at v2.6.35 33 kB view raw
1/* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14#include <linux/capability.h> 15#include <linux/module.h> 16#include <linux/init.h> 17#include <linux/kernel.h> 18#include <linux/security.h> 19#include <linux/ima.h> 20 21/* Boot-time LSM user choice */ 22static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 23 CONFIG_DEFAULT_SECURITY; 24 25/* things that live in capability.c */ 26extern void __init security_fixup_ops(struct security_operations *ops); 27 28static struct security_operations *security_ops; 29static struct security_operations default_security_ops = { 30 .name = "default", 31}; 32 33static inline int __init verify(struct security_operations *ops) 34{ 35 /* verify the security_operations structure exists */ 36 if (!ops) 37 return -EINVAL; 38 security_fixup_ops(ops); 39 return 0; 40} 41 42static void __init do_security_initcalls(void) 43{ 44 initcall_t *call; 45 call = __security_initcall_start; 46 while (call < __security_initcall_end) { 47 (*call) (); 48 call++; 49 } 50} 51 52/** 53 * security_init - initializes the security framework 54 * 55 * This should be called early in the kernel initialization sequence. 56 */ 57int __init security_init(void) 58{ 59 printk(KERN_INFO "Security Framework initialized\n"); 60 61 security_fixup_ops(&default_security_ops); 62 security_ops = &default_security_ops; 63 do_security_initcalls(); 64 65 return 0; 66} 67 68void reset_security_ops(void) 69{ 70 security_ops = &default_security_ops; 71} 72 73/* Save user chosen LSM */ 74static int __init choose_lsm(char *str) 75{ 76 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 77 return 1; 78} 79__setup("security=", choose_lsm); 80 81/** 82 * security_module_enable - Load given security module on boot ? 83 * @ops: a pointer to the struct security_operations that is to be checked. 84 * 85 * Each LSM must pass this method before registering its own operations 86 * to avoid security registration races. This method may also be used 87 * to check if your LSM is currently loaded during kernel initialization. 88 * 89 * Return true if: 90 * -The passed LSM is the one chosen by user at boot time, 91 * -or the passed LSM is configured as the default and the user did not 92 * choose an alternate LSM at boot time, 93 * -or there is no default LSM set and the user didn't specify a 94 * specific LSM and we're the first to ask for registration permission, 95 * -or the passed LSM is currently loaded. 96 * Otherwise, return false. 97 */ 98int __init security_module_enable(struct security_operations *ops) 99{ 100 if (!*chosen_lsm) 101 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 102 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 103 return 0; 104 105 return 1; 106} 107 108/** 109 * register_security - registers a security framework with the kernel 110 * @ops: a pointer to the struct security_options that is to be registered 111 * 112 * This function allows a security module to register itself with the 113 * kernel security subsystem. Some rudimentary checking is done on the @ops 114 * value passed to this function. You'll need to check first if your LSM 115 * is allowed to register its @ops by calling security_module_enable(@ops). 116 * 117 * If there is already a security module registered with the kernel, 118 * an error will be returned. Otherwise %0 is returned on success. 119 */ 120int __init register_security(struct security_operations *ops) 121{ 122 if (verify(ops)) { 123 printk(KERN_DEBUG "%s could not verify " 124 "security_operations structure.\n", __func__); 125 return -EINVAL; 126 } 127 128 if (security_ops != &default_security_ops) 129 return -EAGAIN; 130 131 security_ops = ops; 132 133 return 0; 134} 135 136/* Security operations */ 137 138int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 139{ 140 return security_ops->ptrace_access_check(child, mode); 141} 142 143int security_ptrace_traceme(struct task_struct *parent) 144{ 145 return security_ops->ptrace_traceme(parent); 146} 147 148int security_capget(struct task_struct *target, 149 kernel_cap_t *effective, 150 kernel_cap_t *inheritable, 151 kernel_cap_t *permitted) 152{ 153 return security_ops->capget(target, effective, inheritable, permitted); 154} 155 156int security_capset(struct cred *new, const struct cred *old, 157 const kernel_cap_t *effective, 158 const kernel_cap_t *inheritable, 159 const kernel_cap_t *permitted) 160{ 161 return security_ops->capset(new, old, 162 effective, inheritable, permitted); 163} 164 165int security_capable(int cap) 166{ 167 return security_ops->capable(current, current_cred(), cap, 168 SECURITY_CAP_AUDIT); 169} 170 171int security_real_capable(struct task_struct *tsk, int cap) 172{ 173 const struct cred *cred; 174 int ret; 175 176 cred = get_task_cred(tsk); 177 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT); 178 put_cred(cred); 179 return ret; 180} 181 182int security_real_capable_noaudit(struct task_struct *tsk, int cap) 183{ 184 const struct cred *cred; 185 int ret; 186 187 cred = get_task_cred(tsk); 188 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT); 189 put_cred(cred); 190 return ret; 191} 192 193int security_sysctl(struct ctl_table *table, int op) 194{ 195 return security_ops->sysctl(table, op); 196} 197 198int security_quotactl(int cmds, int type, int id, struct super_block *sb) 199{ 200 return security_ops->quotactl(cmds, type, id, sb); 201} 202 203int security_quota_on(struct dentry *dentry) 204{ 205 return security_ops->quota_on(dentry); 206} 207 208int security_syslog(int type, bool from_file) 209{ 210 return security_ops->syslog(type, from_file); 211} 212 213int security_settime(struct timespec *ts, struct timezone *tz) 214{ 215 return security_ops->settime(ts, tz); 216} 217 218int security_vm_enough_memory(long pages) 219{ 220 WARN_ON(current->mm == NULL); 221 return security_ops->vm_enough_memory(current->mm, pages); 222} 223 224int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 225{ 226 WARN_ON(mm == NULL); 227 return security_ops->vm_enough_memory(mm, pages); 228} 229 230int security_vm_enough_memory_kern(long pages) 231{ 232 /* If current->mm is a kernel thread then we will pass NULL, 233 for this specific case that is fine */ 234 return security_ops->vm_enough_memory(current->mm, pages); 235} 236 237int security_bprm_set_creds(struct linux_binprm *bprm) 238{ 239 return security_ops->bprm_set_creds(bprm); 240} 241 242int security_bprm_check(struct linux_binprm *bprm) 243{ 244 int ret; 245 246 ret = security_ops->bprm_check_security(bprm); 247 if (ret) 248 return ret; 249 return ima_bprm_check(bprm); 250} 251 252void security_bprm_committing_creds(struct linux_binprm *bprm) 253{ 254 security_ops->bprm_committing_creds(bprm); 255} 256 257void security_bprm_committed_creds(struct linux_binprm *bprm) 258{ 259 security_ops->bprm_committed_creds(bprm); 260} 261 262int security_bprm_secureexec(struct linux_binprm *bprm) 263{ 264 return security_ops->bprm_secureexec(bprm); 265} 266 267int security_sb_alloc(struct super_block *sb) 268{ 269 return security_ops->sb_alloc_security(sb); 270} 271 272void security_sb_free(struct super_block *sb) 273{ 274 security_ops->sb_free_security(sb); 275} 276 277int security_sb_copy_data(char *orig, char *copy) 278{ 279 return security_ops->sb_copy_data(orig, copy); 280} 281EXPORT_SYMBOL(security_sb_copy_data); 282 283int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 284{ 285 return security_ops->sb_kern_mount(sb, flags, data); 286} 287 288int security_sb_show_options(struct seq_file *m, struct super_block *sb) 289{ 290 return security_ops->sb_show_options(m, sb); 291} 292 293int security_sb_statfs(struct dentry *dentry) 294{ 295 return security_ops->sb_statfs(dentry); 296} 297 298int security_sb_mount(char *dev_name, struct path *path, 299 char *type, unsigned long flags, void *data) 300{ 301 return security_ops->sb_mount(dev_name, path, type, flags, data); 302} 303 304int security_sb_umount(struct vfsmount *mnt, int flags) 305{ 306 return security_ops->sb_umount(mnt, flags); 307} 308 309int security_sb_pivotroot(struct path *old_path, struct path *new_path) 310{ 311 return security_ops->sb_pivotroot(old_path, new_path); 312} 313 314int security_sb_set_mnt_opts(struct super_block *sb, 315 struct security_mnt_opts *opts) 316{ 317 return security_ops->sb_set_mnt_opts(sb, opts); 318} 319EXPORT_SYMBOL(security_sb_set_mnt_opts); 320 321void security_sb_clone_mnt_opts(const struct super_block *oldsb, 322 struct super_block *newsb) 323{ 324 security_ops->sb_clone_mnt_opts(oldsb, newsb); 325} 326EXPORT_SYMBOL(security_sb_clone_mnt_opts); 327 328int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 329{ 330 return security_ops->sb_parse_opts_str(options, opts); 331} 332EXPORT_SYMBOL(security_sb_parse_opts_str); 333 334int security_inode_alloc(struct inode *inode) 335{ 336 int ret; 337 338 inode->i_security = NULL; 339 ret = security_ops->inode_alloc_security(inode); 340 if (ret) 341 return ret; 342 ret = ima_inode_alloc(inode); 343 if (ret) 344 security_inode_free(inode); 345 return ret; 346} 347 348void security_inode_free(struct inode *inode) 349{ 350 ima_inode_free(inode); 351 security_ops->inode_free_security(inode); 352} 353 354int security_inode_init_security(struct inode *inode, struct inode *dir, 355 char **name, void **value, size_t *len) 356{ 357 if (unlikely(IS_PRIVATE(inode))) 358 return -EOPNOTSUPP; 359 return security_ops->inode_init_security(inode, dir, name, value, len); 360} 361EXPORT_SYMBOL(security_inode_init_security); 362 363#ifdef CONFIG_SECURITY_PATH 364int security_path_mknod(struct path *dir, struct dentry *dentry, int mode, 365 unsigned int dev) 366{ 367 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 368 return 0; 369 return security_ops->path_mknod(dir, dentry, mode, dev); 370} 371EXPORT_SYMBOL(security_path_mknod); 372 373int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode) 374{ 375 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 376 return 0; 377 return security_ops->path_mkdir(dir, dentry, mode); 378} 379 380int security_path_rmdir(struct path *dir, struct dentry *dentry) 381{ 382 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 383 return 0; 384 return security_ops->path_rmdir(dir, dentry); 385} 386 387int security_path_unlink(struct path *dir, struct dentry *dentry) 388{ 389 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 390 return 0; 391 return security_ops->path_unlink(dir, dentry); 392} 393 394int security_path_symlink(struct path *dir, struct dentry *dentry, 395 const char *old_name) 396{ 397 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 398 return 0; 399 return security_ops->path_symlink(dir, dentry, old_name); 400} 401 402int security_path_link(struct dentry *old_dentry, struct path *new_dir, 403 struct dentry *new_dentry) 404{ 405 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 406 return 0; 407 return security_ops->path_link(old_dentry, new_dir, new_dentry); 408} 409 410int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 411 struct path *new_dir, struct dentry *new_dentry) 412{ 413 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 414 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 415 return 0; 416 return security_ops->path_rename(old_dir, old_dentry, new_dir, 417 new_dentry); 418} 419 420int security_path_truncate(struct path *path, loff_t length, 421 unsigned int time_attrs) 422{ 423 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 424 return 0; 425 return security_ops->path_truncate(path, length, time_attrs); 426} 427 428int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt, 429 mode_t mode) 430{ 431 if (unlikely(IS_PRIVATE(dentry->d_inode))) 432 return 0; 433 return security_ops->path_chmod(dentry, mnt, mode); 434} 435 436int security_path_chown(struct path *path, uid_t uid, gid_t gid) 437{ 438 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 439 return 0; 440 return security_ops->path_chown(path, uid, gid); 441} 442 443int security_path_chroot(struct path *path) 444{ 445 return security_ops->path_chroot(path); 446} 447#endif 448 449int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 450{ 451 if (unlikely(IS_PRIVATE(dir))) 452 return 0; 453 return security_ops->inode_create(dir, dentry, mode); 454} 455EXPORT_SYMBOL_GPL(security_inode_create); 456 457int security_inode_link(struct dentry *old_dentry, struct inode *dir, 458 struct dentry *new_dentry) 459{ 460 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 461 return 0; 462 return security_ops->inode_link(old_dentry, dir, new_dentry); 463} 464 465int security_inode_unlink(struct inode *dir, struct dentry *dentry) 466{ 467 if (unlikely(IS_PRIVATE(dentry->d_inode))) 468 return 0; 469 return security_ops->inode_unlink(dir, dentry); 470} 471 472int security_inode_symlink(struct inode *dir, struct dentry *dentry, 473 const char *old_name) 474{ 475 if (unlikely(IS_PRIVATE(dir))) 476 return 0; 477 return security_ops->inode_symlink(dir, dentry, old_name); 478} 479 480int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 481{ 482 if (unlikely(IS_PRIVATE(dir))) 483 return 0; 484 return security_ops->inode_mkdir(dir, dentry, mode); 485} 486EXPORT_SYMBOL_GPL(security_inode_mkdir); 487 488int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 489{ 490 if (unlikely(IS_PRIVATE(dentry->d_inode))) 491 return 0; 492 return security_ops->inode_rmdir(dir, dentry); 493} 494 495int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 496{ 497 if (unlikely(IS_PRIVATE(dir))) 498 return 0; 499 return security_ops->inode_mknod(dir, dentry, mode, dev); 500} 501 502int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 503 struct inode *new_dir, struct dentry *new_dentry) 504{ 505 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 506 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 507 return 0; 508 return security_ops->inode_rename(old_dir, old_dentry, 509 new_dir, new_dentry); 510} 511 512int security_inode_readlink(struct dentry *dentry) 513{ 514 if (unlikely(IS_PRIVATE(dentry->d_inode))) 515 return 0; 516 return security_ops->inode_readlink(dentry); 517} 518 519int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 520{ 521 if (unlikely(IS_PRIVATE(dentry->d_inode))) 522 return 0; 523 return security_ops->inode_follow_link(dentry, nd); 524} 525 526int security_inode_permission(struct inode *inode, int mask) 527{ 528 if (unlikely(IS_PRIVATE(inode))) 529 return 0; 530 return security_ops->inode_permission(inode, mask); 531} 532 533int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 534{ 535 if (unlikely(IS_PRIVATE(dentry->d_inode))) 536 return 0; 537 return security_ops->inode_setattr(dentry, attr); 538} 539EXPORT_SYMBOL_GPL(security_inode_setattr); 540 541int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 542{ 543 if (unlikely(IS_PRIVATE(dentry->d_inode))) 544 return 0; 545 return security_ops->inode_getattr(mnt, dentry); 546} 547 548int security_inode_setxattr(struct dentry *dentry, const char *name, 549 const void *value, size_t size, int flags) 550{ 551 if (unlikely(IS_PRIVATE(dentry->d_inode))) 552 return 0; 553 return security_ops->inode_setxattr(dentry, name, value, size, flags); 554} 555 556void security_inode_post_setxattr(struct dentry *dentry, const char *name, 557 const void *value, size_t size, int flags) 558{ 559 if (unlikely(IS_PRIVATE(dentry->d_inode))) 560 return; 561 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 562} 563 564int security_inode_getxattr(struct dentry *dentry, const char *name) 565{ 566 if (unlikely(IS_PRIVATE(dentry->d_inode))) 567 return 0; 568 return security_ops->inode_getxattr(dentry, name); 569} 570 571int security_inode_listxattr(struct dentry *dentry) 572{ 573 if (unlikely(IS_PRIVATE(dentry->d_inode))) 574 return 0; 575 return security_ops->inode_listxattr(dentry); 576} 577 578int security_inode_removexattr(struct dentry *dentry, const char *name) 579{ 580 if (unlikely(IS_PRIVATE(dentry->d_inode))) 581 return 0; 582 return security_ops->inode_removexattr(dentry, name); 583} 584 585int security_inode_need_killpriv(struct dentry *dentry) 586{ 587 return security_ops->inode_need_killpriv(dentry); 588} 589 590int security_inode_killpriv(struct dentry *dentry) 591{ 592 return security_ops->inode_killpriv(dentry); 593} 594 595int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 596{ 597 if (unlikely(IS_PRIVATE(inode))) 598 return -EOPNOTSUPP; 599 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 600} 601 602int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 603{ 604 if (unlikely(IS_PRIVATE(inode))) 605 return -EOPNOTSUPP; 606 return security_ops->inode_setsecurity(inode, name, value, size, flags); 607} 608 609int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 610{ 611 if (unlikely(IS_PRIVATE(inode))) 612 return 0; 613 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 614} 615 616void security_inode_getsecid(const struct inode *inode, u32 *secid) 617{ 618 security_ops->inode_getsecid(inode, secid); 619} 620 621int security_file_permission(struct file *file, int mask) 622{ 623 return security_ops->file_permission(file, mask); 624} 625 626int security_file_alloc(struct file *file) 627{ 628 return security_ops->file_alloc_security(file); 629} 630 631void security_file_free(struct file *file) 632{ 633 security_ops->file_free_security(file); 634} 635 636int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 637{ 638 return security_ops->file_ioctl(file, cmd, arg); 639} 640 641int security_file_mmap(struct file *file, unsigned long reqprot, 642 unsigned long prot, unsigned long flags, 643 unsigned long addr, unsigned long addr_only) 644{ 645 int ret; 646 647 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 648 if (ret) 649 return ret; 650 return ima_file_mmap(file, prot); 651} 652 653int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 654 unsigned long prot) 655{ 656 return security_ops->file_mprotect(vma, reqprot, prot); 657} 658 659int security_file_lock(struct file *file, unsigned int cmd) 660{ 661 return security_ops->file_lock(file, cmd); 662} 663 664int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 665{ 666 return security_ops->file_fcntl(file, cmd, arg); 667} 668 669int security_file_set_fowner(struct file *file) 670{ 671 return security_ops->file_set_fowner(file); 672} 673 674int security_file_send_sigiotask(struct task_struct *tsk, 675 struct fown_struct *fown, int sig) 676{ 677 return security_ops->file_send_sigiotask(tsk, fown, sig); 678} 679 680int security_file_receive(struct file *file) 681{ 682 return security_ops->file_receive(file); 683} 684 685int security_dentry_open(struct file *file, const struct cred *cred) 686{ 687 return security_ops->dentry_open(file, cred); 688} 689 690int security_task_create(unsigned long clone_flags) 691{ 692 return security_ops->task_create(clone_flags); 693} 694 695int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 696{ 697 return security_ops->cred_alloc_blank(cred, gfp); 698} 699 700void security_cred_free(struct cred *cred) 701{ 702 security_ops->cred_free(cred); 703} 704 705int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 706{ 707 return security_ops->cred_prepare(new, old, gfp); 708} 709 710void security_transfer_creds(struct cred *new, const struct cred *old) 711{ 712 security_ops->cred_transfer(new, old); 713} 714 715int security_kernel_act_as(struct cred *new, u32 secid) 716{ 717 return security_ops->kernel_act_as(new, secid); 718} 719 720int security_kernel_create_files_as(struct cred *new, struct inode *inode) 721{ 722 return security_ops->kernel_create_files_as(new, inode); 723} 724 725int security_kernel_module_request(char *kmod_name) 726{ 727 return security_ops->kernel_module_request(kmod_name); 728} 729 730int security_task_fix_setuid(struct cred *new, const struct cred *old, 731 int flags) 732{ 733 return security_ops->task_fix_setuid(new, old, flags); 734} 735 736int security_task_setpgid(struct task_struct *p, pid_t pgid) 737{ 738 return security_ops->task_setpgid(p, pgid); 739} 740 741int security_task_getpgid(struct task_struct *p) 742{ 743 return security_ops->task_getpgid(p); 744} 745 746int security_task_getsid(struct task_struct *p) 747{ 748 return security_ops->task_getsid(p); 749} 750 751void security_task_getsecid(struct task_struct *p, u32 *secid) 752{ 753 security_ops->task_getsecid(p, secid); 754} 755EXPORT_SYMBOL(security_task_getsecid); 756 757int security_task_setnice(struct task_struct *p, int nice) 758{ 759 return security_ops->task_setnice(p, nice); 760} 761 762int security_task_setioprio(struct task_struct *p, int ioprio) 763{ 764 return security_ops->task_setioprio(p, ioprio); 765} 766 767int security_task_getioprio(struct task_struct *p) 768{ 769 return security_ops->task_getioprio(p); 770} 771 772int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 773{ 774 return security_ops->task_setrlimit(resource, new_rlim); 775} 776 777int security_task_setscheduler(struct task_struct *p, 778 int policy, struct sched_param *lp) 779{ 780 return security_ops->task_setscheduler(p, policy, lp); 781} 782 783int security_task_getscheduler(struct task_struct *p) 784{ 785 return security_ops->task_getscheduler(p); 786} 787 788int security_task_movememory(struct task_struct *p) 789{ 790 return security_ops->task_movememory(p); 791} 792 793int security_task_kill(struct task_struct *p, struct siginfo *info, 794 int sig, u32 secid) 795{ 796 return security_ops->task_kill(p, info, sig, secid); 797} 798 799int security_task_wait(struct task_struct *p) 800{ 801 return security_ops->task_wait(p); 802} 803 804int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 805 unsigned long arg4, unsigned long arg5) 806{ 807 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 808} 809 810void security_task_to_inode(struct task_struct *p, struct inode *inode) 811{ 812 security_ops->task_to_inode(p, inode); 813} 814 815int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 816{ 817 return security_ops->ipc_permission(ipcp, flag); 818} 819 820void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 821{ 822 security_ops->ipc_getsecid(ipcp, secid); 823} 824 825int security_msg_msg_alloc(struct msg_msg *msg) 826{ 827 return security_ops->msg_msg_alloc_security(msg); 828} 829 830void security_msg_msg_free(struct msg_msg *msg) 831{ 832 security_ops->msg_msg_free_security(msg); 833} 834 835int security_msg_queue_alloc(struct msg_queue *msq) 836{ 837 return security_ops->msg_queue_alloc_security(msq); 838} 839 840void security_msg_queue_free(struct msg_queue *msq) 841{ 842 security_ops->msg_queue_free_security(msq); 843} 844 845int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 846{ 847 return security_ops->msg_queue_associate(msq, msqflg); 848} 849 850int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 851{ 852 return security_ops->msg_queue_msgctl(msq, cmd); 853} 854 855int security_msg_queue_msgsnd(struct msg_queue *msq, 856 struct msg_msg *msg, int msqflg) 857{ 858 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 859} 860 861int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 862 struct task_struct *target, long type, int mode) 863{ 864 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 865} 866 867int security_shm_alloc(struct shmid_kernel *shp) 868{ 869 return security_ops->shm_alloc_security(shp); 870} 871 872void security_shm_free(struct shmid_kernel *shp) 873{ 874 security_ops->shm_free_security(shp); 875} 876 877int security_shm_associate(struct shmid_kernel *shp, int shmflg) 878{ 879 return security_ops->shm_associate(shp, shmflg); 880} 881 882int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 883{ 884 return security_ops->shm_shmctl(shp, cmd); 885} 886 887int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 888{ 889 return security_ops->shm_shmat(shp, shmaddr, shmflg); 890} 891 892int security_sem_alloc(struct sem_array *sma) 893{ 894 return security_ops->sem_alloc_security(sma); 895} 896 897void security_sem_free(struct sem_array *sma) 898{ 899 security_ops->sem_free_security(sma); 900} 901 902int security_sem_associate(struct sem_array *sma, int semflg) 903{ 904 return security_ops->sem_associate(sma, semflg); 905} 906 907int security_sem_semctl(struct sem_array *sma, int cmd) 908{ 909 return security_ops->sem_semctl(sma, cmd); 910} 911 912int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 913 unsigned nsops, int alter) 914{ 915 return security_ops->sem_semop(sma, sops, nsops, alter); 916} 917 918void security_d_instantiate(struct dentry *dentry, struct inode *inode) 919{ 920 if (unlikely(inode && IS_PRIVATE(inode))) 921 return; 922 security_ops->d_instantiate(dentry, inode); 923} 924EXPORT_SYMBOL(security_d_instantiate); 925 926int security_getprocattr(struct task_struct *p, char *name, char **value) 927{ 928 return security_ops->getprocattr(p, name, value); 929} 930 931int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 932{ 933 return security_ops->setprocattr(p, name, value, size); 934} 935 936int security_netlink_send(struct sock *sk, struct sk_buff *skb) 937{ 938 return security_ops->netlink_send(sk, skb); 939} 940 941int security_netlink_recv(struct sk_buff *skb, int cap) 942{ 943 return security_ops->netlink_recv(skb, cap); 944} 945EXPORT_SYMBOL(security_netlink_recv); 946 947int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 948{ 949 return security_ops->secid_to_secctx(secid, secdata, seclen); 950} 951EXPORT_SYMBOL(security_secid_to_secctx); 952 953int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 954{ 955 return security_ops->secctx_to_secid(secdata, seclen, secid); 956} 957EXPORT_SYMBOL(security_secctx_to_secid); 958 959void security_release_secctx(char *secdata, u32 seclen) 960{ 961 security_ops->release_secctx(secdata, seclen); 962} 963EXPORT_SYMBOL(security_release_secctx); 964 965int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 966{ 967 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 968} 969EXPORT_SYMBOL(security_inode_notifysecctx); 970 971int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 972{ 973 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 974} 975EXPORT_SYMBOL(security_inode_setsecctx); 976 977int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 978{ 979 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 980} 981EXPORT_SYMBOL(security_inode_getsecctx); 982 983#ifdef CONFIG_SECURITY_NETWORK 984 985int security_unix_stream_connect(struct socket *sock, struct socket *other, 986 struct sock *newsk) 987{ 988 return security_ops->unix_stream_connect(sock, other, newsk); 989} 990EXPORT_SYMBOL(security_unix_stream_connect); 991 992int security_unix_may_send(struct socket *sock, struct socket *other) 993{ 994 return security_ops->unix_may_send(sock, other); 995} 996EXPORT_SYMBOL(security_unix_may_send); 997 998int security_socket_create(int family, int type, int protocol, int kern) 999{ 1000 return security_ops->socket_create(family, type, protocol, kern); 1001} 1002 1003int security_socket_post_create(struct socket *sock, int family, 1004 int type, int protocol, int kern) 1005{ 1006 return security_ops->socket_post_create(sock, family, type, 1007 protocol, kern); 1008} 1009 1010int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1011{ 1012 return security_ops->socket_bind(sock, address, addrlen); 1013} 1014 1015int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1016{ 1017 return security_ops->socket_connect(sock, address, addrlen); 1018} 1019 1020int security_socket_listen(struct socket *sock, int backlog) 1021{ 1022 return security_ops->socket_listen(sock, backlog); 1023} 1024 1025int security_socket_accept(struct socket *sock, struct socket *newsock) 1026{ 1027 return security_ops->socket_accept(sock, newsock); 1028} 1029 1030int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1031{ 1032 return security_ops->socket_sendmsg(sock, msg, size); 1033} 1034 1035int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1036 int size, int flags) 1037{ 1038 return security_ops->socket_recvmsg(sock, msg, size, flags); 1039} 1040 1041int security_socket_getsockname(struct socket *sock) 1042{ 1043 return security_ops->socket_getsockname(sock); 1044} 1045 1046int security_socket_getpeername(struct socket *sock) 1047{ 1048 return security_ops->socket_getpeername(sock); 1049} 1050 1051int security_socket_getsockopt(struct socket *sock, int level, int optname) 1052{ 1053 return security_ops->socket_getsockopt(sock, level, optname); 1054} 1055 1056int security_socket_setsockopt(struct socket *sock, int level, int optname) 1057{ 1058 return security_ops->socket_setsockopt(sock, level, optname); 1059} 1060 1061int security_socket_shutdown(struct socket *sock, int how) 1062{ 1063 return security_ops->socket_shutdown(sock, how); 1064} 1065 1066int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1067{ 1068 return security_ops->socket_sock_rcv_skb(sk, skb); 1069} 1070EXPORT_SYMBOL(security_sock_rcv_skb); 1071 1072int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1073 int __user *optlen, unsigned len) 1074{ 1075 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1076} 1077 1078int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1079{ 1080 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1081} 1082EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1083 1084int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1085{ 1086 return security_ops->sk_alloc_security(sk, family, priority); 1087} 1088 1089void security_sk_free(struct sock *sk) 1090{ 1091 security_ops->sk_free_security(sk); 1092} 1093 1094void security_sk_clone(const struct sock *sk, struct sock *newsk) 1095{ 1096 security_ops->sk_clone_security(sk, newsk); 1097} 1098 1099void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1100{ 1101 security_ops->sk_getsecid(sk, &fl->secid); 1102} 1103EXPORT_SYMBOL(security_sk_classify_flow); 1104 1105void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1106{ 1107 security_ops->req_classify_flow(req, fl); 1108} 1109EXPORT_SYMBOL(security_req_classify_flow); 1110 1111void security_sock_graft(struct sock *sk, struct socket *parent) 1112{ 1113 security_ops->sock_graft(sk, parent); 1114} 1115EXPORT_SYMBOL(security_sock_graft); 1116 1117int security_inet_conn_request(struct sock *sk, 1118 struct sk_buff *skb, struct request_sock *req) 1119{ 1120 return security_ops->inet_conn_request(sk, skb, req); 1121} 1122EXPORT_SYMBOL(security_inet_conn_request); 1123 1124void security_inet_csk_clone(struct sock *newsk, 1125 const struct request_sock *req) 1126{ 1127 security_ops->inet_csk_clone(newsk, req); 1128} 1129 1130void security_inet_conn_established(struct sock *sk, 1131 struct sk_buff *skb) 1132{ 1133 security_ops->inet_conn_established(sk, skb); 1134} 1135 1136int security_tun_dev_create(void) 1137{ 1138 return security_ops->tun_dev_create(); 1139} 1140EXPORT_SYMBOL(security_tun_dev_create); 1141 1142void security_tun_dev_post_create(struct sock *sk) 1143{ 1144 return security_ops->tun_dev_post_create(sk); 1145} 1146EXPORT_SYMBOL(security_tun_dev_post_create); 1147 1148int security_tun_dev_attach(struct sock *sk) 1149{ 1150 return security_ops->tun_dev_attach(sk); 1151} 1152EXPORT_SYMBOL(security_tun_dev_attach); 1153 1154#endif /* CONFIG_SECURITY_NETWORK */ 1155 1156#ifdef CONFIG_SECURITY_NETWORK_XFRM 1157 1158int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1159{ 1160 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1161} 1162EXPORT_SYMBOL(security_xfrm_policy_alloc); 1163 1164int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1165 struct xfrm_sec_ctx **new_ctxp) 1166{ 1167 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1168} 1169 1170void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1171{ 1172 security_ops->xfrm_policy_free_security(ctx); 1173} 1174EXPORT_SYMBOL(security_xfrm_policy_free); 1175 1176int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1177{ 1178 return security_ops->xfrm_policy_delete_security(ctx); 1179} 1180 1181int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1182{ 1183 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1184} 1185EXPORT_SYMBOL(security_xfrm_state_alloc); 1186 1187int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1188 struct xfrm_sec_ctx *polsec, u32 secid) 1189{ 1190 if (!polsec) 1191 return 0; 1192 /* 1193 * We want the context to be taken from secid which is usually 1194 * from the sock. 1195 */ 1196 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1197} 1198 1199int security_xfrm_state_delete(struct xfrm_state *x) 1200{ 1201 return security_ops->xfrm_state_delete_security(x); 1202} 1203EXPORT_SYMBOL(security_xfrm_state_delete); 1204 1205void security_xfrm_state_free(struct xfrm_state *x) 1206{ 1207 security_ops->xfrm_state_free_security(x); 1208} 1209 1210int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1211{ 1212 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1213} 1214 1215int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1216 struct xfrm_policy *xp, struct flowi *fl) 1217{ 1218 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1219} 1220 1221int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1222{ 1223 return security_ops->xfrm_decode_session(skb, secid, 1); 1224} 1225 1226void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1227{ 1228 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1229 1230 BUG_ON(rc); 1231} 1232EXPORT_SYMBOL(security_skb_classify_flow); 1233 1234#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1235 1236#ifdef CONFIG_KEYS 1237 1238int security_key_alloc(struct key *key, const struct cred *cred, 1239 unsigned long flags) 1240{ 1241 return security_ops->key_alloc(key, cred, flags); 1242} 1243 1244void security_key_free(struct key *key) 1245{ 1246 security_ops->key_free(key); 1247} 1248 1249int security_key_permission(key_ref_t key_ref, 1250 const struct cred *cred, key_perm_t perm) 1251{ 1252 return security_ops->key_permission(key_ref, cred, perm); 1253} 1254 1255int security_key_getsecurity(struct key *key, char **_buffer) 1256{ 1257 return security_ops->key_getsecurity(key, _buffer); 1258} 1259 1260#endif /* CONFIG_KEYS */ 1261 1262#ifdef CONFIG_AUDIT 1263 1264int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1265{ 1266 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1267} 1268 1269int security_audit_rule_known(struct audit_krule *krule) 1270{ 1271 return security_ops->audit_rule_known(krule); 1272} 1273 1274void security_audit_rule_free(void *lsmrule) 1275{ 1276 security_ops->audit_rule_free(lsmrule); 1277} 1278 1279int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1280 struct audit_context *actx) 1281{ 1282 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1283} 1284 1285#endif /* CONFIG_AUDIT */