at v2.6.36 452 lines 13 kB view raw
1/* 2 * arch/arm/include/asm/cacheflush.h 3 * 4 * Copyright (C) 1999-2002 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10#ifndef _ASMARM_CACHEFLUSH_H 11#define _ASMARM_CACHEFLUSH_H 12 13#include <linux/mm.h> 14 15#include <asm/glue.h> 16#include <asm/shmparam.h> 17#include <asm/cachetype.h> 18#include <asm/outercache.h> 19 20#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) 21 22/* 23 * Cache Model 24 * =========== 25 */ 26#undef _CACHE 27#undef MULTI_CACHE 28 29#if defined(CONFIG_CPU_CACHE_V3) 30# ifdef _CACHE 31# define MULTI_CACHE 1 32# else 33# define _CACHE v3 34# endif 35#endif 36 37#if defined(CONFIG_CPU_CACHE_V4) 38# ifdef _CACHE 39# define MULTI_CACHE 1 40# else 41# define _CACHE v4 42# endif 43#endif 44 45#if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \ 46 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020) || \ 47 defined(CONFIG_CPU_ARM1026) 48# define MULTI_CACHE 1 49#endif 50 51#if defined(CONFIG_CPU_FA526) 52# ifdef _CACHE 53# define MULTI_CACHE 1 54# else 55# define _CACHE fa 56# endif 57#endif 58 59#if defined(CONFIG_CPU_ARM926T) 60# ifdef _CACHE 61# define MULTI_CACHE 1 62# else 63# define _CACHE arm926 64# endif 65#endif 66 67#if defined(CONFIG_CPU_ARM940T) 68# ifdef _CACHE 69# define MULTI_CACHE 1 70# else 71# define _CACHE arm940 72# endif 73#endif 74 75#if defined(CONFIG_CPU_ARM946E) 76# ifdef _CACHE 77# define MULTI_CACHE 1 78# else 79# define _CACHE arm946 80# endif 81#endif 82 83#if defined(CONFIG_CPU_CACHE_V4WB) 84# ifdef _CACHE 85# define MULTI_CACHE 1 86# else 87# define _CACHE v4wb 88# endif 89#endif 90 91#if defined(CONFIG_CPU_XSCALE) 92# ifdef _CACHE 93# define MULTI_CACHE 1 94# else 95# define _CACHE xscale 96# endif 97#endif 98 99#if defined(CONFIG_CPU_XSC3) 100# ifdef _CACHE 101# define MULTI_CACHE 1 102# else 103# define _CACHE xsc3 104# endif 105#endif 106 107#if defined(CONFIG_CPU_MOHAWK) 108# ifdef _CACHE 109# define MULTI_CACHE 1 110# else 111# define _CACHE mohawk 112# endif 113#endif 114 115#if defined(CONFIG_CPU_FEROCEON) 116# define MULTI_CACHE 1 117#endif 118 119#if defined(CONFIG_CPU_V6) 120//# ifdef _CACHE 121# define MULTI_CACHE 1 122//# else 123//# define _CACHE v6 124//# endif 125#endif 126 127#if defined(CONFIG_CPU_V7) 128//# ifdef _CACHE 129# define MULTI_CACHE 1 130//# else 131//# define _CACHE v7 132//# endif 133#endif 134 135#if !defined(_CACHE) && !defined(MULTI_CACHE) 136#error Unknown cache maintainence model 137#endif 138 139/* 140 * This flag is used to indicate that the page pointed to by a pte 141 * is dirty and requires cleaning before returning it to the user. 142 */ 143#define PG_dcache_dirty PG_arch_1 144 145/* 146 * MM Cache Management 147 * =================== 148 * 149 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files 150 * implement these methods. 151 * 152 * Start addresses are inclusive and end addresses are exclusive; 153 * start addresses should be rounded down, end addresses up. 154 * 155 * See Documentation/cachetlb.txt for more information. 156 * Please note that the implementation of these, and the required 157 * effects are cache-type (VIVT/VIPT/PIPT) specific. 158 * 159 * flush_kern_all() 160 * 161 * Unconditionally clean and invalidate the entire cache. 162 * 163 * flush_user_all() 164 * 165 * Clean and invalidate all user space cache entries 166 * before a change of page tables. 167 * 168 * flush_user_range(start, end, flags) 169 * 170 * Clean and invalidate a range of cache entries in the 171 * specified address space before a change of page tables. 172 * - start - user start address (inclusive, page aligned) 173 * - end - user end address (exclusive, page aligned) 174 * - flags - vma->vm_flags field 175 * 176 * coherent_kern_range(start, end) 177 * 178 * Ensure coherency between the Icache and the Dcache in the 179 * region described by start, end. If you have non-snooping 180 * Harvard caches, you need to implement this function. 181 * - start - virtual start address 182 * - end - virtual end address 183 * 184 * coherent_user_range(start, end) 185 * 186 * Ensure coherency between the Icache and the Dcache in the 187 * region described by start, end. If you have non-snooping 188 * Harvard caches, you need to implement this function. 189 * - start - virtual start address 190 * - end - virtual end address 191 * 192 * flush_kern_dcache_area(kaddr, size) 193 * 194 * Ensure that the data held in page is written back. 195 * - kaddr - page address 196 * - size - region size 197 * 198 * DMA Cache Coherency 199 * =================== 200 * 201 * dma_flush_range(start, end) 202 * 203 * Clean and invalidate the specified virtual address range. 204 * - start - virtual start address 205 * - end - virtual end address 206 */ 207 208struct cpu_cache_fns { 209 void (*flush_kern_all)(void); 210 void (*flush_user_all)(void); 211 void (*flush_user_range)(unsigned long, unsigned long, unsigned int); 212 213 void (*coherent_kern_range)(unsigned long, unsigned long); 214 void (*coherent_user_range)(unsigned long, unsigned long); 215 void (*flush_kern_dcache_area)(void *, size_t); 216 217 void (*dma_map_area)(const void *, size_t, int); 218 void (*dma_unmap_area)(const void *, size_t, int); 219 220 void (*dma_flush_range)(const void *, const void *); 221}; 222 223/* 224 * Select the calling method 225 */ 226#ifdef MULTI_CACHE 227 228extern struct cpu_cache_fns cpu_cache; 229 230#define __cpuc_flush_kern_all cpu_cache.flush_kern_all 231#define __cpuc_flush_user_all cpu_cache.flush_user_all 232#define __cpuc_flush_user_range cpu_cache.flush_user_range 233#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range 234#define __cpuc_coherent_user_range cpu_cache.coherent_user_range 235#define __cpuc_flush_dcache_area cpu_cache.flush_kern_dcache_area 236 237/* 238 * These are private to the dma-mapping API. Do not use directly. 239 * Their sole purpose is to ensure that data held in the cache 240 * is visible to DMA, or data written by DMA to system memory is 241 * visible to the CPU. 242 */ 243#define dmac_map_area cpu_cache.dma_map_area 244#define dmac_unmap_area cpu_cache.dma_unmap_area 245#define dmac_flush_range cpu_cache.dma_flush_range 246 247#else 248 249#define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all) 250#define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all) 251#define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range) 252#define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range) 253#define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range) 254#define __cpuc_flush_dcache_area __glue(_CACHE,_flush_kern_dcache_area) 255 256extern void __cpuc_flush_kern_all(void); 257extern void __cpuc_flush_user_all(void); 258extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); 259extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); 260extern void __cpuc_coherent_user_range(unsigned long, unsigned long); 261extern void __cpuc_flush_dcache_area(void *, size_t); 262 263/* 264 * These are private to the dma-mapping API. Do not use directly. 265 * Their sole purpose is to ensure that data held in the cache 266 * is visible to DMA, or data written by DMA to system memory is 267 * visible to the CPU. 268 */ 269#define dmac_map_area __glue(_CACHE,_dma_map_area) 270#define dmac_unmap_area __glue(_CACHE,_dma_unmap_area) 271#define dmac_flush_range __glue(_CACHE,_dma_flush_range) 272 273extern void dmac_map_area(const void *, size_t, int); 274extern void dmac_unmap_area(const void *, size_t, int); 275extern void dmac_flush_range(const void *, const void *); 276 277#endif 278 279/* 280 * Copy user data from/to a page which is mapped into a different 281 * processes address space. Really, we want to allow our "user 282 * space" model to handle this. 283 */ 284extern void copy_to_user_page(struct vm_area_struct *, struct page *, 285 unsigned long, void *, const void *, unsigned long); 286#define copy_from_user_page(vma, page, vaddr, dst, src, len) \ 287 do { \ 288 memcpy(dst, src, len); \ 289 } while (0) 290 291/* 292 * Convert calls to our calling convention. 293 */ 294#define flush_cache_all() __cpuc_flush_kern_all() 295 296static inline void vivt_flush_cache_mm(struct mm_struct *mm) 297{ 298 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) 299 __cpuc_flush_user_all(); 300} 301 302static inline void 303vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 304{ 305 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) 306 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), 307 vma->vm_flags); 308} 309 310static inline void 311vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn) 312{ 313 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) { 314 unsigned long addr = user_addr & PAGE_MASK; 315 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags); 316 } 317} 318 319#ifndef CONFIG_CPU_CACHE_VIPT 320#define flush_cache_mm(mm) \ 321 vivt_flush_cache_mm(mm) 322#define flush_cache_range(vma,start,end) \ 323 vivt_flush_cache_range(vma,start,end) 324#define flush_cache_page(vma,addr,pfn) \ 325 vivt_flush_cache_page(vma,addr,pfn) 326#else 327extern void flush_cache_mm(struct mm_struct *mm); 328extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 329extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn); 330#endif 331 332#define flush_cache_dup_mm(mm) flush_cache_mm(mm) 333 334/* 335 * flush_cache_user_range is used when we want to ensure that the 336 * Harvard caches are synchronised for the user space address range. 337 * This is used for the ARM private sys_cacheflush system call. 338 */ 339#define flush_cache_user_range(vma,start,end) \ 340 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end)) 341 342/* 343 * Perform necessary cache operations to ensure that data previously 344 * stored within this range of addresses can be executed by the CPU. 345 */ 346#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e) 347 348/* 349 * Perform necessary cache operations to ensure that the TLB will 350 * see data written in the specified area. 351 */ 352#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size) 353 354/* 355 * flush_dcache_page is used when the kernel has written to the page 356 * cache page at virtual address page->virtual. 357 * 358 * If this page isn't mapped (ie, page_mapping == NULL), or it might 359 * have userspace mappings, then we _must_ always clean + invalidate 360 * the dcache entries associated with the kernel mapping. 361 * 362 * Otherwise we can defer the operation, and clean the cache when we are 363 * about to change to user space. This is the same method as used on SPARC64. 364 * See update_mmu_cache for the user space part. 365 */ 366#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1 367extern void flush_dcache_page(struct page *); 368 369static inline void __flush_icache_all(void) 370{ 371#ifdef CONFIG_ARM_ERRATA_411920 372 extern void v6_icache_inval_all(void); 373 v6_icache_inval_all(); 374#elif defined(CONFIG_SMP) && __LINUX_ARM_ARCH__ >= 7 375 asm("mcr p15, 0, %0, c7, c1, 0 @ invalidate I-cache inner shareable\n" 376 : 377 : "r" (0)); 378#else 379 asm("mcr p15, 0, %0, c7, c5, 0 @ invalidate I-cache\n" 380 : 381 : "r" (0)); 382#endif 383} 384static inline void flush_kernel_vmap_range(void *addr, int size) 385{ 386 if ((cache_is_vivt() || cache_is_vipt_aliasing())) 387 __cpuc_flush_dcache_area(addr, (size_t)size); 388} 389static inline void invalidate_kernel_vmap_range(void *addr, int size) 390{ 391 if ((cache_is_vivt() || cache_is_vipt_aliasing())) 392 __cpuc_flush_dcache_area(addr, (size_t)size); 393} 394 395#define ARCH_HAS_FLUSH_ANON_PAGE 396static inline void flush_anon_page(struct vm_area_struct *vma, 397 struct page *page, unsigned long vmaddr) 398{ 399 extern void __flush_anon_page(struct vm_area_struct *vma, 400 struct page *, unsigned long); 401 if (PageAnon(page)) 402 __flush_anon_page(vma, page, vmaddr); 403} 404 405#define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE 406static inline void flush_kernel_dcache_page(struct page *page) 407{ 408 /* highmem pages are always flushed upon kunmap already */ 409 if ((cache_is_vivt() || cache_is_vipt_aliasing()) && !PageHighMem(page)) 410 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); 411} 412 413#define flush_dcache_mmap_lock(mapping) \ 414 spin_lock_irq(&(mapping)->tree_lock) 415#define flush_dcache_mmap_unlock(mapping) \ 416 spin_unlock_irq(&(mapping)->tree_lock) 417 418#define flush_icache_user_range(vma,page,addr,len) \ 419 flush_dcache_page(page) 420 421/* 422 * We don't appear to need to do anything here. In fact, if we did, we'd 423 * duplicate cache flushing elsewhere performed by flush_dcache_page(). 424 */ 425#define flush_icache_page(vma,page) do { } while (0) 426 427/* 428 * flush_cache_vmap() is used when creating mappings (eg, via vmap, 429 * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT 430 * caches, since the direct-mappings of these pages may contain cached 431 * data, we need to do a full cache flush to ensure that writebacks 432 * don't corrupt data placed into these pages via the new mappings. 433 */ 434static inline void flush_cache_vmap(unsigned long start, unsigned long end) 435{ 436 if (!cache_is_vipt_nonaliasing()) 437 flush_cache_all(); 438 else 439 /* 440 * set_pte_at() called from vmap_pte_range() does not 441 * have a DSB after cleaning the cache line. 442 */ 443 dsb(); 444} 445 446static inline void flush_cache_vunmap(unsigned long start, unsigned long end) 447{ 448 if (!cache_is_vipt_nonaliasing()) 449 flush_cache_all(); 450} 451 452#endif