.list) 1377 buf[seb->pnum] = 1; 1378 1379 list_for_each_entry(seb, &si->corr, u.list) 1380 buf[seb->pnum] = 1; 1381 1382 list_for_each_entry(seb, &si->erase, u.list) 1383 buf[seb->pnum] = 1; 1384 1385 list_for_each_entry(seb, &si->alien, u.list) 1386 buf[seb->pnum] = 1; 1387 1388 err = 0; 1389 for (pnum = 0; pnum < ubi->peb_count; pnum++) 1390 if (!buf[pnum]) { 1391 ubi_err("PEB %d is not referred", pnum); 1392 err = 1; 1393 } 1394 1395 kfree(buf); 1396 if (err) 1397 goto out; 1398 return 0; 1399 1400bad_seb: 1401 ubi_err("bad scanning information about LEB %d", seb->lnum); 1402 ubi_dbg_dump_seb(seb, 0); 1403 ubi_dbg_dump_sv(sv); 1404 goto out; 1405 1406bad_sv: 1407 ubi_err("bad scanning information about volume %d", sv->vol_id); 1408 ubi_dbg_dump_sv(sv); 1409 goto out; 1410 1411bad_vid_hdr: 1412 ubi_err("bad scanning information about volume %d", sv->vol_id); 1413 ubi_dbg_dump_sv(sv); 1414 ubi_dbg_dump_vid_hdr(vidh); 1415 1416out: 1417 ubi_dbg_dump_stack(); 1418 return -EINVAL; 1419} 1420 1421#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */