at v2.6.36-rc2 6066 lines 170 kB view raw
1/******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2010 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27*******************************************************************************/ 28 29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31#include <linux/module.h> 32#include <linux/types.h> 33#include <linux/init.h> 34#include <linux/pci.h> 35#include <linux/vmalloc.h> 36#include <linux/pagemap.h> 37#include <linux/delay.h> 38#include <linux/netdevice.h> 39#include <linux/tcp.h> 40#include <linux/ipv6.h> 41#include <linux/slab.h> 42#include <net/checksum.h> 43#include <net/ip6_checksum.h> 44#include <linux/mii.h> 45#include <linux/ethtool.h> 46#include <linux/if_vlan.h> 47#include <linux/cpu.h> 48#include <linux/smp.h> 49#include <linux/pm_qos_params.h> 50#include <linux/pm_runtime.h> 51#include <linux/aer.h> 52 53#include "e1000.h" 54 55#define DRV_EXTRAVERSION "-k2" 56 57#define DRV_VERSION "1.2.7" DRV_EXTRAVERSION 58char e1000e_driver_name[] = "e1000e"; 59const char e1000e_driver_version[] = DRV_VERSION; 60 61static const struct e1000_info *e1000_info_tbl[] = { 62 [board_82571] = &e1000_82571_info, 63 [board_82572] = &e1000_82572_info, 64 [board_82573] = &e1000_82573_info, 65 [board_82574] = &e1000_82574_info, 66 [board_82583] = &e1000_82583_info, 67 [board_80003es2lan] = &e1000_es2_info, 68 [board_ich8lan] = &e1000_ich8_info, 69 [board_ich9lan] = &e1000_ich9_info, 70 [board_ich10lan] = &e1000_ich10_info, 71 [board_pchlan] = &e1000_pch_info, 72 [board_pch2lan] = &e1000_pch2_info, 73}; 74 75struct e1000_reg_info { 76 u32 ofs; 77 char *name; 78}; 79 80#define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */ 81#define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */ 82#define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */ 83#define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */ 84#define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */ 85 86#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */ 87#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */ 88#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */ 89#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */ 90#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */ 91 92static const struct e1000_reg_info e1000_reg_info_tbl[] = { 93 94 /* General Registers */ 95 {E1000_CTRL, "CTRL"}, 96 {E1000_STATUS, "STATUS"}, 97 {E1000_CTRL_EXT, "CTRL_EXT"}, 98 99 /* Interrupt Registers */ 100 {E1000_ICR, "ICR"}, 101 102 /* RX Registers */ 103 {E1000_RCTL, "RCTL"}, 104 {E1000_RDLEN, "RDLEN"}, 105 {E1000_RDH, "RDH"}, 106 {E1000_RDT, "RDT"}, 107 {E1000_RDTR, "RDTR"}, 108 {E1000_RXDCTL(0), "RXDCTL"}, 109 {E1000_ERT, "ERT"}, 110 {E1000_RDBAL, "RDBAL"}, 111 {E1000_RDBAH, "RDBAH"}, 112 {E1000_RDFH, "RDFH"}, 113 {E1000_RDFT, "RDFT"}, 114 {E1000_RDFHS, "RDFHS"}, 115 {E1000_RDFTS, "RDFTS"}, 116 {E1000_RDFPC, "RDFPC"}, 117 118 /* TX Registers */ 119 {E1000_TCTL, "TCTL"}, 120 {E1000_TDBAL, "TDBAL"}, 121 {E1000_TDBAH, "TDBAH"}, 122 {E1000_TDLEN, "TDLEN"}, 123 {E1000_TDH, "TDH"}, 124 {E1000_TDT, "TDT"}, 125 {E1000_TIDV, "TIDV"}, 126 {E1000_TXDCTL(0), "TXDCTL"}, 127 {E1000_TADV, "TADV"}, 128 {E1000_TARC(0), "TARC"}, 129 {E1000_TDFH, "TDFH"}, 130 {E1000_TDFT, "TDFT"}, 131 {E1000_TDFHS, "TDFHS"}, 132 {E1000_TDFTS, "TDFTS"}, 133 {E1000_TDFPC, "TDFPC"}, 134 135 /* List Terminator */ 136 {} 137}; 138 139/* 140 * e1000_regdump - register printout routine 141 */ 142static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo) 143{ 144 int n = 0; 145 char rname[16]; 146 u32 regs[8]; 147 148 switch (reginfo->ofs) { 149 case E1000_RXDCTL(0): 150 for (n = 0; n < 2; n++) 151 regs[n] = __er32(hw, E1000_RXDCTL(n)); 152 break; 153 case E1000_TXDCTL(0): 154 for (n = 0; n < 2; n++) 155 regs[n] = __er32(hw, E1000_TXDCTL(n)); 156 break; 157 case E1000_TARC(0): 158 for (n = 0; n < 2; n++) 159 regs[n] = __er32(hw, E1000_TARC(n)); 160 break; 161 default: 162 printk(KERN_INFO "%-15s %08x\n", 163 reginfo->name, __er32(hw, reginfo->ofs)); 164 return; 165 } 166 167 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]"); 168 printk(KERN_INFO "%-15s ", rname); 169 for (n = 0; n < 2; n++) 170 printk(KERN_CONT "%08x ", regs[n]); 171 printk(KERN_CONT "\n"); 172} 173 174 175/* 176 * e1000e_dump - Print registers, tx-ring and rx-ring 177 */ 178static void e1000e_dump(struct e1000_adapter *adapter) 179{ 180 struct net_device *netdev = adapter->netdev; 181 struct e1000_hw *hw = &adapter->hw; 182 struct e1000_reg_info *reginfo; 183 struct e1000_ring *tx_ring = adapter->tx_ring; 184 struct e1000_tx_desc *tx_desc; 185 struct my_u0 { u64 a; u64 b; } *u0; 186 struct e1000_buffer *buffer_info; 187 struct e1000_ring *rx_ring = adapter->rx_ring; 188 union e1000_rx_desc_packet_split *rx_desc_ps; 189 struct e1000_rx_desc *rx_desc; 190 struct my_u1 { u64 a; u64 b; u64 c; u64 d; } *u1; 191 u32 staterr; 192 int i = 0; 193 194 if (!netif_msg_hw(adapter)) 195 return; 196 197 /* Print netdevice Info */ 198 if (netdev) { 199 dev_info(&adapter->pdev->dev, "Net device Info\n"); 200 printk(KERN_INFO "Device Name state " 201 "trans_start last_rx\n"); 202 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n", 203 netdev->name, 204 netdev->state, 205 netdev->trans_start, 206 netdev->last_rx); 207 } 208 209 /* Print Registers */ 210 dev_info(&adapter->pdev->dev, "Register Dump\n"); 211 printk(KERN_INFO " Register Name Value\n"); 212 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl; 213 reginfo->name; reginfo++) { 214 e1000_regdump(hw, reginfo); 215 } 216 217 /* Print TX Ring Summary */ 218 if (!netdev || !netif_running(netdev)) 219 goto exit; 220 221 dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); 222 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]" 223 " leng ntw timestamp\n"); 224 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; 225 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n", 226 0, tx_ring->next_to_use, tx_ring->next_to_clean, 227 (unsigned long long)buffer_info->dma, 228 buffer_info->length, 229 buffer_info->next_to_watch, 230 (unsigned long long)buffer_info->time_stamp); 231 232 /* Print TX Rings */ 233 if (!netif_msg_tx_done(adapter)) 234 goto rx_ring_summary; 235 236 dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); 237 238 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 239 * 240 * Legacy Transmit Descriptor 241 * +--------------------------------------------------------------+ 242 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 243 * +--------------------------------------------------------------+ 244 * 8 | Special | CSS | Status | CMD | CSO | Length | 245 * +--------------------------------------------------------------+ 246 * 63 48 47 36 35 32 31 24 23 16 15 0 247 * 248 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 249 * 63 48 47 40 39 32 31 16 15 8 7 0 250 * +----------------------------------------------------------------+ 251 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 252 * +----------------------------------------------------------------+ 253 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 254 * +----------------------------------------------------------------+ 255 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 256 * 257 * Extended Data Descriptor (DTYP=0x1) 258 * +----------------------------------------------------------------+ 259 * 0 | Buffer Address [63:0] | 260 * +----------------------------------------------------------------+ 261 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 262 * +----------------------------------------------------------------+ 263 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 264 */ 265 printk(KERN_INFO "Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]" 266 " [bi->dma ] leng ntw timestamp bi->skb " 267 "<-- Legacy format\n"); 268 printk(KERN_INFO "Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]" 269 " [bi->dma ] leng ntw timestamp bi->skb " 270 "<-- Ext Context format\n"); 271 printk(KERN_INFO "Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]" 272 " [bi->dma ] leng ntw timestamp bi->skb " 273 "<-- Ext Data format\n"); 274 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 275 tx_desc = E1000_TX_DESC(*tx_ring, i); 276 buffer_info = &tx_ring->buffer_info[i]; 277 u0 = (struct my_u0 *)tx_desc; 278 printk(KERN_INFO "T%c[0x%03X] %016llX %016llX %016llX " 279 "%04X %3X %016llX %p", 280 (!(le64_to_cpu(u0->b) & (1<<29)) ? 'l' : 281 ((le64_to_cpu(u0->b) & (1<<20)) ? 'd' : 'c')), i, 282 (unsigned long long)le64_to_cpu(u0->a), 283 (unsigned long long)le64_to_cpu(u0->b), 284 (unsigned long long)buffer_info->dma, 285 buffer_info->length, buffer_info->next_to_watch, 286 (unsigned long long)buffer_info->time_stamp, 287 buffer_info->skb); 288 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 289 printk(KERN_CONT " NTC/U\n"); 290 else if (i == tx_ring->next_to_use) 291 printk(KERN_CONT " NTU\n"); 292 else if (i == tx_ring->next_to_clean) 293 printk(KERN_CONT " NTC\n"); 294 else 295 printk(KERN_CONT "\n"); 296 297 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0) 298 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 299 16, 1, phys_to_virt(buffer_info->dma), 300 buffer_info->length, true); 301 } 302 303 /* Print RX Rings Summary */ 304rx_ring_summary: 305 dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); 306 printk(KERN_INFO "Queue [NTU] [NTC]\n"); 307 printk(KERN_INFO " %5d %5X %5X\n", 0, 308 rx_ring->next_to_use, rx_ring->next_to_clean); 309 310 /* Print RX Rings */ 311 if (!netif_msg_rx_status(adapter)) 312 goto exit; 313 314 dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); 315 switch (adapter->rx_ps_pages) { 316 case 1: 317 case 2: 318 case 3: 319 /* [Extended] Packet Split Receive Descriptor Format 320 * 321 * +-----------------------------------------------------+ 322 * 0 | Buffer Address 0 [63:0] | 323 * +-----------------------------------------------------+ 324 * 8 | Buffer Address 1 [63:0] | 325 * +-----------------------------------------------------+ 326 * 16 | Buffer Address 2 [63:0] | 327 * +-----------------------------------------------------+ 328 * 24 | Buffer Address 3 [63:0] | 329 * +-----------------------------------------------------+ 330 */ 331 printk(KERN_INFO "R [desc] [buffer 0 63:0 ] " 332 "[buffer 1 63:0 ] " 333 "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] " 334 "[bi->skb] <-- Ext Pkt Split format\n"); 335 /* [Extended] Receive Descriptor (Write-Back) Format 336 * 337 * 63 48 47 32 31 13 12 8 7 4 3 0 338 * +------------------------------------------------------+ 339 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS | 340 * | Checksum | Ident | | Queue | | Type | 341 * +------------------------------------------------------+ 342 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 343 * +------------------------------------------------------+ 344 * 63 48 47 32 31 20 19 0 345 */ 346 printk(KERN_INFO "RWB[desc] [ck ipid mrqhsh] " 347 "[vl l0 ee es] " 348 "[ l3 l2 l1 hs] [reserved ] ---------------- " 349 "[bi->skb] <-- Ext Rx Write-Back format\n"); 350 for (i = 0; i < rx_ring->count; i++) { 351 buffer_info = &rx_ring->buffer_info[i]; 352 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i); 353 u1 = (struct my_u1 *)rx_desc_ps; 354 staterr = 355 le32_to_cpu(rx_desc_ps->wb.middle.status_error); 356 if (staterr & E1000_RXD_STAT_DD) { 357 /* Descriptor Done */ 358 printk(KERN_INFO "RWB[0x%03X] %016llX " 359 "%016llX %016llX %016llX " 360 "---------------- %p", i, 361 (unsigned long long)le64_to_cpu(u1->a), 362 (unsigned long long)le64_to_cpu(u1->b), 363 (unsigned long long)le64_to_cpu(u1->c), 364 (unsigned long long)le64_to_cpu(u1->d), 365 buffer_info->skb); 366 } else { 367 printk(KERN_INFO "R [0x%03X] %016llX " 368 "%016llX %016llX %016llX %016llX %p", i, 369 (unsigned long long)le64_to_cpu(u1->a), 370 (unsigned long long)le64_to_cpu(u1->b), 371 (unsigned long long)le64_to_cpu(u1->c), 372 (unsigned long long)le64_to_cpu(u1->d), 373 (unsigned long long)buffer_info->dma, 374 buffer_info->skb); 375 376 if (netif_msg_pktdata(adapter)) 377 print_hex_dump(KERN_INFO, "", 378 DUMP_PREFIX_ADDRESS, 16, 1, 379 phys_to_virt(buffer_info->dma), 380 adapter->rx_ps_bsize0, true); 381 } 382 383 if (i == rx_ring->next_to_use) 384 printk(KERN_CONT " NTU\n"); 385 else if (i == rx_ring->next_to_clean) 386 printk(KERN_CONT " NTC\n"); 387 else 388 printk(KERN_CONT "\n"); 389 } 390 break; 391 default: 392 case 0: 393 /* Legacy Receive Descriptor Format 394 * 395 * +-----------------------------------------------------+ 396 * | Buffer Address [63:0] | 397 * +-----------------------------------------------------+ 398 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | 399 * +-----------------------------------------------------+ 400 * 63 48 47 40 39 32 31 16 15 0 401 */ 402 printk(KERN_INFO "Rl[desc] [address 63:0 ] " 403 "[vl er S cks ln] [bi->dma ] [bi->skb] " 404 "<-- Legacy format\n"); 405 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { 406 rx_desc = E1000_RX_DESC(*rx_ring, i); 407 buffer_info = &rx_ring->buffer_info[i]; 408 u0 = (struct my_u0 *)rx_desc; 409 printk(KERN_INFO "Rl[0x%03X] %016llX %016llX " 410 "%016llX %p", i, 411 (unsigned long long)le64_to_cpu(u0->a), 412 (unsigned long long)le64_to_cpu(u0->b), 413 (unsigned long long)buffer_info->dma, 414 buffer_info->skb); 415 if (i == rx_ring->next_to_use) 416 printk(KERN_CONT " NTU\n"); 417 else if (i == rx_ring->next_to_clean) 418 printk(KERN_CONT " NTC\n"); 419 else 420 printk(KERN_CONT "\n"); 421 422 if (netif_msg_pktdata(adapter)) 423 print_hex_dump(KERN_INFO, "", 424 DUMP_PREFIX_ADDRESS, 425 16, 1, phys_to_virt(buffer_info->dma), 426 adapter->rx_buffer_len, true); 427 } 428 } 429 430exit: 431 return; 432} 433 434/** 435 * e1000_desc_unused - calculate if we have unused descriptors 436 **/ 437static int e1000_desc_unused(struct e1000_ring *ring) 438{ 439 if (ring->next_to_clean > ring->next_to_use) 440 return ring->next_to_clean - ring->next_to_use - 1; 441 442 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 443} 444 445/** 446 * e1000_receive_skb - helper function to handle Rx indications 447 * @adapter: board private structure 448 * @status: descriptor status field as written by hardware 449 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 450 * @skb: pointer to sk_buff to be indicated to stack 451 **/ 452static void e1000_receive_skb(struct e1000_adapter *adapter, 453 struct net_device *netdev, 454 struct sk_buff *skb, 455 u8 status, __le16 vlan) 456{ 457 skb->protocol = eth_type_trans(skb, netdev); 458 459 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) 460 vlan_gro_receive(&adapter->napi, adapter->vlgrp, 461 le16_to_cpu(vlan), skb); 462 else 463 napi_gro_receive(&adapter->napi, skb); 464} 465 466/** 467 * e1000_rx_checksum - Receive Checksum Offload for 82543 468 * @adapter: board private structure 469 * @status_err: receive descriptor status and error fields 470 * @csum: receive descriptor csum field 471 * @sk_buff: socket buffer with received data 472 **/ 473static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 474 u32 csum, struct sk_buff *skb) 475{ 476 u16 status = (u16)status_err; 477 u8 errors = (u8)(status_err >> 24); 478 skb->ip_summed = CHECKSUM_NONE; 479 480 /* Ignore Checksum bit is set */ 481 if (status & E1000_RXD_STAT_IXSM) 482 return; 483 /* TCP/UDP checksum error bit is set */ 484 if (errors & E1000_RXD_ERR_TCPE) { 485 /* let the stack verify checksum errors */ 486 adapter->hw_csum_err++; 487 return; 488 } 489 490 /* TCP/UDP Checksum has not been calculated */ 491 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) 492 return; 493 494 /* It must be a TCP or UDP packet with a valid checksum */ 495 if (status & E1000_RXD_STAT_TCPCS) { 496 /* TCP checksum is good */ 497 skb->ip_summed = CHECKSUM_UNNECESSARY; 498 } else { 499 /* 500 * IP fragment with UDP payload 501 * Hardware complements the payload checksum, so we undo it 502 * and then put the value in host order for further stack use. 503 */ 504 __sum16 sum = (__force __sum16)htons(csum); 505 skb->csum = csum_unfold(~sum); 506 skb->ip_summed = CHECKSUM_COMPLETE; 507 } 508 adapter->hw_csum_good++; 509} 510 511/** 512 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 513 * @adapter: address of board private structure 514 **/ 515static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 516 int cleaned_count) 517{ 518 struct net_device *netdev = adapter->netdev; 519 struct pci_dev *pdev = adapter->pdev; 520 struct e1000_ring *rx_ring = adapter->rx_ring; 521 struct e1000_rx_desc *rx_desc; 522 struct e1000_buffer *buffer_info; 523 struct sk_buff *skb; 524 unsigned int i; 525 unsigned int bufsz = adapter->rx_buffer_len; 526 527 i = rx_ring->next_to_use; 528 buffer_info = &rx_ring->buffer_info[i]; 529 530 while (cleaned_count--) { 531 skb = buffer_info->skb; 532 if (skb) { 533 skb_trim(skb, 0); 534 goto map_skb; 535 } 536 537 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 538 if (!skb) { 539 /* Better luck next round */ 540 adapter->alloc_rx_buff_failed++; 541 break; 542 } 543 544 buffer_info->skb = skb; 545map_skb: 546 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 547 adapter->rx_buffer_len, 548 DMA_FROM_DEVICE); 549 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 550 dev_err(&pdev->dev, "RX DMA map failed\n"); 551 adapter->rx_dma_failed++; 552 break; 553 } 554 555 rx_desc = E1000_RX_DESC(*rx_ring, i); 556 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 557 558 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { 559 /* 560 * Force memory writes to complete before letting h/w 561 * know there are new descriptors to fetch. (Only 562 * applicable for weak-ordered memory model archs, 563 * such as IA-64). 564 */ 565 wmb(); 566 writel(i, adapter->hw.hw_addr + rx_ring->tail); 567 } 568 i++; 569 if (i == rx_ring->count) 570 i = 0; 571 buffer_info = &rx_ring->buffer_info[i]; 572 } 573 574 rx_ring->next_to_use = i; 575} 576 577/** 578 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split 579 * @adapter: address of board private structure 580 **/ 581static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, 582 int cleaned_count) 583{ 584 struct net_device *netdev = adapter->netdev; 585 struct pci_dev *pdev = adapter->pdev; 586 union e1000_rx_desc_packet_split *rx_desc; 587 struct e1000_ring *rx_ring = adapter->rx_ring; 588 struct e1000_buffer *buffer_info; 589 struct e1000_ps_page *ps_page; 590 struct sk_buff *skb; 591 unsigned int i, j; 592 593 i = rx_ring->next_to_use; 594 buffer_info = &rx_ring->buffer_info[i]; 595 596 while (cleaned_count--) { 597 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 598 599 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 600 ps_page = &buffer_info->ps_pages[j]; 601 if (j >= adapter->rx_ps_pages) { 602 /* all unused desc entries get hw null ptr */ 603 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0); 604 continue; 605 } 606 if (!ps_page->page) { 607 ps_page->page = alloc_page(GFP_ATOMIC); 608 if (!ps_page->page) { 609 adapter->alloc_rx_buff_failed++; 610 goto no_buffers; 611 } 612 ps_page->dma = dma_map_page(&pdev->dev, 613 ps_page->page, 614 0, PAGE_SIZE, 615 DMA_FROM_DEVICE); 616 if (dma_mapping_error(&pdev->dev, 617 ps_page->dma)) { 618 dev_err(&adapter->pdev->dev, 619 "RX DMA page map failed\n"); 620 adapter->rx_dma_failed++; 621 goto no_buffers; 622 } 623 } 624 /* 625 * Refresh the desc even if buffer_addrs 626 * didn't change because each write-back 627 * erases this info. 628 */ 629 rx_desc->read.buffer_addr[j+1] = 630 cpu_to_le64(ps_page->dma); 631 } 632 633 skb = netdev_alloc_skb_ip_align(netdev, 634 adapter->rx_ps_bsize0); 635 636 if (!skb) { 637 adapter->alloc_rx_buff_failed++; 638 break; 639 } 640 641 buffer_info->skb = skb; 642 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 643 adapter->rx_ps_bsize0, 644 DMA_FROM_DEVICE); 645 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 646 dev_err(&pdev->dev, "RX DMA map failed\n"); 647 adapter->rx_dma_failed++; 648 /* cleanup skb */ 649 dev_kfree_skb_any(skb); 650 buffer_info->skb = NULL; 651 break; 652 } 653 654 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); 655 656 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { 657 /* 658 * Force memory writes to complete before letting h/w 659 * know there are new descriptors to fetch. (Only 660 * applicable for weak-ordered memory model archs, 661 * such as IA-64). 662 */ 663 wmb(); 664 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail); 665 } 666 667 i++; 668 if (i == rx_ring->count) 669 i = 0; 670 buffer_info = &rx_ring->buffer_info[i]; 671 } 672 673no_buffers: 674 rx_ring->next_to_use = i; 675} 676 677/** 678 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 679 * @adapter: address of board private structure 680 * @cleaned_count: number of buffers to allocate this pass 681 **/ 682 683static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 684 int cleaned_count) 685{ 686 struct net_device *netdev = adapter->netdev; 687 struct pci_dev *pdev = adapter->pdev; 688 struct e1000_rx_desc *rx_desc; 689 struct e1000_ring *rx_ring = adapter->rx_ring; 690 struct e1000_buffer *buffer_info; 691 struct sk_buff *skb; 692 unsigned int i; 693 unsigned int bufsz = 256 - 16 /* for skb_reserve */; 694 695 i = rx_ring->next_to_use; 696 buffer_info = &rx_ring->buffer_info[i]; 697 698 while (cleaned_count--) { 699 skb = buffer_info->skb; 700 if (skb) { 701 skb_trim(skb, 0); 702 goto check_page; 703 } 704 705 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 706 if (unlikely(!skb)) { 707 /* Better luck next round */ 708 adapter->alloc_rx_buff_failed++; 709 break; 710 } 711 712 buffer_info->skb = skb; 713check_page: 714 /* allocate a new page if necessary */ 715 if (!buffer_info->page) { 716 buffer_info->page = alloc_page(GFP_ATOMIC); 717 if (unlikely(!buffer_info->page)) { 718 adapter->alloc_rx_buff_failed++; 719 break; 720 } 721 } 722 723 if (!buffer_info->dma) 724 buffer_info->dma = dma_map_page(&pdev->dev, 725 buffer_info->page, 0, 726 PAGE_SIZE, 727 DMA_FROM_DEVICE); 728 729 rx_desc = E1000_RX_DESC(*rx_ring, i); 730 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 731 732 if (unlikely(++i == rx_ring->count)) 733 i = 0; 734 buffer_info = &rx_ring->buffer_info[i]; 735 } 736 737 if (likely(rx_ring->next_to_use != i)) { 738 rx_ring->next_to_use = i; 739 if (unlikely(i-- == 0)) 740 i = (rx_ring->count - 1); 741 742 /* Force memory writes to complete before letting h/w 743 * know there are new descriptors to fetch. (Only 744 * applicable for weak-ordered memory model archs, 745 * such as IA-64). */ 746 wmb(); 747 writel(i, adapter->hw.hw_addr + rx_ring->tail); 748 } 749} 750 751/** 752 * e1000_clean_rx_irq - Send received data up the network stack; legacy 753 * @adapter: board private structure 754 * 755 * the return value indicates whether actual cleaning was done, there 756 * is no guarantee that everything was cleaned 757 **/ 758static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 759 int *work_done, int work_to_do) 760{ 761 struct net_device *netdev = adapter->netdev; 762 struct pci_dev *pdev = adapter->pdev; 763 struct e1000_hw *hw = &adapter->hw; 764 struct e1000_ring *rx_ring = adapter->rx_ring; 765 struct e1000_rx_desc *rx_desc, *next_rxd; 766 struct e1000_buffer *buffer_info, *next_buffer; 767 u32 length; 768 unsigned int i; 769 int cleaned_count = 0; 770 bool cleaned = 0; 771 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 772 773 i = rx_ring->next_to_clean; 774 rx_desc = E1000_RX_DESC(*rx_ring, i); 775 buffer_info = &rx_ring->buffer_info[i]; 776 777 while (rx_desc->status & E1000_RXD_STAT_DD) { 778 struct sk_buff *skb; 779 u8 status; 780 781 if (*work_done >= work_to_do) 782 break; 783 (*work_done)++; 784 rmb(); /* read descriptor and rx_buffer_info after status DD */ 785 786 status = rx_desc->status; 787 skb = buffer_info->skb; 788 buffer_info->skb = NULL; 789 790 prefetch(skb->data - NET_IP_ALIGN); 791 792 i++; 793 if (i == rx_ring->count) 794 i = 0; 795 next_rxd = E1000_RX_DESC(*rx_ring, i); 796 prefetch(next_rxd); 797 798 next_buffer = &rx_ring->buffer_info[i]; 799 800 cleaned = 1; 801 cleaned_count++; 802 dma_unmap_single(&pdev->dev, 803 buffer_info->dma, 804 adapter->rx_buffer_len, 805 DMA_FROM_DEVICE); 806 buffer_info->dma = 0; 807 808 length = le16_to_cpu(rx_desc->length); 809 810 /* 811 * !EOP means multiple descriptors were used to store a single 812 * packet, if that's the case we need to toss it. In fact, we 813 * need to toss every packet with the EOP bit clear and the 814 * next frame that _does_ have the EOP bit set, as it is by 815 * definition only a frame fragment 816 */ 817 if (unlikely(!(status & E1000_RXD_STAT_EOP))) 818 adapter->flags2 |= FLAG2_IS_DISCARDING; 819 820 if (adapter->flags2 & FLAG2_IS_DISCARDING) { 821 /* All receives must fit into a single buffer */ 822 e_dbg("Receive packet consumed multiple buffers\n"); 823 /* recycle */ 824 buffer_info->skb = skb; 825 if (status & E1000_RXD_STAT_EOP) 826 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 827 goto next_desc; 828 } 829 830 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { 831 /* recycle */ 832 buffer_info->skb = skb; 833 goto next_desc; 834 } 835 836 /* adjust length to remove Ethernet CRC */ 837 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) 838 length -= 4; 839 840 total_rx_bytes += length; 841 total_rx_packets++; 842 843 /* 844 * code added for copybreak, this should improve 845 * performance for small packets with large amounts 846 * of reassembly being done in the stack 847 */ 848 if (length < copybreak) { 849 struct sk_buff *new_skb = 850 netdev_alloc_skb_ip_align(netdev, length); 851 if (new_skb) { 852 skb_copy_to_linear_data_offset(new_skb, 853 -NET_IP_ALIGN, 854 (skb->data - 855 NET_IP_ALIGN), 856 (length + 857 NET_IP_ALIGN)); 858 /* save the skb in buffer_info as good */ 859 buffer_info->skb = skb; 860 skb = new_skb; 861 } 862 /* else just continue with the old one */ 863 } 864 /* end copybreak code */ 865 skb_put(skb, length); 866 867 /* Receive Checksum Offload */ 868 e1000_rx_checksum(adapter, 869 (u32)(status) | 870 ((u32)(rx_desc->errors) << 24), 871 le16_to_cpu(rx_desc->csum), skb); 872 873 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); 874 875next_desc: 876 rx_desc->status = 0; 877 878 /* return some buffers to hardware, one at a time is too slow */ 879 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 880 adapter->alloc_rx_buf(adapter, cleaned_count); 881 cleaned_count = 0; 882 } 883 884 /* use prefetched values */ 885 rx_desc = next_rxd; 886 buffer_info = next_buffer; 887 } 888 rx_ring->next_to_clean = i; 889 890 cleaned_count = e1000_desc_unused(rx_ring); 891 if (cleaned_count) 892 adapter->alloc_rx_buf(adapter, cleaned_count); 893 894 adapter->total_rx_bytes += total_rx_bytes; 895 adapter->total_rx_packets += total_rx_packets; 896 netdev->stats.rx_bytes += total_rx_bytes; 897 netdev->stats.rx_packets += total_rx_packets; 898 return cleaned; 899} 900 901static void e1000_put_txbuf(struct e1000_adapter *adapter, 902 struct e1000_buffer *buffer_info) 903{ 904 if (buffer_info->dma) { 905 if (buffer_info->mapped_as_page) 906 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 907 buffer_info->length, DMA_TO_DEVICE); 908 else 909 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 910 buffer_info->length, DMA_TO_DEVICE); 911 buffer_info->dma = 0; 912 } 913 if (buffer_info->skb) { 914 dev_kfree_skb_any(buffer_info->skb); 915 buffer_info->skb = NULL; 916 } 917 buffer_info->time_stamp = 0; 918} 919 920static void e1000_print_hw_hang(struct work_struct *work) 921{ 922 struct e1000_adapter *adapter = container_of(work, 923 struct e1000_adapter, 924 print_hang_task); 925 struct e1000_ring *tx_ring = adapter->tx_ring; 926 unsigned int i = tx_ring->next_to_clean; 927 unsigned int eop = tx_ring->buffer_info[i].next_to_watch; 928 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); 929 struct e1000_hw *hw = &adapter->hw; 930 u16 phy_status, phy_1000t_status, phy_ext_status; 931 u16 pci_status; 932 933 e1e_rphy(hw, PHY_STATUS, &phy_status); 934 e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status); 935 e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status); 936 937 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); 938 939 /* detected Hardware unit hang */ 940 e_err("Detected Hardware Unit Hang:\n" 941 " TDH <%x>\n" 942 " TDT <%x>\n" 943 " next_to_use <%x>\n" 944 " next_to_clean <%x>\n" 945 "buffer_info[next_to_clean]:\n" 946 " time_stamp <%lx>\n" 947 " next_to_watch <%x>\n" 948 " jiffies <%lx>\n" 949 " next_to_watch.status <%x>\n" 950 "MAC Status <%x>\n" 951 "PHY Status <%x>\n" 952 "PHY 1000BASE-T Status <%x>\n" 953 "PHY Extended Status <%x>\n" 954 "PCI Status <%x>\n", 955 readl(adapter->hw.hw_addr + tx_ring->head), 956 readl(adapter->hw.hw_addr + tx_ring->tail), 957 tx_ring->next_to_use, 958 tx_ring->next_to_clean, 959 tx_ring->buffer_info[eop].time_stamp, 960 eop, 961 jiffies, 962 eop_desc->upper.fields.status, 963 er32(STATUS), 964 phy_status, 965 phy_1000t_status, 966 phy_ext_status, 967 pci_status); 968} 969 970/** 971 * e1000_clean_tx_irq - Reclaim resources after transmit completes 972 * @adapter: board private structure 973 * 974 * the return value indicates whether actual cleaning was done, there 975 * is no guarantee that everything was cleaned 976 **/ 977static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) 978{ 979 struct net_device *netdev = adapter->netdev; 980 struct e1000_hw *hw = &adapter->hw; 981 struct e1000_ring *tx_ring = adapter->tx_ring; 982 struct e1000_tx_desc *tx_desc, *eop_desc; 983 struct e1000_buffer *buffer_info; 984 unsigned int i, eop; 985 unsigned int count = 0; 986 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 987 988 i = tx_ring->next_to_clean; 989 eop = tx_ring->buffer_info[i].next_to_watch; 990 eop_desc = E1000_TX_DESC(*tx_ring, eop); 991 992 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 993 (count < tx_ring->count)) { 994 bool cleaned = false; 995 rmb(); /* read buffer_info after eop_desc */ 996 for (; !cleaned; count++) { 997 tx_desc = E1000_TX_DESC(*tx_ring, i); 998 buffer_info = &tx_ring->buffer_info[i]; 999 cleaned = (i == eop); 1000 1001 if (cleaned) { 1002 total_tx_packets += buffer_info->segs; 1003 total_tx_bytes += buffer_info->bytecount; 1004 } 1005 1006 e1000_put_txbuf(adapter, buffer_info); 1007 tx_desc->upper.data = 0; 1008 1009 i++; 1010 if (i == tx_ring->count) 1011 i = 0; 1012 } 1013 1014 if (i == tx_ring->next_to_use) 1015 break; 1016 eop = tx_ring->buffer_info[i].next_to_watch; 1017 eop_desc = E1000_TX_DESC(*tx_ring, eop); 1018 } 1019 1020 tx_ring->next_to_clean = i; 1021 1022#define TX_WAKE_THRESHOLD 32 1023 if (count && netif_carrier_ok(netdev) && 1024 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { 1025 /* Make sure that anybody stopping the queue after this 1026 * sees the new next_to_clean. 1027 */ 1028 smp_mb(); 1029 1030 if (netif_queue_stopped(netdev) && 1031 !(test_bit(__E1000_DOWN, &adapter->state))) { 1032 netif_wake_queue(netdev); 1033 ++adapter->restart_queue; 1034 } 1035 } 1036 1037 if (adapter->detect_tx_hung) { 1038 /* 1039 * Detect a transmit hang in hardware, this serializes the 1040 * check with the clearing of time_stamp and movement of i 1041 */ 1042 adapter->detect_tx_hung = 0; 1043 if (tx_ring->buffer_info[i].time_stamp && 1044 time_after(jiffies, tx_ring->buffer_info[i].time_stamp 1045 + (adapter->tx_timeout_factor * HZ)) && 1046 !(er32(STATUS) & E1000_STATUS_TXOFF)) { 1047 schedule_work(&adapter->print_hang_task); 1048 netif_stop_queue(netdev); 1049 } 1050 } 1051 adapter->total_tx_bytes += total_tx_bytes; 1052 adapter->total_tx_packets += total_tx_packets; 1053 netdev->stats.tx_bytes += total_tx_bytes; 1054 netdev->stats.tx_packets += total_tx_packets; 1055 return (count < tx_ring->count); 1056} 1057 1058/** 1059 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split 1060 * @adapter: board private structure 1061 * 1062 * the return value indicates whether actual cleaning was done, there 1063 * is no guarantee that everything was cleaned 1064 **/ 1065static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, 1066 int *work_done, int work_to_do) 1067{ 1068 struct e1000_hw *hw = &adapter->hw; 1069 union e1000_rx_desc_packet_split *rx_desc, *next_rxd; 1070 struct net_device *netdev = adapter->netdev; 1071 struct pci_dev *pdev = adapter->pdev; 1072 struct e1000_ring *rx_ring = adapter->rx_ring; 1073 struct e1000_buffer *buffer_info, *next_buffer; 1074 struct e1000_ps_page *ps_page; 1075 struct sk_buff *skb; 1076 unsigned int i, j; 1077 u32 length, staterr; 1078 int cleaned_count = 0; 1079 bool cleaned = 0; 1080 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1081 1082 i = rx_ring->next_to_clean; 1083 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 1084 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 1085 buffer_info = &rx_ring->buffer_info[i]; 1086 1087 while (staterr & E1000_RXD_STAT_DD) { 1088 if (*work_done >= work_to_do) 1089 break; 1090 (*work_done)++; 1091 skb = buffer_info->skb; 1092 rmb(); /* read descriptor and rx_buffer_info after status DD */ 1093 1094 /* in the packet split case this is header only */ 1095 prefetch(skb->data - NET_IP_ALIGN); 1096 1097 i++; 1098 if (i == rx_ring->count) 1099 i = 0; 1100 next_rxd = E1000_RX_DESC_PS(*rx_ring, i); 1101 prefetch(next_rxd); 1102 1103 next_buffer = &rx_ring->buffer_info[i]; 1104 1105 cleaned = 1; 1106 cleaned_count++; 1107 dma_unmap_single(&pdev->dev, buffer_info->dma, 1108 adapter->rx_ps_bsize0, 1109 DMA_FROM_DEVICE); 1110 buffer_info->dma = 0; 1111 1112 /* see !EOP comment in other rx routine */ 1113 if (!(staterr & E1000_RXD_STAT_EOP)) 1114 adapter->flags2 |= FLAG2_IS_DISCARDING; 1115 1116 if (adapter->flags2 & FLAG2_IS_DISCARDING) { 1117 e_dbg("Packet Split buffers didn't pick up the full " 1118 "packet\n"); 1119 dev_kfree_skb_irq(skb); 1120 if (staterr & E1000_RXD_STAT_EOP) 1121 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 1122 goto next_desc; 1123 } 1124 1125 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { 1126 dev_kfree_skb_irq(skb); 1127 goto next_desc; 1128 } 1129 1130 length = le16_to_cpu(rx_desc->wb.middle.length0); 1131 1132 if (!length) { 1133 e_dbg("Last part of the packet spanning multiple " 1134 "descriptors\n"); 1135 dev_kfree_skb_irq(skb); 1136 goto next_desc; 1137 } 1138 1139 /* Good Receive */ 1140 skb_put(skb, length); 1141 1142 { 1143 /* 1144 * this looks ugly, but it seems compiler issues make it 1145 * more efficient than reusing j 1146 */ 1147 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); 1148 1149 /* 1150 * page alloc/put takes too long and effects small packet 1151 * throughput, so unsplit small packets and save the alloc/put 1152 * only valid in softirq (napi) context to call kmap_* 1153 */ 1154 if (l1 && (l1 <= copybreak) && 1155 ((length + l1) <= adapter->rx_ps_bsize0)) { 1156 u8 *vaddr; 1157 1158 ps_page = &buffer_info->ps_pages[0]; 1159 1160 /* 1161 * there is no documentation about how to call 1162 * kmap_atomic, so we can't hold the mapping 1163 * very long 1164 */ 1165 dma_sync_single_for_cpu(&pdev->dev, ps_page->dma, 1166 PAGE_SIZE, DMA_FROM_DEVICE); 1167 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); 1168 memcpy(skb_tail_pointer(skb), vaddr, l1); 1169 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); 1170 dma_sync_single_for_device(&pdev->dev, ps_page->dma, 1171 PAGE_SIZE, DMA_FROM_DEVICE); 1172 1173 /* remove the CRC */ 1174 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) 1175 l1 -= 4; 1176 1177 skb_put(skb, l1); 1178 goto copydone; 1179 } /* if */ 1180 } 1181 1182 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 1183 length = le16_to_cpu(rx_desc->wb.upper.length[j]); 1184 if (!length) 1185 break; 1186 1187 ps_page = &buffer_info->ps_pages[j]; 1188 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, 1189 DMA_FROM_DEVICE); 1190 ps_page->dma = 0; 1191 skb_fill_page_desc(skb, j, ps_page->page, 0, length); 1192 ps_page->page = NULL; 1193 skb->len += length; 1194 skb->data_len += length; 1195 skb->truesize += length; 1196 } 1197 1198 /* strip the ethernet crc, problem is we're using pages now so 1199 * this whole operation can get a little cpu intensive 1200 */ 1201 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) 1202 pskb_trim(skb, skb->len - 4); 1203 1204copydone: 1205 total_rx_bytes += skb->len; 1206 total_rx_packets++; 1207 1208 e1000_rx_checksum(adapter, staterr, le16_to_cpu( 1209 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); 1210 1211 if (rx_desc->wb.upper.header_status & 1212 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) 1213 adapter->rx_hdr_split++; 1214 1215 e1000_receive_skb(adapter, netdev, skb, 1216 staterr, rx_desc->wb.middle.vlan); 1217 1218next_desc: 1219 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); 1220 buffer_info->skb = NULL; 1221 1222 /* return some buffers to hardware, one at a time is too slow */ 1223 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 1224 adapter->alloc_rx_buf(adapter, cleaned_count); 1225 cleaned_count = 0; 1226 } 1227 1228 /* use prefetched values */ 1229 rx_desc = next_rxd; 1230 buffer_info = next_buffer; 1231 1232 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 1233 } 1234 rx_ring->next_to_clean = i; 1235 1236 cleaned_count = e1000_desc_unused(rx_ring); 1237 if (cleaned_count) 1238 adapter->alloc_rx_buf(adapter, cleaned_count); 1239 1240 adapter->total_rx_bytes += total_rx_bytes; 1241 adapter->total_rx_packets += total_rx_packets; 1242 netdev->stats.rx_bytes += total_rx_bytes; 1243 netdev->stats.rx_packets += total_rx_packets; 1244 return cleaned; 1245} 1246 1247/** 1248 * e1000_consume_page - helper function 1249 **/ 1250static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, 1251 u16 length) 1252{ 1253 bi->page = NULL; 1254 skb->len += length; 1255 skb->data_len += length; 1256 skb->truesize += length; 1257} 1258 1259/** 1260 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 1261 * @adapter: board private structure 1262 * 1263 * the return value indicates whether actual cleaning was done, there 1264 * is no guarantee that everything was cleaned 1265 **/ 1266 1267static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 1268 int *work_done, int work_to_do) 1269{ 1270 struct net_device *netdev = adapter->netdev; 1271 struct pci_dev *pdev = adapter->pdev; 1272 struct e1000_ring *rx_ring = adapter->rx_ring; 1273 struct e1000_rx_desc *rx_desc, *next_rxd; 1274 struct e1000_buffer *buffer_info, *next_buffer; 1275 u32 length; 1276 unsigned int i; 1277 int cleaned_count = 0; 1278 bool cleaned = false; 1279 unsigned int total_rx_bytes=0, total_rx_packets=0; 1280 1281 i = rx_ring->next_to_clean; 1282 rx_desc = E1000_RX_DESC(*rx_ring, i); 1283 buffer_info = &rx_ring->buffer_info[i]; 1284 1285 while (rx_desc->status & E1000_RXD_STAT_DD) { 1286 struct sk_buff *skb; 1287 u8 status; 1288 1289 if (*work_done >= work_to_do) 1290 break; 1291 (*work_done)++; 1292 rmb(); /* read descriptor and rx_buffer_info after status DD */ 1293 1294 status = rx_desc->status; 1295 skb = buffer_info->skb; 1296 buffer_info->skb = NULL; 1297 1298 ++i; 1299 if (i == rx_ring->count) 1300 i = 0; 1301 next_rxd = E1000_RX_DESC(*rx_ring, i); 1302 prefetch(next_rxd); 1303 1304 next_buffer = &rx_ring->buffer_info[i]; 1305 1306 cleaned = true; 1307 cleaned_count++; 1308 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE, 1309 DMA_FROM_DEVICE); 1310 buffer_info->dma = 0; 1311 1312 length = le16_to_cpu(rx_desc->length); 1313 1314 /* errors is only valid for DD + EOP descriptors */ 1315 if (unlikely((status & E1000_RXD_STAT_EOP) && 1316 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 1317 /* recycle both page and skb */ 1318 buffer_info->skb = skb; 1319 /* an error means any chain goes out the window 1320 * too */ 1321 if (rx_ring->rx_skb_top) 1322 dev_kfree_skb(rx_ring->rx_skb_top); 1323 rx_ring->rx_skb_top = NULL; 1324 goto next_desc; 1325 } 1326 1327#define rxtop rx_ring->rx_skb_top 1328 if (!(status & E1000_RXD_STAT_EOP)) { 1329 /* this descriptor is only the beginning (or middle) */ 1330 if (!rxtop) { 1331 /* this is the beginning of a chain */ 1332 rxtop = skb; 1333 skb_fill_page_desc(rxtop, 0, buffer_info->page, 1334 0, length); 1335 } else { 1336 /* this is the middle of a chain */ 1337 skb_fill_page_desc(rxtop, 1338 skb_shinfo(rxtop)->nr_frags, 1339 buffer_info->page, 0, length); 1340 /* re-use the skb, only consumed the page */ 1341 buffer_info->skb = skb; 1342 } 1343 e1000_consume_page(buffer_info, rxtop, length); 1344 goto next_desc; 1345 } else { 1346 if (rxtop) { 1347 /* end of the chain */ 1348 skb_fill_page_desc(rxtop, 1349 skb_shinfo(rxtop)->nr_frags, 1350 buffer_info->page, 0, length); 1351 /* re-use the current skb, we only consumed the 1352 * page */ 1353 buffer_info->skb = skb; 1354 skb = rxtop; 1355 rxtop = NULL; 1356 e1000_consume_page(buffer_info, skb, length); 1357 } else { 1358 /* no chain, got EOP, this buf is the packet 1359 * copybreak to save the put_page/alloc_page */ 1360 if (length <= copybreak && 1361 skb_tailroom(skb) >= length) { 1362 u8 *vaddr; 1363 vaddr = kmap_atomic(buffer_info->page, 1364 KM_SKB_DATA_SOFTIRQ); 1365 memcpy(skb_tail_pointer(skb), vaddr, 1366 length); 1367 kunmap_atomic(vaddr, 1368 KM_SKB_DATA_SOFTIRQ); 1369 /* re-use the page, so don't erase 1370 * buffer_info->page */ 1371 skb_put(skb, length); 1372 } else { 1373 skb_fill_page_desc(skb, 0, 1374 buffer_info->page, 0, 1375 length); 1376 e1000_consume_page(buffer_info, skb, 1377 length); 1378 } 1379 } 1380 } 1381 1382 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 1383 e1000_rx_checksum(adapter, 1384 (u32)(status) | 1385 ((u32)(rx_desc->errors) << 24), 1386 le16_to_cpu(rx_desc->csum), skb); 1387 1388 /* probably a little skewed due to removing CRC */ 1389 total_rx_bytes += skb->len; 1390 total_rx_packets++; 1391 1392 /* eth type trans needs skb->data to point to something */ 1393 if (!pskb_may_pull(skb, ETH_HLEN)) { 1394 e_err("pskb_may_pull failed.\n"); 1395 dev_kfree_skb(skb); 1396 goto next_desc; 1397 } 1398 1399 e1000_receive_skb(adapter, netdev, skb, status, 1400 rx_desc->special); 1401 1402next_desc: 1403 rx_desc->status = 0; 1404 1405 /* return some buffers to hardware, one at a time is too slow */ 1406 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 1407 adapter->alloc_rx_buf(adapter, cleaned_count); 1408 cleaned_count = 0; 1409 } 1410 1411 /* use prefetched values */ 1412 rx_desc = next_rxd; 1413 buffer_info = next_buffer; 1414 } 1415 rx_ring->next_to_clean = i; 1416 1417 cleaned_count = e1000_desc_unused(rx_ring); 1418 if (cleaned_count) 1419 adapter->alloc_rx_buf(adapter, cleaned_count); 1420 1421 adapter->total_rx_bytes += total_rx_bytes; 1422 adapter->total_rx_packets += total_rx_packets; 1423 netdev->stats.rx_bytes += total_rx_bytes; 1424 netdev->stats.rx_packets += total_rx_packets; 1425 return cleaned; 1426} 1427 1428/** 1429 * e1000_clean_rx_ring - Free Rx Buffers per Queue 1430 * @adapter: board private structure 1431 **/ 1432static void e1000_clean_rx_ring(struct e1000_adapter *adapter) 1433{ 1434 struct e1000_ring *rx_ring = adapter->rx_ring; 1435 struct e1000_buffer *buffer_info; 1436 struct e1000_ps_page *ps_page; 1437 struct pci_dev *pdev = adapter->pdev; 1438 unsigned int i, j; 1439 1440 /* Free all the Rx ring sk_buffs */ 1441 for (i = 0; i < rx_ring->count; i++) { 1442 buffer_info = &rx_ring->buffer_info[i]; 1443 if (buffer_info->dma) { 1444 if (adapter->clean_rx == e1000_clean_rx_irq) 1445 dma_unmap_single(&pdev->dev, buffer_info->dma, 1446 adapter->rx_buffer_len, 1447 DMA_FROM_DEVICE); 1448 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) 1449 dma_unmap_page(&pdev->dev, buffer_info->dma, 1450 PAGE_SIZE, 1451 DMA_FROM_DEVICE); 1452 else if (adapter->clean_rx == e1000_clean_rx_irq_ps) 1453 dma_unmap_single(&pdev->dev, buffer_info->dma, 1454 adapter->rx_ps_bsize0, 1455 DMA_FROM_DEVICE); 1456 buffer_info->dma = 0; 1457 } 1458 1459 if (buffer_info->page) { 1460 put_page(buffer_info->page); 1461 buffer_info->page = NULL; 1462 } 1463 1464 if (buffer_info->skb) { 1465 dev_kfree_skb(buffer_info->skb); 1466 buffer_info->skb = NULL; 1467 } 1468 1469 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 1470 ps_page = &buffer_info->ps_pages[j]; 1471 if (!ps_page->page) 1472 break; 1473 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, 1474 DMA_FROM_DEVICE); 1475 ps_page->dma = 0; 1476 put_page(ps_page->page); 1477 ps_page->page = NULL; 1478 } 1479 } 1480 1481 /* there also may be some cached data from a chained receive */ 1482 if (rx_ring->rx_skb_top) { 1483 dev_kfree_skb(rx_ring->rx_skb_top); 1484 rx_ring->rx_skb_top = NULL; 1485 } 1486 1487 /* Zero out the descriptor ring */ 1488 memset(rx_ring->desc, 0, rx_ring->size); 1489 1490 rx_ring->next_to_clean = 0; 1491 rx_ring->next_to_use = 0; 1492 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 1493 1494 writel(0, adapter->hw.hw_addr + rx_ring->head); 1495 writel(0, adapter->hw.hw_addr + rx_ring->tail); 1496} 1497 1498static void e1000e_downshift_workaround(struct work_struct *work) 1499{ 1500 struct e1000_adapter *adapter = container_of(work, 1501 struct e1000_adapter, downshift_task); 1502 1503 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); 1504} 1505 1506/** 1507 * e1000_intr_msi - Interrupt Handler 1508 * @irq: interrupt number 1509 * @data: pointer to a network interface device structure 1510 **/ 1511static irqreturn_t e1000_intr_msi(int irq, void *data) 1512{ 1513 struct net_device *netdev = data; 1514 struct e1000_adapter *adapter = netdev_priv(netdev); 1515 struct e1000_hw *hw = &adapter->hw; 1516 u32 icr = er32(ICR); 1517 1518 /* 1519 * read ICR disables interrupts using IAM 1520 */ 1521 1522 if (icr & E1000_ICR_LSC) { 1523 hw->mac.get_link_status = 1; 1524 /* 1525 * ICH8 workaround-- Call gig speed drop workaround on cable 1526 * disconnect (LSC) before accessing any PHY registers 1527 */ 1528 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1529 (!(er32(STATUS) & E1000_STATUS_LU))) 1530 schedule_work(&adapter->downshift_task); 1531 1532 /* 1533 * 80003ES2LAN workaround-- For packet buffer work-around on 1534 * link down event; disable receives here in the ISR and reset 1535 * adapter in watchdog 1536 */ 1537 if (netif_carrier_ok(netdev) && 1538 adapter->flags & FLAG_RX_NEEDS_RESTART) { 1539 /* disable receives */ 1540 u32 rctl = er32(RCTL); 1541 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1542 adapter->flags |= FLAG_RX_RESTART_NOW; 1543 } 1544 /* guard against interrupt when we're going down */ 1545 if (!test_bit(__E1000_DOWN, &adapter->state)) 1546 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1547 } 1548 1549 if (napi_schedule_prep(&adapter->napi)) { 1550 adapter->total_tx_bytes = 0; 1551 adapter->total_tx_packets = 0; 1552 adapter->total_rx_bytes = 0; 1553 adapter->total_rx_packets = 0; 1554 __napi_schedule(&adapter->napi); 1555 } 1556 1557 return IRQ_HANDLED; 1558} 1559 1560/** 1561 * e1000_intr - Interrupt Handler 1562 * @irq: interrupt number 1563 * @data: pointer to a network interface device structure 1564 **/ 1565static irqreturn_t e1000_intr(int irq, void *data) 1566{ 1567 struct net_device *netdev = data; 1568 struct e1000_adapter *adapter = netdev_priv(netdev); 1569 struct e1000_hw *hw = &adapter->hw; 1570 u32 rctl, icr = er32(ICR); 1571 1572 if (!icr || test_bit(__E1000_DOWN, &adapter->state)) 1573 return IRQ_NONE; /* Not our interrupt */ 1574 1575 /* 1576 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is 1577 * not set, then the adapter didn't send an interrupt 1578 */ 1579 if (!(icr & E1000_ICR_INT_ASSERTED)) 1580 return IRQ_NONE; 1581 1582 /* 1583 * Interrupt Auto-Mask...upon reading ICR, 1584 * interrupts are masked. No need for the 1585 * IMC write 1586 */ 1587 1588 if (icr & E1000_ICR_LSC) { 1589 hw->mac.get_link_status = 1; 1590 /* 1591 * ICH8 workaround-- Call gig speed drop workaround on cable 1592 * disconnect (LSC) before accessing any PHY registers 1593 */ 1594 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1595 (!(er32(STATUS) & E1000_STATUS_LU))) 1596 schedule_work(&adapter->downshift_task); 1597 1598 /* 1599 * 80003ES2LAN workaround-- 1600 * For packet buffer work-around on link down event; 1601 * disable receives here in the ISR and 1602 * reset adapter in watchdog 1603 */ 1604 if (netif_carrier_ok(netdev) && 1605 (adapter->flags & FLAG_RX_NEEDS_RESTART)) { 1606 /* disable receives */ 1607 rctl = er32(RCTL); 1608 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1609 adapter->flags |= FLAG_RX_RESTART_NOW; 1610 } 1611 /* guard against interrupt when we're going down */ 1612 if (!test_bit(__E1000_DOWN, &adapter->state)) 1613 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1614 } 1615 1616 if (napi_schedule_prep(&adapter->napi)) { 1617 adapter->total_tx_bytes = 0; 1618 adapter->total_tx_packets = 0; 1619 adapter->total_rx_bytes = 0; 1620 adapter->total_rx_packets = 0; 1621 __napi_schedule(&adapter->napi); 1622 } 1623 1624 return IRQ_HANDLED; 1625} 1626 1627static irqreturn_t e1000_msix_other(int irq, void *data) 1628{ 1629 struct net_device *netdev = data; 1630 struct e1000_adapter *adapter = netdev_priv(netdev); 1631 struct e1000_hw *hw = &adapter->hw; 1632 u32 icr = er32(ICR); 1633 1634 if (!(icr & E1000_ICR_INT_ASSERTED)) { 1635 if (!test_bit(__E1000_DOWN, &adapter->state)) 1636 ew32(IMS, E1000_IMS_OTHER); 1637 return IRQ_NONE; 1638 } 1639 1640 if (icr & adapter->eiac_mask) 1641 ew32(ICS, (icr & adapter->eiac_mask)); 1642 1643 if (icr & E1000_ICR_OTHER) { 1644 if (!(icr & E1000_ICR_LSC)) 1645 goto no_link_interrupt; 1646 hw->mac.get_link_status = 1; 1647 /* guard against interrupt when we're going down */ 1648 if (!test_bit(__E1000_DOWN, &adapter->state)) 1649 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1650 } 1651 1652no_link_interrupt: 1653 if (!test_bit(__E1000_DOWN, &adapter->state)) 1654 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER); 1655 1656 return IRQ_HANDLED; 1657} 1658 1659 1660static irqreturn_t e1000_intr_msix_tx(int irq, void *data) 1661{ 1662 struct net_device *netdev = data; 1663 struct e1000_adapter *adapter = netdev_priv(netdev); 1664 struct e1000_hw *hw = &adapter->hw; 1665 struct e1000_ring *tx_ring = adapter->tx_ring; 1666 1667 1668 adapter->total_tx_bytes = 0; 1669 adapter->total_tx_packets = 0; 1670 1671 if (!e1000_clean_tx_irq(adapter)) 1672 /* Ring was not completely cleaned, so fire another interrupt */ 1673 ew32(ICS, tx_ring->ims_val); 1674 1675 return IRQ_HANDLED; 1676} 1677 1678static irqreturn_t e1000_intr_msix_rx(int irq, void *data) 1679{ 1680 struct net_device *netdev = data; 1681 struct e1000_adapter *adapter = netdev_priv(netdev); 1682 1683 /* Write the ITR value calculated at the end of the 1684 * previous interrupt. 1685 */ 1686 if (adapter->rx_ring->set_itr) { 1687 writel(1000000000 / (adapter->rx_ring->itr_val * 256), 1688 adapter->hw.hw_addr + adapter->rx_ring->itr_register); 1689 adapter->rx_ring->set_itr = 0; 1690 } 1691 1692 if (napi_schedule_prep(&adapter->napi)) { 1693 adapter->total_rx_bytes = 0; 1694 adapter->total_rx_packets = 0; 1695 __napi_schedule(&adapter->napi); 1696 } 1697 return IRQ_HANDLED; 1698} 1699 1700/** 1701 * e1000_configure_msix - Configure MSI-X hardware 1702 * 1703 * e1000_configure_msix sets up the hardware to properly 1704 * generate MSI-X interrupts. 1705 **/ 1706static void e1000_configure_msix(struct e1000_adapter *adapter) 1707{ 1708 struct e1000_hw *hw = &adapter->hw; 1709 struct e1000_ring *rx_ring = adapter->rx_ring; 1710 struct e1000_ring *tx_ring = adapter->tx_ring; 1711 int vector = 0; 1712 u32 ctrl_ext, ivar = 0; 1713 1714 adapter->eiac_mask = 0; 1715 1716 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ 1717 if (hw->mac.type == e1000_82574) { 1718 u32 rfctl = er32(RFCTL); 1719 rfctl |= E1000_RFCTL_ACK_DIS; 1720 ew32(RFCTL, rfctl); 1721 } 1722 1723#define E1000_IVAR_INT_ALLOC_VALID 0x8 1724 /* Configure Rx vector */ 1725 rx_ring->ims_val = E1000_IMS_RXQ0; 1726 adapter->eiac_mask |= rx_ring->ims_val; 1727 if (rx_ring->itr_val) 1728 writel(1000000000 / (rx_ring->itr_val * 256), 1729 hw->hw_addr + rx_ring->itr_register); 1730 else 1731 writel(1, hw->hw_addr + rx_ring->itr_register); 1732 ivar = E1000_IVAR_INT_ALLOC_VALID | vector; 1733 1734 /* Configure Tx vector */ 1735 tx_ring->ims_val = E1000_IMS_TXQ0; 1736 vector++; 1737 if (tx_ring->itr_val) 1738 writel(1000000000 / (tx_ring->itr_val * 256), 1739 hw->hw_addr + tx_ring->itr_register); 1740 else 1741 writel(1, hw->hw_addr + tx_ring->itr_register); 1742 adapter->eiac_mask |= tx_ring->ims_val; 1743 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); 1744 1745 /* set vector for Other Causes, e.g. link changes */ 1746 vector++; 1747 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); 1748 if (rx_ring->itr_val) 1749 writel(1000000000 / (rx_ring->itr_val * 256), 1750 hw->hw_addr + E1000_EITR_82574(vector)); 1751 else 1752 writel(1, hw->hw_addr + E1000_EITR_82574(vector)); 1753 1754 /* Cause Tx interrupts on every write back */ 1755 ivar |= (1 << 31); 1756 1757 ew32(IVAR, ivar); 1758 1759 /* enable MSI-X PBA support */ 1760 ctrl_ext = er32(CTRL_EXT); 1761 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR; 1762 1763 /* Auto-Mask Other interrupts upon ICR read */ 1764#define E1000_EIAC_MASK_82574 0x01F00000 1765 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER); 1766 ctrl_ext |= E1000_CTRL_EXT_EIAME; 1767 ew32(CTRL_EXT, ctrl_ext); 1768 e1e_flush(); 1769} 1770 1771void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) 1772{ 1773 if (adapter->msix_entries) { 1774 pci_disable_msix(adapter->pdev); 1775 kfree(adapter->msix_entries); 1776 adapter->msix_entries = NULL; 1777 } else if (adapter->flags & FLAG_MSI_ENABLED) { 1778 pci_disable_msi(adapter->pdev); 1779 adapter->flags &= ~FLAG_MSI_ENABLED; 1780 } 1781} 1782 1783/** 1784 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported 1785 * 1786 * Attempt to configure interrupts using the best available 1787 * capabilities of the hardware and kernel. 1788 **/ 1789void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) 1790{ 1791 int err; 1792 int i; 1793 1794 switch (adapter->int_mode) { 1795 case E1000E_INT_MODE_MSIX: 1796 if (adapter->flags & FLAG_HAS_MSIX) { 1797 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */ 1798 adapter->msix_entries = kcalloc(adapter->num_vectors, 1799 sizeof(struct msix_entry), 1800 GFP_KERNEL); 1801 if (adapter->msix_entries) { 1802 for (i = 0; i < adapter->num_vectors; i++) 1803 adapter->msix_entries[i].entry = i; 1804 1805 err = pci_enable_msix(adapter->pdev, 1806 adapter->msix_entries, 1807 adapter->num_vectors); 1808 if (err == 0) { 1809 return; 1810 } 1811 } 1812 /* MSI-X failed, so fall through and try MSI */ 1813 e_err("Failed to initialize MSI-X interrupts. " 1814 "Falling back to MSI interrupts.\n"); 1815 e1000e_reset_interrupt_capability(adapter); 1816 } 1817 adapter->int_mode = E1000E_INT_MODE_MSI; 1818 /* Fall through */ 1819 case E1000E_INT_MODE_MSI: 1820 if (!pci_enable_msi(adapter->pdev)) { 1821 adapter->flags |= FLAG_MSI_ENABLED; 1822 } else { 1823 adapter->int_mode = E1000E_INT_MODE_LEGACY; 1824 e_err("Failed to initialize MSI interrupts. Falling " 1825 "back to legacy interrupts.\n"); 1826 } 1827 /* Fall through */ 1828 case E1000E_INT_MODE_LEGACY: 1829 /* Don't do anything; this is the system default */ 1830 break; 1831 } 1832 1833 /* store the number of vectors being used */ 1834 adapter->num_vectors = 1; 1835} 1836 1837/** 1838 * e1000_request_msix - Initialize MSI-X interrupts 1839 * 1840 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the 1841 * kernel. 1842 **/ 1843static int e1000_request_msix(struct e1000_adapter *adapter) 1844{ 1845 struct net_device *netdev = adapter->netdev; 1846 int err = 0, vector = 0; 1847 1848 if (strlen(netdev->name) < (IFNAMSIZ - 5)) 1849 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); 1850 else 1851 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); 1852 err = request_irq(adapter->msix_entries[vector].vector, 1853 e1000_intr_msix_rx, 0, adapter->rx_ring->name, 1854 netdev); 1855 if (err) 1856 goto out; 1857 adapter->rx_ring->itr_register = E1000_EITR_82574(vector); 1858 adapter->rx_ring->itr_val = adapter->itr; 1859 vector++; 1860 1861 if (strlen(netdev->name) < (IFNAMSIZ - 5)) 1862 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); 1863 else 1864 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); 1865 err = request_irq(adapter->msix_entries[vector].vector, 1866 e1000_intr_msix_tx, 0, adapter->tx_ring->name, 1867 netdev); 1868 if (err) 1869 goto out; 1870 adapter->tx_ring->itr_register = E1000_EITR_82574(vector); 1871 adapter->tx_ring->itr_val = adapter->itr; 1872 vector++; 1873 1874 err = request_irq(adapter->msix_entries[vector].vector, 1875 e1000_msix_other, 0, netdev->name, netdev); 1876 if (err) 1877 goto out; 1878 1879 e1000_configure_msix(adapter); 1880 return 0; 1881out: 1882 return err; 1883} 1884 1885/** 1886 * e1000_request_irq - initialize interrupts 1887 * 1888 * Attempts to configure interrupts using the best available 1889 * capabilities of the hardware and kernel. 1890 **/ 1891static int e1000_request_irq(struct e1000_adapter *adapter) 1892{ 1893 struct net_device *netdev = adapter->netdev; 1894 int err; 1895 1896 if (adapter->msix_entries) { 1897 err = e1000_request_msix(adapter); 1898 if (!err) 1899 return err; 1900 /* fall back to MSI */ 1901 e1000e_reset_interrupt_capability(adapter); 1902 adapter->int_mode = E1000E_INT_MODE_MSI; 1903 e1000e_set_interrupt_capability(adapter); 1904 } 1905 if (adapter->flags & FLAG_MSI_ENABLED) { 1906 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, 1907 netdev->name, netdev); 1908 if (!err) 1909 return err; 1910 1911 /* fall back to legacy interrupt */ 1912 e1000e_reset_interrupt_capability(adapter); 1913 adapter->int_mode = E1000E_INT_MODE_LEGACY; 1914 } 1915 1916 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, 1917 netdev->name, netdev); 1918 if (err) 1919 e_err("Unable to allocate interrupt, Error: %d\n", err); 1920 1921 return err; 1922} 1923 1924static void e1000_free_irq(struct e1000_adapter *adapter) 1925{ 1926 struct net_device *netdev = adapter->netdev; 1927 1928 if (adapter->msix_entries) { 1929 int vector = 0; 1930 1931 free_irq(adapter->msix_entries[vector].vector, netdev); 1932 vector++; 1933 1934 free_irq(adapter->msix_entries[vector].vector, netdev); 1935 vector++; 1936 1937 /* Other Causes interrupt vector */ 1938 free_irq(adapter->msix_entries[vector].vector, netdev); 1939 return; 1940 } 1941 1942 free_irq(adapter->pdev->irq, netdev); 1943} 1944 1945/** 1946 * e1000_irq_disable - Mask off interrupt generation on the NIC 1947 **/ 1948static void e1000_irq_disable(struct e1000_adapter *adapter) 1949{ 1950 struct e1000_hw *hw = &adapter->hw; 1951 1952 ew32(IMC, ~0); 1953 if (adapter->msix_entries) 1954 ew32(EIAC_82574, 0); 1955 e1e_flush(); 1956 1957 if (adapter->msix_entries) { 1958 int i; 1959 for (i = 0; i < adapter->num_vectors; i++) 1960 synchronize_irq(adapter->msix_entries[i].vector); 1961 } else { 1962 synchronize_irq(adapter->pdev->irq); 1963 } 1964} 1965 1966/** 1967 * e1000_irq_enable - Enable default interrupt generation settings 1968 **/ 1969static void e1000_irq_enable(struct e1000_adapter *adapter) 1970{ 1971 struct e1000_hw *hw = &adapter->hw; 1972 1973 if (adapter->msix_entries) { 1974 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); 1975 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC); 1976 } else { 1977 ew32(IMS, IMS_ENABLE_MASK); 1978 } 1979 e1e_flush(); 1980} 1981 1982/** 1983 * e1000_get_hw_control - get control of the h/w from f/w 1984 * @adapter: address of board private structure 1985 * 1986 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. 1987 * For ASF and Pass Through versions of f/w this means that 1988 * the driver is loaded. For AMT version (only with 82573) 1989 * of the f/w this means that the network i/f is open. 1990 **/ 1991static void e1000_get_hw_control(struct e1000_adapter *adapter) 1992{ 1993 struct e1000_hw *hw = &adapter->hw; 1994 u32 ctrl_ext; 1995 u32 swsm; 1996 1997 /* Let firmware know the driver has taken over */ 1998 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 1999 swsm = er32(SWSM); 2000 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); 2001 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 2002 ctrl_ext = er32(CTRL_EXT); 2003 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 2004 } 2005} 2006 2007/** 2008 * e1000_release_hw_control - release control of the h/w to f/w 2009 * @adapter: address of board private structure 2010 * 2011 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. 2012 * For ASF and Pass Through versions of f/w this means that the 2013 * driver is no longer loaded. For AMT version (only with 82573) i 2014 * of the f/w this means that the network i/f is closed. 2015 * 2016 **/ 2017static void e1000_release_hw_control(struct e1000_adapter *adapter) 2018{ 2019 struct e1000_hw *hw = &adapter->hw; 2020 u32 ctrl_ext; 2021 u32 swsm; 2022 2023 /* Let firmware taken over control of h/w */ 2024 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 2025 swsm = er32(SWSM); 2026 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); 2027 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 2028 ctrl_ext = er32(CTRL_EXT); 2029 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 2030 } 2031} 2032 2033/** 2034 * @e1000_alloc_ring - allocate memory for a ring structure 2035 **/ 2036static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, 2037 struct e1000_ring *ring) 2038{ 2039 struct pci_dev *pdev = adapter->pdev; 2040 2041 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, 2042 GFP_KERNEL); 2043 if (!ring->desc) 2044 return -ENOMEM; 2045 2046 return 0; 2047} 2048 2049/** 2050 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) 2051 * @adapter: board private structure 2052 * 2053 * Return 0 on success, negative on failure 2054 **/ 2055int e1000e_setup_tx_resources(struct e1000_adapter *adapter) 2056{ 2057 struct e1000_ring *tx_ring = adapter->tx_ring; 2058 int err = -ENOMEM, size; 2059 2060 size = sizeof(struct e1000_buffer) * tx_ring->count; 2061 tx_ring->buffer_info = vmalloc(size); 2062 if (!tx_ring->buffer_info) 2063 goto err; 2064 memset(tx_ring->buffer_info, 0, size); 2065 2066 /* round up to nearest 4K */ 2067 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 2068 tx_ring->size = ALIGN(tx_ring->size, 4096); 2069 2070 err = e1000_alloc_ring_dma(adapter, tx_ring); 2071 if (err) 2072 goto err; 2073 2074 tx_ring->next_to_use = 0; 2075 tx_ring->next_to_clean = 0; 2076 2077 return 0; 2078err: 2079 vfree(tx_ring->buffer_info); 2080 e_err("Unable to allocate memory for the transmit descriptor ring\n"); 2081 return err; 2082} 2083 2084/** 2085 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) 2086 * @adapter: board private structure 2087 * 2088 * Returns 0 on success, negative on failure 2089 **/ 2090int e1000e_setup_rx_resources(struct e1000_adapter *adapter) 2091{ 2092 struct e1000_ring *rx_ring = adapter->rx_ring; 2093 struct e1000_buffer *buffer_info; 2094 int i, size, desc_len, err = -ENOMEM; 2095 2096 size = sizeof(struct e1000_buffer) * rx_ring->count; 2097 rx_ring->buffer_info = vmalloc(size); 2098 if (!rx_ring->buffer_info) 2099 goto err; 2100 memset(rx_ring->buffer_info, 0, size); 2101 2102 for (i = 0; i < rx_ring->count; i++) { 2103 buffer_info = &rx_ring->buffer_info[i]; 2104 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, 2105 sizeof(struct e1000_ps_page), 2106 GFP_KERNEL); 2107 if (!buffer_info->ps_pages) 2108 goto err_pages; 2109 } 2110 2111 desc_len = sizeof(union e1000_rx_desc_packet_split); 2112 2113 /* Round up to nearest 4K */ 2114 rx_ring->size = rx_ring->count * desc_len; 2115 rx_ring->size = ALIGN(rx_ring->size, 4096); 2116 2117 err = e1000_alloc_ring_dma(adapter, rx_ring); 2118 if (err) 2119 goto err_pages; 2120 2121 rx_ring->next_to_clean = 0; 2122 rx_ring->next_to_use = 0; 2123 rx_ring->rx_skb_top = NULL; 2124 2125 return 0; 2126 2127err_pages: 2128 for (i = 0; i < rx_ring->count; i++) { 2129 buffer_info = &rx_ring->buffer_info[i]; 2130 kfree(buffer_info->ps_pages); 2131 } 2132err: 2133 vfree(rx_ring->buffer_info); 2134 e_err("Unable to allocate memory for the transmit descriptor ring\n"); 2135 return err; 2136} 2137 2138/** 2139 * e1000_clean_tx_ring - Free Tx Buffers 2140 * @adapter: board private structure 2141 **/ 2142static void e1000_clean_tx_ring(struct e1000_adapter *adapter) 2143{ 2144 struct e1000_ring *tx_ring = adapter->tx_ring; 2145 struct e1000_buffer *buffer_info; 2146 unsigned long size; 2147 unsigned int i; 2148 2149 for (i = 0; i < tx_ring->count; i++) { 2150 buffer_info = &tx_ring->buffer_info[i]; 2151 e1000_put_txbuf(adapter, buffer_info); 2152 } 2153 2154 size = sizeof(struct e1000_buffer) * tx_ring->count; 2155 memset(tx_ring->buffer_info, 0, size); 2156 2157 memset(tx_ring->desc, 0, tx_ring->size); 2158 2159 tx_ring->next_to_use = 0; 2160 tx_ring->next_to_clean = 0; 2161 2162 writel(0, adapter->hw.hw_addr + tx_ring->head); 2163 writel(0, adapter->hw.hw_addr + tx_ring->tail); 2164} 2165 2166/** 2167 * e1000e_free_tx_resources - Free Tx Resources per Queue 2168 * @adapter: board private structure 2169 * 2170 * Free all transmit software resources 2171 **/ 2172void e1000e_free_tx_resources(struct e1000_adapter *adapter) 2173{ 2174 struct pci_dev *pdev = adapter->pdev; 2175 struct e1000_ring *tx_ring = adapter->tx_ring; 2176 2177 e1000_clean_tx_ring(adapter); 2178 2179 vfree(tx_ring->buffer_info); 2180 tx_ring->buffer_info = NULL; 2181 2182 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 2183 tx_ring->dma); 2184 tx_ring->desc = NULL; 2185} 2186 2187/** 2188 * e1000e_free_rx_resources - Free Rx Resources 2189 * @adapter: board private structure 2190 * 2191 * Free all receive software resources 2192 **/ 2193 2194void e1000e_free_rx_resources(struct e1000_adapter *adapter) 2195{ 2196 struct pci_dev *pdev = adapter->pdev; 2197 struct e1000_ring *rx_ring = adapter->rx_ring; 2198 int i; 2199 2200 e1000_clean_rx_ring(adapter); 2201 2202 for (i = 0; i < rx_ring->count; i++) { 2203 kfree(rx_ring->buffer_info[i].ps_pages); 2204 } 2205 2206 vfree(rx_ring->buffer_info); 2207 rx_ring->buffer_info = NULL; 2208 2209 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2210 rx_ring->dma); 2211 rx_ring->desc = NULL; 2212} 2213 2214/** 2215 * e1000_update_itr - update the dynamic ITR value based on statistics 2216 * @adapter: pointer to adapter 2217 * @itr_setting: current adapter->itr 2218 * @packets: the number of packets during this measurement interval 2219 * @bytes: the number of bytes during this measurement interval 2220 * 2221 * Stores a new ITR value based on packets and byte 2222 * counts during the last interrupt. The advantage of per interrupt 2223 * computation is faster updates and more accurate ITR for the current 2224 * traffic pattern. Constants in this function were computed 2225 * based on theoretical maximum wire speed and thresholds were set based 2226 * on testing data as well as attempting to minimize response time 2227 * while increasing bulk throughput. This functionality is controlled 2228 * by the InterruptThrottleRate module parameter. 2229 **/ 2230static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 2231 u16 itr_setting, int packets, 2232 int bytes) 2233{ 2234 unsigned int retval = itr_setting; 2235 2236 if (packets == 0) 2237 goto update_itr_done; 2238 2239 switch (itr_setting) { 2240 case lowest_latency: 2241 /* handle TSO and jumbo frames */ 2242 if (bytes/packets > 8000) 2243 retval = bulk_latency; 2244 else if ((packets < 5) && (bytes > 512)) { 2245 retval = low_latency; 2246 } 2247 break; 2248 case low_latency: /* 50 usec aka 20000 ints/s */ 2249 if (bytes > 10000) { 2250 /* this if handles the TSO accounting */ 2251 if (bytes/packets > 8000) { 2252 retval = bulk_latency; 2253 } else if ((packets < 10) || ((bytes/packets) > 1200)) { 2254 retval = bulk_latency; 2255 } else if ((packets > 35)) { 2256 retval = lowest_latency; 2257 } 2258 } else if (bytes/packets > 2000) { 2259 retval = bulk_latency; 2260 } else if (packets <= 2 && bytes < 512) { 2261 retval = lowest_latency; 2262 } 2263 break; 2264 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2265 if (bytes > 25000) { 2266 if (packets > 35) { 2267 retval = low_latency; 2268 } 2269 } else if (bytes < 6000) { 2270 retval = low_latency; 2271 } 2272 break; 2273 } 2274 2275update_itr_done: 2276 return retval; 2277} 2278 2279static void e1000_set_itr(struct e1000_adapter *adapter) 2280{ 2281 struct e1000_hw *hw = &adapter->hw; 2282 u16 current_itr; 2283 u32 new_itr = adapter->itr; 2284 2285 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2286 if (adapter->link_speed != SPEED_1000) { 2287 current_itr = 0; 2288 new_itr = 4000; 2289 goto set_itr_now; 2290 } 2291 2292 adapter->tx_itr = e1000_update_itr(adapter, 2293 adapter->tx_itr, 2294 adapter->total_tx_packets, 2295 adapter->total_tx_bytes); 2296 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2297 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2298 adapter->tx_itr = low_latency; 2299 2300 adapter->rx_itr = e1000_update_itr(adapter, 2301 adapter->rx_itr, 2302 adapter->total_rx_packets, 2303 adapter->total_rx_bytes); 2304 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2305 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2306 adapter->rx_itr = low_latency; 2307 2308 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2309 2310 switch (current_itr) { 2311 /* counts and packets in update_itr are dependent on these numbers */ 2312 case lowest_latency: 2313 new_itr = 70000; 2314 break; 2315 case low_latency: 2316 new_itr = 20000; /* aka hwitr = ~200 */ 2317 break; 2318 case bulk_latency: 2319 new_itr = 4000; 2320 break; 2321 default: 2322 break; 2323 } 2324 2325set_itr_now: 2326 if (new_itr != adapter->itr) { 2327 /* 2328 * this attempts to bias the interrupt rate towards Bulk 2329 * by adding intermediate steps when interrupt rate is 2330 * increasing 2331 */ 2332 new_itr = new_itr > adapter->itr ? 2333 min(adapter->itr + (new_itr >> 2), new_itr) : 2334 new_itr; 2335 adapter->itr = new_itr; 2336 adapter->rx_ring->itr_val = new_itr; 2337 if (adapter->msix_entries) 2338 adapter->rx_ring->set_itr = 1; 2339 else 2340 ew32(ITR, 1000000000 / (new_itr * 256)); 2341 } 2342} 2343 2344/** 2345 * e1000_alloc_queues - Allocate memory for all rings 2346 * @adapter: board private structure to initialize 2347 **/ 2348static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) 2349{ 2350 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); 2351 if (!adapter->tx_ring) 2352 goto err; 2353 2354 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); 2355 if (!adapter->rx_ring) 2356 goto err; 2357 2358 return 0; 2359err: 2360 e_err("Unable to allocate memory for queues\n"); 2361 kfree(adapter->rx_ring); 2362 kfree(adapter->tx_ring); 2363 return -ENOMEM; 2364} 2365 2366/** 2367 * e1000_clean - NAPI Rx polling callback 2368 * @napi: struct associated with this polling callback 2369 * @budget: amount of packets driver is allowed to process this poll 2370 **/ 2371static int e1000_clean(struct napi_struct *napi, int budget) 2372{ 2373 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); 2374 struct e1000_hw *hw = &adapter->hw; 2375 struct net_device *poll_dev = adapter->netdev; 2376 int tx_cleaned = 1, work_done = 0; 2377 2378 adapter = netdev_priv(poll_dev); 2379 2380 if (adapter->msix_entries && 2381 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) 2382 goto clean_rx; 2383 2384 tx_cleaned = e1000_clean_tx_irq(adapter); 2385 2386clean_rx: 2387 adapter->clean_rx(adapter, &work_done, budget); 2388 2389 if (!tx_cleaned) 2390 work_done = budget; 2391 2392 /* If budget not fully consumed, exit the polling mode */ 2393 if (work_done < budget) { 2394 if (adapter->itr_setting & 3) 2395 e1000_set_itr(adapter); 2396 napi_complete(napi); 2397 if (!test_bit(__E1000_DOWN, &adapter->state)) { 2398 if (adapter->msix_entries) 2399 ew32(IMS, adapter->rx_ring->ims_val); 2400 else 2401 e1000_irq_enable(adapter); 2402 } 2403 } 2404 2405 return work_done; 2406} 2407 2408static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) 2409{ 2410 struct e1000_adapter *adapter = netdev_priv(netdev); 2411 struct e1000_hw *hw = &adapter->hw; 2412 u32 vfta, index; 2413 2414 /* don't update vlan cookie if already programmed */ 2415 if ((adapter->hw.mng_cookie.status & 2416 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2417 (vid == adapter->mng_vlan_id)) 2418 return; 2419 2420 /* add VID to filter table */ 2421 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2422 index = (vid >> 5) & 0x7F; 2423 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 2424 vfta |= (1 << (vid & 0x1F)); 2425 hw->mac.ops.write_vfta(hw, index, vfta); 2426 } 2427} 2428 2429static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) 2430{ 2431 struct e1000_adapter *adapter = netdev_priv(netdev); 2432 struct e1000_hw *hw = &adapter->hw; 2433 u32 vfta, index; 2434 2435 if (!test_bit(__E1000_DOWN, &adapter->state)) 2436 e1000_irq_disable(adapter); 2437 vlan_group_set_device(adapter->vlgrp, vid, NULL); 2438 2439 if (!test_bit(__E1000_DOWN, &adapter->state)) 2440 e1000_irq_enable(adapter); 2441 2442 if ((adapter->hw.mng_cookie.status & 2443 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2444 (vid == adapter->mng_vlan_id)) { 2445 /* release control to f/w */ 2446 e1000_release_hw_control(adapter); 2447 return; 2448 } 2449 2450 /* remove VID from filter table */ 2451 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2452 index = (vid >> 5) & 0x7F; 2453 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 2454 vfta &= ~(1 << (vid & 0x1F)); 2455 hw->mac.ops.write_vfta(hw, index, vfta); 2456 } 2457} 2458 2459static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 2460{ 2461 struct net_device *netdev = adapter->netdev; 2462 u16 vid = adapter->hw.mng_cookie.vlan_id; 2463 u16 old_vid = adapter->mng_vlan_id; 2464 2465 if (!adapter->vlgrp) 2466 return; 2467 2468 if (!vlan_group_get_device(adapter->vlgrp, vid)) { 2469 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 2470 if (adapter->hw.mng_cookie.status & 2471 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 2472 e1000_vlan_rx_add_vid(netdev, vid); 2473 adapter->mng_vlan_id = vid; 2474 } 2475 2476 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 2477 (vid != old_vid) && 2478 !vlan_group_get_device(adapter->vlgrp, old_vid)) 2479 e1000_vlan_rx_kill_vid(netdev, old_vid); 2480 } else { 2481 adapter->mng_vlan_id = vid; 2482 } 2483} 2484 2485 2486static void e1000_vlan_rx_register(struct net_device *netdev, 2487 struct vlan_group *grp) 2488{ 2489 struct e1000_adapter *adapter = netdev_priv(netdev); 2490 struct e1000_hw *hw = &adapter->hw; 2491 u32 ctrl, rctl; 2492 2493 if (!test_bit(__E1000_DOWN, &adapter->state)) 2494 e1000_irq_disable(adapter); 2495 adapter->vlgrp = grp; 2496 2497 if (grp) { 2498 /* enable VLAN tag insert/strip */ 2499 ctrl = er32(CTRL); 2500 ctrl |= E1000_CTRL_VME; 2501 ew32(CTRL, ctrl); 2502 2503 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2504 /* enable VLAN receive filtering */ 2505 rctl = er32(RCTL); 2506 rctl &= ~E1000_RCTL_CFIEN; 2507 ew32(RCTL, rctl); 2508 e1000_update_mng_vlan(adapter); 2509 } 2510 } else { 2511 /* disable VLAN tag insert/strip */ 2512 ctrl = er32(CTRL); 2513 ctrl &= ~E1000_CTRL_VME; 2514 ew32(CTRL, ctrl); 2515 2516 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2517 if (adapter->mng_vlan_id != 2518 (u16)E1000_MNG_VLAN_NONE) { 2519 e1000_vlan_rx_kill_vid(netdev, 2520 adapter->mng_vlan_id); 2521 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 2522 } 2523 } 2524 } 2525 2526 if (!test_bit(__E1000_DOWN, &adapter->state)) 2527 e1000_irq_enable(adapter); 2528} 2529 2530static void e1000_restore_vlan(struct e1000_adapter *adapter) 2531{ 2532 u16 vid; 2533 2534 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); 2535 2536 if (!adapter->vlgrp) 2537 return; 2538 2539 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { 2540 if (!vlan_group_get_device(adapter->vlgrp, vid)) 2541 continue; 2542 e1000_vlan_rx_add_vid(adapter->netdev, vid); 2543 } 2544} 2545 2546static void e1000_init_manageability_pt(struct e1000_adapter *adapter) 2547{ 2548 struct e1000_hw *hw = &adapter->hw; 2549 u32 manc, manc2h, mdef, i, j; 2550 2551 if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) 2552 return; 2553 2554 manc = er32(MANC); 2555 2556 /* 2557 * enable receiving management packets to the host. this will probably 2558 * generate destination unreachable messages from the host OS, but 2559 * the packets will be handled on SMBUS 2560 */ 2561 manc |= E1000_MANC_EN_MNG2HOST; 2562 manc2h = er32(MANC2H); 2563 2564 switch (hw->mac.type) { 2565 default: 2566 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664); 2567 break; 2568 case e1000_82574: 2569 case e1000_82583: 2570 /* 2571 * Check if IPMI pass-through decision filter already exists; 2572 * if so, enable it. 2573 */ 2574 for (i = 0, j = 0; i < 8; i++) { 2575 mdef = er32(MDEF(i)); 2576 2577 /* Ignore filters with anything other than IPMI ports */ 2578 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) 2579 continue; 2580 2581 /* Enable this decision filter in MANC2H */ 2582 if (mdef) 2583 manc2h |= (1 << i); 2584 2585 j |= mdef; 2586 } 2587 2588 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) 2589 break; 2590 2591 /* Create new decision filter in an empty filter */ 2592 for (i = 0, j = 0; i < 8; i++) 2593 if (er32(MDEF(i)) == 0) { 2594 ew32(MDEF(i), (E1000_MDEF_PORT_623 | 2595 E1000_MDEF_PORT_664)); 2596 manc2h |= (1 << 1); 2597 j++; 2598 break; 2599 } 2600 2601 if (!j) 2602 e_warn("Unable to create IPMI pass-through filter\n"); 2603 break; 2604 } 2605 2606 ew32(MANC2H, manc2h); 2607 ew32(MANC, manc); 2608} 2609 2610/** 2611 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 2612 * @adapter: board private structure 2613 * 2614 * Configure the Tx unit of the MAC after a reset. 2615 **/ 2616static void e1000_configure_tx(struct e1000_adapter *adapter) 2617{ 2618 struct e1000_hw *hw = &adapter->hw; 2619 struct e1000_ring *tx_ring = adapter->tx_ring; 2620 u64 tdba; 2621 u32 tdlen, tctl, tipg, tarc; 2622 u32 ipgr1, ipgr2; 2623 2624 /* Setup the HW Tx Head and Tail descriptor pointers */ 2625 tdba = tx_ring->dma; 2626 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); 2627 ew32(TDBAL, (tdba & DMA_BIT_MASK(32))); 2628 ew32(TDBAH, (tdba >> 32)); 2629 ew32(TDLEN, tdlen); 2630 ew32(TDH, 0); 2631 ew32(TDT, 0); 2632 tx_ring->head = E1000_TDH; 2633 tx_ring->tail = E1000_TDT; 2634 2635 /* Set the default values for the Tx Inter Packet Gap timer */ 2636 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */ 2637 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */ 2638 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */ 2639 2640 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) 2641 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */ 2642 2643 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 2644 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 2645 ew32(TIPG, tipg); 2646 2647 /* Set the Tx Interrupt Delay register */ 2648 ew32(TIDV, adapter->tx_int_delay); 2649 /* Tx irq moderation */ 2650 ew32(TADV, adapter->tx_abs_int_delay); 2651 2652 /* Program the Transmit Control Register */ 2653 tctl = er32(TCTL); 2654 tctl &= ~E1000_TCTL_CT; 2655 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 2656 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 2657 2658 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { 2659 tarc = er32(TARC(0)); 2660 /* 2661 * set the speed mode bit, we'll clear it if we're not at 2662 * gigabit link later 2663 */ 2664#define SPEED_MODE_BIT (1 << 21) 2665 tarc |= SPEED_MODE_BIT; 2666 ew32(TARC(0), tarc); 2667 } 2668 2669 /* errata: program both queues to unweighted RR */ 2670 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { 2671 tarc = er32(TARC(0)); 2672 tarc |= 1; 2673 ew32(TARC(0), tarc); 2674 tarc = er32(TARC(1)); 2675 tarc |= 1; 2676 ew32(TARC(1), tarc); 2677 } 2678 2679 /* Setup Transmit Descriptor Settings for eop descriptor */ 2680 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 2681 2682 /* only set IDE if we are delaying interrupts using the timers */ 2683 if (adapter->tx_int_delay) 2684 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 2685 2686 /* enable Report Status bit */ 2687 adapter->txd_cmd |= E1000_TXD_CMD_RS; 2688 2689 ew32(TCTL, tctl); 2690 2691 e1000e_config_collision_dist(hw); 2692} 2693 2694/** 2695 * e1000_setup_rctl - configure the receive control registers 2696 * @adapter: Board private structure 2697 **/ 2698#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ 2699 (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) 2700static void e1000_setup_rctl(struct e1000_adapter *adapter) 2701{ 2702 struct e1000_hw *hw = &adapter->hw; 2703 u32 rctl, rfctl; 2704 u32 psrctl = 0; 2705 u32 pages = 0; 2706 2707 /* Program MC offset vector base */ 2708 rctl = er32(RCTL); 2709 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 2710 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 2711 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 2712 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 2713 2714 /* Do not Store bad packets */ 2715 rctl &= ~E1000_RCTL_SBP; 2716 2717 /* Enable Long Packet receive */ 2718 if (adapter->netdev->mtu <= ETH_DATA_LEN) 2719 rctl &= ~E1000_RCTL_LPE; 2720 else 2721 rctl |= E1000_RCTL_LPE; 2722 2723 /* Some systems expect that the CRC is included in SMBUS traffic. The 2724 * hardware strips the CRC before sending to both SMBUS (BMC) and to 2725 * host memory when this is enabled 2726 */ 2727 if (adapter->flags2 & FLAG2_CRC_STRIPPING) 2728 rctl |= E1000_RCTL_SECRC; 2729 2730 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ 2731 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { 2732 u16 phy_data; 2733 2734 e1e_rphy(hw, PHY_REG(770, 26), &phy_data); 2735 phy_data &= 0xfff8; 2736 phy_data |= (1 << 2); 2737 e1e_wphy(hw, PHY_REG(770, 26), phy_data); 2738 2739 e1e_rphy(hw, 22, &phy_data); 2740 phy_data &= 0x0fff; 2741 phy_data |= (1 << 14); 2742 e1e_wphy(hw, 0x10, 0x2823); 2743 e1e_wphy(hw, 0x11, 0x0003); 2744 e1e_wphy(hw, 22, phy_data); 2745 } 2746 2747 /* Workaround Si errata on 82579 - configure jumbo frame flow */ 2748 if (hw->mac.type == e1000_pch2lan) { 2749 s32 ret_val; 2750 2751 if (rctl & E1000_RCTL_LPE) 2752 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true); 2753 else 2754 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false); 2755 } 2756 2757 /* Setup buffer sizes */ 2758 rctl &= ~E1000_RCTL_SZ_4096; 2759 rctl |= E1000_RCTL_BSEX; 2760 switch (adapter->rx_buffer_len) { 2761 case 2048: 2762 default: 2763 rctl |= E1000_RCTL_SZ_2048; 2764 rctl &= ~E1000_RCTL_BSEX; 2765 break; 2766 case 4096: 2767 rctl |= E1000_RCTL_SZ_4096; 2768 break; 2769 case 8192: 2770 rctl |= E1000_RCTL_SZ_8192; 2771 break; 2772 case 16384: 2773 rctl |= E1000_RCTL_SZ_16384; 2774 break; 2775 } 2776 2777 /* 2778 * 82571 and greater support packet-split where the protocol 2779 * header is placed in skb->data and the packet data is 2780 * placed in pages hanging off of skb_shinfo(skb)->nr_frags. 2781 * In the case of a non-split, skb->data is linearly filled, 2782 * followed by the page buffers. Therefore, skb->data is 2783 * sized to hold the largest protocol header. 2784 * 2785 * allocations using alloc_page take too long for regular MTU 2786 * so only enable packet split for jumbo frames 2787 * 2788 * Using pages when the page size is greater than 16k wastes 2789 * a lot of memory, since we allocate 3 pages at all times 2790 * per packet. 2791 */ 2792 pages = PAGE_USE_COUNT(adapter->netdev->mtu); 2793 if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) && 2794 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) 2795 adapter->rx_ps_pages = pages; 2796 else 2797 adapter->rx_ps_pages = 0; 2798 2799 if (adapter->rx_ps_pages) { 2800 /* Configure extra packet-split registers */ 2801 rfctl = er32(RFCTL); 2802 rfctl |= E1000_RFCTL_EXTEN; 2803 /* 2804 * disable packet split support for IPv6 extension headers, 2805 * because some malformed IPv6 headers can hang the Rx 2806 */ 2807 rfctl |= (E1000_RFCTL_IPV6_EX_DIS | 2808 E1000_RFCTL_NEW_IPV6_EXT_DIS); 2809 2810 ew32(RFCTL, rfctl); 2811 2812 /* Enable Packet split descriptors */ 2813 rctl |= E1000_RCTL_DTYP_PS; 2814 2815 psrctl |= adapter->rx_ps_bsize0 >> 2816 E1000_PSRCTL_BSIZE0_SHIFT; 2817 2818 switch (adapter->rx_ps_pages) { 2819 case 3: 2820 psrctl |= PAGE_SIZE << 2821 E1000_PSRCTL_BSIZE3_SHIFT; 2822 case 2: 2823 psrctl |= PAGE_SIZE << 2824 E1000_PSRCTL_BSIZE2_SHIFT; 2825 case 1: 2826 psrctl |= PAGE_SIZE >> 2827 E1000_PSRCTL_BSIZE1_SHIFT; 2828 break; 2829 } 2830 2831 ew32(PSRCTL, psrctl); 2832 } 2833 2834 ew32(RCTL, rctl); 2835 /* just started the receive unit, no need to restart */ 2836 adapter->flags &= ~FLAG_RX_RESTART_NOW; 2837} 2838 2839/** 2840 * e1000_configure_rx - Configure Receive Unit after Reset 2841 * @adapter: board private structure 2842 * 2843 * Configure the Rx unit of the MAC after a reset. 2844 **/ 2845static void e1000_configure_rx(struct e1000_adapter *adapter) 2846{ 2847 struct e1000_hw *hw = &adapter->hw; 2848 struct e1000_ring *rx_ring = adapter->rx_ring; 2849 u64 rdba; 2850 u32 rdlen, rctl, rxcsum, ctrl_ext; 2851 2852 if (adapter->rx_ps_pages) { 2853 /* this is a 32 byte descriptor */ 2854 rdlen = rx_ring->count * 2855 sizeof(union e1000_rx_desc_packet_split); 2856 adapter->clean_rx = e1000_clean_rx_irq_ps; 2857 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; 2858 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { 2859 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); 2860 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 2861 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 2862 } else { 2863 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); 2864 adapter->clean_rx = e1000_clean_rx_irq; 2865 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 2866 } 2867 2868 /* disable receives while setting up the descriptors */ 2869 rctl = er32(RCTL); 2870 ew32(RCTL, rctl & ~E1000_RCTL_EN); 2871 e1e_flush(); 2872 msleep(10); 2873 2874 /* set the Receive Delay Timer Register */ 2875 ew32(RDTR, adapter->rx_int_delay); 2876 2877 /* irq moderation */ 2878 ew32(RADV, adapter->rx_abs_int_delay); 2879 if (adapter->itr_setting != 0) 2880 ew32(ITR, 1000000000 / (adapter->itr * 256)); 2881 2882 ctrl_ext = er32(CTRL_EXT); 2883 /* Auto-Mask interrupts upon ICR access */ 2884 ctrl_ext |= E1000_CTRL_EXT_IAME; 2885 ew32(IAM, 0xffffffff); 2886 ew32(CTRL_EXT, ctrl_ext); 2887 e1e_flush(); 2888 2889 /* 2890 * Setup the HW Rx Head and Tail Descriptor Pointers and 2891 * the Base and Length of the Rx Descriptor Ring 2892 */ 2893 rdba = rx_ring->dma; 2894 ew32(RDBAL, (rdba & DMA_BIT_MASK(32))); 2895 ew32(RDBAH, (rdba >> 32)); 2896 ew32(RDLEN, rdlen); 2897 ew32(RDH, 0); 2898 ew32(RDT, 0); 2899 rx_ring->head = E1000_RDH; 2900 rx_ring->tail = E1000_RDT; 2901 2902 /* Enable Receive Checksum Offload for TCP and UDP */ 2903 rxcsum = er32(RXCSUM); 2904 if (adapter->flags & FLAG_RX_CSUM_ENABLED) { 2905 rxcsum |= E1000_RXCSUM_TUOFL; 2906 2907 /* 2908 * IPv4 payload checksum for UDP fragments must be 2909 * used in conjunction with packet-split. 2910 */ 2911 if (adapter->rx_ps_pages) 2912 rxcsum |= E1000_RXCSUM_IPPCSE; 2913 } else { 2914 rxcsum &= ~E1000_RXCSUM_TUOFL; 2915 /* no need to clear IPPCSE as it defaults to 0 */ 2916 } 2917 ew32(RXCSUM, rxcsum); 2918 2919 /* 2920 * Enable early receives on supported devices, only takes effect when 2921 * packet size is equal or larger than the specified value (in 8 byte 2922 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 2923 */ 2924 if (adapter->flags & FLAG_HAS_ERT) { 2925 if (adapter->netdev->mtu > ETH_DATA_LEN) { 2926 u32 rxdctl = er32(RXDCTL(0)); 2927 ew32(RXDCTL(0), rxdctl | 0x3); 2928 ew32(ERT, E1000_ERT_2048 | (1 << 13)); 2929 /* 2930 * With jumbo frames and early-receive enabled, 2931 * excessive C-state transition latencies result in 2932 * dropped transactions. 2933 */ 2934 pm_qos_update_request( 2935 &adapter->netdev->pm_qos_req, 55); 2936 } else { 2937 pm_qos_update_request( 2938 &adapter->netdev->pm_qos_req, 2939 PM_QOS_DEFAULT_VALUE); 2940 } 2941 } 2942 2943 /* Enable Receives */ 2944 ew32(RCTL, rctl); 2945} 2946 2947/** 2948 * e1000_update_mc_addr_list - Update Multicast addresses 2949 * @hw: pointer to the HW structure 2950 * @mc_addr_list: array of multicast addresses to program 2951 * @mc_addr_count: number of multicast addresses to program 2952 * 2953 * Updates the Multicast Table Array. 2954 * The caller must have a packed mc_addr_list of multicast addresses. 2955 **/ 2956static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 2957 u32 mc_addr_count) 2958{ 2959 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count); 2960} 2961 2962/** 2963 * e1000_set_multi - Multicast and Promiscuous mode set 2964 * @netdev: network interface device structure 2965 * 2966 * The set_multi entry point is called whenever the multicast address 2967 * list or the network interface flags are updated. This routine is 2968 * responsible for configuring the hardware for proper multicast, 2969 * promiscuous mode, and all-multi behavior. 2970 **/ 2971static void e1000_set_multi(struct net_device *netdev) 2972{ 2973 struct e1000_adapter *adapter = netdev_priv(netdev); 2974 struct e1000_hw *hw = &adapter->hw; 2975 struct netdev_hw_addr *ha; 2976 u8 *mta_list; 2977 u32 rctl; 2978 int i; 2979 2980 /* Check for Promiscuous and All Multicast modes */ 2981 2982 rctl = er32(RCTL); 2983 2984 if (netdev->flags & IFF_PROMISC) { 2985 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 2986 rctl &= ~E1000_RCTL_VFE; 2987 } else { 2988 if (netdev->flags & IFF_ALLMULTI) { 2989 rctl |= E1000_RCTL_MPE; 2990 rctl &= ~E1000_RCTL_UPE; 2991 } else { 2992 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); 2993 } 2994 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) 2995 rctl |= E1000_RCTL_VFE; 2996 } 2997 2998 ew32(RCTL, rctl); 2999 3000 if (!netdev_mc_empty(netdev)) { 3001 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); 3002 if (!mta_list) 3003 return; 3004 3005 /* prepare a packed array of only addresses. */ 3006 i = 0; 3007 netdev_for_each_mc_addr(ha, netdev) 3008 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 3009 3010 e1000_update_mc_addr_list(hw, mta_list, i); 3011 kfree(mta_list); 3012 } else { 3013 /* 3014 * if we're called from probe, we might not have 3015 * anything to do here, so clear out the list 3016 */ 3017 e1000_update_mc_addr_list(hw, NULL, 0); 3018 } 3019} 3020 3021/** 3022 * e1000_configure - configure the hardware for Rx and Tx 3023 * @adapter: private board structure 3024 **/ 3025static void e1000_configure(struct e1000_adapter *adapter) 3026{ 3027 e1000_set_multi(adapter->netdev); 3028 3029 e1000_restore_vlan(adapter); 3030 e1000_init_manageability_pt(adapter); 3031 3032 e1000_configure_tx(adapter); 3033 e1000_setup_rctl(adapter); 3034 e1000_configure_rx(adapter); 3035 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring)); 3036} 3037 3038/** 3039 * e1000e_power_up_phy - restore link in case the phy was powered down 3040 * @adapter: address of board private structure 3041 * 3042 * The phy may be powered down to save power and turn off link when the 3043 * driver is unloaded and wake on lan is not enabled (among others) 3044 * *** this routine MUST be followed by a call to e1000e_reset *** 3045 **/ 3046void e1000e_power_up_phy(struct e1000_adapter *adapter) 3047{ 3048 if (adapter->hw.phy.ops.power_up) 3049 adapter->hw.phy.ops.power_up(&adapter->hw); 3050 3051 adapter->hw.mac.ops.setup_link(&adapter->hw); 3052} 3053 3054/** 3055 * e1000_power_down_phy - Power down the PHY 3056 * 3057 * Power down the PHY so no link is implied when interface is down. 3058 * The PHY cannot be powered down if management or WoL is active. 3059 */ 3060static void e1000_power_down_phy(struct e1000_adapter *adapter) 3061{ 3062 /* WoL is enabled */ 3063 if (adapter->wol) 3064 return; 3065 3066 if (adapter->hw.phy.ops.power_down) 3067 adapter->hw.phy.ops.power_down(&adapter->hw); 3068} 3069 3070/** 3071 * e1000e_reset - bring the hardware into a known good state 3072 * 3073 * This function boots the hardware and enables some settings that 3074 * require a configuration cycle of the hardware - those cannot be 3075 * set/changed during runtime. After reset the device needs to be 3076 * properly configured for Rx, Tx etc. 3077 */ 3078void e1000e_reset(struct e1000_adapter *adapter) 3079{ 3080 struct e1000_mac_info *mac = &adapter->hw.mac; 3081 struct e1000_fc_info *fc = &adapter->hw.fc; 3082 struct e1000_hw *hw = &adapter->hw; 3083 u32 tx_space, min_tx_space, min_rx_space; 3084 u32 pba = adapter->pba; 3085 u16 hwm; 3086 3087 /* reset Packet Buffer Allocation to default */ 3088 ew32(PBA, pba); 3089 3090 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 3091 /* 3092 * To maintain wire speed transmits, the Tx FIFO should be 3093 * large enough to accommodate two full transmit packets, 3094 * rounded up to the next 1KB and expressed in KB. Likewise, 3095 * the Rx FIFO should be large enough to accommodate at least 3096 * one full receive packet and is similarly rounded up and 3097 * expressed in KB. 3098 */ 3099 pba = er32(PBA); 3100 /* upper 16 bits has Tx packet buffer allocation size in KB */ 3101 tx_space = pba >> 16; 3102 /* lower 16 bits has Rx packet buffer allocation size in KB */ 3103 pba &= 0xffff; 3104 /* 3105 * the Tx fifo also stores 16 bytes of information about the tx 3106 * but don't include ethernet FCS because hardware appends it 3107 */ 3108 min_tx_space = (adapter->max_frame_size + 3109 sizeof(struct e1000_tx_desc) - 3110 ETH_FCS_LEN) * 2; 3111 min_tx_space = ALIGN(min_tx_space, 1024); 3112 min_tx_space >>= 10; 3113 /* software strips receive CRC, so leave room for it */ 3114 min_rx_space = adapter->max_frame_size; 3115 min_rx_space = ALIGN(min_rx_space, 1024); 3116 min_rx_space >>= 10; 3117 3118 /* 3119 * If current Tx allocation is less than the min Tx FIFO size, 3120 * and the min Tx FIFO size is less than the current Rx FIFO 3121 * allocation, take space away from current Rx allocation 3122 */ 3123 if ((tx_space < min_tx_space) && 3124 ((min_tx_space - tx_space) < pba)) { 3125 pba -= min_tx_space - tx_space; 3126 3127 /* 3128 * if short on Rx space, Rx wins and must trump tx 3129 * adjustment or use Early Receive if available 3130 */ 3131 if ((pba < min_rx_space) && 3132 (!(adapter->flags & FLAG_HAS_ERT))) 3133 /* ERT enabled in e1000_configure_rx */ 3134 pba = min_rx_space; 3135 } 3136 3137 ew32(PBA, pba); 3138 } 3139 3140 3141 /* 3142 * flow control settings 3143 * 3144 * The high water mark must be low enough to fit one full frame 3145 * (or the size used for early receive) above it in the Rx FIFO. 3146 * Set it to the lower of: 3147 * - 90% of the Rx FIFO size, and 3148 * - the full Rx FIFO size minus the early receive size (for parts 3149 * with ERT support assuming ERT set to E1000_ERT_2048), or 3150 * - the full Rx FIFO size minus one full frame 3151 */ 3152 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) 3153 fc->pause_time = 0xFFFF; 3154 else 3155 fc->pause_time = E1000_FC_PAUSE_TIME; 3156 fc->send_xon = 1; 3157 fc->current_mode = fc->requested_mode; 3158 3159 switch (hw->mac.type) { 3160 default: 3161 if ((adapter->flags & FLAG_HAS_ERT) && 3162 (adapter->netdev->mtu > ETH_DATA_LEN)) 3163 hwm = min(((pba << 10) * 9 / 10), 3164 ((pba << 10) - (E1000_ERT_2048 << 3))); 3165 else 3166 hwm = min(((pba << 10) * 9 / 10), 3167 ((pba << 10) - adapter->max_frame_size)); 3168 3169 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ 3170 fc->low_water = fc->high_water - 8; 3171 break; 3172 case e1000_pchlan: 3173 /* 3174 * Workaround PCH LOM adapter hangs with certain network 3175 * loads. If hangs persist, try disabling Tx flow control. 3176 */ 3177 if (adapter->netdev->mtu > ETH_DATA_LEN) { 3178 fc->high_water = 0x3500; 3179 fc->low_water = 0x1500; 3180 } else { 3181 fc->high_water = 0x5000; 3182 fc->low_water = 0x3000; 3183 } 3184 fc->refresh_time = 0x1000; 3185 break; 3186 case e1000_pch2lan: 3187 fc->high_water = 0x05C20; 3188 fc->low_water = 0x05048; 3189 fc->pause_time = 0x0650; 3190 fc->refresh_time = 0x0400; 3191 break; 3192 } 3193 3194 /* Allow time for pending master requests to run */ 3195 mac->ops.reset_hw(hw); 3196 3197 /* 3198 * For parts with AMT enabled, let the firmware know 3199 * that the network interface is in control 3200 */ 3201 if (adapter->flags & FLAG_HAS_AMT) 3202 e1000_get_hw_control(adapter); 3203 3204 ew32(WUC, 0); 3205 3206 if (mac->ops.init_hw(hw)) 3207 e_err("Hardware Error\n"); 3208 3209 e1000_update_mng_vlan(adapter); 3210 3211 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 3212 ew32(VET, ETH_P_8021Q); 3213 3214 e1000e_reset_adaptive(hw); 3215 e1000_get_phy_info(hw); 3216 3217 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && 3218 !(adapter->flags & FLAG_SMART_POWER_DOWN)) { 3219 u16 phy_data = 0; 3220 /* 3221 * speed up time to link by disabling smart power down, ignore 3222 * the return value of this function because there is nothing 3223 * different we would do if it failed 3224 */ 3225 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); 3226 phy_data &= ~IGP02E1000_PM_SPD; 3227 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); 3228 } 3229} 3230 3231int e1000e_up(struct e1000_adapter *adapter) 3232{ 3233 struct e1000_hw *hw = &adapter->hw; 3234 3235 /* hardware has been reset, we need to reload some things */ 3236 e1000_configure(adapter); 3237 3238 clear_bit(__E1000_DOWN, &adapter->state); 3239 3240 napi_enable(&adapter->napi); 3241 if (adapter->msix_entries) 3242 e1000_configure_msix(adapter); 3243 e1000_irq_enable(adapter); 3244 3245 netif_wake_queue(adapter->netdev); 3246 3247 /* fire a link change interrupt to start the watchdog */ 3248 if (adapter->msix_entries) 3249 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); 3250 else 3251 ew32(ICS, E1000_ICS_LSC); 3252 3253 return 0; 3254} 3255 3256void e1000e_down(struct e1000_adapter *adapter) 3257{ 3258 struct net_device *netdev = adapter->netdev; 3259 struct e1000_hw *hw = &adapter->hw; 3260 u32 tctl, rctl; 3261 3262 /* 3263 * signal that we're down so the interrupt handler does not 3264 * reschedule our watchdog timer 3265 */ 3266 set_bit(__E1000_DOWN, &adapter->state); 3267 3268 /* disable receives in the hardware */ 3269 rctl = er32(RCTL); 3270 ew32(RCTL, rctl & ~E1000_RCTL_EN); 3271 /* flush and sleep below */ 3272 3273 netif_stop_queue(netdev); 3274 3275 /* disable transmits in the hardware */ 3276 tctl = er32(TCTL); 3277 tctl &= ~E1000_TCTL_EN; 3278 ew32(TCTL, tctl); 3279 /* flush both disables and wait for them to finish */ 3280 e1e_flush(); 3281 msleep(10); 3282 3283 napi_disable(&adapter->napi); 3284 e1000_irq_disable(adapter); 3285 3286 del_timer_sync(&adapter->watchdog_timer); 3287 del_timer_sync(&adapter->phy_info_timer); 3288 3289 netif_carrier_off(netdev); 3290 adapter->link_speed = 0; 3291 adapter->link_duplex = 0; 3292 3293 if (!pci_channel_offline(adapter->pdev)) 3294 e1000e_reset(adapter); 3295 e1000_clean_tx_ring(adapter); 3296 e1000_clean_rx_ring(adapter); 3297 3298 /* 3299 * TODO: for power management, we could drop the link and 3300 * pci_disable_device here. 3301 */ 3302} 3303 3304void e1000e_reinit_locked(struct e1000_adapter *adapter) 3305{ 3306 might_sleep(); 3307 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 3308 msleep(1); 3309 e1000e_down(adapter); 3310 e1000e_up(adapter); 3311 clear_bit(__E1000_RESETTING, &adapter->state); 3312} 3313 3314/** 3315 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 3316 * @adapter: board private structure to initialize 3317 * 3318 * e1000_sw_init initializes the Adapter private data structure. 3319 * Fields are initialized based on PCI device information and 3320 * OS network device settings (MTU size). 3321 **/ 3322static int __devinit e1000_sw_init(struct e1000_adapter *adapter) 3323{ 3324 struct net_device *netdev = adapter->netdev; 3325 3326 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; 3327 adapter->rx_ps_bsize0 = 128; 3328 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 3329 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 3330 3331 e1000e_set_interrupt_capability(adapter); 3332 3333 if (e1000_alloc_queues(adapter)) 3334 return -ENOMEM; 3335 3336 /* Explicitly disable IRQ since the NIC can be in any state. */ 3337 e1000_irq_disable(adapter); 3338 3339 set_bit(__E1000_DOWN, &adapter->state); 3340 return 0; 3341} 3342 3343/** 3344 * e1000_intr_msi_test - Interrupt Handler 3345 * @irq: interrupt number 3346 * @data: pointer to a network interface device structure 3347 **/ 3348static irqreturn_t e1000_intr_msi_test(int irq, void *data) 3349{ 3350 struct net_device *netdev = data; 3351 struct e1000_adapter *adapter = netdev_priv(netdev); 3352 struct e1000_hw *hw = &adapter->hw; 3353 u32 icr = er32(ICR); 3354 3355 e_dbg("icr is %08X\n", icr); 3356 if (icr & E1000_ICR_RXSEQ) { 3357 adapter->flags &= ~FLAG_MSI_TEST_FAILED; 3358 wmb(); 3359 } 3360 3361 return IRQ_HANDLED; 3362} 3363 3364/** 3365 * e1000_test_msi_interrupt - Returns 0 for successful test 3366 * @adapter: board private struct 3367 * 3368 * code flow taken from tg3.c 3369 **/ 3370static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) 3371{ 3372 struct net_device *netdev = adapter->netdev; 3373 struct e1000_hw *hw = &adapter->hw; 3374 int err; 3375 3376 /* poll_enable hasn't been called yet, so don't need disable */ 3377 /* clear any pending events */ 3378 er32(ICR); 3379 3380 /* free the real vector and request a test handler */ 3381 e1000_free_irq(adapter); 3382 e1000e_reset_interrupt_capability(adapter); 3383 3384 /* Assume that the test fails, if it succeeds then the test 3385 * MSI irq handler will unset this flag */ 3386 adapter->flags |= FLAG_MSI_TEST_FAILED; 3387 3388 err = pci_enable_msi(adapter->pdev); 3389 if (err) 3390 goto msi_test_failed; 3391 3392 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, 3393 netdev->name, netdev); 3394 if (err) { 3395 pci_disable_msi(adapter->pdev); 3396 goto msi_test_failed; 3397 } 3398 3399 wmb(); 3400 3401 e1000_irq_enable(adapter); 3402 3403 /* fire an unusual interrupt on the test handler */ 3404 ew32(ICS, E1000_ICS_RXSEQ); 3405 e1e_flush(); 3406 msleep(50); 3407 3408 e1000_irq_disable(adapter); 3409 3410 rmb(); 3411 3412 if (adapter->flags & FLAG_MSI_TEST_FAILED) { 3413 adapter->int_mode = E1000E_INT_MODE_LEGACY; 3414 err = -EIO; 3415 e_info("MSI interrupt test failed!\n"); 3416 } 3417 3418 free_irq(adapter->pdev->irq, netdev); 3419 pci_disable_msi(adapter->pdev); 3420 3421 if (err == -EIO) 3422 goto msi_test_failed; 3423 3424 /* okay so the test worked, restore settings */ 3425 e_dbg("MSI interrupt test succeeded!\n"); 3426msi_test_failed: 3427 e1000e_set_interrupt_capability(adapter); 3428 e1000_request_irq(adapter); 3429 return err; 3430} 3431 3432/** 3433 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored 3434 * @adapter: board private struct 3435 * 3436 * code flow taken from tg3.c, called with e1000 interrupts disabled. 3437 **/ 3438static int e1000_test_msi(struct e1000_adapter *adapter) 3439{ 3440 int err; 3441 u16 pci_cmd; 3442 3443 if (!(adapter->flags & FLAG_MSI_ENABLED)) 3444 return 0; 3445 3446 /* disable SERR in case the MSI write causes a master abort */ 3447 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); 3448 if (pci_cmd & PCI_COMMAND_SERR) 3449 pci_write_config_word(adapter->pdev, PCI_COMMAND, 3450 pci_cmd & ~PCI_COMMAND_SERR); 3451 3452 err = e1000_test_msi_interrupt(adapter); 3453 3454 /* re-enable SERR */ 3455 if (pci_cmd & PCI_COMMAND_SERR) { 3456 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); 3457 pci_cmd |= PCI_COMMAND_SERR; 3458 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); 3459 } 3460 3461 /* success ! */ 3462 if (!err) 3463 return 0; 3464 3465 /* EIO means MSI test failed */ 3466 if (err != -EIO) 3467 return err; 3468 3469 /* back to INTx mode */ 3470 e_warn("MSI interrupt test failed, using legacy interrupt.\n"); 3471 3472 e1000_free_irq(adapter); 3473 3474 err = e1000_request_irq(adapter); 3475 3476 return err; 3477} 3478 3479/** 3480 * e1000_open - Called when a network interface is made active 3481 * @netdev: network interface device structure 3482 * 3483 * Returns 0 on success, negative value on failure 3484 * 3485 * The open entry point is called when a network interface is made 3486 * active by the system (IFF_UP). At this point all resources needed 3487 * for transmit and receive operations are allocated, the interrupt 3488 * handler is registered with the OS, the watchdog timer is started, 3489 * and the stack is notified that the interface is ready. 3490 **/ 3491static int e1000_open(struct net_device *netdev) 3492{ 3493 struct e1000_adapter *adapter = netdev_priv(netdev); 3494 struct e1000_hw *hw = &adapter->hw; 3495 struct pci_dev *pdev = adapter->pdev; 3496 int err; 3497 3498 /* disallow open during test */ 3499 if (test_bit(__E1000_TESTING, &adapter->state)) 3500 return -EBUSY; 3501 3502 pm_runtime_get_sync(&pdev->dev); 3503 3504 netif_carrier_off(netdev); 3505 3506 /* allocate transmit descriptors */ 3507 err = e1000e_setup_tx_resources(adapter); 3508 if (err) 3509 goto err_setup_tx; 3510 3511 /* allocate receive descriptors */ 3512 err = e1000e_setup_rx_resources(adapter); 3513 if (err) 3514 goto err_setup_rx; 3515 3516 /* 3517 * If AMT is enabled, let the firmware know that the network 3518 * interface is now open and reset the part to a known state. 3519 */ 3520 if (adapter->flags & FLAG_HAS_AMT) { 3521 e1000_get_hw_control(adapter); 3522 e1000e_reset(adapter); 3523 } 3524 3525 e1000e_power_up_phy(adapter); 3526 3527 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 3528 if ((adapter->hw.mng_cookie.status & 3529 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) 3530 e1000_update_mng_vlan(adapter); 3531 3532 /* DMA latency requirement to workaround early-receive/jumbo issue */ 3533 if (adapter->flags & FLAG_HAS_ERT) 3534 pm_qos_add_request(&adapter->netdev->pm_qos_req, 3535 PM_QOS_CPU_DMA_LATENCY, 3536 PM_QOS_DEFAULT_VALUE); 3537 3538 /* 3539 * before we allocate an interrupt, we must be ready to handle it. 3540 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 3541 * as soon as we call pci_request_irq, so we have to setup our 3542 * clean_rx handler before we do so. 3543 */ 3544 e1000_configure(adapter); 3545 3546 err = e1000_request_irq(adapter); 3547 if (err) 3548 goto err_req_irq; 3549 3550 /* 3551 * Work around PCIe errata with MSI interrupts causing some chipsets to 3552 * ignore e1000e MSI messages, which means we need to test our MSI 3553 * interrupt now 3554 */ 3555 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { 3556 err = e1000_test_msi(adapter); 3557 if (err) { 3558 e_err("Interrupt allocation failed\n"); 3559 goto err_req_irq; 3560 } 3561 } 3562 3563 /* From here on the code is the same as e1000e_up() */ 3564 clear_bit(__E1000_DOWN, &adapter->state); 3565 3566 napi_enable(&adapter->napi); 3567 3568 e1000_irq_enable(adapter); 3569 3570 netif_start_queue(netdev); 3571 3572 adapter->idle_check = true; 3573 pm_runtime_put(&pdev->dev); 3574 3575 /* fire a link status change interrupt to start the watchdog */ 3576 if (adapter->msix_entries) 3577 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); 3578 else 3579 ew32(ICS, E1000_ICS_LSC); 3580 3581 return 0; 3582 3583err_req_irq: 3584 e1000_release_hw_control(adapter); 3585 e1000_power_down_phy(adapter); 3586 e1000e_free_rx_resources(adapter); 3587err_setup_rx: 3588 e1000e_free_tx_resources(adapter); 3589err_setup_tx: 3590 e1000e_reset(adapter); 3591 pm_runtime_put_sync(&pdev->dev); 3592 3593 return err; 3594} 3595 3596/** 3597 * e1000_close - Disables a network interface 3598 * @netdev: network interface device structure 3599 * 3600 * Returns 0, this is not allowed to fail 3601 * 3602 * The close entry point is called when an interface is de-activated 3603 * by the OS. The hardware is still under the drivers control, but 3604 * needs to be disabled. A global MAC reset is issued to stop the 3605 * hardware, and all transmit and receive resources are freed. 3606 **/ 3607static int e1000_close(struct net_device *netdev) 3608{ 3609 struct e1000_adapter *adapter = netdev_priv(netdev); 3610 struct pci_dev *pdev = adapter->pdev; 3611 3612 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 3613 3614 pm_runtime_get_sync(&pdev->dev); 3615 3616 if (!test_bit(__E1000_DOWN, &adapter->state)) { 3617 e1000e_down(adapter); 3618 e1000_free_irq(adapter); 3619 } 3620 e1000_power_down_phy(adapter); 3621 3622 e1000e_free_tx_resources(adapter); 3623 e1000e_free_rx_resources(adapter); 3624 3625 /* 3626 * kill manageability vlan ID if supported, but not if a vlan with 3627 * the same ID is registered on the host OS (let 8021q kill it) 3628 */ 3629 if ((adapter->hw.mng_cookie.status & 3630 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 3631 !(adapter->vlgrp && 3632 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) 3633 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); 3634 3635 /* 3636 * If AMT is enabled, let the firmware know that the network 3637 * interface is now closed 3638 */ 3639 if (adapter->flags & FLAG_HAS_AMT) 3640 e1000_release_hw_control(adapter); 3641 3642 if (adapter->flags & FLAG_HAS_ERT) 3643 pm_qos_remove_request(&adapter->netdev->pm_qos_req); 3644 3645 pm_runtime_put_sync(&pdev->dev); 3646 3647 return 0; 3648} 3649/** 3650 * e1000_set_mac - Change the Ethernet Address of the NIC 3651 * @netdev: network interface device structure 3652 * @p: pointer to an address structure 3653 * 3654 * Returns 0 on success, negative on failure 3655 **/ 3656static int e1000_set_mac(struct net_device *netdev, void *p) 3657{ 3658 struct e1000_adapter *adapter = netdev_priv(netdev); 3659 struct sockaddr *addr = p; 3660 3661 if (!is_valid_ether_addr(addr->sa_data)) 3662 return -EADDRNOTAVAIL; 3663 3664 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 3665 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); 3666 3667 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 3668 3669 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { 3670 /* activate the work around */ 3671 e1000e_set_laa_state_82571(&adapter->hw, 1); 3672 3673 /* 3674 * Hold a copy of the LAA in RAR[14] This is done so that 3675 * between the time RAR[0] gets clobbered and the time it 3676 * gets fixed (in e1000_watchdog), the actual LAA is in one 3677 * of the RARs and no incoming packets directed to this port 3678 * are dropped. Eventually the LAA will be in RAR[0] and 3679 * RAR[14] 3680 */ 3681 e1000e_rar_set(&adapter->hw, 3682 adapter->hw.mac.addr, 3683 adapter->hw.mac.rar_entry_count - 1); 3684 } 3685 3686 return 0; 3687} 3688 3689/** 3690 * e1000e_update_phy_task - work thread to update phy 3691 * @work: pointer to our work struct 3692 * 3693 * this worker thread exists because we must acquire a 3694 * semaphore to read the phy, which we could msleep while 3695 * waiting for it, and we can't msleep in a timer. 3696 **/ 3697static void e1000e_update_phy_task(struct work_struct *work) 3698{ 3699 struct e1000_adapter *adapter = container_of(work, 3700 struct e1000_adapter, update_phy_task); 3701 e1000_get_phy_info(&adapter->hw); 3702} 3703 3704/* 3705 * Need to wait a few seconds after link up to get diagnostic information from 3706 * the phy 3707 */ 3708static void e1000_update_phy_info(unsigned long data) 3709{ 3710 struct e1000_adapter *adapter = (struct e1000_adapter *) data; 3711 schedule_work(&adapter->update_phy_task); 3712} 3713 3714/** 3715 * e1000e_update_phy_stats - Update the PHY statistics counters 3716 * @adapter: board private structure 3717 **/ 3718static void e1000e_update_phy_stats(struct e1000_adapter *adapter) 3719{ 3720 struct e1000_hw *hw = &adapter->hw; 3721 s32 ret_val; 3722 u16 phy_data; 3723 3724 ret_val = hw->phy.ops.acquire(hw); 3725 if (ret_val) 3726 return; 3727 3728 hw->phy.addr = 1; 3729 3730#define HV_PHY_STATS_PAGE 778 3731 /* 3732 * A page set is expensive so check if already on desired page. 3733 * If not, set to the page with the PHY status registers. 3734 */ 3735 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 3736 &phy_data); 3737 if (ret_val) 3738 goto release; 3739 if (phy_data != (HV_PHY_STATS_PAGE << IGP_PAGE_SHIFT)) { 3740 ret_val = e1000e_write_phy_reg_mdic(hw, 3741 IGP01E1000_PHY_PAGE_SELECT, 3742 (HV_PHY_STATS_PAGE << 3743 IGP_PAGE_SHIFT)); 3744 if (ret_val) 3745 goto release; 3746 } 3747 3748 /* Read/clear the upper 16-bit registers and read/accumulate lower */ 3749 3750 /* Single Collision Count */ 3751 e1000e_read_phy_reg_mdic(hw, HV_SCC_UPPER & MAX_PHY_REG_ADDRESS, 3752 &phy_data); 3753 ret_val = e1000e_read_phy_reg_mdic(hw, 3754 HV_SCC_LOWER & MAX_PHY_REG_ADDRESS, 3755 &phy_data); 3756 if (!ret_val) 3757 adapter->stats.scc += phy_data; 3758 3759 /* Excessive Collision Count */ 3760 e1000e_read_phy_reg_mdic(hw, HV_ECOL_UPPER & MAX_PHY_REG_ADDRESS, 3761 &phy_data); 3762 ret_val = e1000e_read_phy_reg_mdic(hw, 3763 HV_ECOL_LOWER & MAX_PHY_REG_ADDRESS, 3764 &phy_data); 3765 if (!ret_val) 3766 adapter->stats.ecol += phy_data; 3767 3768 /* Multiple Collision Count */ 3769 e1000e_read_phy_reg_mdic(hw, HV_MCC_UPPER & MAX_PHY_REG_ADDRESS, 3770 &phy_data); 3771 ret_val = e1000e_read_phy_reg_mdic(hw, 3772 HV_MCC_LOWER & MAX_PHY_REG_ADDRESS, 3773 &phy_data); 3774 if (!ret_val) 3775 adapter->stats.mcc += phy_data; 3776 3777 /* Late Collision Count */ 3778 e1000e_read_phy_reg_mdic(hw, HV_LATECOL_UPPER & MAX_PHY_REG_ADDRESS, 3779 &phy_data); 3780 ret_val = e1000e_read_phy_reg_mdic(hw, 3781 HV_LATECOL_LOWER & 3782 MAX_PHY_REG_ADDRESS, 3783 &phy_data); 3784 if (!ret_val) 3785 adapter->stats.latecol += phy_data; 3786 3787 /* Collision Count - also used for adaptive IFS */ 3788 e1000e_read_phy_reg_mdic(hw, HV_COLC_UPPER & MAX_PHY_REG_ADDRESS, 3789 &phy_data); 3790 ret_val = e1000e_read_phy_reg_mdic(hw, 3791 HV_COLC_LOWER & MAX_PHY_REG_ADDRESS, 3792 &phy_data); 3793 if (!ret_val) 3794 hw->mac.collision_delta = phy_data; 3795 3796 /* Defer Count */ 3797 e1000e_read_phy_reg_mdic(hw, HV_DC_UPPER & MAX_PHY_REG_ADDRESS, 3798 &phy_data); 3799 ret_val = e1000e_read_phy_reg_mdic(hw, 3800 HV_DC_LOWER & MAX_PHY_REG_ADDRESS, 3801 &phy_data); 3802 if (!ret_val) 3803 adapter->stats.dc += phy_data; 3804 3805 /* Transmit with no CRS */ 3806 e1000e_read_phy_reg_mdic(hw, HV_TNCRS_UPPER & MAX_PHY_REG_ADDRESS, 3807 &phy_data); 3808 ret_val = e1000e_read_phy_reg_mdic(hw, 3809 HV_TNCRS_LOWER & MAX_PHY_REG_ADDRESS, 3810 &phy_data); 3811 if (!ret_val) 3812 adapter->stats.tncrs += phy_data; 3813 3814release: 3815 hw->phy.ops.release(hw); 3816} 3817 3818/** 3819 * e1000e_update_stats - Update the board statistics counters 3820 * @adapter: board private structure 3821 **/ 3822void e1000e_update_stats(struct e1000_adapter *adapter) 3823{ 3824 struct net_device *netdev = adapter->netdev; 3825 struct e1000_hw *hw = &adapter->hw; 3826 struct pci_dev *pdev = adapter->pdev; 3827 3828 /* 3829 * Prevent stats update while adapter is being reset, or if the pci 3830 * connection is down. 3831 */ 3832 if (adapter->link_speed == 0) 3833 return; 3834 if (pci_channel_offline(pdev)) 3835 return; 3836 3837 adapter->stats.crcerrs += er32(CRCERRS); 3838 adapter->stats.gprc += er32(GPRC); 3839 adapter->stats.gorc += er32(GORCL); 3840 er32(GORCH); /* Clear gorc */ 3841 adapter->stats.bprc += er32(BPRC); 3842 adapter->stats.mprc += er32(MPRC); 3843 adapter->stats.roc += er32(ROC); 3844 3845 adapter->stats.mpc += er32(MPC); 3846 3847 /* Half-duplex statistics */ 3848 if (adapter->link_duplex == HALF_DUPLEX) { 3849 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) { 3850 e1000e_update_phy_stats(adapter); 3851 } else { 3852 adapter->stats.scc += er32(SCC); 3853 adapter->stats.ecol += er32(ECOL); 3854 adapter->stats.mcc += er32(MCC); 3855 adapter->stats.latecol += er32(LATECOL); 3856 adapter->stats.dc += er32(DC); 3857 3858 hw->mac.collision_delta = er32(COLC); 3859 3860 if ((hw->mac.type != e1000_82574) && 3861 (hw->mac.type != e1000_82583)) 3862 adapter->stats.tncrs += er32(TNCRS); 3863 } 3864 adapter->stats.colc += hw->mac.collision_delta; 3865 } 3866 3867 adapter->stats.xonrxc += er32(XONRXC); 3868 adapter->stats.xontxc += er32(XONTXC); 3869 adapter->stats.xoffrxc += er32(XOFFRXC); 3870 adapter->stats.xofftxc += er32(XOFFTXC); 3871 adapter->stats.gptc += er32(GPTC); 3872 adapter->stats.gotc += er32(GOTCL); 3873 er32(GOTCH); /* Clear gotc */ 3874 adapter->stats.rnbc += er32(RNBC); 3875 adapter->stats.ruc += er32(RUC); 3876 3877 adapter->stats.mptc += er32(MPTC); 3878 adapter->stats.bptc += er32(BPTC); 3879 3880 /* used for adaptive IFS */ 3881 3882 hw->mac.tx_packet_delta = er32(TPT); 3883 adapter->stats.tpt += hw->mac.tx_packet_delta; 3884 3885 adapter->stats.algnerrc += er32(ALGNERRC); 3886 adapter->stats.rxerrc += er32(RXERRC); 3887 adapter->stats.cexterr += er32(CEXTERR); 3888 adapter->stats.tsctc += er32(TSCTC); 3889 adapter->stats.tsctfc += er32(TSCTFC); 3890 3891 /* Fill out the OS statistics structure */ 3892 netdev->stats.multicast = adapter->stats.mprc; 3893 netdev->stats.collisions = adapter->stats.colc; 3894 3895 /* Rx Errors */ 3896 3897 /* 3898 * RLEC on some newer hardware can be incorrect so build 3899 * our own version based on RUC and ROC 3900 */ 3901 netdev->stats.rx_errors = adapter->stats.rxerrc + 3902 adapter->stats.crcerrs + adapter->stats.algnerrc + 3903 adapter->stats.ruc + adapter->stats.roc + 3904 adapter->stats.cexterr; 3905 netdev->stats.rx_length_errors = adapter->stats.ruc + 3906 adapter->stats.roc; 3907 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 3908 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 3909 netdev->stats.rx_missed_errors = adapter->stats.mpc; 3910 3911 /* Tx Errors */ 3912 netdev->stats.tx_errors = adapter->stats.ecol + 3913 adapter->stats.latecol; 3914 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 3915 netdev->stats.tx_window_errors = adapter->stats.latecol; 3916 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 3917 3918 /* Tx Dropped needs to be maintained elsewhere */ 3919 3920 /* Management Stats */ 3921 adapter->stats.mgptc += er32(MGTPTC); 3922 adapter->stats.mgprc += er32(MGTPRC); 3923 adapter->stats.mgpdc += er32(MGTPDC); 3924} 3925 3926/** 3927 * e1000_phy_read_status - Update the PHY register status snapshot 3928 * @adapter: board private structure 3929 **/ 3930static void e1000_phy_read_status(struct e1000_adapter *adapter) 3931{ 3932 struct e1000_hw *hw = &adapter->hw; 3933 struct e1000_phy_regs *phy = &adapter->phy_regs; 3934 int ret_val; 3935 3936 if ((er32(STATUS) & E1000_STATUS_LU) && 3937 (adapter->hw.phy.media_type == e1000_media_type_copper)) { 3938 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr); 3939 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr); 3940 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise); 3941 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa); 3942 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion); 3943 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000); 3944 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000); 3945 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus); 3946 if (ret_val) 3947 e_warn("Error reading PHY register\n"); 3948 } else { 3949 /* 3950 * Do not read PHY registers if link is not up 3951 * Set values to typical power-on defaults 3952 */ 3953 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); 3954 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | 3955 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | 3956 BMSR_ERCAP); 3957 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | 3958 ADVERTISE_ALL | ADVERTISE_CSMA); 3959 phy->lpa = 0; 3960 phy->expansion = EXPANSION_ENABLENPAGE; 3961 phy->ctrl1000 = ADVERTISE_1000FULL; 3962 phy->stat1000 = 0; 3963 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); 3964 } 3965} 3966 3967static void e1000_print_link_info(struct e1000_adapter *adapter) 3968{ 3969 struct e1000_hw *hw = &adapter->hw; 3970 u32 ctrl = er32(CTRL); 3971 3972 /* Link status message must follow this format for user tools */ 3973 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, " 3974 "Flow Control: %s\n", 3975 adapter->netdev->name, 3976 adapter->link_speed, 3977 (adapter->link_duplex == FULL_DUPLEX) ? 3978 "Full Duplex" : "Half Duplex", 3979 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? 3980 "RX/TX" : 3981 ((ctrl & E1000_CTRL_RFCE) ? "RX" : 3982 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" ))); 3983} 3984 3985static bool e1000e_has_link(struct e1000_adapter *adapter) 3986{ 3987 struct e1000_hw *hw = &adapter->hw; 3988 bool link_active = 0; 3989 s32 ret_val = 0; 3990 3991 /* 3992 * get_link_status is set on LSC (link status) interrupt or 3993 * Rx sequence error interrupt. get_link_status will stay 3994 * false until the check_for_link establishes link 3995 * for copper adapters ONLY 3996 */ 3997 switch (hw->phy.media_type) { 3998 case e1000_media_type_copper: 3999 if (hw->mac.get_link_status) { 4000 ret_val = hw->mac.ops.check_for_link(hw); 4001 link_active = !hw->mac.get_link_status; 4002 } else { 4003 link_active = 1; 4004 } 4005 break; 4006 case e1000_media_type_fiber: 4007 ret_val = hw->mac.ops.check_for_link(hw); 4008 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 4009 break; 4010 case e1000_media_type_internal_serdes: 4011 ret_val = hw->mac.ops.check_for_link(hw); 4012 link_active = adapter->hw.mac.serdes_has_link; 4013 break; 4014 default: 4015 case e1000_media_type_unknown: 4016 break; 4017 } 4018 4019 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && 4020 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { 4021 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ 4022 e_info("Gigabit has been disabled, downgrading speed\n"); 4023 } 4024 4025 return link_active; 4026} 4027 4028static void e1000e_enable_receives(struct e1000_adapter *adapter) 4029{ 4030 /* make sure the receive unit is started */ 4031 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && 4032 (adapter->flags & FLAG_RX_RESTART_NOW)) { 4033 struct e1000_hw *hw = &adapter->hw; 4034 u32 rctl = er32(RCTL); 4035 ew32(RCTL, rctl | E1000_RCTL_EN); 4036 adapter->flags &= ~FLAG_RX_RESTART_NOW; 4037 } 4038} 4039 4040/** 4041 * e1000_watchdog - Timer Call-back 4042 * @data: pointer to adapter cast into an unsigned long 4043 **/ 4044static void e1000_watchdog(unsigned long data) 4045{ 4046 struct e1000_adapter *adapter = (struct e1000_adapter *) data; 4047 4048 /* Do the rest outside of interrupt context */ 4049 schedule_work(&adapter->watchdog_task); 4050 4051 /* TODO: make this use queue_delayed_work() */ 4052} 4053 4054static void e1000_watchdog_task(struct work_struct *work) 4055{ 4056 struct e1000_adapter *adapter = container_of(work, 4057 struct e1000_adapter, watchdog_task); 4058 struct net_device *netdev = adapter->netdev; 4059 struct e1000_mac_info *mac = &adapter->hw.mac; 4060 struct e1000_phy_info *phy = &adapter->hw.phy; 4061 struct e1000_ring *tx_ring = adapter->tx_ring; 4062 struct e1000_hw *hw = &adapter->hw; 4063 u32 link, tctl; 4064 int tx_pending = 0; 4065 4066 link = e1000e_has_link(adapter); 4067 if ((netif_carrier_ok(netdev)) && link) { 4068 /* Cancel scheduled suspend requests. */ 4069 pm_runtime_resume(netdev->dev.parent); 4070 4071 e1000e_enable_receives(adapter); 4072 goto link_up; 4073 } 4074 4075 if ((e1000e_enable_tx_pkt_filtering(hw)) && 4076 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) 4077 e1000_update_mng_vlan(adapter); 4078 4079 if (link) { 4080 if (!netif_carrier_ok(netdev)) { 4081 bool txb2b = 1; 4082 4083 /* Cancel scheduled suspend requests. */ 4084 pm_runtime_resume(netdev->dev.parent); 4085 4086 /* update snapshot of PHY registers on LSC */ 4087 e1000_phy_read_status(adapter); 4088 mac->ops.get_link_up_info(&adapter->hw, 4089 &adapter->link_speed, 4090 &adapter->link_duplex); 4091 e1000_print_link_info(adapter); 4092 /* 4093 * On supported PHYs, check for duplex mismatch only 4094 * if link has autonegotiated at 10/100 half 4095 */ 4096 if ((hw->phy.type == e1000_phy_igp_3 || 4097 hw->phy.type == e1000_phy_bm) && 4098 (hw->mac.autoneg == true) && 4099 (adapter->link_speed == SPEED_10 || 4100 adapter->link_speed == SPEED_100) && 4101 (adapter->link_duplex == HALF_DUPLEX)) { 4102 u16 autoneg_exp; 4103 4104 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp); 4105 4106 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS)) 4107 e_info("Autonegotiated half duplex but" 4108 " link partner cannot autoneg. " 4109 " Try forcing full duplex if " 4110 "link gets many collisions.\n"); 4111 } 4112 4113 /* adjust timeout factor according to speed/duplex */ 4114 adapter->tx_timeout_factor = 1; 4115 switch (adapter->link_speed) { 4116 case SPEED_10: 4117 txb2b = 0; 4118 adapter->tx_timeout_factor = 16; 4119 break; 4120 case SPEED_100: 4121 txb2b = 0; 4122 adapter->tx_timeout_factor = 10; 4123 break; 4124 } 4125 4126 /* 4127 * workaround: re-program speed mode bit after 4128 * link-up event 4129 */ 4130 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && 4131 !txb2b) { 4132 u32 tarc0; 4133 tarc0 = er32(TARC(0)); 4134 tarc0 &= ~SPEED_MODE_BIT; 4135 ew32(TARC(0), tarc0); 4136 } 4137 4138 /* 4139 * disable TSO for pcie and 10/100 speeds, to avoid 4140 * some hardware issues 4141 */ 4142 if (!(adapter->flags & FLAG_TSO_FORCE)) { 4143 switch (adapter->link_speed) { 4144 case SPEED_10: 4145 case SPEED_100: 4146 e_info("10/100 speed: disabling TSO\n"); 4147 netdev->features &= ~NETIF_F_TSO; 4148 netdev->features &= ~NETIF_F_TSO6; 4149 break; 4150 case SPEED_1000: 4151 netdev->features |= NETIF_F_TSO; 4152 netdev->features |= NETIF_F_TSO6; 4153 break; 4154 default: 4155 /* oops */ 4156 break; 4157 } 4158 } 4159 4160 /* 4161 * enable transmits in the hardware, need to do this 4162 * after setting TARC(0) 4163 */ 4164 tctl = er32(TCTL); 4165 tctl |= E1000_TCTL_EN; 4166 ew32(TCTL, tctl); 4167 4168 /* 4169 * Perform any post-link-up configuration before 4170 * reporting link up. 4171 */ 4172 if (phy->ops.cfg_on_link_up) 4173 phy->ops.cfg_on_link_up(hw); 4174 4175 netif_carrier_on(netdev); 4176 4177 if (!test_bit(__E1000_DOWN, &adapter->state)) 4178 mod_timer(&adapter->phy_info_timer, 4179 round_jiffies(jiffies + 2 * HZ)); 4180 } 4181 } else { 4182 if (netif_carrier_ok(netdev)) { 4183 adapter->link_speed = 0; 4184 adapter->link_duplex = 0; 4185 /* Link status message must follow this format */ 4186 printk(KERN_INFO "e1000e: %s NIC Link is Down\n", 4187 adapter->netdev->name); 4188 netif_carrier_off(netdev); 4189 if (!test_bit(__E1000_DOWN, &adapter->state)) 4190 mod_timer(&adapter->phy_info_timer, 4191 round_jiffies(jiffies + 2 * HZ)); 4192 4193 if (adapter->flags & FLAG_RX_NEEDS_RESTART) 4194 schedule_work(&adapter->reset_task); 4195 else 4196 pm_schedule_suspend(netdev->dev.parent, 4197 LINK_TIMEOUT); 4198 } 4199 } 4200 4201link_up: 4202 e1000e_update_stats(adapter); 4203 4204 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 4205 adapter->tpt_old = adapter->stats.tpt; 4206 mac->collision_delta = adapter->stats.colc - adapter->colc_old; 4207 adapter->colc_old = adapter->stats.colc; 4208 4209 adapter->gorc = adapter->stats.gorc - adapter->gorc_old; 4210 adapter->gorc_old = adapter->stats.gorc; 4211 adapter->gotc = adapter->stats.gotc - adapter->gotc_old; 4212 adapter->gotc_old = adapter->stats.gotc; 4213 4214 e1000e_update_adaptive(&adapter->hw); 4215 4216 if (!netif_carrier_ok(netdev)) { 4217 tx_pending = (e1000_desc_unused(tx_ring) + 1 < 4218 tx_ring->count); 4219 if (tx_pending) { 4220 /* 4221 * We've lost link, so the controller stops DMA, 4222 * but we've got queued Tx work that's never going 4223 * to get done, so reset controller to flush Tx. 4224 * (Do the reset outside of interrupt context). 4225 */ 4226 adapter->tx_timeout_count++; 4227 schedule_work(&adapter->reset_task); 4228 /* return immediately since reset is imminent */ 4229 return; 4230 } 4231 } 4232 4233 /* Simple mode for Interrupt Throttle Rate (ITR) */ 4234 if (adapter->itr_setting == 4) { 4235 /* 4236 * Symmetric Tx/Rx gets a reduced ITR=2000; 4237 * Total asymmetrical Tx or Rx gets ITR=8000; 4238 * everyone else is between 2000-8000. 4239 */ 4240 u32 goc = (adapter->gotc + adapter->gorc) / 10000; 4241 u32 dif = (adapter->gotc > adapter->gorc ? 4242 adapter->gotc - adapter->gorc : 4243 adapter->gorc - adapter->gotc) / 10000; 4244 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 4245 4246 ew32(ITR, 1000000000 / (itr * 256)); 4247 } 4248 4249 /* Cause software interrupt to ensure Rx ring is cleaned */ 4250 if (adapter->msix_entries) 4251 ew32(ICS, adapter->rx_ring->ims_val); 4252 else 4253 ew32(ICS, E1000_ICS_RXDMT0); 4254 4255 /* Force detection of hung controller every watchdog period */ 4256 adapter->detect_tx_hung = 1; 4257 4258 /* 4259 * With 82571 controllers, LAA may be overwritten due to controller 4260 * reset from the other port. Set the appropriate LAA in RAR[0] 4261 */ 4262 if (e1000e_get_laa_state_82571(hw)) 4263 e1000e_rar_set(hw, adapter->hw.mac.addr, 0); 4264 4265 /* Reset the timer */ 4266 if (!test_bit(__E1000_DOWN, &adapter->state)) 4267 mod_timer(&adapter->watchdog_timer, 4268 round_jiffies(jiffies + 2 * HZ)); 4269} 4270 4271#define E1000_TX_FLAGS_CSUM 0x00000001 4272#define E1000_TX_FLAGS_VLAN 0x00000002 4273#define E1000_TX_FLAGS_TSO 0x00000004 4274#define E1000_TX_FLAGS_IPV4 0x00000008 4275#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 4276#define E1000_TX_FLAGS_VLAN_SHIFT 16 4277 4278static int e1000_tso(struct e1000_adapter *adapter, 4279 struct sk_buff *skb) 4280{ 4281 struct e1000_ring *tx_ring = adapter->tx_ring; 4282 struct e1000_context_desc *context_desc; 4283 struct e1000_buffer *buffer_info; 4284 unsigned int i; 4285 u32 cmd_length = 0; 4286 u16 ipcse = 0, tucse, mss; 4287 u8 ipcss, ipcso, tucss, tucso, hdr_len; 4288 int err; 4289 4290 if (!skb_is_gso(skb)) 4291 return 0; 4292 4293 if (skb_header_cloned(skb)) { 4294 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 4295 if (err) 4296 return err; 4297 } 4298 4299 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 4300 mss = skb_shinfo(skb)->gso_size; 4301 if (skb->protocol == htons(ETH_P_IP)) { 4302 struct iphdr *iph = ip_hdr(skb); 4303 iph->tot_len = 0; 4304 iph->check = 0; 4305 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 4306 0, IPPROTO_TCP, 0); 4307 cmd_length = E1000_TXD_CMD_IP; 4308 ipcse = skb_transport_offset(skb) - 1; 4309 } else if (skb_is_gso_v6(skb)) { 4310 ipv6_hdr(skb)->payload_len = 0; 4311 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4312 &ipv6_hdr(skb)->daddr, 4313 0, IPPROTO_TCP, 0); 4314 ipcse = 0; 4315 } 4316 ipcss = skb_network_offset(skb); 4317 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 4318 tucss = skb_transport_offset(skb); 4319 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 4320 tucse = 0; 4321 4322 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 4323 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 4324 4325 i = tx_ring->next_to_use; 4326 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 4327 buffer_info = &tx_ring->buffer_info[i]; 4328 4329 context_desc->lower_setup.ip_fields.ipcss = ipcss; 4330 context_desc->lower_setup.ip_fields.ipcso = ipcso; 4331 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 4332 context_desc->upper_setup.tcp_fields.tucss = tucss; 4333 context_desc->upper_setup.tcp_fields.tucso = tucso; 4334 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 4335 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 4336 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 4337 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 4338 4339 buffer_info->time_stamp = jiffies; 4340 buffer_info->next_to_watch = i; 4341 4342 i++; 4343 if (i == tx_ring->count) 4344 i = 0; 4345 tx_ring->next_to_use = i; 4346 4347 return 1; 4348} 4349 4350static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) 4351{ 4352 struct e1000_ring *tx_ring = adapter->tx_ring; 4353 struct e1000_context_desc *context_desc; 4354 struct e1000_buffer *buffer_info; 4355 unsigned int i; 4356 u8 css; 4357 u32 cmd_len = E1000_TXD_CMD_DEXT; 4358 __be16 protocol; 4359 4360 if (skb->ip_summed != CHECKSUM_PARTIAL) 4361 return 0; 4362 4363 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) 4364 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; 4365 else 4366 protocol = skb->protocol; 4367 4368 switch (protocol) { 4369 case cpu_to_be16(ETH_P_IP): 4370 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 4371 cmd_len |= E1000_TXD_CMD_TCP; 4372 break; 4373 case cpu_to_be16(ETH_P_IPV6): 4374 /* XXX not handling all IPV6 headers */ 4375 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 4376 cmd_len |= E1000_TXD_CMD_TCP; 4377 break; 4378 default: 4379 if (unlikely(net_ratelimit())) 4380 e_warn("checksum_partial proto=%x!\n", 4381 be16_to_cpu(protocol)); 4382 break; 4383 } 4384 4385 css = skb_transport_offset(skb); 4386 4387 i = tx_ring->next_to_use; 4388 buffer_info = &tx_ring->buffer_info[i]; 4389 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 4390 4391 context_desc->lower_setup.ip_config = 0; 4392 context_desc->upper_setup.tcp_fields.tucss = css; 4393 context_desc->upper_setup.tcp_fields.tucso = 4394 css + skb->csum_offset; 4395 context_desc->upper_setup.tcp_fields.tucse = 0; 4396 context_desc->tcp_seg_setup.data = 0; 4397 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 4398 4399 buffer_info->time_stamp = jiffies; 4400 buffer_info->next_to_watch = i; 4401 4402 i++; 4403 if (i == tx_ring->count) 4404 i = 0; 4405 tx_ring->next_to_use = i; 4406 4407 return 1; 4408} 4409 4410#define E1000_MAX_PER_TXD 8192 4411#define E1000_MAX_TXD_PWR 12 4412 4413static int e1000_tx_map(struct e1000_adapter *adapter, 4414 struct sk_buff *skb, unsigned int first, 4415 unsigned int max_per_txd, unsigned int nr_frags, 4416 unsigned int mss) 4417{ 4418 struct e1000_ring *tx_ring = adapter->tx_ring; 4419 struct pci_dev *pdev = adapter->pdev; 4420 struct e1000_buffer *buffer_info; 4421 unsigned int len = skb_headlen(skb); 4422 unsigned int offset = 0, size, count = 0, i; 4423 unsigned int f, bytecount, segs; 4424 4425 i = tx_ring->next_to_use; 4426 4427 while (len) { 4428 buffer_info = &tx_ring->buffer_info[i]; 4429 size = min(len, max_per_txd); 4430 4431 buffer_info->length = size; 4432 buffer_info->time_stamp = jiffies; 4433 buffer_info->next_to_watch = i; 4434 buffer_info->dma = dma_map_single(&pdev->dev, 4435 skb->data + offset, 4436 size, DMA_TO_DEVICE); 4437 buffer_info->mapped_as_page = false; 4438 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 4439 goto dma_error; 4440 4441 len -= size; 4442 offset += size; 4443 count++; 4444 4445 if (len) { 4446 i++; 4447 if (i == tx_ring->count) 4448 i = 0; 4449 } 4450 } 4451 4452 for (f = 0; f < nr_frags; f++) { 4453 struct skb_frag_struct *frag; 4454 4455 frag = &skb_shinfo(skb)->frags[f]; 4456 len = frag->size; 4457 offset = frag->page_offset; 4458 4459 while (len) { 4460 i++; 4461 if (i == tx_ring->count) 4462 i = 0; 4463 4464 buffer_info = &tx_ring->buffer_info[i]; 4465 size = min(len, max_per_txd); 4466 4467 buffer_info->length = size; 4468 buffer_info->time_stamp = jiffies; 4469 buffer_info->next_to_watch = i; 4470 buffer_info->dma = dma_map_page(&pdev->dev, frag->page, 4471 offset, size, 4472 DMA_TO_DEVICE); 4473 buffer_info->mapped_as_page = true; 4474 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 4475 goto dma_error; 4476 4477 len -= size; 4478 offset += size; 4479 count++; 4480 } 4481 } 4482 4483 segs = skb_shinfo(skb)->gso_segs ?: 1; 4484 /* multiply data chunks by size of headers */ 4485 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 4486 4487 tx_ring->buffer_info[i].skb = skb; 4488 tx_ring->buffer_info[i].segs = segs; 4489 tx_ring->buffer_info[i].bytecount = bytecount; 4490 tx_ring->buffer_info[first].next_to_watch = i; 4491 4492 return count; 4493 4494dma_error: 4495 dev_err(&pdev->dev, "TX DMA map failed\n"); 4496 buffer_info->dma = 0; 4497 if (count) 4498 count--; 4499 4500 while (count--) { 4501 if (i==0) 4502 i += tx_ring->count; 4503 i--; 4504 buffer_info = &tx_ring->buffer_info[i]; 4505 e1000_put_txbuf(adapter, buffer_info);; 4506 } 4507 4508 return 0; 4509} 4510 4511static void e1000_tx_queue(struct e1000_adapter *adapter, 4512 int tx_flags, int count) 4513{ 4514 struct e1000_ring *tx_ring = adapter->tx_ring; 4515 struct e1000_tx_desc *tx_desc = NULL; 4516 struct e1000_buffer *buffer_info; 4517 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 4518 unsigned int i; 4519 4520 if (tx_flags & E1000_TX_FLAGS_TSO) { 4521 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 4522 E1000_TXD_CMD_TSE; 4523 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 4524 4525 if (tx_flags & E1000_TX_FLAGS_IPV4) 4526 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 4527 } 4528 4529 if (tx_flags & E1000_TX_FLAGS_CSUM) { 4530 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 4531 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 4532 } 4533 4534 if (tx_flags & E1000_TX_FLAGS_VLAN) { 4535 txd_lower |= E1000_TXD_CMD_VLE; 4536 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 4537 } 4538 4539 i = tx_ring->next_to_use; 4540 4541 while (count--) { 4542 buffer_info = &tx_ring->buffer_info[i]; 4543 tx_desc = E1000_TX_DESC(*tx_ring, i); 4544 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4545 tx_desc->lower.data = 4546 cpu_to_le32(txd_lower | buffer_info->length); 4547 tx_desc->upper.data = cpu_to_le32(txd_upper); 4548 4549 i++; 4550 if (i == tx_ring->count) 4551 i = 0; 4552 } 4553 4554 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 4555 4556 /* 4557 * Force memory writes to complete before letting h/w 4558 * know there are new descriptors to fetch. (Only 4559 * applicable for weak-ordered memory model archs, 4560 * such as IA-64). 4561 */ 4562 wmb(); 4563 4564 tx_ring->next_to_use = i; 4565 writel(i, adapter->hw.hw_addr + tx_ring->tail); 4566 /* 4567 * we need this if more than one processor can write to our tail 4568 * at a time, it synchronizes IO on IA64/Altix systems 4569 */ 4570 mmiowb(); 4571} 4572 4573#define MINIMUM_DHCP_PACKET_SIZE 282 4574static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, 4575 struct sk_buff *skb) 4576{ 4577 struct e1000_hw *hw = &adapter->hw; 4578 u16 length, offset; 4579 4580 if (vlan_tx_tag_present(skb)) { 4581 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && 4582 (adapter->hw.mng_cookie.status & 4583 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) 4584 return 0; 4585 } 4586 4587 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) 4588 return 0; 4589 4590 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) 4591 return 0; 4592 4593 { 4594 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); 4595 struct udphdr *udp; 4596 4597 if (ip->protocol != IPPROTO_UDP) 4598 return 0; 4599 4600 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); 4601 if (ntohs(udp->dest) != 67) 4602 return 0; 4603 4604 offset = (u8 *)udp + 8 - skb->data; 4605 length = skb->len - offset; 4606 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); 4607 } 4608 4609 return 0; 4610} 4611 4612static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 4613{ 4614 struct e1000_adapter *adapter = netdev_priv(netdev); 4615 4616 netif_stop_queue(netdev); 4617 /* 4618 * Herbert's original patch had: 4619 * smp_mb__after_netif_stop_queue(); 4620 * but since that doesn't exist yet, just open code it. 4621 */ 4622 smp_mb(); 4623 4624 /* 4625 * We need to check again in a case another CPU has just 4626 * made room available. 4627 */ 4628 if (e1000_desc_unused(adapter->tx_ring) < size) 4629 return -EBUSY; 4630 4631 /* A reprieve! */ 4632 netif_start_queue(netdev); 4633 ++adapter->restart_queue; 4634 return 0; 4635} 4636 4637static int e1000_maybe_stop_tx(struct net_device *netdev, int size) 4638{ 4639 struct e1000_adapter *adapter = netdev_priv(netdev); 4640 4641 if (e1000_desc_unused(adapter->tx_ring) >= size) 4642 return 0; 4643 return __e1000_maybe_stop_tx(netdev, size); 4644} 4645 4646#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) 4647static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 4648 struct net_device *netdev) 4649{ 4650 struct e1000_adapter *adapter = netdev_priv(netdev); 4651 struct e1000_ring *tx_ring = adapter->tx_ring; 4652 unsigned int first; 4653 unsigned int max_per_txd = E1000_MAX_PER_TXD; 4654 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 4655 unsigned int tx_flags = 0; 4656 unsigned int len = skb_headlen(skb); 4657 unsigned int nr_frags; 4658 unsigned int mss; 4659 int count = 0; 4660 int tso; 4661 unsigned int f; 4662 4663 if (test_bit(__E1000_DOWN, &adapter->state)) { 4664 dev_kfree_skb_any(skb); 4665 return NETDEV_TX_OK; 4666 } 4667 4668 if (skb->len <= 0) { 4669 dev_kfree_skb_any(skb); 4670 return NETDEV_TX_OK; 4671 } 4672 4673 mss = skb_shinfo(skb)->gso_size; 4674 /* 4675 * The controller does a simple calculation to 4676 * make sure there is enough room in the FIFO before 4677 * initiating the DMA for each buffer. The calc is: 4678 * 4 = ceil(buffer len/mss). To make sure we don't 4679 * overrun the FIFO, adjust the max buffer len if mss 4680 * drops. 4681 */ 4682 if (mss) { 4683 u8 hdr_len; 4684 max_per_txd = min(mss << 2, max_per_txd); 4685 max_txd_pwr = fls(max_per_txd) - 1; 4686 4687 /* 4688 * TSO Workaround for 82571/2/3 Controllers -- if skb->data 4689 * points to just header, pull a few bytes of payload from 4690 * frags into skb->data 4691 */ 4692 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 4693 /* 4694 * we do this workaround for ES2LAN, but it is un-necessary, 4695 * avoiding it could save a lot of cycles 4696 */ 4697 if (skb->data_len && (hdr_len == len)) { 4698 unsigned int pull_size; 4699 4700 pull_size = min((unsigned int)4, skb->data_len); 4701 if (!__pskb_pull_tail(skb, pull_size)) { 4702 e_err("__pskb_pull_tail failed.\n"); 4703 dev_kfree_skb_any(skb); 4704 return NETDEV_TX_OK; 4705 } 4706 len = skb_headlen(skb); 4707 } 4708 } 4709 4710 /* reserve a descriptor for the offload context */ 4711 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 4712 count++; 4713 count++; 4714 4715 count += TXD_USE_COUNT(len, max_txd_pwr); 4716 4717 nr_frags = skb_shinfo(skb)->nr_frags; 4718 for (f = 0; f < nr_frags; f++) 4719 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, 4720 max_txd_pwr); 4721 4722 if (adapter->hw.mac.tx_pkt_filtering) 4723 e1000_transfer_dhcp_info(adapter, skb); 4724 4725 /* 4726 * need: count + 2 desc gap to keep tail from touching 4727 * head, otherwise try next time 4728 */ 4729 if (e1000_maybe_stop_tx(netdev, count + 2)) 4730 return NETDEV_TX_BUSY; 4731 4732 if (adapter->vlgrp && vlan_tx_tag_present(skb)) { 4733 tx_flags |= E1000_TX_FLAGS_VLAN; 4734 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); 4735 } 4736 4737 first = tx_ring->next_to_use; 4738 4739 tso = e1000_tso(adapter, skb); 4740 if (tso < 0) { 4741 dev_kfree_skb_any(skb); 4742 return NETDEV_TX_OK; 4743 } 4744 4745 if (tso) 4746 tx_flags |= E1000_TX_FLAGS_TSO; 4747 else if (e1000_tx_csum(adapter, skb)) 4748 tx_flags |= E1000_TX_FLAGS_CSUM; 4749 4750 /* 4751 * Old method was to assume IPv4 packet by default if TSO was enabled. 4752 * 82571 hardware supports TSO capabilities for IPv6 as well... 4753 * no longer assume, we must. 4754 */ 4755 if (skb->protocol == htons(ETH_P_IP)) 4756 tx_flags |= E1000_TX_FLAGS_IPV4; 4757 4758 /* if count is 0 then mapping error has occured */ 4759 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); 4760 if (count) { 4761 e1000_tx_queue(adapter, tx_flags, count); 4762 /* Make sure there is space in the ring for the next send. */ 4763 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); 4764 4765 } else { 4766 dev_kfree_skb_any(skb); 4767 tx_ring->buffer_info[first].time_stamp = 0; 4768 tx_ring->next_to_use = first; 4769 } 4770 4771 return NETDEV_TX_OK; 4772} 4773 4774/** 4775 * e1000_tx_timeout - Respond to a Tx Hang 4776 * @netdev: network interface device structure 4777 **/ 4778static void e1000_tx_timeout(struct net_device *netdev) 4779{ 4780 struct e1000_adapter *adapter = netdev_priv(netdev); 4781 4782 /* Do the reset outside of interrupt context */ 4783 adapter->tx_timeout_count++; 4784 schedule_work(&adapter->reset_task); 4785} 4786 4787static void e1000_reset_task(struct work_struct *work) 4788{ 4789 struct e1000_adapter *adapter; 4790 adapter = container_of(work, struct e1000_adapter, reset_task); 4791 4792 e1000e_dump(adapter); 4793 e_err("Reset adapter\n"); 4794 e1000e_reinit_locked(adapter); 4795} 4796 4797/** 4798 * e1000_get_stats - Get System Network Statistics 4799 * @netdev: network interface device structure 4800 * 4801 * Returns the address of the device statistics structure. 4802 * The statistics are actually updated from the timer callback. 4803 **/ 4804static struct net_device_stats *e1000_get_stats(struct net_device *netdev) 4805{ 4806 /* only return the current stats */ 4807 return &netdev->stats; 4808} 4809 4810/** 4811 * e1000_change_mtu - Change the Maximum Transfer Unit 4812 * @netdev: network interface device structure 4813 * @new_mtu: new value for maximum frame size 4814 * 4815 * Returns 0 on success, negative on failure 4816 **/ 4817static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 4818{ 4819 struct e1000_adapter *adapter = netdev_priv(netdev); 4820 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4821 4822 /* Jumbo frame support */ 4823 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) && 4824 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { 4825 e_err("Jumbo Frames not supported.\n"); 4826 return -EINVAL; 4827 } 4828 4829 /* Supported frame sizes */ 4830 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) || 4831 (max_frame > adapter->max_hw_frame_size)) { 4832 e_err("Unsupported MTU setting\n"); 4833 return -EINVAL; 4834 } 4835 4836 /* 82573 Errata 17 */ 4837 if (((adapter->hw.mac.type == e1000_82573) || 4838 (adapter->hw.mac.type == e1000_82574)) && 4839 (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) { 4840 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1; 4841 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1); 4842 } 4843 4844 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 4845 msleep(1); 4846 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ 4847 adapter->max_frame_size = max_frame; 4848 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); 4849 netdev->mtu = new_mtu; 4850 if (netif_running(netdev)) 4851 e1000e_down(adapter); 4852 4853 /* 4854 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 4855 * means we reserve 2 more, this pushes us to allocate from the next 4856 * larger slab size. 4857 * i.e. RXBUFFER_2048 --> size-4096 slab 4858 * However with the new *_jumbo_rx* routines, jumbo receives will use 4859 * fragmented skbs 4860 */ 4861 4862 if (max_frame <= 2048) 4863 adapter->rx_buffer_len = 2048; 4864 else 4865 adapter->rx_buffer_len = 4096; 4866 4867 /* adjust allocation if LPE protects us, and we aren't using SBP */ 4868 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || 4869 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) 4870 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN 4871 + ETH_FCS_LEN; 4872 4873 if (netif_running(netdev)) 4874 e1000e_up(adapter); 4875 else 4876 e1000e_reset(adapter); 4877 4878 clear_bit(__E1000_RESETTING, &adapter->state); 4879 4880 return 0; 4881} 4882 4883static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 4884 int cmd) 4885{ 4886 struct e1000_adapter *adapter = netdev_priv(netdev); 4887 struct mii_ioctl_data *data = if_mii(ifr); 4888 4889 if (adapter->hw.phy.media_type != e1000_media_type_copper) 4890 return -EOPNOTSUPP; 4891 4892 switch (cmd) { 4893 case SIOCGMIIPHY: 4894 data->phy_id = adapter->hw.phy.addr; 4895 break; 4896 case SIOCGMIIREG: 4897 e1000_phy_read_status(adapter); 4898 4899 switch (data->reg_num & 0x1F) { 4900 case MII_BMCR: 4901 data->val_out = adapter->phy_regs.bmcr; 4902 break; 4903 case MII_BMSR: 4904 data->val_out = adapter->phy_regs.bmsr; 4905 break; 4906 case MII_PHYSID1: 4907 data->val_out = (adapter->hw.phy.id >> 16); 4908 break; 4909 case MII_PHYSID2: 4910 data->val_out = (adapter->hw.phy.id & 0xFFFF); 4911 break; 4912 case MII_ADVERTISE: 4913 data->val_out = adapter->phy_regs.advertise; 4914 break; 4915 case MII_LPA: 4916 data->val_out = adapter->phy_regs.lpa; 4917 break; 4918 case MII_EXPANSION: 4919 data->val_out = adapter->phy_regs.expansion; 4920 break; 4921 case MII_CTRL1000: 4922 data->val_out = adapter->phy_regs.ctrl1000; 4923 break; 4924 case MII_STAT1000: 4925 data->val_out = adapter->phy_regs.stat1000; 4926 break; 4927 case MII_ESTATUS: 4928 data->val_out = adapter->phy_regs.estatus; 4929 break; 4930 default: 4931 return -EIO; 4932 } 4933 break; 4934 case SIOCSMIIREG: 4935 default: 4936 return -EOPNOTSUPP; 4937 } 4938 return 0; 4939} 4940 4941static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 4942{ 4943 switch (cmd) { 4944 case SIOCGMIIPHY: 4945 case SIOCGMIIREG: 4946 case SIOCSMIIREG: 4947 return e1000_mii_ioctl(netdev, ifr, cmd); 4948 default: 4949 return -EOPNOTSUPP; 4950 } 4951} 4952 4953static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) 4954{ 4955 struct e1000_hw *hw = &adapter->hw; 4956 u32 i, mac_reg; 4957 u16 phy_reg; 4958 int retval = 0; 4959 4960 /* copy MAC RARs to PHY RARs */ 4961 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 4962 4963 /* copy MAC MTA to PHY MTA */ 4964 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { 4965 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); 4966 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF)); 4967 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF)); 4968 } 4969 4970 /* configure PHY Rx Control register */ 4971 e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg); 4972 mac_reg = er32(RCTL); 4973 if (mac_reg & E1000_RCTL_UPE) 4974 phy_reg |= BM_RCTL_UPE; 4975 if (mac_reg & E1000_RCTL_MPE) 4976 phy_reg |= BM_RCTL_MPE; 4977 phy_reg &= ~(BM_RCTL_MO_MASK); 4978 if (mac_reg & E1000_RCTL_MO_3) 4979 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) 4980 << BM_RCTL_MO_SHIFT); 4981 if (mac_reg & E1000_RCTL_BAM) 4982 phy_reg |= BM_RCTL_BAM; 4983 if (mac_reg & E1000_RCTL_PMCF) 4984 phy_reg |= BM_RCTL_PMCF; 4985 mac_reg = er32(CTRL); 4986 if (mac_reg & E1000_CTRL_RFCE) 4987 phy_reg |= BM_RCTL_RFCE; 4988 e1e_wphy(&adapter->hw, BM_RCTL, phy_reg); 4989 4990 /* enable PHY wakeup in MAC register */ 4991 ew32(WUFC, wufc); 4992 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN); 4993 4994 /* configure and enable PHY wakeup in PHY registers */ 4995 e1e_wphy(&adapter->hw, BM_WUFC, wufc); 4996 e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN); 4997 4998 /* activate PHY wakeup */ 4999 retval = hw->phy.ops.acquire(hw); 5000 if (retval) { 5001 e_err("Could not acquire PHY\n"); 5002 return retval; 5003 } 5004 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 5005 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); 5006 retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg); 5007 if (retval) { 5008 e_err("Could not read PHY page 769\n"); 5009 goto out; 5010 } 5011 phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; 5012 retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); 5013 if (retval) 5014 e_err("Could not set PHY Host Wakeup bit\n"); 5015out: 5016 hw->phy.ops.release(hw); 5017 5018 return retval; 5019} 5020 5021static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake, 5022 bool runtime) 5023{ 5024 struct net_device *netdev = pci_get_drvdata(pdev); 5025 struct e1000_adapter *adapter = netdev_priv(netdev); 5026 struct e1000_hw *hw = &adapter->hw; 5027 u32 ctrl, ctrl_ext, rctl, status; 5028 /* Runtime suspend should only enable wakeup for link changes */ 5029 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 5030 int retval = 0; 5031 5032 netif_device_detach(netdev); 5033 5034 if (netif_running(netdev)) { 5035 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 5036 e1000e_down(adapter); 5037 e1000_free_irq(adapter); 5038 } 5039 e1000e_reset_interrupt_capability(adapter); 5040 5041 retval = pci_save_state(pdev); 5042 if (retval) 5043 return retval; 5044 5045 status = er32(STATUS); 5046 if (status & E1000_STATUS_LU) 5047 wufc &= ~E1000_WUFC_LNKC; 5048 5049 if (wufc) { 5050 e1000_setup_rctl(adapter); 5051 e1000_set_multi(netdev); 5052 5053 /* turn on all-multi mode if wake on multicast is enabled */ 5054 if (wufc & E1000_WUFC_MC) { 5055 rctl = er32(RCTL); 5056 rctl |= E1000_RCTL_MPE; 5057 ew32(RCTL, rctl); 5058 } 5059 5060 ctrl = er32(CTRL); 5061 /* advertise wake from D3Cold */ 5062 #define E1000_CTRL_ADVD3WUC 0x00100000 5063 /* phy power management enable */ 5064 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 5065 ctrl |= E1000_CTRL_ADVD3WUC; 5066 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) 5067 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; 5068 ew32(CTRL, ctrl); 5069 5070 if (adapter->hw.phy.media_type == e1000_media_type_fiber || 5071 adapter->hw.phy.media_type == 5072 e1000_media_type_internal_serdes) { 5073 /* keep the laser running in D3 */ 5074 ctrl_ext = er32(CTRL_EXT); 5075 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; 5076 ew32(CTRL_EXT, ctrl_ext); 5077 } 5078 5079 if (adapter->flags & FLAG_IS_ICH) 5080 e1000e_disable_gig_wol_ich8lan(&adapter->hw); 5081 5082 /* Allow time for pending master requests to run */ 5083 e1000e_disable_pcie_master(&adapter->hw); 5084 5085 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { 5086 /* enable wakeup by the PHY */ 5087 retval = e1000_init_phy_wakeup(adapter, wufc); 5088 if (retval) 5089 return retval; 5090 } else { 5091 /* enable wakeup by the MAC */ 5092 ew32(WUFC, wufc); 5093 ew32(WUC, E1000_WUC_PME_EN); 5094 } 5095 } else { 5096 ew32(WUC, 0); 5097 ew32(WUFC, 0); 5098 } 5099 5100 *enable_wake = !!wufc; 5101 5102 /* make sure adapter isn't asleep if manageability is enabled */ 5103 if ((adapter->flags & FLAG_MNG_PT_ENABLED) || 5104 (hw->mac.ops.check_mng_mode(hw))) 5105 *enable_wake = true; 5106 5107 if (adapter->hw.phy.type == e1000_phy_igp_3) 5108 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); 5109 5110 /* 5111 * Release control of h/w to f/w. If f/w is AMT enabled, this 5112 * would have already happened in close and is redundant. 5113 */ 5114 e1000_release_hw_control(adapter); 5115 5116 pci_disable_device(pdev); 5117 5118 return 0; 5119} 5120 5121static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake) 5122{ 5123 if (sleep && wake) { 5124 pci_prepare_to_sleep(pdev); 5125 return; 5126 } 5127 5128 pci_wake_from_d3(pdev, wake); 5129 pci_set_power_state(pdev, PCI_D3hot); 5130} 5131 5132static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep, 5133 bool wake) 5134{ 5135 struct net_device *netdev = pci_get_drvdata(pdev); 5136 struct e1000_adapter *adapter = netdev_priv(netdev); 5137 5138 /* 5139 * The pci-e switch on some quad port adapters will report a 5140 * correctable error when the MAC transitions from D0 to D3. To 5141 * prevent this we need to mask off the correctable errors on the 5142 * downstream port of the pci-e switch. 5143 */ 5144 if (adapter->flags & FLAG_IS_QUAD_PORT) { 5145 struct pci_dev *us_dev = pdev->bus->self; 5146 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP); 5147 u16 devctl; 5148 5149 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl); 5150 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, 5151 (devctl & ~PCI_EXP_DEVCTL_CERE)); 5152 5153 e1000_power_off(pdev, sleep, wake); 5154 5155 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl); 5156 } else { 5157 e1000_power_off(pdev, sleep, wake); 5158 } 5159} 5160 5161#ifdef CONFIG_PCIEASPM 5162static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state) 5163{ 5164 pci_disable_link_state(pdev, state); 5165} 5166#else 5167static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state) 5168{ 5169 int pos; 5170 u16 reg16; 5171 5172 /* 5173 * Both device and parent should have the same ASPM setting. 5174 * Disable ASPM in downstream component first and then upstream. 5175 */ 5176 pos = pci_pcie_cap(pdev); 5177 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16); 5178 reg16 &= ~state; 5179 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16); 5180 5181 if (!pdev->bus->self) 5182 return; 5183 5184 pos = pci_pcie_cap(pdev->bus->self); 5185 pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16); 5186 reg16 &= ~state; 5187 pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16); 5188} 5189#endif 5190void e1000e_disable_aspm(struct pci_dev *pdev, u16 state) 5191{ 5192 dev_info(&pdev->dev, "Disabling ASPM %s %s\n", 5193 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "", 5194 (state & PCIE_LINK_STATE_L1) ? "L1" : ""); 5195 5196 __e1000e_disable_aspm(pdev, state); 5197} 5198 5199#ifdef CONFIG_PM_OPS 5200static bool e1000e_pm_ready(struct e1000_adapter *adapter) 5201{ 5202 return !!adapter->tx_ring->buffer_info; 5203} 5204 5205static int __e1000_resume(struct pci_dev *pdev) 5206{ 5207 struct net_device *netdev = pci_get_drvdata(pdev); 5208 struct e1000_adapter *adapter = netdev_priv(netdev); 5209 struct e1000_hw *hw = &adapter->hw; 5210 u32 err; 5211 5212 pci_set_power_state(pdev, PCI_D0); 5213 pci_restore_state(pdev); 5214 pci_save_state(pdev); 5215 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) 5216 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1); 5217 5218 e1000e_set_interrupt_capability(adapter); 5219 if (netif_running(netdev)) { 5220 err = e1000_request_irq(adapter); 5221 if (err) 5222 return err; 5223 } 5224 5225 e1000e_power_up_phy(adapter); 5226 5227 /* report the system wakeup cause from S3/S4 */ 5228 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { 5229 u16 phy_data; 5230 5231 e1e_rphy(&adapter->hw, BM_WUS, &phy_data); 5232 if (phy_data) { 5233 e_info("PHY Wakeup cause - %s\n", 5234 phy_data & E1000_WUS_EX ? "Unicast Packet" : 5235 phy_data & E1000_WUS_MC ? "Multicast Packet" : 5236 phy_data & E1000_WUS_BC ? "Broadcast Packet" : 5237 phy_data & E1000_WUS_MAG ? "Magic Packet" : 5238 phy_data & E1000_WUS_LNKC ? "Link Status " 5239 " Change" : "other"); 5240 } 5241 e1e_wphy(&adapter->hw, BM_WUS, ~0); 5242 } else { 5243 u32 wus = er32(WUS); 5244 if (wus) { 5245 e_info("MAC Wakeup cause - %s\n", 5246 wus & E1000_WUS_EX ? "Unicast Packet" : 5247 wus & E1000_WUS_MC ? "Multicast Packet" : 5248 wus & E1000_WUS_BC ? "Broadcast Packet" : 5249 wus & E1000_WUS_MAG ? "Magic Packet" : 5250 wus & E1000_WUS_LNKC ? "Link Status Change" : 5251 "other"); 5252 } 5253 ew32(WUS, ~0); 5254 } 5255 5256 e1000e_reset(adapter); 5257 5258 e1000_init_manageability_pt(adapter); 5259 5260 if (netif_running(netdev)) 5261 e1000e_up(adapter); 5262 5263 netif_device_attach(netdev); 5264 5265 /* 5266 * If the controller has AMT, do not set DRV_LOAD until the interface 5267 * is up. For all other cases, let the f/w know that the h/w is now 5268 * under the control of the driver. 5269 */ 5270 if (!(adapter->flags & FLAG_HAS_AMT)) 5271 e1000_get_hw_control(adapter); 5272 5273 return 0; 5274} 5275 5276#ifdef CONFIG_PM_SLEEP 5277static int e1000_suspend(struct device *dev) 5278{ 5279 struct pci_dev *pdev = to_pci_dev(dev); 5280 int retval; 5281 bool wake; 5282 5283 retval = __e1000_shutdown(pdev, &wake, false); 5284 if (!retval) 5285 e1000_complete_shutdown(pdev, true, wake); 5286 5287 return retval; 5288} 5289 5290static int e1000_resume(struct device *dev) 5291{ 5292 struct pci_dev *pdev = to_pci_dev(dev); 5293 struct net_device *netdev = pci_get_drvdata(pdev); 5294 struct e1000_adapter *adapter = netdev_priv(netdev); 5295 5296 if (e1000e_pm_ready(adapter)) 5297 adapter->idle_check = true; 5298 5299 return __e1000_resume(pdev); 5300} 5301#endif /* CONFIG_PM_SLEEP */ 5302 5303#ifdef CONFIG_PM_RUNTIME 5304static int e1000_runtime_suspend(struct device *dev) 5305{ 5306 struct pci_dev *pdev = to_pci_dev(dev); 5307 struct net_device *netdev = pci_get_drvdata(pdev); 5308 struct e1000_adapter *adapter = netdev_priv(netdev); 5309 5310 if (e1000e_pm_ready(adapter)) { 5311 bool wake; 5312 5313 __e1000_shutdown(pdev, &wake, true); 5314 } 5315 5316 return 0; 5317} 5318 5319static int e1000_idle(struct device *dev) 5320{ 5321 struct pci_dev *pdev = to_pci_dev(dev); 5322 struct net_device *netdev = pci_get_drvdata(pdev); 5323 struct e1000_adapter *adapter = netdev_priv(netdev); 5324 5325 if (!e1000e_pm_ready(adapter)) 5326 return 0; 5327 5328 if (adapter->idle_check) { 5329 adapter->idle_check = false; 5330 if (!e1000e_has_link(adapter)) 5331 pm_schedule_suspend(dev, MSEC_PER_SEC); 5332 } 5333 5334 return -EBUSY; 5335} 5336 5337static int e1000_runtime_resume(struct device *dev) 5338{ 5339 struct pci_dev *pdev = to_pci_dev(dev); 5340 struct net_device *netdev = pci_get_drvdata(pdev); 5341 struct e1000_adapter *adapter = netdev_priv(netdev); 5342 5343 if (!e1000e_pm_ready(adapter)) 5344 return 0; 5345 5346 adapter->idle_check = !dev->power.runtime_auto; 5347 return __e1000_resume(pdev); 5348} 5349#endif /* CONFIG_PM_RUNTIME */ 5350#endif /* CONFIG_PM_OPS */ 5351 5352static void e1000_shutdown(struct pci_dev *pdev) 5353{ 5354 bool wake = false; 5355 5356 __e1000_shutdown(pdev, &wake, false); 5357 5358 if (system_state == SYSTEM_POWER_OFF) 5359 e1000_complete_shutdown(pdev, false, wake); 5360} 5361 5362#ifdef CONFIG_NET_POLL_CONTROLLER 5363/* 5364 * Polling 'interrupt' - used by things like netconsole to send skbs 5365 * without having to re-enable interrupts. It's not called while 5366 * the interrupt routine is executing. 5367 */ 5368static void e1000_netpoll(struct net_device *netdev) 5369{ 5370 struct e1000_adapter *adapter = netdev_priv(netdev); 5371 5372 disable_irq(adapter->pdev->irq); 5373 e1000_intr(adapter->pdev->irq, netdev); 5374 5375 enable_irq(adapter->pdev->irq); 5376} 5377#endif 5378 5379/** 5380 * e1000_io_error_detected - called when PCI error is detected 5381 * @pdev: Pointer to PCI device 5382 * @state: The current pci connection state 5383 * 5384 * This function is called after a PCI bus error affecting 5385 * this device has been detected. 5386 */ 5387static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 5388 pci_channel_state_t state) 5389{ 5390 struct net_device *netdev = pci_get_drvdata(pdev); 5391 struct e1000_adapter *adapter = netdev_priv(netdev); 5392 5393 netif_device_detach(netdev); 5394 5395 if (state == pci_channel_io_perm_failure) 5396 return PCI_ERS_RESULT_DISCONNECT; 5397 5398 if (netif_running(netdev)) 5399 e1000e_down(adapter); 5400 pci_disable_device(pdev); 5401 5402 /* Request a slot slot reset. */ 5403 return PCI_ERS_RESULT_NEED_RESET; 5404} 5405 5406/** 5407 * e1000_io_slot_reset - called after the pci bus has been reset. 5408 * @pdev: Pointer to PCI device 5409 * 5410 * Restart the card from scratch, as if from a cold-boot. Implementation 5411 * resembles the first-half of the e1000_resume routine. 5412 */ 5413static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 5414{ 5415 struct net_device *netdev = pci_get_drvdata(pdev); 5416 struct e1000_adapter *adapter = netdev_priv(netdev); 5417 struct e1000_hw *hw = &adapter->hw; 5418 int err; 5419 pci_ers_result_t result; 5420 5421 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) 5422 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1); 5423 err = pci_enable_device_mem(pdev); 5424 if (err) { 5425 dev_err(&pdev->dev, 5426 "Cannot re-enable PCI device after reset.\n"); 5427 result = PCI_ERS_RESULT_DISCONNECT; 5428 } else { 5429 pci_set_master(pdev); 5430 pdev->state_saved = true; 5431 pci_restore_state(pdev); 5432 5433 pci_enable_wake(pdev, PCI_D3hot, 0); 5434 pci_enable_wake(pdev, PCI_D3cold, 0); 5435 5436 e1000e_reset(adapter); 5437 ew32(WUS, ~0); 5438 result = PCI_ERS_RESULT_RECOVERED; 5439 } 5440 5441 pci_cleanup_aer_uncorrect_error_status(pdev); 5442 5443 return result; 5444} 5445 5446/** 5447 * e1000_io_resume - called when traffic can start flowing again. 5448 * @pdev: Pointer to PCI device 5449 * 5450 * This callback is called when the error recovery driver tells us that 5451 * its OK to resume normal operation. Implementation resembles the 5452 * second-half of the e1000_resume routine. 5453 */ 5454static void e1000_io_resume(struct pci_dev *pdev) 5455{ 5456 struct net_device *netdev = pci_get_drvdata(pdev); 5457 struct e1000_adapter *adapter = netdev_priv(netdev); 5458 5459 e1000_init_manageability_pt(adapter); 5460 5461 if (netif_running(netdev)) { 5462 if (e1000e_up(adapter)) { 5463 dev_err(&pdev->dev, 5464 "can't bring device back up after reset\n"); 5465 return; 5466 } 5467 } 5468 5469 netif_device_attach(netdev); 5470 5471 /* 5472 * If the controller has AMT, do not set DRV_LOAD until the interface 5473 * is up. For all other cases, let the f/w know that the h/w is now 5474 * under the control of the driver. 5475 */ 5476 if (!(adapter->flags & FLAG_HAS_AMT)) 5477 e1000_get_hw_control(adapter); 5478 5479} 5480 5481static void e1000_print_device_info(struct e1000_adapter *adapter) 5482{ 5483 struct e1000_hw *hw = &adapter->hw; 5484 struct net_device *netdev = adapter->netdev; 5485 u32 pba_num; 5486 5487 /* print bus type/speed/width info */ 5488 e_info("(PCI Express:2.5GB/s:%s) %pM\n", 5489 /* bus width */ 5490 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : 5491 "Width x1"), 5492 /* MAC address */ 5493 netdev->dev_addr); 5494 e_info("Intel(R) PRO/%s Network Connection\n", 5495 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); 5496 e1000e_read_pba_num(hw, &pba_num); 5497 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n", 5498 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff)); 5499} 5500 5501static void e1000_eeprom_checks(struct e1000_adapter *adapter) 5502{ 5503 struct e1000_hw *hw = &adapter->hw; 5504 int ret_val; 5505 u16 buf = 0; 5506 5507 if (hw->mac.type != e1000_82573) 5508 return; 5509 5510 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); 5511 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) { 5512 /* Deep Smart Power Down (DSPD) */ 5513 dev_warn(&adapter->pdev->dev, 5514 "Warning: detected DSPD enabled in EEPROM\n"); 5515 } 5516} 5517 5518static const struct net_device_ops e1000e_netdev_ops = { 5519 .ndo_open = e1000_open, 5520 .ndo_stop = e1000_close, 5521 .ndo_start_xmit = e1000_xmit_frame, 5522 .ndo_get_stats = e1000_get_stats, 5523 .ndo_set_multicast_list = e1000_set_multi, 5524 .ndo_set_mac_address = e1000_set_mac, 5525 .ndo_change_mtu = e1000_change_mtu, 5526 .ndo_do_ioctl = e1000_ioctl, 5527 .ndo_tx_timeout = e1000_tx_timeout, 5528 .ndo_validate_addr = eth_validate_addr, 5529 5530 .ndo_vlan_rx_register = e1000_vlan_rx_register, 5531 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 5532 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 5533#ifdef CONFIG_NET_POLL_CONTROLLER 5534 .ndo_poll_controller = e1000_netpoll, 5535#endif 5536}; 5537 5538/** 5539 * e1000_probe - Device Initialization Routine 5540 * @pdev: PCI device information struct 5541 * @ent: entry in e1000_pci_tbl 5542 * 5543 * Returns 0 on success, negative on failure 5544 * 5545 * e1000_probe initializes an adapter identified by a pci_dev structure. 5546 * The OS initialization, configuring of the adapter private structure, 5547 * and a hardware reset occur. 5548 **/ 5549static int __devinit e1000_probe(struct pci_dev *pdev, 5550 const struct pci_device_id *ent) 5551{ 5552 struct net_device *netdev; 5553 struct e1000_adapter *adapter; 5554 struct e1000_hw *hw; 5555 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; 5556 resource_size_t mmio_start, mmio_len; 5557 resource_size_t flash_start, flash_len; 5558 5559 static int cards_found; 5560 int i, err, pci_using_dac; 5561 u16 eeprom_data = 0; 5562 u16 eeprom_apme_mask = E1000_EEPROM_APME; 5563 5564 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1) 5565 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1); 5566 5567 err = pci_enable_device_mem(pdev); 5568 if (err) 5569 return err; 5570 5571 pci_using_dac = 0; 5572 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 5573 if (!err) { 5574 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); 5575 if (!err) 5576 pci_using_dac = 1; 5577 } else { 5578 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 5579 if (err) { 5580 err = dma_set_coherent_mask(&pdev->dev, 5581 DMA_BIT_MASK(32)); 5582 if (err) { 5583 dev_err(&pdev->dev, "No usable DMA " 5584 "configuration, aborting\n"); 5585 goto err_dma; 5586 } 5587 } 5588 } 5589 5590 err = pci_request_selected_regions_exclusive(pdev, 5591 pci_select_bars(pdev, IORESOURCE_MEM), 5592 e1000e_driver_name); 5593 if (err) 5594 goto err_pci_reg; 5595 5596 /* AER (Advanced Error Reporting) hooks */ 5597 pci_enable_pcie_error_reporting(pdev); 5598 5599 pci_set_master(pdev); 5600 /* PCI config space info */ 5601 err = pci_save_state(pdev); 5602 if (err) 5603 goto err_alloc_etherdev; 5604 5605 err = -ENOMEM; 5606 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 5607 if (!netdev) 5608 goto err_alloc_etherdev; 5609 5610 SET_NETDEV_DEV(netdev, &pdev->dev); 5611 5612 netdev->irq = pdev->irq; 5613 5614 pci_set_drvdata(pdev, netdev); 5615 adapter = netdev_priv(netdev); 5616 hw = &adapter->hw; 5617 adapter->netdev = netdev; 5618 adapter->pdev = pdev; 5619 adapter->ei = ei; 5620 adapter->pba = ei->pba; 5621 adapter->flags = ei->flags; 5622 adapter->flags2 = ei->flags2; 5623 adapter->hw.adapter = adapter; 5624 adapter->hw.mac.type = ei->mac; 5625 adapter->max_hw_frame_size = ei->max_hw_frame_size; 5626 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; 5627 5628 mmio_start = pci_resource_start(pdev, 0); 5629 mmio_len = pci_resource_len(pdev, 0); 5630 5631 err = -EIO; 5632 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); 5633 if (!adapter->hw.hw_addr) 5634 goto err_ioremap; 5635 5636 if ((adapter->flags & FLAG_HAS_FLASH) && 5637 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { 5638 flash_start = pci_resource_start(pdev, 1); 5639 flash_len = pci_resource_len(pdev, 1); 5640 adapter->hw.flash_address = ioremap(flash_start, flash_len); 5641 if (!adapter->hw.flash_address) 5642 goto err_flashmap; 5643 } 5644 5645 /* construct the net_device struct */ 5646 netdev->netdev_ops = &e1000e_netdev_ops; 5647 e1000e_set_ethtool_ops(netdev); 5648 netdev->watchdog_timeo = 5 * HZ; 5649 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 5650 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 5651 5652 netdev->mem_start = mmio_start; 5653 netdev->mem_end = mmio_start + mmio_len; 5654 5655 adapter->bd_number = cards_found++; 5656 5657 e1000e_check_options(adapter); 5658 5659 /* setup adapter struct */ 5660 err = e1000_sw_init(adapter); 5661 if (err) 5662 goto err_sw_init; 5663 5664 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 5665 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 5666 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 5667 5668 err = ei->get_variants(adapter); 5669 if (err) 5670 goto err_hw_init; 5671 5672 if ((adapter->flags & FLAG_IS_ICH) && 5673 (adapter->flags & FLAG_READ_ONLY_NVM)) 5674 e1000e_write_protect_nvm_ich8lan(&adapter->hw); 5675 5676 hw->mac.ops.get_bus_info(&adapter->hw); 5677 5678 adapter->hw.phy.autoneg_wait_to_complete = 0; 5679 5680 /* Copper options */ 5681 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 5682 adapter->hw.phy.mdix = AUTO_ALL_MODES; 5683 adapter->hw.phy.disable_polarity_correction = 0; 5684 adapter->hw.phy.ms_type = e1000_ms_hw_default; 5685 } 5686 5687 if (e1000_check_reset_block(&adapter->hw)) 5688 e_info("PHY reset is blocked due to SOL/IDER session.\n"); 5689 5690 netdev->features = NETIF_F_SG | 5691 NETIF_F_HW_CSUM | 5692 NETIF_F_HW_VLAN_TX | 5693 NETIF_F_HW_VLAN_RX; 5694 5695 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) 5696 netdev->features |= NETIF_F_HW_VLAN_FILTER; 5697 5698 netdev->features |= NETIF_F_TSO; 5699 netdev->features |= NETIF_F_TSO6; 5700 5701 netdev->vlan_features |= NETIF_F_TSO; 5702 netdev->vlan_features |= NETIF_F_TSO6; 5703 netdev->vlan_features |= NETIF_F_HW_CSUM; 5704 netdev->vlan_features |= NETIF_F_SG; 5705 5706 if (pci_using_dac) 5707 netdev->features |= NETIF_F_HIGHDMA; 5708 5709 if (e1000e_enable_mng_pass_thru(&adapter->hw)) 5710 adapter->flags |= FLAG_MNG_PT_ENABLED; 5711 5712 /* 5713 * before reading the NVM, reset the controller to 5714 * put the device in a known good starting state 5715 */ 5716 adapter->hw.mac.ops.reset_hw(&adapter->hw); 5717 5718 /* 5719 * systems with ASPM and others may see the checksum fail on the first 5720 * attempt. Let's give it a few tries 5721 */ 5722 for (i = 0;; i++) { 5723 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) 5724 break; 5725 if (i == 2) { 5726 e_err("The NVM Checksum Is Not Valid\n"); 5727 err = -EIO; 5728 goto err_eeprom; 5729 } 5730 } 5731 5732 e1000_eeprom_checks(adapter); 5733 5734 /* copy the MAC address */ 5735 if (e1000e_read_mac_addr(&adapter->hw)) 5736 e_err("NVM Read Error while reading MAC address\n"); 5737 5738 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); 5739 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); 5740 5741 if (!is_valid_ether_addr(netdev->perm_addr)) { 5742 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr); 5743 err = -EIO; 5744 goto err_eeprom; 5745 } 5746 5747 init_timer(&adapter->watchdog_timer); 5748 adapter->watchdog_timer.function = &e1000_watchdog; 5749 adapter->watchdog_timer.data = (unsigned long) adapter; 5750 5751 init_timer(&adapter->phy_info_timer); 5752 adapter->phy_info_timer.function = &e1000_update_phy_info; 5753 adapter->phy_info_timer.data = (unsigned long) adapter; 5754 5755 INIT_WORK(&adapter->reset_task, e1000_reset_task); 5756 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); 5757 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); 5758 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); 5759 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); 5760 5761 /* Initialize link parameters. User can change them with ethtool */ 5762 adapter->hw.mac.autoneg = 1; 5763 adapter->fc_autoneg = 1; 5764 adapter->hw.fc.requested_mode = e1000_fc_default; 5765 adapter->hw.fc.current_mode = e1000_fc_default; 5766 adapter->hw.phy.autoneg_advertised = 0x2f; 5767 5768 /* ring size defaults */ 5769 adapter->rx_ring->count = 256; 5770 adapter->tx_ring->count = 256; 5771 5772 /* 5773 * Initial Wake on LAN setting - If APM wake is enabled in 5774 * the EEPROM, enable the ACPI Magic Packet filter 5775 */ 5776 if (adapter->flags & FLAG_APME_IN_WUC) { 5777 /* APME bit in EEPROM is mapped to WUC.APME */ 5778 eeprom_data = er32(WUC); 5779 eeprom_apme_mask = E1000_WUC_APME; 5780 if (eeprom_data & E1000_WUC_PHY_WAKE) 5781 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; 5782 } else if (adapter->flags & FLAG_APME_IN_CTRL3) { 5783 if (adapter->flags & FLAG_APME_CHECK_PORT_B && 5784 (adapter->hw.bus.func == 1)) 5785 e1000_read_nvm(&adapter->hw, 5786 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 5787 else 5788 e1000_read_nvm(&adapter->hw, 5789 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 5790 } 5791 5792 /* fetch WoL from EEPROM */ 5793 if (eeprom_data & eeprom_apme_mask) 5794 adapter->eeprom_wol |= E1000_WUFC_MAG; 5795 5796 /* 5797 * now that we have the eeprom settings, apply the special cases 5798 * where the eeprom may be wrong or the board simply won't support 5799 * wake on lan on a particular port 5800 */ 5801 if (!(adapter->flags & FLAG_HAS_WOL)) 5802 adapter->eeprom_wol = 0; 5803 5804 /* initialize the wol settings based on the eeprom settings */ 5805 adapter->wol = adapter->eeprom_wol; 5806 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 5807 5808 /* save off EEPROM version number */ 5809 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); 5810 5811 /* reset the hardware with the new settings */ 5812 e1000e_reset(adapter); 5813 5814 /* 5815 * If the controller has AMT, do not set DRV_LOAD until the interface 5816 * is up. For all other cases, let the f/w know that the h/w is now 5817 * under the control of the driver. 5818 */ 5819 if (!(adapter->flags & FLAG_HAS_AMT)) 5820 e1000_get_hw_control(adapter); 5821 5822 strcpy(netdev->name, "eth%d"); 5823 err = register_netdev(netdev); 5824 if (err) 5825 goto err_register; 5826 5827 /* carrier off reporting is important to ethtool even BEFORE open */ 5828 netif_carrier_off(netdev); 5829 5830 e1000_print_device_info(adapter); 5831 5832 if (pci_dev_run_wake(pdev)) 5833 pm_runtime_put_noidle(&pdev->dev); 5834 5835 return 0; 5836 5837err_register: 5838 if (!(adapter->flags & FLAG_HAS_AMT)) 5839 e1000_release_hw_control(adapter); 5840err_eeprom: 5841 if (!e1000_check_reset_block(&adapter->hw)) 5842 e1000_phy_hw_reset(&adapter->hw); 5843err_hw_init: 5844 5845 kfree(adapter->tx_ring); 5846 kfree(adapter->rx_ring); 5847err_sw_init: 5848 if (adapter->hw.flash_address) 5849 iounmap(adapter->hw.flash_address); 5850 e1000e_reset_interrupt_capability(adapter); 5851err_flashmap: 5852 iounmap(adapter->hw.hw_addr); 5853err_ioremap: 5854 free_netdev(netdev); 5855err_alloc_etherdev: 5856 pci_release_selected_regions(pdev, 5857 pci_select_bars(pdev, IORESOURCE_MEM)); 5858err_pci_reg: 5859err_dma: 5860 pci_disable_device(pdev); 5861 return err; 5862} 5863 5864/** 5865 * e1000_remove - Device Removal Routine 5866 * @pdev: PCI device information struct 5867 * 5868 * e1000_remove is called by the PCI subsystem to alert the driver 5869 * that it should release a PCI device. The could be caused by a 5870 * Hot-Plug event, or because the driver is going to be removed from 5871 * memory. 5872 **/ 5873static void __devexit e1000_remove(struct pci_dev *pdev) 5874{ 5875 struct net_device *netdev = pci_get_drvdata(pdev); 5876 struct e1000_adapter *adapter = netdev_priv(netdev); 5877 bool down = test_bit(__E1000_DOWN, &adapter->state); 5878 5879 /* 5880 * flush_scheduled work may reschedule our watchdog task, so 5881 * explicitly disable watchdog tasks from being rescheduled 5882 */ 5883 if (!down) 5884 set_bit(__E1000_DOWN, &adapter->state); 5885 del_timer_sync(&adapter->watchdog_timer); 5886 del_timer_sync(&adapter->phy_info_timer); 5887 5888 cancel_work_sync(&adapter->reset_task); 5889 cancel_work_sync(&adapter->watchdog_task); 5890 cancel_work_sync(&adapter->downshift_task); 5891 cancel_work_sync(&adapter->update_phy_task); 5892 cancel_work_sync(&adapter->print_hang_task); 5893 flush_scheduled_work(); 5894 5895 if (!(netdev->flags & IFF_UP)) 5896 e1000_power_down_phy(adapter); 5897 5898 /* Don't lie to e1000_close() down the road. */ 5899 if (!down) 5900 clear_bit(__E1000_DOWN, &adapter->state); 5901 unregister_netdev(netdev); 5902 5903 if (pci_dev_run_wake(pdev)) 5904 pm_runtime_get_noresume(&pdev->dev); 5905 5906 /* 5907 * Release control of h/w to f/w. If f/w is AMT enabled, this 5908 * would have already happened in close and is redundant. 5909 */ 5910 e1000_release_hw_control(adapter); 5911 5912 e1000e_reset_interrupt_capability(adapter); 5913 kfree(adapter->tx_ring); 5914 kfree(adapter->rx_ring); 5915 5916 iounmap(adapter->hw.hw_addr); 5917 if (adapter->hw.flash_address) 5918 iounmap(adapter->hw.flash_address); 5919 pci_release_selected_regions(pdev, 5920 pci_select_bars(pdev, IORESOURCE_MEM)); 5921 5922 free_netdev(netdev); 5923 5924 /* AER disable */ 5925 pci_disable_pcie_error_reporting(pdev); 5926 5927 pci_disable_device(pdev); 5928} 5929 5930/* PCI Error Recovery (ERS) */ 5931static struct pci_error_handlers e1000_err_handler = { 5932 .error_detected = e1000_io_error_detected, 5933 .slot_reset = e1000_io_slot_reset, 5934 .resume = e1000_io_resume, 5935}; 5936 5937static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { 5938 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, 5939 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, 5940 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, 5941 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, 5942 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, 5943 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, 5944 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, 5945 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, 5946 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, 5947 5948 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, 5949 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, 5950 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, 5951 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, 5952 5953 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, 5954 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, 5955 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, 5956 5957 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, 5958 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, 5959 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, 5960 5961 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), 5962 board_80003es2lan }, 5963 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), 5964 board_80003es2lan }, 5965 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), 5966 board_80003es2lan }, 5967 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), 5968 board_80003es2lan }, 5969 5970 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, 5971 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, 5972 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, 5973 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, 5974 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, 5975 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, 5976 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, 5977 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, 5978 5979 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, 5980 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, 5981 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, 5982 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, 5983 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, 5984 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, 5985 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, 5986 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, 5987 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, 5988 5989 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, 5990 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, 5991 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, 5992 5993 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, 5994 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, 5995 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan }, 5996 5997 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, 5998 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, 5999 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, 6000 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, 6001 6002 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan }, 6003 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan }, 6004 6005 { } /* terminate list */ 6006}; 6007MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 6008 6009#ifdef CONFIG_PM_OPS 6010static const struct dev_pm_ops e1000_pm_ops = { 6011 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume) 6012 SET_RUNTIME_PM_OPS(e1000_runtime_suspend, 6013 e1000_runtime_resume, e1000_idle) 6014}; 6015#endif 6016 6017/* PCI Device API Driver */ 6018static struct pci_driver e1000_driver = { 6019 .name = e1000e_driver_name, 6020 .id_table = e1000_pci_tbl, 6021 .probe = e1000_probe, 6022 .remove = __devexit_p(e1000_remove), 6023#ifdef CONFIG_PM_OPS 6024 .driver.pm = &e1000_pm_ops, 6025#endif 6026 .shutdown = e1000_shutdown, 6027 .err_handler = &e1000_err_handler 6028}; 6029 6030/** 6031 * e1000_init_module - Driver Registration Routine 6032 * 6033 * e1000_init_module is the first routine called when the driver is 6034 * loaded. All it does is register with the PCI subsystem. 6035 **/ 6036static int __init e1000_init_module(void) 6037{ 6038 int ret; 6039 pr_info("Intel(R) PRO/1000 Network Driver - %s\n", 6040 e1000e_driver_version); 6041 pr_info("Copyright (c) 1999 - 2010 Intel Corporation.\n"); 6042 ret = pci_register_driver(&e1000_driver); 6043 6044 return ret; 6045} 6046module_init(e1000_init_module); 6047 6048/** 6049 * e1000_exit_module - Driver Exit Cleanup Routine 6050 * 6051 * e1000_exit_module is called just before the driver is removed 6052 * from memory. 6053 **/ 6054static void __exit e1000_exit_module(void) 6055{ 6056 pci_unregister_driver(&e1000_driver); 6057} 6058module_exit(e1000_exit_module); 6059 6060 6061MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 6062MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 6063MODULE_LICENSE("GPL"); 6064MODULE_VERSION(DRV_VERSION); 6065 6066/* e1000_main.c */