at v2.6.36 480 lines 15 kB view raw
1/* 2 * Copyright 2010 Tilera Corporation. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation, version 2. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 11 * NON INFRINGEMENT. See the GNU General Public License for 12 * more details. 13 * 14 * This file contains the functions and defines necessary to modify and use 15 * the TILE page table tree. 16 */ 17 18#ifndef _ASM_TILE_PGTABLE_H 19#define _ASM_TILE_PGTABLE_H 20 21#include <hv/hypervisor.h> 22 23#ifndef __ASSEMBLY__ 24 25#include <linux/bitops.h> 26#include <linux/threads.h> 27#include <linux/slab.h> 28#include <linux/list.h> 29#include <linux/spinlock.h> 30#include <asm/processor.h> 31#include <asm/fixmap.h> 32#include <asm/system.h> 33 34struct mm_struct; 35struct vm_area_struct; 36 37/* 38 * ZERO_PAGE is a global shared page that is always zero: used 39 * for zero-mapped memory areas etc.. 40 */ 41extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; 42#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 43 44extern pgd_t swapper_pg_dir[]; 45extern pgprot_t swapper_pgprot; 46extern struct kmem_cache *pgd_cache; 47extern spinlock_t pgd_lock; 48extern struct list_head pgd_list; 49 50/* 51 * The very last slots in the pgd_t are for addresses unusable by Linux 52 * (pgd_addr_invalid() returns true). So we use them for the list structure. 53 * The x86 code we are modelled on uses the page->private/index fields 54 * (older 2.6 kernels) or the lru list (newer 2.6 kernels), but since 55 * our pgds are so much smaller than a page, it seems a waste to 56 * spend a whole page on each pgd. 57 */ 58#define PGD_LIST_OFFSET \ 59 ((PTRS_PER_PGD * sizeof(pgd_t)) - sizeof(struct list_head)) 60#define pgd_to_list(pgd) \ 61 ((struct list_head *)((char *)(pgd) + PGD_LIST_OFFSET)) 62#define list_to_pgd(list) \ 63 ((pgd_t *)((char *)(list) - PGD_LIST_OFFSET)) 64 65extern void pgtable_cache_init(void); 66extern void paging_init(void); 67extern void set_page_homes(void); 68 69#define FIRST_USER_ADDRESS 0 70 71#define _PAGE_PRESENT HV_PTE_PRESENT 72#define _PAGE_HUGE_PAGE HV_PTE_PAGE 73#define _PAGE_READABLE HV_PTE_READABLE 74#define _PAGE_WRITABLE HV_PTE_WRITABLE 75#define _PAGE_EXECUTABLE HV_PTE_EXECUTABLE 76#define _PAGE_ACCESSED HV_PTE_ACCESSED 77#define _PAGE_DIRTY HV_PTE_DIRTY 78#define _PAGE_GLOBAL HV_PTE_GLOBAL 79#define _PAGE_USER HV_PTE_USER 80 81/* 82 * All the "standard" bits. Cache-control bits are managed elsewhere. 83 * This is used to test for valid level-2 page table pointers by checking 84 * all the bits, and to mask away the cache control bits for mprotect. 85 */ 86#define _PAGE_ALL (\ 87 _PAGE_PRESENT | \ 88 _PAGE_HUGE_PAGE | \ 89 _PAGE_READABLE | \ 90 _PAGE_WRITABLE | \ 91 _PAGE_EXECUTABLE | \ 92 _PAGE_ACCESSED | \ 93 _PAGE_DIRTY | \ 94 _PAGE_GLOBAL | \ 95 _PAGE_USER \ 96) 97 98#define PAGE_NONE \ 99 __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) 100#define PAGE_SHARED \ 101 __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \ 102 _PAGE_USER | _PAGE_ACCESSED) 103 104#define PAGE_SHARED_EXEC \ 105 __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \ 106 _PAGE_EXECUTABLE | _PAGE_USER | _PAGE_ACCESSED) 107#define PAGE_COPY_NOEXEC \ 108 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE) 109#define PAGE_COPY_EXEC \ 110 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \ 111 _PAGE_READABLE | _PAGE_EXECUTABLE) 112#define PAGE_COPY \ 113 PAGE_COPY_NOEXEC 114#define PAGE_READONLY \ 115 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE) 116#define PAGE_READONLY_EXEC \ 117 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \ 118 _PAGE_READABLE | _PAGE_EXECUTABLE) 119 120#define _PAGE_KERNEL_RO \ 121 (_PAGE_PRESENT | _PAGE_GLOBAL | _PAGE_READABLE | _PAGE_ACCESSED) 122#define _PAGE_KERNEL \ 123 (_PAGE_KERNEL_RO | _PAGE_WRITABLE | _PAGE_DIRTY) 124#define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXECUTABLE) 125 126#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 127#define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO) 128#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC) 129 130#define page_to_kpgprot(p) PAGE_KERNEL 131 132/* 133 * We could tighten these up, but for now writable or executable 134 * implies readable. 135 */ 136#define __P000 PAGE_NONE 137#define __P001 PAGE_READONLY 138#define __P010 PAGE_COPY /* this is write-only, which we won't support */ 139#define __P011 PAGE_COPY 140#define __P100 PAGE_READONLY_EXEC 141#define __P101 PAGE_READONLY_EXEC 142#define __P110 PAGE_COPY_EXEC 143#define __P111 PAGE_COPY_EXEC 144 145#define __S000 PAGE_NONE 146#define __S001 PAGE_READONLY 147#define __S010 PAGE_SHARED 148#define __S011 PAGE_SHARED 149#define __S100 PAGE_READONLY_EXEC 150#define __S101 PAGE_READONLY_EXEC 151#define __S110 PAGE_SHARED_EXEC 152#define __S111 PAGE_SHARED_EXEC 153 154/* 155 * All the normal _PAGE_ALL bits are ignored for PMDs, except PAGE_PRESENT 156 * and PAGE_HUGE_PAGE, which must be one and zero, respectively. 157 * We set the ignored bits to zero. 158 */ 159#define _PAGE_TABLE _PAGE_PRESENT 160 161/* Inherit the caching flags from the old protection bits. */ 162#define pgprot_modify(oldprot, newprot) \ 163 (pgprot_t) { ((oldprot).val & ~_PAGE_ALL) | (newprot).val } 164 165/* Just setting the PFN to zero suffices. */ 166#define pte_pgprot(x) hv_pte_set_pfn((x), 0) 167 168/* 169 * For PTEs and PDEs, we must clear the Present bit first when 170 * clearing a page table entry, so clear the bottom half first and 171 * enforce ordering with a barrier. 172 */ 173static inline void __pte_clear(pte_t *ptep) 174{ 175#ifdef __tilegx__ 176 ptep->val = 0; 177#else 178 u32 *tmp = (u32 *)ptep; 179 tmp[0] = 0; 180 barrier(); 181 tmp[1] = 0; 182#endif 183} 184#define pte_clear(mm, addr, ptep) __pte_clear(ptep) 185 186/* 187 * The following only work if pte_present() is true. 188 * Undefined behaviour if not.. 189 */ 190#define pte_present hv_pte_get_present 191#define pte_user hv_pte_get_user 192#define pte_read hv_pte_get_readable 193#define pte_dirty hv_pte_get_dirty 194#define pte_young hv_pte_get_accessed 195#define pte_write hv_pte_get_writable 196#define pte_exec hv_pte_get_executable 197#define pte_huge hv_pte_get_page 198#define pte_rdprotect hv_pte_clear_readable 199#define pte_exprotect hv_pte_clear_executable 200#define pte_mkclean hv_pte_clear_dirty 201#define pte_mkold hv_pte_clear_accessed 202#define pte_wrprotect hv_pte_clear_writable 203#define pte_mksmall hv_pte_clear_page 204#define pte_mkread hv_pte_set_readable 205#define pte_mkexec hv_pte_set_executable 206#define pte_mkdirty hv_pte_set_dirty 207#define pte_mkyoung hv_pte_set_accessed 208#define pte_mkwrite hv_pte_set_writable 209#define pte_mkhuge hv_pte_set_page 210 211#define pte_special(pte) 0 212#define pte_mkspecial(pte) (pte) 213 214/* 215 * Use some spare bits in the PTE for user-caching tags. 216 */ 217#define pte_set_forcecache hv_pte_set_client0 218#define pte_get_forcecache hv_pte_get_client0 219#define pte_clear_forcecache hv_pte_clear_client0 220#define pte_set_anyhome hv_pte_set_client1 221#define pte_get_anyhome hv_pte_get_client1 222#define pte_clear_anyhome hv_pte_clear_client1 223 224/* 225 * A migrating PTE has PAGE_PRESENT clear but all the other bits preserved. 226 */ 227#define pte_migrating hv_pte_get_migrating 228#define pte_mkmigrate(x) hv_pte_set_migrating(hv_pte_clear_present(x)) 229#define pte_donemigrate(x) hv_pte_set_present(hv_pte_clear_migrating(x)) 230 231#define pte_ERROR(e) \ 232 pr_err("%s:%d: bad pte 0x%016llx.\n", __FILE__, __LINE__, pte_val(e)) 233#define pgd_ERROR(e) \ 234 pr_err("%s:%d: bad pgd 0x%016llx.\n", __FILE__, __LINE__, pgd_val(e)) 235 236/* 237 * set_pte_order() sets the given PTE and also sanity-checks the 238 * requested PTE against the page homecaching. Unspecified parts 239 * of the PTE are filled in when it is written to memory, i.e. all 240 * caching attributes if "!forcecache", or the home cpu if "anyhome". 241 */ 242extern void set_pte_order(pte_t *ptep, pte_t pte, int order); 243 244#define set_pte(ptep, pteval) set_pte_order(ptep, pteval, 0) 245#define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval) 246#define set_pte_atomic(pteptr, pteval) set_pte(pteptr, pteval) 247 248#define pte_page(x) pfn_to_page(pte_pfn(x)) 249 250static inline int pte_none(pte_t pte) 251{ 252 return !pte.val; 253} 254 255static inline unsigned long pte_pfn(pte_t pte) 256{ 257 return hv_pte_get_pfn(pte); 258} 259 260/* Set or get the remote cache cpu in a pgprot with remote caching. */ 261extern pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu); 262extern int get_remote_cache_cpu(pgprot_t prot); 263 264static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) 265{ 266 return hv_pte_set_pfn(prot, pfn); 267} 268 269/* Support for priority mappings. */ 270extern void start_mm_caching(struct mm_struct *mm); 271extern void check_mm_caching(struct mm_struct *prev, struct mm_struct *next); 272 273/* 274 * Support non-linear file mappings (see sys_remap_file_pages). 275 * This is defined by CLIENT1 set but CLIENT0 and _PAGE_PRESENT clear, and the 276 * file offset in the 32 high bits. 277 */ 278#define _PAGE_FILE HV_PTE_CLIENT1 279#define PTE_FILE_MAX_BITS 32 280#define pte_file(pte) (hv_pte_get_client1(pte) && !hv_pte_get_client0(pte)) 281#define pte_to_pgoff(pte) ((pte).val >> 32) 282#define pgoff_to_pte(off) ((pte_t) { (((long long)(off)) << 32) | _PAGE_FILE }) 283 284/* 285 * Encode and de-code a swap entry (see <linux/swapops.h>). 286 * We put the swap file type+offset in the 32 high bits; 287 * I believe we can just leave the low bits clear. 288 */ 289#define __swp_type(swp) ((swp).val & 0x1f) 290#define __swp_offset(swp) ((swp).val >> 5) 291#define __swp_entry(type, off) ((swp_entry_t) { (type) | ((off) << 5) }) 292#define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).val >> 32 }) 293#define __swp_entry_to_pte(swp) ((pte_t) { (((long long) ((swp).val)) << 32) }) 294 295/* 296 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); 297 * 298 * dst - pointer to pgd range anwhere on a pgd page 299 * src - "" 300 * count - the number of pgds to copy. 301 * 302 * dst and src can be on the same page, but the range must not overlap, 303 * and must not cross a page boundary. 304 */ 305static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) 306{ 307 memcpy(dst, src, count * sizeof(pgd_t)); 308} 309 310/* 311 * Conversion functions: convert a page and protection to a page entry, 312 * and a page entry and page directory to the page they refer to. 313 */ 314 315#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 316 317/* 318 * If we are doing an mprotect(), just accept the new vma->vm_page_prot 319 * value and combine it with the PFN from the old PTE to get a new PTE. 320 */ 321static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 322{ 323 return pfn_pte(hv_pte_get_pfn(pte), newprot); 324} 325 326/* 327 * The pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] 328 * 329 * This macro returns the index of the entry in the pgd page which would 330 * control the given virtual address. 331 */ 332#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 333 334/* 335 * pgd_offset() returns a (pgd_t *) 336 * pgd_index() is used get the offset into the pgd page's array of pgd_t's. 337 */ 338#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 339 340/* 341 * A shortcut which implies the use of the kernel's pgd, instead 342 * of a process's. 343 */ 344#define pgd_offset_k(address) pgd_offset(&init_mm, address) 345 346#if defined(CONFIG_HIGHPTE) 347extern pte_t *_pte_offset_map(pmd_t *, unsigned long address, enum km_type); 348#define pte_offset_map(dir, address) \ 349 _pte_offset_map(dir, address, KM_PTE0) 350#define pte_offset_map_nested(dir, address) \ 351 _pte_offset_map(dir, address, KM_PTE1) 352#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) 353#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1) 354#else 355#define pte_offset_map(dir, address) pte_offset_kernel(dir, address) 356#define pte_offset_map_nested(dir, address) pte_offset_map(dir, address) 357#define pte_unmap(pte) do { } while (0) 358#define pte_unmap_nested(pte) do { } while (0) 359#endif 360 361/* Clear a non-executable kernel PTE and flush it from the TLB. */ 362#define kpte_clear_flush(ptep, vaddr) \ 363do { \ 364 pte_clear(&init_mm, (vaddr), (ptep)); \ 365 local_flush_tlb_page(FLUSH_NONEXEC, (vaddr), PAGE_SIZE); \ 366} while (0) 367 368/* 369 * The kernel page tables contain what we need, and we flush when we 370 * change specific page table entries. 371 */ 372#define update_mmu_cache(vma, address, pte) do { } while (0) 373 374#ifdef CONFIG_FLATMEM 375#define kern_addr_valid(addr) (1) 376#endif /* CONFIG_FLATMEM */ 377 378#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 379 remap_pfn_range(vma, vaddr, pfn, size, prot) 380 381extern void vmalloc_sync_all(void); 382 383#endif /* !__ASSEMBLY__ */ 384 385#ifdef __tilegx__ 386#include <asm/pgtable_64.h> 387#else 388#include <asm/pgtable_32.h> 389#endif 390 391#ifndef __ASSEMBLY__ 392 393static inline int pmd_none(pmd_t pmd) 394{ 395 /* 396 * Only check low word on 32-bit platforms, since it might be 397 * out of sync with upper half. 398 */ 399 return (unsigned long)pmd_val(pmd) == 0; 400} 401 402static inline int pmd_present(pmd_t pmd) 403{ 404 return pmd_val(pmd) & _PAGE_PRESENT; 405} 406 407static inline int pmd_bad(pmd_t pmd) 408{ 409 return ((pmd_val(pmd) & _PAGE_ALL) != _PAGE_TABLE); 410} 411 412static inline unsigned long pages_to_mb(unsigned long npg) 413{ 414 return npg >> (20 - PAGE_SHIFT); 415} 416 417/* 418 * The pmd can be thought of an array like this: pmd_t[PTRS_PER_PMD] 419 * 420 * This function returns the index of the entry in the pmd which would 421 * control the given virtual address. 422 */ 423static inline unsigned long pmd_index(unsigned long address) 424{ 425 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 426} 427 428/* 429 * A given kernel pmd_t maps to a specific virtual address (either a 430 * kernel huge page or a kernel pte_t table). Since kernel pte_t 431 * tables can be aligned at sub-page granularity, this function can 432 * return non-page-aligned pointers, despite its name. 433 */ 434static inline unsigned long pmd_page_vaddr(pmd_t pmd) 435{ 436 phys_addr_t pa = 437 (phys_addr_t)pmd_ptfn(pmd) << HV_LOG2_PAGE_TABLE_ALIGN; 438 return (unsigned long)__va(pa); 439} 440 441/* 442 * A pmd_t points to the base of a huge page or to a pte_t array. 443 * If a pte_t array, since we can have multiple per page, we don't 444 * have a one-to-one mapping of pmd_t's to pages. However, this is 445 * OK for pte_lockptr(), since we just end up with potentially one 446 * lock being used for several pte_t arrays. 447 */ 448#define pmd_page(pmd) pfn_to_page(HV_PTFN_TO_PFN(pmd_ptfn(pmd))) 449 450/* 451 * The pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 452 * 453 * This macro returns the index of the entry in the pte page which would 454 * control the given virtual address. 455 */ 456static inline unsigned long pte_index(unsigned long address) 457{ 458 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 459} 460 461static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 462{ 463 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 464} 465 466static inline int pmd_huge_page(pmd_t pmd) 467{ 468 return pmd_val(pmd) & _PAGE_HUGE_PAGE; 469} 470 471#include <asm-generic/pgtable.h> 472 473/* Support /proc/NN/pgtable API. */ 474struct seq_file; 475int arch_proc_pgtable_show(struct seq_file *m, struct mm_struct *mm, 476 unsigned long vaddr, pte_t *ptep, void **datap); 477 478#endif /* !__ASSEMBLY__ */ 479 480#endif /* _ASM_TILE_PGTABLE_H */