at v2.6.35 148 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <asm/system.h> 77#include <linux/bitops.h> 78#include <linux/capability.h> 79#include <linux/cpu.h> 80#include <linux/types.h> 81#include <linux/kernel.h> 82#include <linux/hash.h> 83#include <linux/slab.h> 84#include <linux/sched.h> 85#include <linux/mutex.h> 86#include <linux/string.h> 87#include <linux/mm.h> 88#include <linux/socket.h> 89#include <linux/sockios.h> 90#include <linux/errno.h> 91#include <linux/interrupt.h> 92#include <linux/if_ether.h> 93#include <linux/netdevice.h> 94#include <linux/etherdevice.h> 95#include <linux/ethtool.h> 96#include <linux/notifier.h> 97#include <linux/skbuff.h> 98#include <net/net_namespace.h> 99#include <net/sock.h> 100#include <linux/rtnetlink.h> 101#include <linux/proc_fs.h> 102#include <linux/seq_file.h> 103#include <linux/stat.h> 104#include <linux/if_bridge.h> 105#include <linux/if_macvlan.h> 106#include <net/dst.h> 107#include <net/pkt_sched.h> 108#include <net/checksum.h> 109#include <net/xfrm.h> 110#include <linux/highmem.h> 111#include <linux/init.h> 112#include <linux/kmod.h> 113#include <linux/module.h> 114#include <linux/netpoll.h> 115#include <linux/rcupdate.h> 116#include <linux/delay.h> 117#include <net/wext.h> 118#include <net/iw_handler.h> 119#include <asm/current.h> 120#include <linux/audit.h> 121#include <linux/dmaengine.h> 122#include <linux/err.h> 123#include <linux/ctype.h> 124#include <linux/if_arp.h> 125#include <linux/if_vlan.h> 126#include <linux/ip.h> 127#include <net/ip.h> 128#include <linux/ipv6.h> 129#include <linux/in.h> 130#include <linux/jhash.h> 131#include <linux/random.h> 132#include <trace/events/napi.h> 133#include <linux/pci.h> 134 135#include "net-sysfs.h" 136 137/* Instead of increasing this, you should create a hash table. */ 138#define MAX_GRO_SKBS 8 139 140/* This should be increased if a protocol with a bigger head is added. */ 141#define GRO_MAX_HEAD (MAX_HEADER + 128) 142 143/* 144 * The list of packet types we will receive (as opposed to discard) 145 * and the routines to invoke. 146 * 147 * Why 16. Because with 16 the only overlap we get on a hash of the 148 * low nibble of the protocol value is RARP/SNAP/X.25. 149 * 150 * NOTE: That is no longer true with the addition of VLAN tags. Not 151 * sure which should go first, but I bet it won't make much 152 * difference if we are running VLANs. The good news is that 153 * this protocol won't be in the list unless compiled in, so 154 * the average user (w/out VLANs) will not be adversely affected. 155 * --BLG 156 * 157 * 0800 IP 158 * 8100 802.1Q VLAN 159 * 0001 802.3 160 * 0002 AX.25 161 * 0004 802.2 162 * 8035 RARP 163 * 0005 SNAP 164 * 0805 X.25 165 * 0806 ARP 166 * 8137 IPX 167 * 0009 Localtalk 168 * 86DD IPv6 169 */ 170 171#define PTYPE_HASH_SIZE (16) 172#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 173 174static DEFINE_SPINLOCK(ptype_lock); 175static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 176static struct list_head ptype_all __read_mostly; /* Taps */ 177 178/* 179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 180 * semaphore. 181 * 182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 183 * 184 * Writers must hold the rtnl semaphore while they loop through the 185 * dev_base_head list, and hold dev_base_lock for writing when they do the 186 * actual updates. This allows pure readers to access the list even 187 * while a writer is preparing to update it. 188 * 189 * To put it another way, dev_base_lock is held for writing only to 190 * protect against pure readers; the rtnl semaphore provides the 191 * protection against other writers. 192 * 193 * See, for example usages, register_netdevice() and 194 * unregister_netdevice(), which must be called with the rtnl 195 * semaphore held. 196 */ 197DEFINE_RWLOCK(dev_base_lock); 198EXPORT_SYMBOL(dev_base_lock); 199 200static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 201{ 202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 204} 205 206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 207{ 208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 209} 210 211static inline void rps_lock(struct softnet_data *sd) 212{ 213#ifdef CONFIG_RPS 214 spin_lock(&sd->input_pkt_queue.lock); 215#endif 216} 217 218static inline void rps_unlock(struct softnet_data *sd) 219{ 220#ifdef CONFIG_RPS 221 spin_unlock(&sd->input_pkt_queue.lock); 222#endif 223} 224 225/* Device list insertion */ 226static int list_netdevice(struct net_device *dev) 227{ 228 struct net *net = dev_net(dev); 229 230 ASSERT_RTNL(); 231 232 write_lock_bh(&dev_base_lock); 233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 235 hlist_add_head_rcu(&dev->index_hlist, 236 dev_index_hash(net, dev->ifindex)); 237 write_unlock_bh(&dev_base_lock); 238 return 0; 239} 240 241/* Device list removal 242 * caller must respect a RCU grace period before freeing/reusing dev 243 */ 244static void unlist_netdevice(struct net_device *dev) 245{ 246 ASSERT_RTNL(); 247 248 /* Unlink dev from the device chain */ 249 write_lock_bh(&dev_base_lock); 250 list_del_rcu(&dev->dev_list); 251 hlist_del_rcu(&dev->name_hlist); 252 hlist_del_rcu(&dev->index_hlist); 253 write_unlock_bh(&dev_base_lock); 254} 255 256/* 257 * Our notifier list 258 */ 259 260static RAW_NOTIFIER_HEAD(netdev_chain); 261 262/* 263 * Device drivers call our routines to queue packets here. We empty the 264 * queue in the local softnet handler. 265 */ 266 267DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 268EXPORT_PER_CPU_SYMBOL(softnet_data); 269 270#ifdef CONFIG_LOCKDEP 271/* 272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 273 * according to dev->type 274 */ 275static const unsigned short netdev_lock_type[] = 276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 291 ARPHRD_VOID, ARPHRD_NONE}; 292 293static const char *const netdev_lock_name[] = 294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 309 "_xmit_VOID", "_xmit_NONE"}; 310 311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 314static inline unsigned short netdev_lock_pos(unsigned short dev_type) 315{ 316 int i; 317 318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 319 if (netdev_lock_type[i] == dev_type) 320 return i; 321 /* the last key is used by default */ 322 return ARRAY_SIZE(netdev_lock_type) - 1; 323} 324 325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 326 unsigned short dev_type) 327{ 328 int i; 329 330 i = netdev_lock_pos(dev_type); 331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 332 netdev_lock_name[i]); 333} 334 335static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 336{ 337 int i; 338 339 i = netdev_lock_pos(dev->type); 340 lockdep_set_class_and_name(&dev->addr_list_lock, 341 &netdev_addr_lock_key[i], 342 netdev_lock_name[i]); 343} 344#else 345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 346 unsigned short dev_type) 347{ 348} 349static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 350{ 351} 352#endif 353 354/******************************************************************************* 355 356 Protocol management and registration routines 357 358*******************************************************************************/ 359 360/* 361 * Add a protocol ID to the list. Now that the input handler is 362 * smarter we can dispense with all the messy stuff that used to be 363 * here. 364 * 365 * BEWARE!!! Protocol handlers, mangling input packets, 366 * MUST BE last in hash buckets and checking protocol handlers 367 * MUST start from promiscuous ptype_all chain in net_bh. 368 * It is true now, do not change it. 369 * Explanation follows: if protocol handler, mangling packet, will 370 * be the first on list, it is not able to sense, that packet 371 * is cloned and should be copied-on-write, so that it will 372 * change it and subsequent readers will get broken packet. 373 * --ANK (980803) 374 */ 375 376/** 377 * dev_add_pack - add packet handler 378 * @pt: packet type declaration 379 * 380 * Add a protocol handler to the networking stack. The passed &packet_type 381 * is linked into kernel lists and may not be freed until it has been 382 * removed from the kernel lists. 383 * 384 * This call does not sleep therefore it can not 385 * guarantee all CPU's that are in middle of receiving packets 386 * will see the new packet type (until the next received packet). 387 */ 388 389void dev_add_pack(struct packet_type *pt) 390{ 391 int hash; 392 393 spin_lock_bh(&ptype_lock); 394 if (pt->type == htons(ETH_P_ALL)) 395 list_add_rcu(&pt->list, &ptype_all); 396 else { 397 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 398 list_add_rcu(&pt->list, &ptype_base[hash]); 399 } 400 spin_unlock_bh(&ptype_lock); 401} 402EXPORT_SYMBOL(dev_add_pack); 403 404/** 405 * __dev_remove_pack - remove packet handler 406 * @pt: packet type declaration 407 * 408 * Remove a protocol handler that was previously added to the kernel 409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 410 * from the kernel lists and can be freed or reused once this function 411 * returns. 412 * 413 * The packet type might still be in use by receivers 414 * and must not be freed until after all the CPU's have gone 415 * through a quiescent state. 416 */ 417void __dev_remove_pack(struct packet_type *pt) 418{ 419 struct list_head *head; 420 struct packet_type *pt1; 421 422 spin_lock_bh(&ptype_lock); 423 424 if (pt->type == htons(ETH_P_ALL)) 425 head = &ptype_all; 426 else 427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 428 429 list_for_each_entry(pt1, head, list) { 430 if (pt == pt1) { 431 list_del_rcu(&pt->list); 432 goto out; 433 } 434 } 435 436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 437out: 438 spin_unlock_bh(&ptype_lock); 439} 440EXPORT_SYMBOL(__dev_remove_pack); 441 442/** 443 * dev_remove_pack - remove packet handler 444 * @pt: packet type declaration 445 * 446 * Remove a protocol handler that was previously added to the kernel 447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 448 * from the kernel lists and can be freed or reused once this function 449 * returns. 450 * 451 * This call sleeps to guarantee that no CPU is looking at the packet 452 * type after return. 453 */ 454void dev_remove_pack(struct packet_type *pt) 455{ 456 __dev_remove_pack(pt); 457 458 synchronize_net(); 459} 460EXPORT_SYMBOL(dev_remove_pack); 461 462/****************************************************************************** 463 464 Device Boot-time Settings Routines 465 466*******************************************************************************/ 467 468/* Boot time configuration table */ 469static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 470 471/** 472 * netdev_boot_setup_add - add new setup entry 473 * @name: name of the device 474 * @map: configured settings for the device 475 * 476 * Adds new setup entry to the dev_boot_setup list. The function 477 * returns 0 on error and 1 on success. This is a generic routine to 478 * all netdevices. 479 */ 480static int netdev_boot_setup_add(char *name, struct ifmap *map) 481{ 482 struct netdev_boot_setup *s; 483 int i; 484 485 s = dev_boot_setup; 486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 488 memset(s[i].name, 0, sizeof(s[i].name)); 489 strlcpy(s[i].name, name, IFNAMSIZ); 490 memcpy(&s[i].map, map, sizeof(s[i].map)); 491 break; 492 } 493 } 494 495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 496} 497 498/** 499 * netdev_boot_setup_check - check boot time settings 500 * @dev: the netdevice 501 * 502 * Check boot time settings for the device. 503 * The found settings are set for the device to be used 504 * later in the device probing. 505 * Returns 0 if no settings found, 1 if they are. 506 */ 507int netdev_boot_setup_check(struct net_device *dev) 508{ 509 struct netdev_boot_setup *s = dev_boot_setup; 510 int i; 511 512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 514 !strcmp(dev->name, s[i].name)) { 515 dev->irq = s[i].map.irq; 516 dev->base_addr = s[i].map.base_addr; 517 dev->mem_start = s[i].map.mem_start; 518 dev->mem_end = s[i].map.mem_end; 519 return 1; 520 } 521 } 522 return 0; 523} 524EXPORT_SYMBOL(netdev_boot_setup_check); 525 526 527/** 528 * netdev_boot_base - get address from boot time settings 529 * @prefix: prefix for network device 530 * @unit: id for network device 531 * 532 * Check boot time settings for the base address of device. 533 * The found settings are set for the device to be used 534 * later in the device probing. 535 * Returns 0 if no settings found. 536 */ 537unsigned long netdev_boot_base(const char *prefix, int unit) 538{ 539 const struct netdev_boot_setup *s = dev_boot_setup; 540 char name[IFNAMSIZ]; 541 int i; 542 543 sprintf(name, "%s%d", prefix, unit); 544 545 /* 546 * If device already registered then return base of 1 547 * to indicate not to probe for this interface 548 */ 549 if (__dev_get_by_name(&init_net, name)) 550 return 1; 551 552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 553 if (!strcmp(name, s[i].name)) 554 return s[i].map.base_addr; 555 return 0; 556} 557 558/* 559 * Saves at boot time configured settings for any netdevice. 560 */ 561int __init netdev_boot_setup(char *str) 562{ 563 int ints[5]; 564 struct ifmap map; 565 566 str = get_options(str, ARRAY_SIZE(ints), ints); 567 if (!str || !*str) 568 return 0; 569 570 /* Save settings */ 571 memset(&map, 0, sizeof(map)); 572 if (ints[0] > 0) 573 map.irq = ints[1]; 574 if (ints[0] > 1) 575 map.base_addr = ints[2]; 576 if (ints[0] > 2) 577 map.mem_start = ints[3]; 578 if (ints[0] > 3) 579 map.mem_end = ints[4]; 580 581 /* Add new entry to the list */ 582 return netdev_boot_setup_add(str, &map); 583} 584 585__setup("netdev=", netdev_boot_setup); 586 587/******************************************************************************* 588 589 Device Interface Subroutines 590 591*******************************************************************************/ 592 593/** 594 * __dev_get_by_name - find a device by its name 595 * @net: the applicable net namespace 596 * @name: name to find 597 * 598 * Find an interface by name. Must be called under RTNL semaphore 599 * or @dev_base_lock. If the name is found a pointer to the device 600 * is returned. If the name is not found then %NULL is returned. The 601 * reference counters are not incremented so the caller must be 602 * careful with locks. 603 */ 604 605struct net_device *__dev_get_by_name(struct net *net, const char *name) 606{ 607 struct hlist_node *p; 608 struct net_device *dev; 609 struct hlist_head *head = dev_name_hash(net, name); 610 611 hlist_for_each_entry(dev, p, head, name_hlist) 612 if (!strncmp(dev->name, name, IFNAMSIZ)) 613 return dev; 614 615 return NULL; 616} 617EXPORT_SYMBOL(__dev_get_by_name); 618 619/** 620 * dev_get_by_name_rcu - find a device by its name 621 * @net: the applicable net namespace 622 * @name: name to find 623 * 624 * Find an interface by name. 625 * If the name is found a pointer to the device is returned. 626 * If the name is not found then %NULL is returned. 627 * The reference counters are not incremented so the caller must be 628 * careful with locks. The caller must hold RCU lock. 629 */ 630 631struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 632{ 633 struct hlist_node *p; 634 struct net_device *dev; 635 struct hlist_head *head = dev_name_hash(net, name); 636 637 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 638 if (!strncmp(dev->name, name, IFNAMSIZ)) 639 return dev; 640 641 return NULL; 642} 643EXPORT_SYMBOL(dev_get_by_name_rcu); 644 645/** 646 * dev_get_by_name - find a device by its name 647 * @net: the applicable net namespace 648 * @name: name to find 649 * 650 * Find an interface by name. This can be called from any 651 * context and does its own locking. The returned handle has 652 * the usage count incremented and the caller must use dev_put() to 653 * release it when it is no longer needed. %NULL is returned if no 654 * matching device is found. 655 */ 656 657struct net_device *dev_get_by_name(struct net *net, const char *name) 658{ 659 struct net_device *dev; 660 661 rcu_read_lock(); 662 dev = dev_get_by_name_rcu(net, name); 663 if (dev) 664 dev_hold(dev); 665 rcu_read_unlock(); 666 return dev; 667} 668EXPORT_SYMBOL(dev_get_by_name); 669 670/** 671 * __dev_get_by_index - find a device by its ifindex 672 * @net: the applicable net namespace 673 * @ifindex: index of device 674 * 675 * Search for an interface by index. Returns %NULL if the device 676 * is not found or a pointer to the device. The device has not 677 * had its reference counter increased so the caller must be careful 678 * about locking. The caller must hold either the RTNL semaphore 679 * or @dev_base_lock. 680 */ 681 682struct net_device *__dev_get_by_index(struct net *net, int ifindex) 683{ 684 struct hlist_node *p; 685 struct net_device *dev; 686 struct hlist_head *head = dev_index_hash(net, ifindex); 687 688 hlist_for_each_entry(dev, p, head, index_hlist) 689 if (dev->ifindex == ifindex) 690 return dev; 691 692 return NULL; 693} 694EXPORT_SYMBOL(__dev_get_by_index); 695 696/** 697 * dev_get_by_index_rcu - find a device by its ifindex 698 * @net: the applicable net namespace 699 * @ifindex: index of device 700 * 701 * Search for an interface by index. Returns %NULL if the device 702 * is not found or a pointer to the device. The device has not 703 * had its reference counter increased so the caller must be careful 704 * about locking. The caller must hold RCU lock. 705 */ 706 707struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 708{ 709 struct hlist_node *p; 710 struct net_device *dev; 711 struct hlist_head *head = dev_index_hash(net, ifindex); 712 713 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 714 if (dev->ifindex == ifindex) 715 return dev; 716 717 return NULL; 718} 719EXPORT_SYMBOL(dev_get_by_index_rcu); 720 721 722/** 723 * dev_get_by_index - find a device by its ifindex 724 * @net: the applicable net namespace 725 * @ifindex: index of device 726 * 727 * Search for an interface by index. Returns NULL if the device 728 * is not found or a pointer to the device. The device returned has 729 * had a reference added and the pointer is safe until the user calls 730 * dev_put to indicate they have finished with it. 731 */ 732 733struct net_device *dev_get_by_index(struct net *net, int ifindex) 734{ 735 struct net_device *dev; 736 737 rcu_read_lock(); 738 dev = dev_get_by_index_rcu(net, ifindex); 739 if (dev) 740 dev_hold(dev); 741 rcu_read_unlock(); 742 return dev; 743} 744EXPORT_SYMBOL(dev_get_by_index); 745 746/** 747 * dev_getbyhwaddr - find a device by its hardware address 748 * @net: the applicable net namespace 749 * @type: media type of device 750 * @ha: hardware address 751 * 752 * Search for an interface by MAC address. Returns NULL if the device 753 * is not found or a pointer to the device. The caller must hold the 754 * rtnl semaphore. The returned device has not had its ref count increased 755 * and the caller must therefore be careful about locking 756 * 757 * BUGS: 758 * If the API was consistent this would be __dev_get_by_hwaddr 759 */ 760 761struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 762{ 763 struct net_device *dev; 764 765 ASSERT_RTNL(); 766 767 for_each_netdev(net, dev) 768 if (dev->type == type && 769 !memcmp(dev->dev_addr, ha, dev->addr_len)) 770 return dev; 771 772 return NULL; 773} 774EXPORT_SYMBOL(dev_getbyhwaddr); 775 776struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 777{ 778 struct net_device *dev; 779 780 ASSERT_RTNL(); 781 for_each_netdev(net, dev) 782 if (dev->type == type) 783 return dev; 784 785 return NULL; 786} 787EXPORT_SYMBOL(__dev_getfirstbyhwtype); 788 789struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 790{ 791 struct net_device *dev, *ret = NULL; 792 793 rcu_read_lock(); 794 for_each_netdev_rcu(net, dev) 795 if (dev->type == type) { 796 dev_hold(dev); 797 ret = dev; 798 break; 799 } 800 rcu_read_unlock(); 801 return ret; 802} 803EXPORT_SYMBOL(dev_getfirstbyhwtype); 804 805/** 806 * dev_get_by_flags - find any device with given flags 807 * @net: the applicable net namespace 808 * @if_flags: IFF_* values 809 * @mask: bitmask of bits in if_flags to check 810 * 811 * Search for any interface with the given flags. Returns NULL if a device 812 * is not found or a pointer to the device. The device returned has 813 * had a reference added and the pointer is safe until the user calls 814 * dev_put to indicate they have finished with it. 815 */ 816 817struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags, 818 unsigned short mask) 819{ 820 struct net_device *dev, *ret; 821 822 ret = NULL; 823 rcu_read_lock(); 824 for_each_netdev_rcu(net, dev) { 825 if (((dev->flags ^ if_flags) & mask) == 0) { 826 dev_hold(dev); 827 ret = dev; 828 break; 829 } 830 } 831 rcu_read_unlock(); 832 return ret; 833} 834EXPORT_SYMBOL(dev_get_by_flags); 835 836/** 837 * dev_valid_name - check if name is okay for network device 838 * @name: name string 839 * 840 * Network device names need to be valid file names to 841 * to allow sysfs to work. We also disallow any kind of 842 * whitespace. 843 */ 844int dev_valid_name(const char *name) 845{ 846 if (*name == '\0') 847 return 0; 848 if (strlen(name) >= IFNAMSIZ) 849 return 0; 850 if (!strcmp(name, ".") || !strcmp(name, "..")) 851 return 0; 852 853 while (*name) { 854 if (*name == '/' || isspace(*name)) 855 return 0; 856 name++; 857 } 858 return 1; 859} 860EXPORT_SYMBOL(dev_valid_name); 861 862/** 863 * __dev_alloc_name - allocate a name for a device 864 * @net: network namespace to allocate the device name in 865 * @name: name format string 866 * @buf: scratch buffer and result name string 867 * 868 * Passed a format string - eg "lt%d" it will try and find a suitable 869 * id. It scans list of devices to build up a free map, then chooses 870 * the first empty slot. The caller must hold the dev_base or rtnl lock 871 * while allocating the name and adding the device in order to avoid 872 * duplicates. 873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 874 * Returns the number of the unit assigned or a negative errno code. 875 */ 876 877static int __dev_alloc_name(struct net *net, const char *name, char *buf) 878{ 879 int i = 0; 880 const char *p; 881 const int max_netdevices = 8*PAGE_SIZE; 882 unsigned long *inuse; 883 struct net_device *d; 884 885 p = strnchr(name, IFNAMSIZ-1, '%'); 886 if (p) { 887 /* 888 * Verify the string as this thing may have come from 889 * the user. There must be either one "%d" and no other "%" 890 * characters. 891 */ 892 if (p[1] != 'd' || strchr(p + 2, '%')) 893 return -EINVAL; 894 895 /* Use one page as a bit array of possible slots */ 896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 897 if (!inuse) 898 return -ENOMEM; 899 900 for_each_netdev(net, d) { 901 if (!sscanf(d->name, name, &i)) 902 continue; 903 if (i < 0 || i >= max_netdevices) 904 continue; 905 906 /* avoid cases where sscanf is not exact inverse of printf */ 907 snprintf(buf, IFNAMSIZ, name, i); 908 if (!strncmp(buf, d->name, IFNAMSIZ)) 909 set_bit(i, inuse); 910 } 911 912 i = find_first_zero_bit(inuse, max_netdevices); 913 free_page((unsigned long) inuse); 914 } 915 916 if (buf != name) 917 snprintf(buf, IFNAMSIZ, name, i); 918 if (!__dev_get_by_name(net, buf)) 919 return i; 920 921 /* It is possible to run out of possible slots 922 * when the name is long and there isn't enough space left 923 * for the digits, or if all bits are used. 924 */ 925 return -ENFILE; 926} 927 928/** 929 * dev_alloc_name - allocate a name for a device 930 * @dev: device 931 * @name: name format string 932 * 933 * Passed a format string - eg "lt%d" it will try and find a suitable 934 * id. It scans list of devices to build up a free map, then chooses 935 * the first empty slot. The caller must hold the dev_base or rtnl lock 936 * while allocating the name and adding the device in order to avoid 937 * duplicates. 938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 939 * Returns the number of the unit assigned or a negative errno code. 940 */ 941 942int dev_alloc_name(struct net_device *dev, const char *name) 943{ 944 char buf[IFNAMSIZ]; 945 struct net *net; 946 int ret; 947 948 BUG_ON(!dev_net(dev)); 949 net = dev_net(dev); 950 ret = __dev_alloc_name(net, name, buf); 951 if (ret >= 0) 952 strlcpy(dev->name, buf, IFNAMSIZ); 953 return ret; 954} 955EXPORT_SYMBOL(dev_alloc_name); 956 957static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt) 958{ 959 struct net *net; 960 961 BUG_ON(!dev_net(dev)); 962 net = dev_net(dev); 963 964 if (!dev_valid_name(name)) 965 return -EINVAL; 966 967 if (fmt && strchr(name, '%')) 968 return dev_alloc_name(dev, name); 969 else if (__dev_get_by_name(net, name)) 970 return -EEXIST; 971 else if (dev->name != name) 972 strlcpy(dev->name, name, IFNAMSIZ); 973 974 return 0; 975} 976 977/** 978 * dev_change_name - change name of a device 979 * @dev: device 980 * @newname: name (or format string) must be at least IFNAMSIZ 981 * 982 * Change name of a device, can pass format strings "eth%d". 983 * for wildcarding. 984 */ 985int dev_change_name(struct net_device *dev, const char *newname) 986{ 987 char oldname[IFNAMSIZ]; 988 int err = 0; 989 int ret; 990 struct net *net; 991 992 ASSERT_RTNL(); 993 BUG_ON(!dev_net(dev)); 994 995 net = dev_net(dev); 996 if (dev->flags & IFF_UP) 997 return -EBUSY; 998 999 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1000 return 0; 1001 1002 memcpy(oldname, dev->name, IFNAMSIZ); 1003 1004 err = dev_get_valid_name(dev, newname, 1); 1005 if (err < 0) 1006 return err; 1007 1008rollback: 1009 ret = device_rename(&dev->dev, dev->name); 1010 if (ret) { 1011 memcpy(dev->name, oldname, IFNAMSIZ); 1012 return ret; 1013 } 1014 1015 write_lock_bh(&dev_base_lock); 1016 hlist_del(&dev->name_hlist); 1017 write_unlock_bh(&dev_base_lock); 1018 1019 synchronize_rcu(); 1020 1021 write_lock_bh(&dev_base_lock); 1022 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1023 write_unlock_bh(&dev_base_lock); 1024 1025 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1026 ret = notifier_to_errno(ret); 1027 1028 if (ret) { 1029 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1030 if (err >= 0) { 1031 err = ret; 1032 memcpy(dev->name, oldname, IFNAMSIZ); 1033 goto rollback; 1034 } else { 1035 printk(KERN_ERR 1036 "%s: name change rollback failed: %d.\n", 1037 dev->name, ret); 1038 } 1039 } 1040 1041 return err; 1042} 1043 1044/** 1045 * dev_set_alias - change ifalias of a device 1046 * @dev: device 1047 * @alias: name up to IFALIASZ 1048 * @len: limit of bytes to copy from info 1049 * 1050 * Set ifalias for a device, 1051 */ 1052int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1053{ 1054 ASSERT_RTNL(); 1055 1056 if (len >= IFALIASZ) 1057 return -EINVAL; 1058 1059 if (!len) { 1060 if (dev->ifalias) { 1061 kfree(dev->ifalias); 1062 dev->ifalias = NULL; 1063 } 1064 return 0; 1065 } 1066 1067 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1068 if (!dev->ifalias) 1069 return -ENOMEM; 1070 1071 strlcpy(dev->ifalias, alias, len+1); 1072 return len; 1073} 1074 1075 1076/** 1077 * netdev_features_change - device changes features 1078 * @dev: device to cause notification 1079 * 1080 * Called to indicate a device has changed features. 1081 */ 1082void netdev_features_change(struct net_device *dev) 1083{ 1084 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1085} 1086EXPORT_SYMBOL(netdev_features_change); 1087 1088/** 1089 * netdev_state_change - device changes state 1090 * @dev: device to cause notification 1091 * 1092 * Called to indicate a device has changed state. This function calls 1093 * the notifier chains for netdev_chain and sends a NEWLINK message 1094 * to the routing socket. 1095 */ 1096void netdev_state_change(struct net_device *dev) 1097{ 1098 if (dev->flags & IFF_UP) { 1099 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1100 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1101 } 1102} 1103EXPORT_SYMBOL(netdev_state_change); 1104 1105int netdev_bonding_change(struct net_device *dev, unsigned long event) 1106{ 1107 return call_netdevice_notifiers(event, dev); 1108} 1109EXPORT_SYMBOL(netdev_bonding_change); 1110 1111/** 1112 * dev_load - load a network module 1113 * @net: the applicable net namespace 1114 * @name: name of interface 1115 * 1116 * If a network interface is not present and the process has suitable 1117 * privileges this function loads the module. If module loading is not 1118 * available in this kernel then it becomes a nop. 1119 */ 1120 1121void dev_load(struct net *net, const char *name) 1122{ 1123 struct net_device *dev; 1124 1125 rcu_read_lock(); 1126 dev = dev_get_by_name_rcu(net, name); 1127 rcu_read_unlock(); 1128 1129 if (!dev && capable(CAP_NET_ADMIN)) 1130 request_module("%s", name); 1131} 1132EXPORT_SYMBOL(dev_load); 1133 1134static int __dev_open(struct net_device *dev) 1135{ 1136 const struct net_device_ops *ops = dev->netdev_ops; 1137 int ret; 1138 1139 ASSERT_RTNL(); 1140 1141 /* 1142 * Is it even present? 1143 */ 1144 if (!netif_device_present(dev)) 1145 return -ENODEV; 1146 1147 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1148 ret = notifier_to_errno(ret); 1149 if (ret) 1150 return ret; 1151 1152 /* 1153 * Call device private open method 1154 */ 1155 set_bit(__LINK_STATE_START, &dev->state); 1156 1157 if (ops->ndo_validate_addr) 1158 ret = ops->ndo_validate_addr(dev); 1159 1160 if (!ret && ops->ndo_open) 1161 ret = ops->ndo_open(dev); 1162 1163 /* 1164 * If it went open OK then: 1165 */ 1166 1167 if (ret) 1168 clear_bit(__LINK_STATE_START, &dev->state); 1169 else { 1170 /* 1171 * Set the flags. 1172 */ 1173 dev->flags |= IFF_UP; 1174 1175 /* 1176 * Enable NET_DMA 1177 */ 1178 net_dmaengine_get(); 1179 1180 /* 1181 * Initialize multicasting status 1182 */ 1183 dev_set_rx_mode(dev); 1184 1185 /* 1186 * Wakeup transmit queue engine 1187 */ 1188 dev_activate(dev); 1189 } 1190 1191 return ret; 1192} 1193 1194/** 1195 * dev_open - prepare an interface for use. 1196 * @dev: device to open 1197 * 1198 * Takes a device from down to up state. The device's private open 1199 * function is invoked and then the multicast lists are loaded. Finally 1200 * the device is moved into the up state and a %NETDEV_UP message is 1201 * sent to the netdev notifier chain. 1202 * 1203 * Calling this function on an active interface is a nop. On a failure 1204 * a negative errno code is returned. 1205 */ 1206int dev_open(struct net_device *dev) 1207{ 1208 int ret; 1209 1210 /* 1211 * Is it already up? 1212 */ 1213 if (dev->flags & IFF_UP) 1214 return 0; 1215 1216 /* 1217 * Open device 1218 */ 1219 ret = __dev_open(dev); 1220 if (ret < 0) 1221 return ret; 1222 1223 /* 1224 * ... and announce new interface. 1225 */ 1226 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1227 call_netdevice_notifiers(NETDEV_UP, dev); 1228 1229 return ret; 1230} 1231EXPORT_SYMBOL(dev_open); 1232 1233static int __dev_close(struct net_device *dev) 1234{ 1235 const struct net_device_ops *ops = dev->netdev_ops; 1236 1237 ASSERT_RTNL(); 1238 might_sleep(); 1239 1240 /* 1241 * Tell people we are going down, so that they can 1242 * prepare to death, when device is still operating. 1243 */ 1244 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1245 1246 clear_bit(__LINK_STATE_START, &dev->state); 1247 1248 /* Synchronize to scheduled poll. We cannot touch poll list, 1249 * it can be even on different cpu. So just clear netif_running(). 1250 * 1251 * dev->stop() will invoke napi_disable() on all of it's 1252 * napi_struct instances on this device. 1253 */ 1254 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1255 1256 dev_deactivate(dev); 1257 1258 /* 1259 * Call the device specific close. This cannot fail. 1260 * Only if device is UP 1261 * 1262 * We allow it to be called even after a DETACH hot-plug 1263 * event. 1264 */ 1265 if (ops->ndo_stop) 1266 ops->ndo_stop(dev); 1267 1268 /* 1269 * Device is now down. 1270 */ 1271 1272 dev->flags &= ~IFF_UP; 1273 1274 /* 1275 * Shutdown NET_DMA 1276 */ 1277 net_dmaengine_put(); 1278 1279 return 0; 1280} 1281 1282/** 1283 * dev_close - shutdown an interface. 1284 * @dev: device to shutdown 1285 * 1286 * This function moves an active device into down state. A 1287 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1288 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1289 * chain. 1290 */ 1291int dev_close(struct net_device *dev) 1292{ 1293 if (!(dev->flags & IFF_UP)) 1294 return 0; 1295 1296 __dev_close(dev); 1297 1298 /* 1299 * Tell people we are down 1300 */ 1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1302 call_netdevice_notifiers(NETDEV_DOWN, dev); 1303 1304 return 0; 1305} 1306EXPORT_SYMBOL(dev_close); 1307 1308 1309/** 1310 * dev_disable_lro - disable Large Receive Offload on a device 1311 * @dev: device 1312 * 1313 * Disable Large Receive Offload (LRO) on a net device. Must be 1314 * called under RTNL. This is needed if received packets may be 1315 * forwarded to another interface. 1316 */ 1317void dev_disable_lro(struct net_device *dev) 1318{ 1319 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1320 dev->ethtool_ops->set_flags) { 1321 u32 flags = dev->ethtool_ops->get_flags(dev); 1322 if (flags & ETH_FLAG_LRO) { 1323 flags &= ~ETH_FLAG_LRO; 1324 dev->ethtool_ops->set_flags(dev, flags); 1325 } 1326 } 1327 WARN_ON(dev->features & NETIF_F_LRO); 1328} 1329EXPORT_SYMBOL(dev_disable_lro); 1330 1331 1332static int dev_boot_phase = 1; 1333 1334/* 1335 * Device change register/unregister. These are not inline or static 1336 * as we export them to the world. 1337 */ 1338 1339/** 1340 * register_netdevice_notifier - register a network notifier block 1341 * @nb: notifier 1342 * 1343 * Register a notifier to be called when network device events occur. 1344 * The notifier passed is linked into the kernel structures and must 1345 * not be reused until it has been unregistered. A negative errno code 1346 * is returned on a failure. 1347 * 1348 * When registered all registration and up events are replayed 1349 * to the new notifier to allow device to have a race free 1350 * view of the network device list. 1351 */ 1352 1353int register_netdevice_notifier(struct notifier_block *nb) 1354{ 1355 struct net_device *dev; 1356 struct net_device *last; 1357 struct net *net; 1358 int err; 1359 1360 rtnl_lock(); 1361 err = raw_notifier_chain_register(&netdev_chain, nb); 1362 if (err) 1363 goto unlock; 1364 if (dev_boot_phase) 1365 goto unlock; 1366 for_each_net(net) { 1367 for_each_netdev(net, dev) { 1368 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1369 err = notifier_to_errno(err); 1370 if (err) 1371 goto rollback; 1372 1373 if (!(dev->flags & IFF_UP)) 1374 continue; 1375 1376 nb->notifier_call(nb, NETDEV_UP, dev); 1377 } 1378 } 1379 1380unlock: 1381 rtnl_unlock(); 1382 return err; 1383 1384rollback: 1385 last = dev; 1386 for_each_net(net) { 1387 for_each_netdev(net, dev) { 1388 if (dev == last) 1389 break; 1390 1391 if (dev->flags & IFF_UP) { 1392 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1393 nb->notifier_call(nb, NETDEV_DOWN, dev); 1394 } 1395 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1396 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1397 } 1398 } 1399 1400 raw_notifier_chain_unregister(&netdev_chain, nb); 1401 goto unlock; 1402} 1403EXPORT_SYMBOL(register_netdevice_notifier); 1404 1405/** 1406 * unregister_netdevice_notifier - unregister a network notifier block 1407 * @nb: notifier 1408 * 1409 * Unregister a notifier previously registered by 1410 * register_netdevice_notifier(). The notifier is unlinked into the 1411 * kernel structures and may then be reused. A negative errno code 1412 * is returned on a failure. 1413 */ 1414 1415int unregister_netdevice_notifier(struct notifier_block *nb) 1416{ 1417 int err; 1418 1419 rtnl_lock(); 1420 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1421 rtnl_unlock(); 1422 return err; 1423} 1424EXPORT_SYMBOL(unregister_netdevice_notifier); 1425 1426/** 1427 * call_netdevice_notifiers - call all network notifier blocks 1428 * @val: value passed unmodified to notifier function 1429 * @dev: net_device pointer passed unmodified to notifier function 1430 * 1431 * Call all network notifier blocks. Parameters and return value 1432 * are as for raw_notifier_call_chain(). 1433 */ 1434 1435int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1436{ 1437 ASSERT_RTNL(); 1438 return raw_notifier_call_chain(&netdev_chain, val, dev); 1439} 1440 1441/* When > 0 there are consumers of rx skb time stamps */ 1442static atomic_t netstamp_needed = ATOMIC_INIT(0); 1443 1444void net_enable_timestamp(void) 1445{ 1446 atomic_inc(&netstamp_needed); 1447} 1448EXPORT_SYMBOL(net_enable_timestamp); 1449 1450void net_disable_timestamp(void) 1451{ 1452 atomic_dec(&netstamp_needed); 1453} 1454EXPORT_SYMBOL(net_disable_timestamp); 1455 1456static inline void net_timestamp_set(struct sk_buff *skb) 1457{ 1458 if (atomic_read(&netstamp_needed)) 1459 __net_timestamp(skb); 1460 else 1461 skb->tstamp.tv64 = 0; 1462} 1463 1464static inline void net_timestamp_check(struct sk_buff *skb) 1465{ 1466 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1467 __net_timestamp(skb); 1468} 1469 1470/** 1471 * dev_forward_skb - loopback an skb to another netif 1472 * 1473 * @dev: destination network device 1474 * @skb: buffer to forward 1475 * 1476 * return values: 1477 * NET_RX_SUCCESS (no congestion) 1478 * NET_RX_DROP (packet was dropped, but freed) 1479 * 1480 * dev_forward_skb can be used for injecting an skb from the 1481 * start_xmit function of one device into the receive queue 1482 * of another device. 1483 * 1484 * The receiving device may be in another namespace, so 1485 * we have to clear all information in the skb that could 1486 * impact namespace isolation. 1487 */ 1488int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1489{ 1490 skb_orphan(skb); 1491 nf_reset(skb); 1492 1493 if (!(dev->flags & IFF_UP) || 1494 (skb->len > (dev->mtu + dev->hard_header_len))) { 1495 kfree_skb(skb); 1496 return NET_RX_DROP; 1497 } 1498 skb_set_dev(skb, dev); 1499 skb->tstamp.tv64 = 0; 1500 skb->pkt_type = PACKET_HOST; 1501 skb->protocol = eth_type_trans(skb, dev); 1502 return netif_rx(skb); 1503} 1504EXPORT_SYMBOL_GPL(dev_forward_skb); 1505 1506/* 1507 * Support routine. Sends outgoing frames to any network 1508 * taps currently in use. 1509 */ 1510 1511static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1512{ 1513 struct packet_type *ptype; 1514 1515#ifdef CONFIG_NET_CLS_ACT 1516 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS))) 1517 net_timestamp_set(skb); 1518#else 1519 net_timestamp_set(skb); 1520#endif 1521 1522 rcu_read_lock(); 1523 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1524 /* Never send packets back to the socket 1525 * they originated from - MvS (miquels@drinkel.ow.org) 1526 */ 1527 if ((ptype->dev == dev || !ptype->dev) && 1528 (ptype->af_packet_priv == NULL || 1529 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1530 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1531 if (!skb2) 1532 break; 1533 1534 /* skb->nh should be correctly 1535 set by sender, so that the second statement is 1536 just protection against buggy protocols. 1537 */ 1538 skb_reset_mac_header(skb2); 1539 1540 if (skb_network_header(skb2) < skb2->data || 1541 skb2->network_header > skb2->tail) { 1542 if (net_ratelimit()) 1543 printk(KERN_CRIT "protocol %04x is " 1544 "buggy, dev %s\n", 1545 skb2->protocol, dev->name); 1546 skb_reset_network_header(skb2); 1547 } 1548 1549 skb2->transport_header = skb2->network_header; 1550 skb2->pkt_type = PACKET_OUTGOING; 1551 ptype->func(skb2, skb->dev, ptype, skb->dev); 1552 } 1553 } 1554 rcu_read_unlock(); 1555} 1556 1557/* 1558 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1559 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1560 */ 1561void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1562{ 1563 unsigned int real_num = dev->real_num_tx_queues; 1564 1565 if (unlikely(txq > dev->num_tx_queues)) 1566 ; 1567 else if (txq > real_num) 1568 dev->real_num_tx_queues = txq; 1569 else if (txq < real_num) { 1570 dev->real_num_tx_queues = txq; 1571 qdisc_reset_all_tx_gt(dev, txq); 1572 } 1573} 1574EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1575 1576static inline void __netif_reschedule(struct Qdisc *q) 1577{ 1578 struct softnet_data *sd; 1579 unsigned long flags; 1580 1581 local_irq_save(flags); 1582 sd = &__get_cpu_var(softnet_data); 1583 q->next_sched = NULL; 1584 *sd->output_queue_tailp = q; 1585 sd->output_queue_tailp = &q->next_sched; 1586 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1587 local_irq_restore(flags); 1588} 1589 1590void __netif_schedule(struct Qdisc *q) 1591{ 1592 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1593 __netif_reschedule(q); 1594} 1595EXPORT_SYMBOL(__netif_schedule); 1596 1597void dev_kfree_skb_irq(struct sk_buff *skb) 1598{ 1599 if (atomic_dec_and_test(&skb->users)) { 1600 struct softnet_data *sd; 1601 unsigned long flags; 1602 1603 local_irq_save(flags); 1604 sd = &__get_cpu_var(softnet_data); 1605 skb->next = sd->completion_queue; 1606 sd->completion_queue = skb; 1607 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1608 local_irq_restore(flags); 1609 } 1610} 1611EXPORT_SYMBOL(dev_kfree_skb_irq); 1612 1613void dev_kfree_skb_any(struct sk_buff *skb) 1614{ 1615 if (in_irq() || irqs_disabled()) 1616 dev_kfree_skb_irq(skb); 1617 else 1618 dev_kfree_skb(skb); 1619} 1620EXPORT_SYMBOL(dev_kfree_skb_any); 1621 1622 1623/** 1624 * netif_device_detach - mark device as removed 1625 * @dev: network device 1626 * 1627 * Mark device as removed from system and therefore no longer available. 1628 */ 1629void netif_device_detach(struct net_device *dev) 1630{ 1631 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1632 netif_running(dev)) { 1633 netif_tx_stop_all_queues(dev); 1634 } 1635} 1636EXPORT_SYMBOL(netif_device_detach); 1637 1638/** 1639 * netif_device_attach - mark device as attached 1640 * @dev: network device 1641 * 1642 * Mark device as attached from system and restart if needed. 1643 */ 1644void netif_device_attach(struct net_device *dev) 1645{ 1646 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1647 netif_running(dev)) { 1648 netif_tx_wake_all_queues(dev); 1649 __netdev_watchdog_up(dev); 1650 } 1651} 1652EXPORT_SYMBOL(netif_device_attach); 1653 1654static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1655{ 1656 return ((features & NETIF_F_GEN_CSUM) || 1657 ((features & NETIF_F_IP_CSUM) && 1658 protocol == htons(ETH_P_IP)) || 1659 ((features & NETIF_F_IPV6_CSUM) && 1660 protocol == htons(ETH_P_IPV6)) || 1661 ((features & NETIF_F_FCOE_CRC) && 1662 protocol == htons(ETH_P_FCOE))); 1663} 1664 1665static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1666{ 1667 if (can_checksum_protocol(dev->features, skb->protocol)) 1668 return true; 1669 1670 if (skb->protocol == htons(ETH_P_8021Q)) { 1671 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1672 if (can_checksum_protocol(dev->features & dev->vlan_features, 1673 veh->h_vlan_encapsulated_proto)) 1674 return true; 1675 } 1676 1677 return false; 1678} 1679 1680/** 1681 * skb_dev_set -- assign a new device to a buffer 1682 * @skb: buffer for the new device 1683 * @dev: network device 1684 * 1685 * If an skb is owned by a device already, we have to reset 1686 * all data private to the namespace a device belongs to 1687 * before assigning it a new device. 1688 */ 1689#ifdef CONFIG_NET_NS 1690void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1691{ 1692 skb_dst_drop(skb); 1693 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1694 secpath_reset(skb); 1695 nf_reset(skb); 1696 skb_init_secmark(skb); 1697 skb->mark = 0; 1698 skb->priority = 0; 1699 skb->nf_trace = 0; 1700 skb->ipvs_property = 0; 1701#ifdef CONFIG_NET_SCHED 1702 skb->tc_index = 0; 1703#endif 1704 } 1705 skb->dev = dev; 1706} 1707EXPORT_SYMBOL(skb_set_dev); 1708#endif /* CONFIG_NET_NS */ 1709 1710/* 1711 * Invalidate hardware checksum when packet is to be mangled, and 1712 * complete checksum manually on outgoing path. 1713 */ 1714int skb_checksum_help(struct sk_buff *skb) 1715{ 1716 __wsum csum; 1717 int ret = 0, offset; 1718 1719 if (skb->ip_summed == CHECKSUM_COMPLETE) 1720 goto out_set_summed; 1721 1722 if (unlikely(skb_shinfo(skb)->gso_size)) { 1723 /* Let GSO fix up the checksum. */ 1724 goto out_set_summed; 1725 } 1726 1727 offset = skb->csum_start - skb_headroom(skb); 1728 BUG_ON(offset >= skb_headlen(skb)); 1729 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1730 1731 offset += skb->csum_offset; 1732 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1733 1734 if (skb_cloned(skb) && 1735 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1736 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1737 if (ret) 1738 goto out; 1739 } 1740 1741 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1742out_set_summed: 1743 skb->ip_summed = CHECKSUM_NONE; 1744out: 1745 return ret; 1746} 1747EXPORT_SYMBOL(skb_checksum_help); 1748 1749/** 1750 * skb_gso_segment - Perform segmentation on skb. 1751 * @skb: buffer to segment 1752 * @features: features for the output path (see dev->features) 1753 * 1754 * This function segments the given skb and returns a list of segments. 1755 * 1756 * It may return NULL if the skb requires no segmentation. This is 1757 * only possible when GSO is used for verifying header integrity. 1758 */ 1759struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1760{ 1761 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1762 struct packet_type *ptype; 1763 __be16 type = skb->protocol; 1764 int err; 1765 1766 skb_reset_mac_header(skb); 1767 skb->mac_len = skb->network_header - skb->mac_header; 1768 __skb_pull(skb, skb->mac_len); 1769 1770 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1771 struct net_device *dev = skb->dev; 1772 struct ethtool_drvinfo info = {}; 1773 1774 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1775 dev->ethtool_ops->get_drvinfo(dev, &info); 1776 1777 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1778 "ip_summed=%d", 1779 info.driver, dev ? dev->features : 0L, 1780 skb->sk ? skb->sk->sk_route_caps : 0L, 1781 skb->len, skb->data_len, skb->ip_summed); 1782 1783 if (skb_header_cloned(skb) && 1784 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1785 return ERR_PTR(err); 1786 } 1787 1788 rcu_read_lock(); 1789 list_for_each_entry_rcu(ptype, 1790 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1791 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1792 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1793 err = ptype->gso_send_check(skb); 1794 segs = ERR_PTR(err); 1795 if (err || skb_gso_ok(skb, features)) 1796 break; 1797 __skb_push(skb, (skb->data - 1798 skb_network_header(skb))); 1799 } 1800 segs = ptype->gso_segment(skb, features); 1801 break; 1802 } 1803 } 1804 rcu_read_unlock(); 1805 1806 __skb_push(skb, skb->data - skb_mac_header(skb)); 1807 1808 return segs; 1809} 1810EXPORT_SYMBOL(skb_gso_segment); 1811 1812/* Take action when hardware reception checksum errors are detected. */ 1813#ifdef CONFIG_BUG 1814void netdev_rx_csum_fault(struct net_device *dev) 1815{ 1816 if (net_ratelimit()) { 1817 printk(KERN_ERR "%s: hw csum failure.\n", 1818 dev ? dev->name : "<unknown>"); 1819 dump_stack(); 1820 } 1821} 1822EXPORT_SYMBOL(netdev_rx_csum_fault); 1823#endif 1824 1825/* Actually, we should eliminate this check as soon as we know, that: 1826 * 1. IOMMU is present and allows to map all the memory. 1827 * 2. No high memory really exists on this machine. 1828 */ 1829 1830static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1831{ 1832#ifdef CONFIG_HIGHMEM 1833 int i; 1834 if (!(dev->features & NETIF_F_HIGHDMA)) { 1835 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1836 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1837 return 1; 1838 } 1839 1840 if (PCI_DMA_BUS_IS_PHYS) { 1841 struct device *pdev = dev->dev.parent; 1842 1843 if (!pdev) 1844 return 0; 1845 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1846 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page); 1847 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 1848 return 1; 1849 } 1850 } 1851#endif 1852 return 0; 1853} 1854 1855struct dev_gso_cb { 1856 void (*destructor)(struct sk_buff *skb); 1857}; 1858 1859#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1860 1861static void dev_gso_skb_destructor(struct sk_buff *skb) 1862{ 1863 struct dev_gso_cb *cb; 1864 1865 do { 1866 struct sk_buff *nskb = skb->next; 1867 1868 skb->next = nskb->next; 1869 nskb->next = NULL; 1870 kfree_skb(nskb); 1871 } while (skb->next); 1872 1873 cb = DEV_GSO_CB(skb); 1874 if (cb->destructor) 1875 cb->destructor(skb); 1876} 1877 1878/** 1879 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1880 * @skb: buffer to segment 1881 * 1882 * This function segments the given skb and stores the list of segments 1883 * in skb->next. 1884 */ 1885static int dev_gso_segment(struct sk_buff *skb) 1886{ 1887 struct net_device *dev = skb->dev; 1888 struct sk_buff *segs; 1889 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1890 NETIF_F_SG : 0); 1891 1892 segs = skb_gso_segment(skb, features); 1893 1894 /* Verifying header integrity only. */ 1895 if (!segs) 1896 return 0; 1897 1898 if (IS_ERR(segs)) 1899 return PTR_ERR(segs); 1900 1901 skb->next = segs; 1902 DEV_GSO_CB(skb)->destructor = skb->destructor; 1903 skb->destructor = dev_gso_skb_destructor; 1904 1905 return 0; 1906} 1907 1908/* 1909 * Try to orphan skb early, right before transmission by the device. 1910 * We cannot orphan skb if tx timestamp is requested, since 1911 * drivers need to call skb_tstamp_tx() to send the timestamp. 1912 */ 1913static inline void skb_orphan_try(struct sk_buff *skb) 1914{ 1915 struct sock *sk = skb->sk; 1916 1917 if (sk && !skb_tx(skb)->flags) { 1918 /* skb_tx_hash() wont be able to get sk. 1919 * We copy sk_hash into skb->rxhash 1920 */ 1921 if (!skb->rxhash) 1922 skb->rxhash = sk->sk_hash; 1923 skb_orphan(skb); 1924 } 1925} 1926 1927int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1928 struct netdev_queue *txq) 1929{ 1930 const struct net_device_ops *ops = dev->netdev_ops; 1931 int rc = NETDEV_TX_OK; 1932 1933 if (likely(!skb->next)) { 1934 if (!list_empty(&ptype_all)) 1935 dev_queue_xmit_nit(skb, dev); 1936 1937 /* 1938 * If device doesnt need skb->dst, release it right now while 1939 * its hot in this cpu cache 1940 */ 1941 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1942 skb_dst_drop(skb); 1943 1944 skb_orphan_try(skb); 1945 1946 if (netif_needs_gso(dev, skb)) { 1947 if (unlikely(dev_gso_segment(skb))) 1948 goto out_kfree_skb; 1949 if (skb->next) 1950 goto gso; 1951 } 1952 1953 rc = ops->ndo_start_xmit(skb, dev); 1954 if (rc == NETDEV_TX_OK) 1955 txq_trans_update(txq); 1956 return rc; 1957 } 1958 1959gso: 1960 do { 1961 struct sk_buff *nskb = skb->next; 1962 1963 skb->next = nskb->next; 1964 nskb->next = NULL; 1965 1966 /* 1967 * If device doesnt need nskb->dst, release it right now while 1968 * its hot in this cpu cache 1969 */ 1970 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1971 skb_dst_drop(nskb); 1972 1973 rc = ops->ndo_start_xmit(nskb, dev); 1974 if (unlikely(rc != NETDEV_TX_OK)) { 1975 if (rc & ~NETDEV_TX_MASK) 1976 goto out_kfree_gso_skb; 1977 nskb->next = skb->next; 1978 skb->next = nskb; 1979 return rc; 1980 } 1981 txq_trans_update(txq); 1982 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1983 return NETDEV_TX_BUSY; 1984 } while (skb->next); 1985 1986out_kfree_gso_skb: 1987 if (likely(skb->next == NULL)) 1988 skb->destructor = DEV_GSO_CB(skb)->destructor; 1989out_kfree_skb: 1990 kfree_skb(skb); 1991 return rc; 1992} 1993 1994static u32 hashrnd __read_mostly; 1995 1996u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 1997{ 1998 u32 hash; 1999 2000 if (skb_rx_queue_recorded(skb)) { 2001 hash = skb_get_rx_queue(skb); 2002 while (unlikely(hash >= dev->real_num_tx_queues)) 2003 hash -= dev->real_num_tx_queues; 2004 return hash; 2005 } 2006 2007 if (skb->sk && skb->sk->sk_hash) 2008 hash = skb->sk->sk_hash; 2009 else 2010 hash = (__force u16) skb->protocol ^ skb->rxhash; 2011 hash = jhash_1word(hash, hashrnd); 2012 2013 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 2014} 2015EXPORT_SYMBOL(skb_tx_hash); 2016 2017static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2018{ 2019 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2020 if (net_ratelimit()) { 2021 pr_warning("%s selects TX queue %d, but " 2022 "real number of TX queues is %d\n", 2023 dev->name, queue_index, dev->real_num_tx_queues); 2024 } 2025 return 0; 2026 } 2027 return queue_index; 2028} 2029 2030static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2031 struct sk_buff *skb) 2032{ 2033 int queue_index; 2034 struct sock *sk = skb->sk; 2035 2036 queue_index = sk_tx_queue_get(sk); 2037 if (queue_index < 0) { 2038 const struct net_device_ops *ops = dev->netdev_ops; 2039 2040 if (ops->ndo_select_queue) { 2041 queue_index = ops->ndo_select_queue(dev, skb); 2042 queue_index = dev_cap_txqueue(dev, queue_index); 2043 } else { 2044 queue_index = 0; 2045 if (dev->real_num_tx_queues > 1) 2046 queue_index = skb_tx_hash(dev, skb); 2047 2048 if (sk) { 2049 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1); 2050 2051 if (dst && skb_dst(skb) == dst) 2052 sk_tx_queue_set(sk, queue_index); 2053 } 2054 } 2055 } 2056 2057 skb_set_queue_mapping(skb, queue_index); 2058 return netdev_get_tx_queue(dev, queue_index); 2059} 2060 2061static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2062 struct net_device *dev, 2063 struct netdev_queue *txq) 2064{ 2065 spinlock_t *root_lock = qdisc_lock(q); 2066 int rc; 2067 2068 spin_lock(root_lock); 2069 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2070 kfree_skb(skb); 2071 rc = NET_XMIT_DROP; 2072 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2073 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) { 2074 /* 2075 * This is a work-conserving queue; there are no old skbs 2076 * waiting to be sent out; and the qdisc is not running - 2077 * xmit the skb directly. 2078 */ 2079 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2080 skb_dst_force(skb); 2081 __qdisc_update_bstats(q, skb->len); 2082 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) 2083 __qdisc_run(q); 2084 else 2085 clear_bit(__QDISC_STATE_RUNNING, &q->state); 2086 2087 rc = NET_XMIT_SUCCESS; 2088 } else { 2089 skb_dst_force(skb); 2090 rc = qdisc_enqueue_root(skb, q); 2091 qdisc_run(q); 2092 } 2093 spin_unlock(root_lock); 2094 2095 return rc; 2096} 2097 2098/* 2099 * Returns true if either: 2100 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2101 * 2. skb is fragmented and the device does not support SG, or if 2102 * at least one of fragments is in highmem and device does not 2103 * support DMA from it. 2104 */ 2105static inline int skb_needs_linearize(struct sk_buff *skb, 2106 struct net_device *dev) 2107{ 2108 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) || 2109 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) || 2110 illegal_highdma(dev, skb))); 2111} 2112 2113/** 2114 * dev_queue_xmit - transmit a buffer 2115 * @skb: buffer to transmit 2116 * 2117 * Queue a buffer for transmission to a network device. The caller must 2118 * have set the device and priority and built the buffer before calling 2119 * this function. The function can be called from an interrupt. 2120 * 2121 * A negative errno code is returned on a failure. A success does not 2122 * guarantee the frame will be transmitted as it may be dropped due 2123 * to congestion or traffic shaping. 2124 * 2125 * ----------------------------------------------------------------------------------- 2126 * I notice this method can also return errors from the queue disciplines, 2127 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2128 * be positive. 2129 * 2130 * Regardless of the return value, the skb is consumed, so it is currently 2131 * difficult to retry a send to this method. (You can bump the ref count 2132 * before sending to hold a reference for retry if you are careful.) 2133 * 2134 * When calling this method, interrupts MUST be enabled. This is because 2135 * the BH enable code must have IRQs enabled so that it will not deadlock. 2136 * --BLG 2137 */ 2138int dev_queue_xmit(struct sk_buff *skb) 2139{ 2140 struct net_device *dev = skb->dev; 2141 struct netdev_queue *txq; 2142 struct Qdisc *q; 2143 int rc = -ENOMEM; 2144 2145 /* GSO will handle the following emulations directly. */ 2146 if (netif_needs_gso(dev, skb)) 2147 goto gso; 2148 2149 /* Convert a paged skb to linear, if required */ 2150 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb)) 2151 goto out_kfree_skb; 2152 2153 /* If packet is not checksummed and device does not support 2154 * checksumming for this protocol, complete checksumming here. 2155 */ 2156 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2157 skb_set_transport_header(skb, skb->csum_start - 2158 skb_headroom(skb)); 2159 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 2160 goto out_kfree_skb; 2161 } 2162 2163gso: 2164 /* Disable soft irqs for various locks below. Also 2165 * stops preemption for RCU. 2166 */ 2167 rcu_read_lock_bh(); 2168 2169 txq = dev_pick_tx(dev, skb); 2170 q = rcu_dereference_bh(txq->qdisc); 2171 2172#ifdef CONFIG_NET_CLS_ACT 2173 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2174#endif 2175 if (q->enqueue) { 2176 rc = __dev_xmit_skb(skb, q, dev, txq); 2177 goto out; 2178 } 2179 2180 /* The device has no queue. Common case for software devices: 2181 loopback, all the sorts of tunnels... 2182 2183 Really, it is unlikely that netif_tx_lock protection is necessary 2184 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2185 counters.) 2186 However, it is possible, that they rely on protection 2187 made by us here. 2188 2189 Check this and shot the lock. It is not prone from deadlocks. 2190 Either shot noqueue qdisc, it is even simpler 8) 2191 */ 2192 if (dev->flags & IFF_UP) { 2193 int cpu = smp_processor_id(); /* ok because BHs are off */ 2194 2195 if (txq->xmit_lock_owner != cpu) { 2196 2197 HARD_TX_LOCK(dev, txq, cpu); 2198 2199 if (!netif_tx_queue_stopped(txq)) { 2200 rc = dev_hard_start_xmit(skb, dev, txq); 2201 if (dev_xmit_complete(rc)) { 2202 HARD_TX_UNLOCK(dev, txq); 2203 goto out; 2204 } 2205 } 2206 HARD_TX_UNLOCK(dev, txq); 2207 if (net_ratelimit()) 2208 printk(KERN_CRIT "Virtual device %s asks to " 2209 "queue packet!\n", dev->name); 2210 } else { 2211 /* Recursion is detected! It is possible, 2212 * unfortunately */ 2213 if (net_ratelimit()) 2214 printk(KERN_CRIT "Dead loop on virtual device " 2215 "%s, fix it urgently!\n", dev->name); 2216 } 2217 } 2218 2219 rc = -ENETDOWN; 2220 rcu_read_unlock_bh(); 2221 2222out_kfree_skb: 2223 kfree_skb(skb); 2224 return rc; 2225out: 2226 rcu_read_unlock_bh(); 2227 return rc; 2228} 2229EXPORT_SYMBOL(dev_queue_xmit); 2230 2231 2232/*======================================================================= 2233 Receiver routines 2234 =======================================================================*/ 2235 2236int netdev_max_backlog __read_mostly = 1000; 2237int netdev_tstamp_prequeue __read_mostly = 1; 2238int netdev_budget __read_mostly = 300; 2239int weight_p __read_mostly = 64; /* old backlog weight */ 2240 2241/* Called with irq disabled */ 2242static inline void ____napi_schedule(struct softnet_data *sd, 2243 struct napi_struct *napi) 2244{ 2245 list_add_tail(&napi->poll_list, &sd->poll_list); 2246 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2247} 2248 2249#ifdef CONFIG_RPS 2250 2251/* One global table that all flow-based protocols share. */ 2252struct rps_sock_flow_table *rps_sock_flow_table __read_mostly; 2253EXPORT_SYMBOL(rps_sock_flow_table); 2254 2255/* 2256 * get_rps_cpu is called from netif_receive_skb and returns the target 2257 * CPU from the RPS map of the receiving queue for a given skb. 2258 * rcu_read_lock must be held on entry. 2259 */ 2260static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2261 struct rps_dev_flow **rflowp) 2262{ 2263 struct ipv6hdr *ip6; 2264 struct iphdr *ip; 2265 struct netdev_rx_queue *rxqueue; 2266 struct rps_map *map; 2267 struct rps_dev_flow_table *flow_table; 2268 struct rps_sock_flow_table *sock_flow_table; 2269 int cpu = -1; 2270 u8 ip_proto; 2271 u16 tcpu; 2272 u32 addr1, addr2, ihl; 2273 union { 2274 u32 v32; 2275 u16 v16[2]; 2276 } ports; 2277 2278 if (skb_rx_queue_recorded(skb)) { 2279 u16 index = skb_get_rx_queue(skb); 2280 if (unlikely(index >= dev->num_rx_queues)) { 2281 WARN_ONCE(dev->num_rx_queues > 1, "%s received packet " 2282 "on queue %u, but number of RX queues is %u\n", 2283 dev->name, index, dev->num_rx_queues); 2284 goto done; 2285 } 2286 rxqueue = dev->_rx + index; 2287 } else 2288 rxqueue = dev->_rx; 2289 2290 if (!rxqueue->rps_map && !rxqueue->rps_flow_table) 2291 goto done; 2292 2293 if (skb->rxhash) 2294 goto got_hash; /* Skip hash computation on packet header */ 2295 2296 switch (skb->protocol) { 2297 case __constant_htons(ETH_P_IP): 2298 if (!pskb_may_pull(skb, sizeof(*ip))) 2299 goto done; 2300 2301 ip = (struct iphdr *) skb->data; 2302 ip_proto = ip->protocol; 2303 addr1 = (__force u32) ip->saddr; 2304 addr2 = (__force u32) ip->daddr; 2305 ihl = ip->ihl; 2306 break; 2307 case __constant_htons(ETH_P_IPV6): 2308 if (!pskb_may_pull(skb, sizeof(*ip6))) 2309 goto done; 2310 2311 ip6 = (struct ipv6hdr *) skb->data; 2312 ip_proto = ip6->nexthdr; 2313 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2314 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2315 ihl = (40 >> 2); 2316 break; 2317 default: 2318 goto done; 2319 } 2320 switch (ip_proto) { 2321 case IPPROTO_TCP: 2322 case IPPROTO_UDP: 2323 case IPPROTO_DCCP: 2324 case IPPROTO_ESP: 2325 case IPPROTO_AH: 2326 case IPPROTO_SCTP: 2327 case IPPROTO_UDPLITE: 2328 if (pskb_may_pull(skb, (ihl * 4) + 4)) { 2329 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4)); 2330 if (ports.v16[1] < ports.v16[0]) 2331 swap(ports.v16[0], ports.v16[1]); 2332 break; 2333 } 2334 default: 2335 ports.v32 = 0; 2336 break; 2337 } 2338 2339 /* get a consistent hash (same value on both flow directions) */ 2340 if (addr2 < addr1) 2341 swap(addr1, addr2); 2342 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2343 if (!skb->rxhash) 2344 skb->rxhash = 1; 2345 2346got_hash: 2347 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2348 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2349 if (flow_table && sock_flow_table) { 2350 u16 next_cpu; 2351 struct rps_dev_flow *rflow; 2352 2353 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2354 tcpu = rflow->cpu; 2355 2356 next_cpu = sock_flow_table->ents[skb->rxhash & 2357 sock_flow_table->mask]; 2358 2359 /* 2360 * If the desired CPU (where last recvmsg was done) is 2361 * different from current CPU (one in the rx-queue flow 2362 * table entry), switch if one of the following holds: 2363 * - Current CPU is unset (equal to RPS_NO_CPU). 2364 * - Current CPU is offline. 2365 * - The current CPU's queue tail has advanced beyond the 2366 * last packet that was enqueued using this table entry. 2367 * This guarantees that all previous packets for the flow 2368 * have been dequeued, thus preserving in order delivery. 2369 */ 2370 if (unlikely(tcpu != next_cpu) && 2371 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2372 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2373 rflow->last_qtail)) >= 0)) { 2374 tcpu = rflow->cpu = next_cpu; 2375 if (tcpu != RPS_NO_CPU) 2376 rflow->last_qtail = per_cpu(softnet_data, 2377 tcpu).input_queue_head; 2378 } 2379 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2380 *rflowp = rflow; 2381 cpu = tcpu; 2382 goto done; 2383 } 2384 } 2385 2386 map = rcu_dereference(rxqueue->rps_map); 2387 if (map) { 2388 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2389 2390 if (cpu_online(tcpu)) { 2391 cpu = tcpu; 2392 goto done; 2393 } 2394 } 2395 2396done: 2397 return cpu; 2398} 2399 2400/* Called from hardirq (IPI) context */ 2401static void rps_trigger_softirq(void *data) 2402{ 2403 struct softnet_data *sd = data; 2404 2405 ____napi_schedule(sd, &sd->backlog); 2406 sd->received_rps++; 2407} 2408 2409#endif /* CONFIG_RPS */ 2410 2411/* 2412 * Check if this softnet_data structure is another cpu one 2413 * If yes, queue it to our IPI list and return 1 2414 * If no, return 0 2415 */ 2416static int rps_ipi_queued(struct softnet_data *sd) 2417{ 2418#ifdef CONFIG_RPS 2419 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2420 2421 if (sd != mysd) { 2422 sd->rps_ipi_next = mysd->rps_ipi_list; 2423 mysd->rps_ipi_list = sd; 2424 2425 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2426 return 1; 2427 } 2428#endif /* CONFIG_RPS */ 2429 return 0; 2430} 2431 2432/* 2433 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2434 * queue (may be a remote CPU queue). 2435 */ 2436static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2437 unsigned int *qtail) 2438{ 2439 struct softnet_data *sd; 2440 unsigned long flags; 2441 2442 sd = &per_cpu(softnet_data, cpu); 2443 2444 local_irq_save(flags); 2445 2446 rps_lock(sd); 2447 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2448 if (skb_queue_len(&sd->input_pkt_queue)) { 2449enqueue: 2450 __skb_queue_tail(&sd->input_pkt_queue, skb); 2451 input_queue_tail_incr_save(sd, qtail); 2452 rps_unlock(sd); 2453 local_irq_restore(flags); 2454 return NET_RX_SUCCESS; 2455 } 2456 2457 /* Schedule NAPI for backlog device 2458 * We can use non atomic operation since we own the queue lock 2459 */ 2460 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2461 if (!rps_ipi_queued(sd)) 2462 ____napi_schedule(sd, &sd->backlog); 2463 } 2464 goto enqueue; 2465 } 2466 2467 sd->dropped++; 2468 rps_unlock(sd); 2469 2470 local_irq_restore(flags); 2471 2472 kfree_skb(skb); 2473 return NET_RX_DROP; 2474} 2475 2476/** 2477 * netif_rx - post buffer to the network code 2478 * @skb: buffer to post 2479 * 2480 * This function receives a packet from a device driver and queues it for 2481 * the upper (protocol) levels to process. It always succeeds. The buffer 2482 * may be dropped during processing for congestion control or by the 2483 * protocol layers. 2484 * 2485 * return values: 2486 * NET_RX_SUCCESS (no congestion) 2487 * NET_RX_DROP (packet was dropped) 2488 * 2489 */ 2490 2491int netif_rx(struct sk_buff *skb) 2492{ 2493 int ret; 2494 2495 /* if netpoll wants it, pretend we never saw it */ 2496 if (netpoll_rx(skb)) 2497 return NET_RX_DROP; 2498 2499 if (netdev_tstamp_prequeue) 2500 net_timestamp_check(skb); 2501 2502#ifdef CONFIG_RPS 2503 { 2504 struct rps_dev_flow voidflow, *rflow = &voidflow; 2505 int cpu; 2506 2507 rcu_read_lock(); 2508 2509 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2510 if (cpu < 0) 2511 cpu = smp_processor_id(); 2512 2513 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2514 2515 rcu_read_unlock(); 2516 } 2517#else 2518 { 2519 unsigned int qtail; 2520 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2521 put_cpu(); 2522 } 2523#endif 2524 return ret; 2525} 2526EXPORT_SYMBOL(netif_rx); 2527 2528int netif_rx_ni(struct sk_buff *skb) 2529{ 2530 int err; 2531 2532 preempt_disable(); 2533 err = netif_rx(skb); 2534 if (local_softirq_pending()) 2535 do_softirq(); 2536 preempt_enable(); 2537 2538 return err; 2539} 2540EXPORT_SYMBOL(netif_rx_ni); 2541 2542static void net_tx_action(struct softirq_action *h) 2543{ 2544 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2545 2546 if (sd->completion_queue) { 2547 struct sk_buff *clist; 2548 2549 local_irq_disable(); 2550 clist = sd->completion_queue; 2551 sd->completion_queue = NULL; 2552 local_irq_enable(); 2553 2554 while (clist) { 2555 struct sk_buff *skb = clist; 2556 clist = clist->next; 2557 2558 WARN_ON(atomic_read(&skb->users)); 2559 __kfree_skb(skb); 2560 } 2561 } 2562 2563 if (sd->output_queue) { 2564 struct Qdisc *head; 2565 2566 local_irq_disable(); 2567 head = sd->output_queue; 2568 sd->output_queue = NULL; 2569 sd->output_queue_tailp = &sd->output_queue; 2570 local_irq_enable(); 2571 2572 while (head) { 2573 struct Qdisc *q = head; 2574 spinlock_t *root_lock; 2575 2576 head = head->next_sched; 2577 2578 root_lock = qdisc_lock(q); 2579 if (spin_trylock(root_lock)) { 2580 smp_mb__before_clear_bit(); 2581 clear_bit(__QDISC_STATE_SCHED, 2582 &q->state); 2583 qdisc_run(q); 2584 spin_unlock(root_lock); 2585 } else { 2586 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2587 &q->state)) { 2588 __netif_reschedule(q); 2589 } else { 2590 smp_mb__before_clear_bit(); 2591 clear_bit(__QDISC_STATE_SCHED, 2592 &q->state); 2593 } 2594 } 2595 } 2596 } 2597} 2598 2599static inline int deliver_skb(struct sk_buff *skb, 2600 struct packet_type *pt_prev, 2601 struct net_device *orig_dev) 2602{ 2603 atomic_inc(&skb->users); 2604 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2605} 2606 2607#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2608 2609#if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE) 2610/* This hook is defined here for ATM LANE */ 2611int (*br_fdb_test_addr_hook)(struct net_device *dev, 2612 unsigned char *addr) __read_mostly; 2613EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2614#endif 2615 2616/* 2617 * If bridge module is loaded call bridging hook. 2618 * returns NULL if packet was consumed. 2619 */ 2620struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2621 struct sk_buff *skb) __read_mostly; 2622EXPORT_SYMBOL_GPL(br_handle_frame_hook); 2623 2624static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2625 struct packet_type **pt_prev, int *ret, 2626 struct net_device *orig_dev) 2627{ 2628 struct net_bridge_port *port; 2629 2630 if (skb->pkt_type == PACKET_LOOPBACK || 2631 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2632 return skb; 2633 2634 if (*pt_prev) { 2635 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2636 *pt_prev = NULL; 2637 } 2638 2639 return br_handle_frame_hook(port, skb); 2640} 2641#else 2642#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2643#endif 2644 2645#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2646struct sk_buff *(*macvlan_handle_frame_hook)(struct macvlan_port *p, 2647 struct sk_buff *skb) __read_mostly; 2648EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2649 2650static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2651 struct packet_type **pt_prev, 2652 int *ret, 2653 struct net_device *orig_dev) 2654{ 2655 struct macvlan_port *port; 2656 2657 port = rcu_dereference(skb->dev->macvlan_port); 2658 if (!port) 2659 return skb; 2660 2661 if (*pt_prev) { 2662 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2663 *pt_prev = NULL; 2664 } 2665 return macvlan_handle_frame_hook(port, skb); 2666} 2667#else 2668#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2669#endif 2670 2671#ifdef CONFIG_NET_CLS_ACT 2672/* TODO: Maybe we should just force sch_ingress to be compiled in 2673 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2674 * a compare and 2 stores extra right now if we dont have it on 2675 * but have CONFIG_NET_CLS_ACT 2676 * NOTE: This doesnt stop any functionality; if you dont have 2677 * the ingress scheduler, you just cant add policies on ingress. 2678 * 2679 */ 2680static int ing_filter(struct sk_buff *skb) 2681{ 2682 struct net_device *dev = skb->dev; 2683 u32 ttl = G_TC_RTTL(skb->tc_verd); 2684 struct netdev_queue *rxq; 2685 int result = TC_ACT_OK; 2686 struct Qdisc *q; 2687 2688 if (MAX_RED_LOOP < ttl++) { 2689 printk(KERN_WARNING 2690 "Redir loop detected Dropping packet (%d->%d)\n", 2691 skb->skb_iif, dev->ifindex); 2692 return TC_ACT_SHOT; 2693 } 2694 2695 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2696 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2697 2698 rxq = &dev->rx_queue; 2699 2700 q = rxq->qdisc; 2701 if (q != &noop_qdisc) { 2702 spin_lock(qdisc_lock(q)); 2703 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2704 result = qdisc_enqueue_root(skb, q); 2705 spin_unlock(qdisc_lock(q)); 2706 } 2707 2708 return result; 2709} 2710 2711static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2712 struct packet_type **pt_prev, 2713 int *ret, struct net_device *orig_dev) 2714{ 2715 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2716 goto out; 2717 2718 if (*pt_prev) { 2719 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2720 *pt_prev = NULL; 2721 } else { 2722 /* Huh? Why does turning on AF_PACKET affect this? */ 2723 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2724 } 2725 2726 switch (ing_filter(skb)) { 2727 case TC_ACT_SHOT: 2728 case TC_ACT_STOLEN: 2729 kfree_skb(skb); 2730 return NULL; 2731 } 2732 2733out: 2734 skb->tc_verd = 0; 2735 return skb; 2736} 2737#endif 2738 2739/* 2740 * netif_nit_deliver - deliver received packets to network taps 2741 * @skb: buffer 2742 * 2743 * This function is used to deliver incoming packets to network 2744 * taps. It should be used when the normal netif_receive_skb path 2745 * is bypassed, for example because of VLAN acceleration. 2746 */ 2747void netif_nit_deliver(struct sk_buff *skb) 2748{ 2749 struct packet_type *ptype; 2750 2751 if (list_empty(&ptype_all)) 2752 return; 2753 2754 skb_reset_network_header(skb); 2755 skb_reset_transport_header(skb); 2756 skb->mac_len = skb->network_header - skb->mac_header; 2757 2758 rcu_read_lock(); 2759 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2760 if (!ptype->dev || ptype->dev == skb->dev) 2761 deliver_skb(skb, ptype, skb->dev); 2762 } 2763 rcu_read_unlock(); 2764} 2765 2766static inline void skb_bond_set_mac_by_master(struct sk_buff *skb, 2767 struct net_device *master) 2768{ 2769 if (skb->pkt_type == PACKET_HOST) { 2770 u16 *dest = (u16 *) eth_hdr(skb)->h_dest; 2771 2772 memcpy(dest, master->dev_addr, ETH_ALEN); 2773 } 2774} 2775 2776/* On bonding slaves other than the currently active slave, suppress 2777 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and 2778 * ARP on active-backup slaves with arp_validate enabled. 2779 */ 2780int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master) 2781{ 2782 struct net_device *dev = skb->dev; 2783 2784 if (master->priv_flags & IFF_MASTER_ARPMON) 2785 dev->last_rx = jiffies; 2786 2787 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) { 2788 /* Do address unmangle. The local destination address 2789 * will be always the one master has. Provides the right 2790 * functionality in a bridge. 2791 */ 2792 skb_bond_set_mac_by_master(skb, master); 2793 } 2794 2795 if (dev->priv_flags & IFF_SLAVE_INACTIVE) { 2796 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) && 2797 skb->protocol == __cpu_to_be16(ETH_P_ARP)) 2798 return 0; 2799 2800 if (master->priv_flags & IFF_MASTER_ALB) { 2801 if (skb->pkt_type != PACKET_BROADCAST && 2802 skb->pkt_type != PACKET_MULTICAST) 2803 return 0; 2804 } 2805 if (master->priv_flags & IFF_MASTER_8023AD && 2806 skb->protocol == __cpu_to_be16(ETH_P_SLOW)) 2807 return 0; 2808 2809 return 1; 2810 } 2811 return 0; 2812} 2813EXPORT_SYMBOL(__skb_bond_should_drop); 2814 2815static int __netif_receive_skb(struct sk_buff *skb) 2816{ 2817 struct packet_type *ptype, *pt_prev; 2818 struct net_device *orig_dev; 2819 struct net_device *master; 2820 struct net_device *null_or_orig; 2821 struct net_device *orig_or_bond; 2822 int ret = NET_RX_DROP; 2823 __be16 type; 2824 2825 if (!netdev_tstamp_prequeue) 2826 net_timestamp_check(skb); 2827 2828 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb)) 2829 return NET_RX_SUCCESS; 2830 2831 /* if we've gotten here through NAPI, check netpoll */ 2832 if (netpoll_receive_skb(skb)) 2833 return NET_RX_DROP; 2834 2835 if (!skb->skb_iif) 2836 skb->skb_iif = skb->dev->ifindex; 2837 2838 /* 2839 * bonding note: skbs received on inactive slaves should only 2840 * be delivered to pkt handlers that are exact matches. Also 2841 * the deliver_no_wcard flag will be set. If packet handlers 2842 * are sensitive to duplicate packets these skbs will need to 2843 * be dropped at the handler. The vlan accel path may have 2844 * already set the deliver_no_wcard flag. 2845 */ 2846 null_or_orig = NULL; 2847 orig_dev = skb->dev; 2848 master = ACCESS_ONCE(orig_dev->master); 2849 if (skb->deliver_no_wcard) 2850 null_or_orig = orig_dev; 2851 else if (master) { 2852 if (skb_bond_should_drop(skb, master)) { 2853 skb->deliver_no_wcard = 1; 2854 null_or_orig = orig_dev; /* deliver only exact match */ 2855 } else 2856 skb->dev = master; 2857 } 2858 2859 __get_cpu_var(softnet_data).processed++; 2860 2861 skb_reset_network_header(skb); 2862 skb_reset_transport_header(skb); 2863 skb->mac_len = skb->network_header - skb->mac_header; 2864 2865 pt_prev = NULL; 2866 2867 rcu_read_lock(); 2868 2869#ifdef CONFIG_NET_CLS_ACT 2870 if (skb->tc_verd & TC_NCLS) { 2871 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2872 goto ncls; 2873 } 2874#endif 2875 2876 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2877 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2878 ptype->dev == orig_dev) { 2879 if (pt_prev) 2880 ret = deliver_skb(skb, pt_prev, orig_dev); 2881 pt_prev = ptype; 2882 } 2883 } 2884 2885#ifdef CONFIG_NET_CLS_ACT 2886 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2887 if (!skb) 2888 goto out; 2889ncls: 2890#endif 2891 2892 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2893 if (!skb) 2894 goto out; 2895 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2896 if (!skb) 2897 goto out; 2898 2899 /* 2900 * Make sure frames received on VLAN interfaces stacked on 2901 * bonding interfaces still make their way to any base bonding 2902 * device that may have registered for a specific ptype. The 2903 * handler may have to adjust skb->dev and orig_dev. 2904 */ 2905 orig_or_bond = orig_dev; 2906 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) && 2907 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) { 2908 orig_or_bond = vlan_dev_real_dev(skb->dev); 2909 } 2910 2911 type = skb->protocol; 2912 list_for_each_entry_rcu(ptype, 2913 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2914 if (ptype->type == type && (ptype->dev == null_or_orig || 2915 ptype->dev == skb->dev || ptype->dev == orig_dev || 2916 ptype->dev == orig_or_bond)) { 2917 if (pt_prev) 2918 ret = deliver_skb(skb, pt_prev, orig_dev); 2919 pt_prev = ptype; 2920 } 2921 } 2922 2923 if (pt_prev) { 2924 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2925 } else { 2926 kfree_skb(skb); 2927 /* Jamal, now you will not able to escape explaining 2928 * me how you were going to use this. :-) 2929 */ 2930 ret = NET_RX_DROP; 2931 } 2932 2933out: 2934 rcu_read_unlock(); 2935 return ret; 2936} 2937 2938/** 2939 * netif_receive_skb - process receive buffer from network 2940 * @skb: buffer to process 2941 * 2942 * netif_receive_skb() is the main receive data processing function. 2943 * It always succeeds. The buffer may be dropped during processing 2944 * for congestion control or by the protocol layers. 2945 * 2946 * This function may only be called from softirq context and interrupts 2947 * should be enabled. 2948 * 2949 * Return values (usually ignored): 2950 * NET_RX_SUCCESS: no congestion 2951 * NET_RX_DROP: packet was dropped 2952 */ 2953int netif_receive_skb(struct sk_buff *skb) 2954{ 2955 if (netdev_tstamp_prequeue) 2956 net_timestamp_check(skb); 2957 2958#ifdef CONFIG_RPS 2959 { 2960 struct rps_dev_flow voidflow, *rflow = &voidflow; 2961 int cpu, ret; 2962 2963 rcu_read_lock(); 2964 2965 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2966 2967 if (cpu >= 0) { 2968 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2969 rcu_read_unlock(); 2970 } else { 2971 rcu_read_unlock(); 2972 ret = __netif_receive_skb(skb); 2973 } 2974 2975 return ret; 2976 } 2977#else 2978 return __netif_receive_skb(skb); 2979#endif 2980} 2981EXPORT_SYMBOL(netif_receive_skb); 2982 2983/* Network device is going away, flush any packets still pending 2984 * Called with irqs disabled. 2985 */ 2986static void flush_backlog(void *arg) 2987{ 2988 struct net_device *dev = arg; 2989 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2990 struct sk_buff *skb, *tmp; 2991 2992 rps_lock(sd); 2993 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 2994 if (skb->dev == dev) { 2995 __skb_unlink(skb, &sd->input_pkt_queue); 2996 kfree_skb(skb); 2997 input_queue_head_incr(sd); 2998 } 2999 } 3000 rps_unlock(sd); 3001 3002 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3003 if (skb->dev == dev) { 3004 __skb_unlink(skb, &sd->process_queue); 3005 kfree_skb(skb); 3006 input_queue_head_incr(sd); 3007 } 3008 } 3009} 3010 3011static int napi_gro_complete(struct sk_buff *skb) 3012{ 3013 struct packet_type *ptype; 3014 __be16 type = skb->protocol; 3015 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3016 int err = -ENOENT; 3017 3018 if (NAPI_GRO_CB(skb)->count == 1) { 3019 skb_shinfo(skb)->gso_size = 0; 3020 goto out; 3021 } 3022 3023 rcu_read_lock(); 3024 list_for_each_entry_rcu(ptype, head, list) { 3025 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3026 continue; 3027 3028 err = ptype->gro_complete(skb); 3029 break; 3030 } 3031 rcu_read_unlock(); 3032 3033 if (err) { 3034 WARN_ON(&ptype->list == head); 3035 kfree_skb(skb); 3036 return NET_RX_SUCCESS; 3037 } 3038 3039out: 3040 return netif_receive_skb(skb); 3041} 3042 3043static void napi_gro_flush(struct napi_struct *napi) 3044{ 3045 struct sk_buff *skb, *next; 3046 3047 for (skb = napi->gro_list; skb; skb = next) { 3048 next = skb->next; 3049 skb->next = NULL; 3050 napi_gro_complete(skb); 3051 } 3052 3053 napi->gro_count = 0; 3054 napi->gro_list = NULL; 3055} 3056 3057enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3058{ 3059 struct sk_buff **pp = NULL; 3060 struct packet_type *ptype; 3061 __be16 type = skb->protocol; 3062 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3063 int same_flow; 3064 int mac_len; 3065 enum gro_result ret; 3066 3067 if (!(skb->dev->features & NETIF_F_GRO)) 3068 goto normal; 3069 3070 if (skb_is_gso(skb) || skb_has_frags(skb)) 3071 goto normal; 3072 3073 rcu_read_lock(); 3074 list_for_each_entry_rcu(ptype, head, list) { 3075 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3076 continue; 3077 3078 skb_set_network_header(skb, skb_gro_offset(skb)); 3079 mac_len = skb->network_header - skb->mac_header; 3080 skb->mac_len = mac_len; 3081 NAPI_GRO_CB(skb)->same_flow = 0; 3082 NAPI_GRO_CB(skb)->flush = 0; 3083 NAPI_GRO_CB(skb)->free = 0; 3084 3085 pp = ptype->gro_receive(&napi->gro_list, skb); 3086 break; 3087 } 3088 rcu_read_unlock(); 3089 3090 if (&ptype->list == head) 3091 goto normal; 3092 3093 same_flow = NAPI_GRO_CB(skb)->same_flow; 3094 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3095 3096 if (pp) { 3097 struct sk_buff *nskb = *pp; 3098 3099 *pp = nskb->next; 3100 nskb->next = NULL; 3101 napi_gro_complete(nskb); 3102 napi->gro_count--; 3103 } 3104 3105 if (same_flow) 3106 goto ok; 3107 3108 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3109 goto normal; 3110 3111 napi->gro_count++; 3112 NAPI_GRO_CB(skb)->count = 1; 3113 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3114 skb->next = napi->gro_list; 3115 napi->gro_list = skb; 3116 ret = GRO_HELD; 3117 3118pull: 3119 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3120 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3121 3122 BUG_ON(skb->end - skb->tail < grow); 3123 3124 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3125 3126 skb->tail += grow; 3127 skb->data_len -= grow; 3128 3129 skb_shinfo(skb)->frags[0].page_offset += grow; 3130 skb_shinfo(skb)->frags[0].size -= grow; 3131 3132 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 3133 put_page(skb_shinfo(skb)->frags[0].page); 3134 memmove(skb_shinfo(skb)->frags, 3135 skb_shinfo(skb)->frags + 1, 3136 --skb_shinfo(skb)->nr_frags); 3137 } 3138 } 3139 3140ok: 3141 return ret; 3142 3143normal: 3144 ret = GRO_NORMAL; 3145 goto pull; 3146} 3147EXPORT_SYMBOL(dev_gro_receive); 3148 3149static gro_result_t 3150__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3151{ 3152 struct sk_buff *p; 3153 3154 if (netpoll_rx_on(skb)) 3155 return GRO_NORMAL; 3156 3157 for (p = napi->gro_list; p; p = p->next) { 3158 NAPI_GRO_CB(p)->same_flow = 3159 (p->dev == skb->dev) && 3160 !compare_ether_header(skb_mac_header(p), 3161 skb_gro_mac_header(skb)); 3162 NAPI_GRO_CB(p)->flush = 0; 3163 } 3164 3165 return dev_gro_receive(napi, skb); 3166} 3167 3168gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3169{ 3170 switch (ret) { 3171 case GRO_NORMAL: 3172 if (netif_receive_skb(skb)) 3173 ret = GRO_DROP; 3174 break; 3175 3176 case GRO_DROP: 3177 case GRO_MERGED_FREE: 3178 kfree_skb(skb); 3179 break; 3180 3181 case GRO_HELD: 3182 case GRO_MERGED: 3183 break; 3184 } 3185 3186 return ret; 3187} 3188EXPORT_SYMBOL(napi_skb_finish); 3189 3190void skb_gro_reset_offset(struct sk_buff *skb) 3191{ 3192 NAPI_GRO_CB(skb)->data_offset = 0; 3193 NAPI_GRO_CB(skb)->frag0 = NULL; 3194 NAPI_GRO_CB(skb)->frag0_len = 0; 3195 3196 if (skb->mac_header == skb->tail && 3197 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 3198 NAPI_GRO_CB(skb)->frag0 = 3199 page_address(skb_shinfo(skb)->frags[0].page) + 3200 skb_shinfo(skb)->frags[0].page_offset; 3201 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 3202 } 3203} 3204EXPORT_SYMBOL(skb_gro_reset_offset); 3205 3206gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3207{ 3208 skb_gro_reset_offset(skb); 3209 3210 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3211} 3212EXPORT_SYMBOL(napi_gro_receive); 3213 3214void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3215{ 3216 __skb_pull(skb, skb_headlen(skb)); 3217 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3218 3219 napi->skb = skb; 3220} 3221EXPORT_SYMBOL(napi_reuse_skb); 3222 3223struct sk_buff *napi_get_frags(struct napi_struct *napi) 3224{ 3225 struct sk_buff *skb = napi->skb; 3226 3227 if (!skb) { 3228 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3229 if (skb) 3230 napi->skb = skb; 3231 } 3232 return skb; 3233} 3234EXPORT_SYMBOL(napi_get_frags); 3235 3236gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3237 gro_result_t ret) 3238{ 3239 switch (ret) { 3240 case GRO_NORMAL: 3241 case GRO_HELD: 3242 skb->protocol = eth_type_trans(skb, skb->dev); 3243 3244 if (ret == GRO_HELD) 3245 skb_gro_pull(skb, -ETH_HLEN); 3246 else if (netif_receive_skb(skb)) 3247 ret = GRO_DROP; 3248 break; 3249 3250 case GRO_DROP: 3251 case GRO_MERGED_FREE: 3252 napi_reuse_skb(napi, skb); 3253 break; 3254 3255 case GRO_MERGED: 3256 break; 3257 } 3258 3259 return ret; 3260} 3261EXPORT_SYMBOL(napi_frags_finish); 3262 3263struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3264{ 3265 struct sk_buff *skb = napi->skb; 3266 struct ethhdr *eth; 3267 unsigned int hlen; 3268 unsigned int off; 3269 3270 napi->skb = NULL; 3271 3272 skb_reset_mac_header(skb); 3273 skb_gro_reset_offset(skb); 3274 3275 off = skb_gro_offset(skb); 3276 hlen = off + sizeof(*eth); 3277 eth = skb_gro_header_fast(skb, off); 3278 if (skb_gro_header_hard(skb, hlen)) { 3279 eth = skb_gro_header_slow(skb, hlen, off); 3280 if (unlikely(!eth)) { 3281 napi_reuse_skb(napi, skb); 3282 skb = NULL; 3283 goto out; 3284 } 3285 } 3286 3287 skb_gro_pull(skb, sizeof(*eth)); 3288 3289 /* 3290 * This works because the only protocols we care about don't require 3291 * special handling. We'll fix it up properly at the end. 3292 */ 3293 skb->protocol = eth->h_proto; 3294 3295out: 3296 return skb; 3297} 3298EXPORT_SYMBOL(napi_frags_skb); 3299 3300gro_result_t napi_gro_frags(struct napi_struct *napi) 3301{ 3302 struct sk_buff *skb = napi_frags_skb(napi); 3303 3304 if (!skb) 3305 return GRO_DROP; 3306 3307 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3308} 3309EXPORT_SYMBOL(napi_gro_frags); 3310 3311/* 3312 * net_rps_action sends any pending IPI's for rps. 3313 * Note: called with local irq disabled, but exits with local irq enabled. 3314 */ 3315static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3316{ 3317#ifdef CONFIG_RPS 3318 struct softnet_data *remsd = sd->rps_ipi_list; 3319 3320 if (remsd) { 3321 sd->rps_ipi_list = NULL; 3322 3323 local_irq_enable(); 3324 3325 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3326 while (remsd) { 3327 struct softnet_data *next = remsd->rps_ipi_next; 3328 3329 if (cpu_online(remsd->cpu)) 3330 __smp_call_function_single(remsd->cpu, 3331 &remsd->csd, 0); 3332 remsd = next; 3333 } 3334 } else 3335#endif 3336 local_irq_enable(); 3337} 3338 3339static int process_backlog(struct napi_struct *napi, int quota) 3340{ 3341 int work = 0; 3342 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3343 3344#ifdef CONFIG_RPS 3345 /* Check if we have pending ipi, its better to send them now, 3346 * not waiting net_rx_action() end. 3347 */ 3348 if (sd->rps_ipi_list) { 3349 local_irq_disable(); 3350 net_rps_action_and_irq_enable(sd); 3351 } 3352#endif 3353 napi->weight = weight_p; 3354 local_irq_disable(); 3355 while (work < quota) { 3356 struct sk_buff *skb; 3357 unsigned int qlen; 3358 3359 while ((skb = __skb_dequeue(&sd->process_queue))) { 3360 local_irq_enable(); 3361 __netif_receive_skb(skb); 3362 local_irq_disable(); 3363 input_queue_head_incr(sd); 3364 if (++work >= quota) { 3365 local_irq_enable(); 3366 return work; 3367 } 3368 } 3369 3370 rps_lock(sd); 3371 qlen = skb_queue_len(&sd->input_pkt_queue); 3372 if (qlen) 3373 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3374 &sd->process_queue); 3375 3376 if (qlen < quota - work) { 3377 /* 3378 * Inline a custom version of __napi_complete(). 3379 * only current cpu owns and manipulates this napi, 3380 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3381 * we can use a plain write instead of clear_bit(), 3382 * and we dont need an smp_mb() memory barrier. 3383 */ 3384 list_del(&napi->poll_list); 3385 napi->state = 0; 3386 3387 quota = work + qlen; 3388 } 3389 rps_unlock(sd); 3390 } 3391 local_irq_enable(); 3392 3393 return work; 3394} 3395 3396/** 3397 * __napi_schedule - schedule for receive 3398 * @n: entry to schedule 3399 * 3400 * The entry's receive function will be scheduled to run 3401 */ 3402void __napi_schedule(struct napi_struct *n) 3403{ 3404 unsigned long flags; 3405 3406 local_irq_save(flags); 3407 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3408 local_irq_restore(flags); 3409} 3410EXPORT_SYMBOL(__napi_schedule); 3411 3412void __napi_complete(struct napi_struct *n) 3413{ 3414 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3415 BUG_ON(n->gro_list); 3416 3417 list_del(&n->poll_list); 3418 smp_mb__before_clear_bit(); 3419 clear_bit(NAPI_STATE_SCHED, &n->state); 3420} 3421EXPORT_SYMBOL(__napi_complete); 3422 3423void napi_complete(struct napi_struct *n) 3424{ 3425 unsigned long flags; 3426 3427 /* 3428 * don't let napi dequeue from the cpu poll list 3429 * just in case its running on a different cpu 3430 */ 3431 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3432 return; 3433 3434 napi_gro_flush(n); 3435 local_irq_save(flags); 3436 __napi_complete(n); 3437 local_irq_restore(flags); 3438} 3439EXPORT_SYMBOL(napi_complete); 3440 3441void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3442 int (*poll)(struct napi_struct *, int), int weight) 3443{ 3444 INIT_LIST_HEAD(&napi->poll_list); 3445 napi->gro_count = 0; 3446 napi->gro_list = NULL; 3447 napi->skb = NULL; 3448 napi->poll = poll; 3449 napi->weight = weight; 3450 list_add(&napi->dev_list, &dev->napi_list); 3451 napi->dev = dev; 3452#ifdef CONFIG_NETPOLL 3453 spin_lock_init(&napi->poll_lock); 3454 napi->poll_owner = -1; 3455#endif 3456 set_bit(NAPI_STATE_SCHED, &napi->state); 3457} 3458EXPORT_SYMBOL(netif_napi_add); 3459 3460void netif_napi_del(struct napi_struct *napi) 3461{ 3462 struct sk_buff *skb, *next; 3463 3464 list_del_init(&napi->dev_list); 3465 napi_free_frags(napi); 3466 3467 for (skb = napi->gro_list; skb; skb = next) { 3468 next = skb->next; 3469 skb->next = NULL; 3470 kfree_skb(skb); 3471 } 3472 3473 napi->gro_list = NULL; 3474 napi->gro_count = 0; 3475} 3476EXPORT_SYMBOL(netif_napi_del); 3477 3478static void net_rx_action(struct softirq_action *h) 3479{ 3480 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3481 unsigned long time_limit = jiffies + 2; 3482 int budget = netdev_budget; 3483 void *have; 3484 3485 local_irq_disable(); 3486 3487 while (!list_empty(&sd->poll_list)) { 3488 struct napi_struct *n; 3489 int work, weight; 3490 3491 /* If softirq window is exhuasted then punt. 3492 * Allow this to run for 2 jiffies since which will allow 3493 * an average latency of 1.5/HZ. 3494 */ 3495 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3496 goto softnet_break; 3497 3498 local_irq_enable(); 3499 3500 /* Even though interrupts have been re-enabled, this 3501 * access is safe because interrupts can only add new 3502 * entries to the tail of this list, and only ->poll() 3503 * calls can remove this head entry from the list. 3504 */ 3505 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3506 3507 have = netpoll_poll_lock(n); 3508 3509 weight = n->weight; 3510 3511 /* This NAPI_STATE_SCHED test is for avoiding a race 3512 * with netpoll's poll_napi(). Only the entity which 3513 * obtains the lock and sees NAPI_STATE_SCHED set will 3514 * actually make the ->poll() call. Therefore we avoid 3515 * accidently calling ->poll() when NAPI is not scheduled. 3516 */ 3517 work = 0; 3518 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3519 work = n->poll(n, weight); 3520 trace_napi_poll(n); 3521 } 3522 3523 WARN_ON_ONCE(work > weight); 3524 3525 budget -= work; 3526 3527 local_irq_disable(); 3528 3529 /* Drivers must not modify the NAPI state if they 3530 * consume the entire weight. In such cases this code 3531 * still "owns" the NAPI instance and therefore can 3532 * move the instance around on the list at-will. 3533 */ 3534 if (unlikely(work == weight)) { 3535 if (unlikely(napi_disable_pending(n))) { 3536 local_irq_enable(); 3537 napi_complete(n); 3538 local_irq_disable(); 3539 } else 3540 list_move_tail(&n->poll_list, &sd->poll_list); 3541 } 3542 3543 netpoll_poll_unlock(have); 3544 } 3545out: 3546 net_rps_action_and_irq_enable(sd); 3547 3548#ifdef CONFIG_NET_DMA 3549 /* 3550 * There may not be any more sk_buffs coming right now, so push 3551 * any pending DMA copies to hardware 3552 */ 3553 dma_issue_pending_all(); 3554#endif 3555 3556 return; 3557 3558softnet_break: 3559 sd->time_squeeze++; 3560 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3561 goto out; 3562} 3563 3564static gifconf_func_t *gifconf_list[NPROTO]; 3565 3566/** 3567 * register_gifconf - register a SIOCGIF handler 3568 * @family: Address family 3569 * @gifconf: Function handler 3570 * 3571 * Register protocol dependent address dumping routines. The handler 3572 * that is passed must not be freed or reused until it has been replaced 3573 * by another handler. 3574 */ 3575int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3576{ 3577 if (family >= NPROTO) 3578 return -EINVAL; 3579 gifconf_list[family] = gifconf; 3580 return 0; 3581} 3582EXPORT_SYMBOL(register_gifconf); 3583 3584 3585/* 3586 * Map an interface index to its name (SIOCGIFNAME) 3587 */ 3588 3589/* 3590 * We need this ioctl for efficient implementation of the 3591 * if_indextoname() function required by the IPv6 API. Without 3592 * it, we would have to search all the interfaces to find a 3593 * match. --pb 3594 */ 3595 3596static int dev_ifname(struct net *net, struct ifreq __user *arg) 3597{ 3598 struct net_device *dev; 3599 struct ifreq ifr; 3600 3601 /* 3602 * Fetch the caller's info block. 3603 */ 3604 3605 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3606 return -EFAULT; 3607 3608 rcu_read_lock(); 3609 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3610 if (!dev) { 3611 rcu_read_unlock(); 3612 return -ENODEV; 3613 } 3614 3615 strcpy(ifr.ifr_name, dev->name); 3616 rcu_read_unlock(); 3617 3618 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3619 return -EFAULT; 3620 return 0; 3621} 3622 3623/* 3624 * Perform a SIOCGIFCONF call. This structure will change 3625 * size eventually, and there is nothing I can do about it. 3626 * Thus we will need a 'compatibility mode'. 3627 */ 3628 3629static int dev_ifconf(struct net *net, char __user *arg) 3630{ 3631 struct ifconf ifc; 3632 struct net_device *dev; 3633 char __user *pos; 3634 int len; 3635 int total; 3636 int i; 3637 3638 /* 3639 * Fetch the caller's info block. 3640 */ 3641 3642 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3643 return -EFAULT; 3644 3645 pos = ifc.ifc_buf; 3646 len = ifc.ifc_len; 3647 3648 /* 3649 * Loop over the interfaces, and write an info block for each. 3650 */ 3651 3652 total = 0; 3653 for_each_netdev(net, dev) { 3654 for (i = 0; i < NPROTO; i++) { 3655 if (gifconf_list[i]) { 3656 int done; 3657 if (!pos) 3658 done = gifconf_list[i](dev, NULL, 0); 3659 else 3660 done = gifconf_list[i](dev, pos + total, 3661 len - total); 3662 if (done < 0) 3663 return -EFAULT; 3664 total += done; 3665 } 3666 } 3667 } 3668 3669 /* 3670 * All done. Write the updated control block back to the caller. 3671 */ 3672 ifc.ifc_len = total; 3673 3674 /* 3675 * Both BSD and Solaris return 0 here, so we do too. 3676 */ 3677 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3678} 3679 3680#ifdef CONFIG_PROC_FS 3681/* 3682 * This is invoked by the /proc filesystem handler to display a device 3683 * in detail. 3684 */ 3685void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3686 __acquires(RCU) 3687{ 3688 struct net *net = seq_file_net(seq); 3689 loff_t off; 3690 struct net_device *dev; 3691 3692 rcu_read_lock(); 3693 if (!*pos) 3694 return SEQ_START_TOKEN; 3695 3696 off = 1; 3697 for_each_netdev_rcu(net, dev) 3698 if (off++ == *pos) 3699 return dev; 3700 3701 return NULL; 3702} 3703 3704void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3705{ 3706 struct net_device *dev = (v == SEQ_START_TOKEN) ? 3707 first_net_device(seq_file_net(seq)) : 3708 next_net_device((struct net_device *)v); 3709 3710 ++*pos; 3711 return rcu_dereference(dev); 3712} 3713 3714void dev_seq_stop(struct seq_file *seq, void *v) 3715 __releases(RCU) 3716{ 3717 rcu_read_unlock(); 3718} 3719 3720static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3721{ 3722 const struct net_device_stats *stats = dev_get_stats(dev); 3723 3724 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 3725 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 3726 dev->name, stats->rx_bytes, stats->rx_packets, 3727 stats->rx_errors, 3728 stats->rx_dropped + stats->rx_missed_errors, 3729 stats->rx_fifo_errors, 3730 stats->rx_length_errors + stats->rx_over_errors + 3731 stats->rx_crc_errors + stats->rx_frame_errors, 3732 stats->rx_compressed, stats->multicast, 3733 stats->tx_bytes, stats->tx_packets, 3734 stats->tx_errors, stats->tx_dropped, 3735 stats->tx_fifo_errors, stats->collisions, 3736 stats->tx_carrier_errors + 3737 stats->tx_aborted_errors + 3738 stats->tx_window_errors + 3739 stats->tx_heartbeat_errors, 3740 stats->tx_compressed); 3741} 3742 3743/* 3744 * Called from the PROCfs module. This now uses the new arbitrary sized 3745 * /proc/net interface to create /proc/net/dev 3746 */ 3747static int dev_seq_show(struct seq_file *seq, void *v) 3748{ 3749 if (v == SEQ_START_TOKEN) 3750 seq_puts(seq, "Inter-| Receive " 3751 " | Transmit\n" 3752 " face |bytes packets errs drop fifo frame " 3753 "compressed multicast|bytes packets errs " 3754 "drop fifo colls carrier compressed\n"); 3755 else 3756 dev_seq_printf_stats(seq, v); 3757 return 0; 3758} 3759 3760static struct softnet_data *softnet_get_online(loff_t *pos) 3761{ 3762 struct softnet_data *sd = NULL; 3763 3764 while (*pos < nr_cpu_ids) 3765 if (cpu_online(*pos)) { 3766 sd = &per_cpu(softnet_data, *pos); 3767 break; 3768 } else 3769 ++*pos; 3770 return sd; 3771} 3772 3773static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3774{ 3775 return softnet_get_online(pos); 3776} 3777 3778static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3779{ 3780 ++*pos; 3781 return softnet_get_online(pos); 3782} 3783 3784static void softnet_seq_stop(struct seq_file *seq, void *v) 3785{ 3786} 3787 3788static int softnet_seq_show(struct seq_file *seq, void *v) 3789{ 3790 struct softnet_data *sd = v; 3791 3792 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3793 sd->processed, sd->dropped, sd->time_squeeze, 0, 3794 0, 0, 0, 0, /* was fastroute */ 3795 sd->cpu_collision, sd->received_rps); 3796 return 0; 3797} 3798 3799static const struct seq_operations dev_seq_ops = { 3800 .start = dev_seq_start, 3801 .next = dev_seq_next, 3802 .stop = dev_seq_stop, 3803 .show = dev_seq_show, 3804}; 3805 3806static int dev_seq_open(struct inode *inode, struct file *file) 3807{ 3808 return seq_open_net(inode, file, &dev_seq_ops, 3809 sizeof(struct seq_net_private)); 3810} 3811 3812static const struct file_operations dev_seq_fops = { 3813 .owner = THIS_MODULE, 3814 .open = dev_seq_open, 3815 .read = seq_read, 3816 .llseek = seq_lseek, 3817 .release = seq_release_net, 3818}; 3819 3820static const struct seq_operations softnet_seq_ops = { 3821 .start = softnet_seq_start, 3822 .next = softnet_seq_next, 3823 .stop = softnet_seq_stop, 3824 .show = softnet_seq_show, 3825}; 3826 3827static int softnet_seq_open(struct inode *inode, struct file *file) 3828{ 3829 return seq_open(file, &softnet_seq_ops); 3830} 3831 3832static const struct file_operations softnet_seq_fops = { 3833 .owner = THIS_MODULE, 3834 .open = softnet_seq_open, 3835 .read = seq_read, 3836 .llseek = seq_lseek, 3837 .release = seq_release, 3838}; 3839 3840static void *ptype_get_idx(loff_t pos) 3841{ 3842 struct packet_type *pt = NULL; 3843 loff_t i = 0; 3844 int t; 3845 3846 list_for_each_entry_rcu(pt, &ptype_all, list) { 3847 if (i == pos) 3848 return pt; 3849 ++i; 3850 } 3851 3852 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3853 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3854 if (i == pos) 3855 return pt; 3856 ++i; 3857 } 3858 } 3859 return NULL; 3860} 3861 3862static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3863 __acquires(RCU) 3864{ 3865 rcu_read_lock(); 3866 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3867} 3868 3869static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3870{ 3871 struct packet_type *pt; 3872 struct list_head *nxt; 3873 int hash; 3874 3875 ++*pos; 3876 if (v == SEQ_START_TOKEN) 3877 return ptype_get_idx(0); 3878 3879 pt = v; 3880 nxt = pt->list.next; 3881 if (pt->type == htons(ETH_P_ALL)) { 3882 if (nxt != &ptype_all) 3883 goto found; 3884 hash = 0; 3885 nxt = ptype_base[0].next; 3886 } else 3887 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3888 3889 while (nxt == &ptype_base[hash]) { 3890 if (++hash >= PTYPE_HASH_SIZE) 3891 return NULL; 3892 nxt = ptype_base[hash].next; 3893 } 3894found: 3895 return list_entry(nxt, struct packet_type, list); 3896} 3897 3898static void ptype_seq_stop(struct seq_file *seq, void *v) 3899 __releases(RCU) 3900{ 3901 rcu_read_unlock(); 3902} 3903 3904static int ptype_seq_show(struct seq_file *seq, void *v) 3905{ 3906 struct packet_type *pt = v; 3907 3908 if (v == SEQ_START_TOKEN) 3909 seq_puts(seq, "Type Device Function\n"); 3910 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3911 if (pt->type == htons(ETH_P_ALL)) 3912 seq_puts(seq, "ALL "); 3913 else 3914 seq_printf(seq, "%04x", ntohs(pt->type)); 3915 3916 seq_printf(seq, " %-8s %pF\n", 3917 pt->dev ? pt->dev->name : "", pt->func); 3918 } 3919 3920 return 0; 3921} 3922 3923static const struct seq_operations ptype_seq_ops = { 3924 .start = ptype_seq_start, 3925 .next = ptype_seq_next, 3926 .stop = ptype_seq_stop, 3927 .show = ptype_seq_show, 3928}; 3929 3930static int ptype_seq_open(struct inode *inode, struct file *file) 3931{ 3932 return seq_open_net(inode, file, &ptype_seq_ops, 3933 sizeof(struct seq_net_private)); 3934} 3935 3936static const struct file_operations ptype_seq_fops = { 3937 .owner = THIS_MODULE, 3938 .open = ptype_seq_open, 3939 .read = seq_read, 3940 .llseek = seq_lseek, 3941 .release = seq_release_net, 3942}; 3943 3944 3945static int __net_init dev_proc_net_init(struct net *net) 3946{ 3947 int rc = -ENOMEM; 3948 3949 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3950 goto out; 3951 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3952 goto out_dev; 3953 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3954 goto out_softnet; 3955 3956 if (wext_proc_init(net)) 3957 goto out_ptype; 3958 rc = 0; 3959out: 3960 return rc; 3961out_ptype: 3962 proc_net_remove(net, "ptype"); 3963out_softnet: 3964 proc_net_remove(net, "softnet_stat"); 3965out_dev: 3966 proc_net_remove(net, "dev"); 3967 goto out; 3968} 3969 3970static void __net_exit dev_proc_net_exit(struct net *net) 3971{ 3972 wext_proc_exit(net); 3973 3974 proc_net_remove(net, "ptype"); 3975 proc_net_remove(net, "softnet_stat"); 3976 proc_net_remove(net, "dev"); 3977} 3978 3979static struct pernet_operations __net_initdata dev_proc_ops = { 3980 .init = dev_proc_net_init, 3981 .exit = dev_proc_net_exit, 3982}; 3983 3984static int __init dev_proc_init(void) 3985{ 3986 return register_pernet_subsys(&dev_proc_ops); 3987} 3988#else 3989#define dev_proc_init() 0 3990#endif /* CONFIG_PROC_FS */ 3991 3992 3993/** 3994 * netdev_set_master - set up master/slave pair 3995 * @slave: slave device 3996 * @master: new master device 3997 * 3998 * Changes the master device of the slave. Pass %NULL to break the 3999 * bonding. The caller must hold the RTNL semaphore. On a failure 4000 * a negative errno code is returned. On success the reference counts 4001 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 4002 * function returns zero. 4003 */ 4004int netdev_set_master(struct net_device *slave, struct net_device *master) 4005{ 4006 struct net_device *old = slave->master; 4007 4008 ASSERT_RTNL(); 4009 4010 if (master) { 4011 if (old) 4012 return -EBUSY; 4013 dev_hold(master); 4014 } 4015 4016 slave->master = master; 4017 4018 if (old) { 4019 synchronize_net(); 4020 dev_put(old); 4021 } 4022 if (master) 4023 slave->flags |= IFF_SLAVE; 4024 else 4025 slave->flags &= ~IFF_SLAVE; 4026 4027 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4028 return 0; 4029} 4030EXPORT_SYMBOL(netdev_set_master); 4031 4032static void dev_change_rx_flags(struct net_device *dev, int flags) 4033{ 4034 const struct net_device_ops *ops = dev->netdev_ops; 4035 4036 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4037 ops->ndo_change_rx_flags(dev, flags); 4038} 4039 4040static int __dev_set_promiscuity(struct net_device *dev, int inc) 4041{ 4042 unsigned short old_flags = dev->flags; 4043 uid_t uid; 4044 gid_t gid; 4045 4046 ASSERT_RTNL(); 4047 4048 dev->flags |= IFF_PROMISC; 4049 dev->promiscuity += inc; 4050 if (dev->promiscuity == 0) { 4051 /* 4052 * Avoid overflow. 4053 * If inc causes overflow, untouch promisc and return error. 4054 */ 4055 if (inc < 0) 4056 dev->flags &= ~IFF_PROMISC; 4057 else { 4058 dev->promiscuity -= inc; 4059 printk(KERN_WARNING "%s: promiscuity touches roof, " 4060 "set promiscuity failed, promiscuity feature " 4061 "of device might be broken.\n", dev->name); 4062 return -EOVERFLOW; 4063 } 4064 } 4065 if (dev->flags != old_flags) { 4066 printk(KERN_INFO "device %s %s promiscuous mode\n", 4067 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4068 "left"); 4069 if (audit_enabled) { 4070 current_uid_gid(&uid, &gid); 4071 audit_log(current->audit_context, GFP_ATOMIC, 4072 AUDIT_ANOM_PROMISCUOUS, 4073 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4074 dev->name, (dev->flags & IFF_PROMISC), 4075 (old_flags & IFF_PROMISC), 4076 audit_get_loginuid(current), 4077 uid, gid, 4078 audit_get_sessionid(current)); 4079 } 4080 4081 dev_change_rx_flags(dev, IFF_PROMISC); 4082 } 4083 return 0; 4084} 4085 4086/** 4087 * dev_set_promiscuity - update promiscuity count on a device 4088 * @dev: device 4089 * @inc: modifier 4090 * 4091 * Add or remove promiscuity from a device. While the count in the device 4092 * remains above zero the interface remains promiscuous. Once it hits zero 4093 * the device reverts back to normal filtering operation. A negative inc 4094 * value is used to drop promiscuity on the device. 4095 * Return 0 if successful or a negative errno code on error. 4096 */ 4097int dev_set_promiscuity(struct net_device *dev, int inc) 4098{ 4099 unsigned short old_flags = dev->flags; 4100 int err; 4101 4102 err = __dev_set_promiscuity(dev, inc); 4103 if (err < 0) 4104 return err; 4105 if (dev->flags != old_flags) 4106 dev_set_rx_mode(dev); 4107 return err; 4108} 4109EXPORT_SYMBOL(dev_set_promiscuity); 4110 4111/** 4112 * dev_set_allmulti - update allmulti count on a device 4113 * @dev: device 4114 * @inc: modifier 4115 * 4116 * Add or remove reception of all multicast frames to a device. While the 4117 * count in the device remains above zero the interface remains listening 4118 * to all interfaces. Once it hits zero the device reverts back to normal 4119 * filtering operation. A negative @inc value is used to drop the counter 4120 * when releasing a resource needing all multicasts. 4121 * Return 0 if successful or a negative errno code on error. 4122 */ 4123 4124int dev_set_allmulti(struct net_device *dev, int inc) 4125{ 4126 unsigned short old_flags = dev->flags; 4127 4128 ASSERT_RTNL(); 4129 4130 dev->flags |= IFF_ALLMULTI; 4131 dev->allmulti += inc; 4132 if (dev->allmulti == 0) { 4133 /* 4134 * Avoid overflow. 4135 * If inc causes overflow, untouch allmulti and return error. 4136 */ 4137 if (inc < 0) 4138 dev->flags &= ~IFF_ALLMULTI; 4139 else { 4140 dev->allmulti -= inc; 4141 printk(KERN_WARNING "%s: allmulti touches roof, " 4142 "set allmulti failed, allmulti feature of " 4143 "device might be broken.\n", dev->name); 4144 return -EOVERFLOW; 4145 } 4146 } 4147 if (dev->flags ^ old_flags) { 4148 dev_change_rx_flags(dev, IFF_ALLMULTI); 4149 dev_set_rx_mode(dev); 4150 } 4151 return 0; 4152} 4153EXPORT_SYMBOL(dev_set_allmulti); 4154 4155/* 4156 * Upload unicast and multicast address lists to device and 4157 * configure RX filtering. When the device doesn't support unicast 4158 * filtering it is put in promiscuous mode while unicast addresses 4159 * are present. 4160 */ 4161void __dev_set_rx_mode(struct net_device *dev) 4162{ 4163 const struct net_device_ops *ops = dev->netdev_ops; 4164 4165 /* dev_open will call this function so the list will stay sane. */ 4166 if (!(dev->flags&IFF_UP)) 4167 return; 4168 4169 if (!netif_device_present(dev)) 4170 return; 4171 4172 if (ops->ndo_set_rx_mode) 4173 ops->ndo_set_rx_mode(dev); 4174 else { 4175 /* Unicast addresses changes may only happen under the rtnl, 4176 * therefore calling __dev_set_promiscuity here is safe. 4177 */ 4178 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4179 __dev_set_promiscuity(dev, 1); 4180 dev->uc_promisc = 1; 4181 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4182 __dev_set_promiscuity(dev, -1); 4183 dev->uc_promisc = 0; 4184 } 4185 4186 if (ops->ndo_set_multicast_list) 4187 ops->ndo_set_multicast_list(dev); 4188 } 4189} 4190 4191void dev_set_rx_mode(struct net_device *dev) 4192{ 4193 netif_addr_lock_bh(dev); 4194 __dev_set_rx_mode(dev); 4195 netif_addr_unlock_bh(dev); 4196} 4197 4198/** 4199 * dev_get_flags - get flags reported to userspace 4200 * @dev: device 4201 * 4202 * Get the combination of flag bits exported through APIs to userspace. 4203 */ 4204unsigned dev_get_flags(const struct net_device *dev) 4205{ 4206 unsigned flags; 4207 4208 flags = (dev->flags & ~(IFF_PROMISC | 4209 IFF_ALLMULTI | 4210 IFF_RUNNING | 4211 IFF_LOWER_UP | 4212 IFF_DORMANT)) | 4213 (dev->gflags & (IFF_PROMISC | 4214 IFF_ALLMULTI)); 4215 4216 if (netif_running(dev)) { 4217 if (netif_oper_up(dev)) 4218 flags |= IFF_RUNNING; 4219 if (netif_carrier_ok(dev)) 4220 flags |= IFF_LOWER_UP; 4221 if (netif_dormant(dev)) 4222 flags |= IFF_DORMANT; 4223 } 4224 4225 return flags; 4226} 4227EXPORT_SYMBOL(dev_get_flags); 4228 4229int __dev_change_flags(struct net_device *dev, unsigned int flags) 4230{ 4231 int old_flags = dev->flags; 4232 int ret; 4233 4234 ASSERT_RTNL(); 4235 4236 /* 4237 * Set the flags on our device. 4238 */ 4239 4240 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4241 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4242 IFF_AUTOMEDIA)) | 4243 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4244 IFF_ALLMULTI)); 4245 4246 /* 4247 * Load in the correct multicast list now the flags have changed. 4248 */ 4249 4250 if ((old_flags ^ flags) & IFF_MULTICAST) 4251 dev_change_rx_flags(dev, IFF_MULTICAST); 4252 4253 dev_set_rx_mode(dev); 4254 4255 /* 4256 * Have we downed the interface. We handle IFF_UP ourselves 4257 * according to user attempts to set it, rather than blindly 4258 * setting it. 4259 */ 4260 4261 ret = 0; 4262 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4263 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4264 4265 if (!ret) 4266 dev_set_rx_mode(dev); 4267 } 4268 4269 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4270 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4271 4272 dev->gflags ^= IFF_PROMISC; 4273 dev_set_promiscuity(dev, inc); 4274 } 4275 4276 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4277 is important. Some (broken) drivers set IFF_PROMISC, when 4278 IFF_ALLMULTI is requested not asking us and not reporting. 4279 */ 4280 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4281 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4282 4283 dev->gflags ^= IFF_ALLMULTI; 4284 dev_set_allmulti(dev, inc); 4285 } 4286 4287 return ret; 4288} 4289 4290void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4291{ 4292 unsigned int changes = dev->flags ^ old_flags; 4293 4294 if (changes & IFF_UP) { 4295 if (dev->flags & IFF_UP) 4296 call_netdevice_notifiers(NETDEV_UP, dev); 4297 else 4298 call_netdevice_notifiers(NETDEV_DOWN, dev); 4299 } 4300 4301 if (dev->flags & IFF_UP && 4302 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4303 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4304} 4305 4306/** 4307 * dev_change_flags - change device settings 4308 * @dev: device 4309 * @flags: device state flags 4310 * 4311 * Change settings on device based state flags. The flags are 4312 * in the userspace exported format. 4313 */ 4314int dev_change_flags(struct net_device *dev, unsigned flags) 4315{ 4316 int ret, changes; 4317 int old_flags = dev->flags; 4318 4319 ret = __dev_change_flags(dev, flags); 4320 if (ret < 0) 4321 return ret; 4322 4323 changes = old_flags ^ dev->flags; 4324 if (changes) 4325 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4326 4327 __dev_notify_flags(dev, old_flags); 4328 return ret; 4329} 4330EXPORT_SYMBOL(dev_change_flags); 4331 4332/** 4333 * dev_set_mtu - Change maximum transfer unit 4334 * @dev: device 4335 * @new_mtu: new transfer unit 4336 * 4337 * Change the maximum transfer size of the network device. 4338 */ 4339int dev_set_mtu(struct net_device *dev, int new_mtu) 4340{ 4341 const struct net_device_ops *ops = dev->netdev_ops; 4342 int err; 4343 4344 if (new_mtu == dev->mtu) 4345 return 0; 4346 4347 /* MTU must be positive. */ 4348 if (new_mtu < 0) 4349 return -EINVAL; 4350 4351 if (!netif_device_present(dev)) 4352 return -ENODEV; 4353 4354 err = 0; 4355 if (ops->ndo_change_mtu) 4356 err = ops->ndo_change_mtu(dev, new_mtu); 4357 else 4358 dev->mtu = new_mtu; 4359 4360 if (!err && dev->flags & IFF_UP) 4361 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4362 return err; 4363} 4364EXPORT_SYMBOL(dev_set_mtu); 4365 4366/** 4367 * dev_set_mac_address - Change Media Access Control Address 4368 * @dev: device 4369 * @sa: new address 4370 * 4371 * Change the hardware (MAC) address of the device 4372 */ 4373int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4374{ 4375 const struct net_device_ops *ops = dev->netdev_ops; 4376 int err; 4377 4378 if (!ops->ndo_set_mac_address) 4379 return -EOPNOTSUPP; 4380 if (sa->sa_family != dev->type) 4381 return -EINVAL; 4382 if (!netif_device_present(dev)) 4383 return -ENODEV; 4384 err = ops->ndo_set_mac_address(dev, sa); 4385 if (!err) 4386 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4387 return err; 4388} 4389EXPORT_SYMBOL(dev_set_mac_address); 4390 4391/* 4392 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4393 */ 4394static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4395{ 4396 int err; 4397 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4398 4399 if (!dev) 4400 return -ENODEV; 4401 4402 switch (cmd) { 4403 case SIOCGIFFLAGS: /* Get interface flags */ 4404 ifr->ifr_flags = (short) dev_get_flags(dev); 4405 return 0; 4406 4407 case SIOCGIFMETRIC: /* Get the metric on the interface 4408 (currently unused) */ 4409 ifr->ifr_metric = 0; 4410 return 0; 4411 4412 case SIOCGIFMTU: /* Get the MTU of a device */ 4413 ifr->ifr_mtu = dev->mtu; 4414 return 0; 4415 4416 case SIOCGIFHWADDR: 4417 if (!dev->addr_len) 4418 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4419 else 4420 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4421 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4422 ifr->ifr_hwaddr.sa_family = dev->type; 4423 return 0; 4424 4425 case SIOCGIFSLAVE: 4426 err = -EINVAL; 4427 break; 4428 4429 case SIOCGIFMAP: 4430 ifr->ifr_map.mem_start = dev->mem_start; 4431 ifr->ifr_map.mem_end = dev->mem_end; 4432 ifr->ifr_map.base_addr = dev->base_addr; 4433 ifr->ifr_map.irq = dev->irq; 4434 ifr->ifr_map.dma = dev->dma; 4435 ifr->ifr_map.port = dev->if_port; 4436 return 0; 4437 4438 case SIOCGIFINDEX: 4439 ifr->ifr_ifindex = dev->ifindex; 4440 return 0; 4441 4442 case SIOCGIFTXQLEN: 4443 ifr->ifr_qlen = dev->tx_queue_len; 4444 return 0; 4445 4446 default: 4447 /* dev_ioctl() should ensure this case 4448 * is never reached 4449 */ 4450 WARN_ON(1); 4451 err = -EINVAL; 4452 break; 4453 4454 } 4455 return err; 4456} 4457 4458/* 4459 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4460 */ 4461static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4462{ 4463 int err; 4464 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4465 const struct net_device_ops *ops; 4466 4467 if (!dev) 4468 return -ENODEV; 4469 4470 ops = dev->netdev_ops; 4471 4472 switch (cmd) { 4473 case SIOCSIFFLAGS: /* Set interface flags */ 4474 return dev_change_flags(dev, ifr->ifr_flags); 4475 4476 case SIOCSIFMETRIC: /* Set the metric on the interface 4477 (currently unused) */ 4478 return -EOPNOTSUPP; 4479 4480 case SIOCSIFMTU: /* Set the MTU of a device */ 4481 return dev_set_mtu(dev, ifr->ifr_mtu); 4482 4483 case SIOCSIFHWADDR: 4484 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4485 4486 case SIOCSIFHWBROADCAST: 4487 if (ifr->ifr_hwaddr.sa_family != dev->type) 4488 return -EINVAL; 4489 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4490 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4491 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4492 return 0; 4493 4494 case SIOCSIFMAP: 4495 if (ops->ndo_set_config) { 4496 if (!netif_device_present(dev)) 4497 return -ENODEV; 4498 return ops->ndo_set_config(dev, &ifr->ifr_map); 4499 } 4500 return -EOPNOTSUPP; 4501 4502 case SIOCADDMULTI: 4503 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4504 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4505 return -EINVAL; 4506 if (!netif_device_present(dev)) 4507 return -ENODEV; 4508 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4509 4510 case SIOCDELMULTI: 4511 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4512 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4513 return -EINVAL; 4514 if (!netif_device_present(dev)) 4515 return -ENODEV; 4516 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4517 4518 case SIOCSIFTXQLEN: 4519 if (ifr->ifr_qlen < 0) 4520 return -EINVAL; 4521 dev->tx_queue_len = ifr->ifr_qlen; 4522 return 0; 4523 4524 case SIOCSIFNAME: 4525 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4526 return dev_change_name(dev, ifr->ifr_newname); 4527 4528 /* 4529 * Unknown or private ioctl 4530 */ 4531 default: 4532 if ((cmd >= SIOCDEVPRIVATE && 4533 cmd <= SIOCDEVPRIVATE + 15) || 4534 cmd == SIOCBONDENSLAVE || 4535 cmd == SIOCBONDRELEASE || 4536 cmd == SIOCBONDSETHWADDR || 4537 cmd == SIOCBONDSLAVEINFOQUERY || 4538 cmd == SIOCBONDINFOQUERY || 4539 cmd == SIOCBONDCHANGEACTIVE || 4540 cmd == SIOCGMIIPHY || 4541 cmd == SIOCGMIIREG || 4542 cmd == SIOCSMIIREG || 4543 cmd == SIOCBRADDIF || 4544 cmd == SIOCBRDELIF || 4545 cmd == SIOCSHWTSTAMP || 4546 cmd == SIOCWANDEV) { 4547 err = -EOPNOTSUPP; 4548 if (ops->ndo_do_ioctl) { 4549 if (netif_device_present(dev)) 4550 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4551 else 4552 err = -ENODEV; 4553 } 4554 } else 4555 err = -EINVAL; 4556 4557 } 4558 return err; 4559} 4560 4561/* 4562 * This function handles all "interface"-type I/O control requests. The actual 4563 * 'doing' part of this is dev_ifsioc above. 4564 */ 4565 4566/** 4567 * dev_ioctl - network device ioctl 4568 * @net: the applicable net namespace 4569 * @cmd: command to issue 4570 * @arg: pointer to a struct ifreq in user space 4571 * 4572 * Issue ioctl functions to devices. This is normally called by the 4573 * user space syscall interfaces but can sometimes be useful for 4574 * other purposes. The return value is the return from the syscall if 4575 * positive or a negative errno code on error. 4576 */ 4577 4578int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4579{ 4580 struct ifreq ifr; 4581 int ret; 4582 char *colon; 4583 4584 /* One special case: SIOCGIFCONF takes ifconf argument 4585 and requires shared lock, because it sleeps writing 4586 to user space. 4587 */ 4588 4589 if (cmd == SIOCGIFCONF) { 4590 rtnl_lock(); 4591 ret = dev_ifconf(net, (char __user *) arg); 4592 rtnl_unlock(); 4593 return ret; 4594 } 4595 if (cmd == SIOCGIFNAME) 4596 return dev_ifname(net, (struct ifreq __user *)arg); 4597 4598 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4599 return -EFAULT; 4600 4601 ifr.ifr_name[IFNAMSIZ-1] = 0; 4602 4603 colon = strchr(ifr.ifr_name, ':'); 4604 if (colon) 4605 *colon = 0; 4606 4607 /* 4608 * See which interface the caller is talking about. 4609 */ 4610 4611 switch (cmd) { 4612 /* 4613 * These ioctl calls: 4614 * - can be done by all. 4615 * - atomic and do not require locking. 4616 * - return a value 4617 */ 4618 case SIOCGIFFLAGS: 4619 case SIOCGIFMETRIC: 4620 case SIOCGIFMTU: 4621 case SIOCGIFHWADDR: 4622 case SIOCGIFSLAVE: 4623 case SIOCGIFMAP: 4624 case SIOCGIFINDEX: 4625 case SIOCGIFTXQLEN: 4626 dev_load(net, ifr.ifr_name); 4627 rcu_read_lock(); 4628 ret = dev_ifsioc_locked(net, &ifr, cmd); 4629 rcu_read_unlock(); 4630 if (!ret) { 4631 if (colon) 4632 *colon = ':'; 4633 if (copy_to_user(arg, &ifr, 4634 sizeof(struct ifreq))) 4635 ret = -EFAULT; 4636 } 4637 return ret; 4638 4639 case SIOCETHTOOL: 4640 dev_load(net, ifr.ifr_name); 4641 rtnl_lock(); 4642 ret = dev_ethtool(net, &ifr); 4643 rtnl_unlock(); 4644 if (!ret) { 4645 if (colon) 4646 *colon = ':'; 4647 if (copy_to_user(arg, &ifr, 4648 sizeof(struct ifreq))) 4649 ret = -EFAULT; 4650 } 4651 return ret; 4652 4653 /* 4654 * These ioctl calls: 4655 * - require superuser power. 4656 * - require strict serialization. 4657 * - return a value 4658 */ 4659 case SIOCGMIIPHY: 4660 case SIOCGMIIREG: 4661 case SIOCSIFNAME: 4662 if (!capable(CAP_NET_ADMIN)) 4663 return -EPERM; 4664 dev_load(net, ifr.ifr_name); 4665 rtnl_lock(); 4666 ret = dev_ifsioc(net, &ifr, cmd); 4667 rtnl_unlock(); 4668 if (!ret) { 4669 if (colon) 4670 *colon = ':'; 4671 if (copy_to_user(arg, &ifr, 4672 sizeof(struct ifreq))) 4673 ret = -EFAULT; 4674 } 4675 return ret; 4676 4677 /* 4678 * These ioctl calls: 4679 * - require superuser power. 4680 * - require strict serialization. 4681 * - do not return a value 4682 */ 4683 case SIOCSIFFLAGS: 4684 case SIOCSIFMETRIC: 4685 case SIOCSIFMTU: 4686 case SIOCSIFMAP: 4687 case SIOCSIFHWADDR: 4688 case SIOCSIFSLAVE: 4689 case SIOCADDMULTI: 4690 case SIOCDELMULTI: 4691 case SIOCSIFHWBROADCAST: 4692 case SIOCSIFTXQLEN: 4693 case SIOCSMIIREG: 4694 case SIOCBONDENSLAVE: 4695 case SIOCBONDRELEASE: 4696 case SIOCBONDSETHWADDR: 4697 case SIOCBONDCHANGEACTIVE: 4698 case SIOCBRADDIF: 4699 case SIOCBRDELIF: 4700 case SIOCSHWTSTAMP: 4701 if (!capable(CAP_NET_ADMIN)) 4702 return -EPERM; 4703 /* fall through */ 4704 case SIOCBONDSLAVEINFOQUERY: 4705 case SIOCBONDINFOQUERY: 4706 dev_load(net, ifr.ifr_name); 4707 rtnl_lock(); 4708 ret = dev_ifsioc(net, &ifr, cmd); 4709 rtnl_unlock(); 4710 return ret; 4711 4712 case SIOCGIFMEM: 4713 /* Get the per device memory space. We can add this but 4714 * currently do not support it */ 4715 case SIOCSIFMEM: 4716 /* Set the per device memory buffer space. 4717 * Not applicable in our case */ 4718 case SIOCSIFLINK: 4719 return -EINVAL; 4720 4721 /* 4722 * Unknown or private ioctl. 4723 */ 4724 default: 4725 if (cmd == SIOCWANDEV || 4726 (cmd >= SIOCDEVPRIVATE && 4727 cmd <= SIOCDEVPRIVATE + 15)) { 4728 dev_load(net, ifr.ifr_name); 4729 rtnl_lock(); 4730 ret = dev_ifsioc(net, &ifr, cmd); 4731 rtnl_unlock(); 4732 if (!ret && copy_to_user(arg, &ifr, 4733 sizeof(struct ifreq))) 4734 ret = -EFAULT; 4735 return ret; 4736 } 4737 /* Take care of Wireless Extensions */ 4738 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4739 return wext_handle_ioctl(net, &ifr, cmd, arg); 4740 return -EINVAL; 4741 } 4742} 4743 4744 4745/** 4746 * dev_new_index - allocate an ifindex 4747 * @net: the applicable net namespace 4748 * 4749 * Returns a suitable unique value for a new device interface 4750 * number. The caller must hold the rtnl semaphore or the 4751 * dev_base_lock to be sure it remains unique. 4752 */ 4753static int dev_new_index(struct net *net) 4754{ 4755 static int ifindex; 4756 for (;;) { 4757 if (++ifindex <= 0) 4758 ifindex = 1; 4759 if (!__dev_get_by_index(net, ifindex)) 4760 return ifindex; 4761 } 4762} 4763 4764/* Delayed registration/unregisteration */ 4765static LIST_HEAD(net_todo_list); 4766 4767static void net_set_todo(struct net_device *dev) 4768{ 4769 list_add_tail(&dev->todo_list, &net_todo_list); 4770} 4771 4772static void rollback_registered_many(struct list_head *head) 4773{ 4774 struct net_device *dev, *tmp; 4775 4776 BUG_ON(dev_boot_phase); 4777 ASSERT_RTNL(); 4778 4779 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4780 /* Some devices call without registering 4781 * for initialization unwind. Remove those 4782 * devices and proceed with the remaining. 4783 */ 4784 if (dev->reg_state == NETREG_UNINITIALIZED) { 4785 pr_debug("unregister_netdevice: device %s/%p never " 4786 "was registered\n", dev->name, dev); 4787 4788 WARN_ON(1); 4789 list_del(&dev->unreg_list); 4790 continue; 4791 } 4792 4793 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4794 4795 /* If device is running, close it first. */ 4796 dev_close(dev); 4797 4798 /* And unlink it from device chain. */ 4799 unlist_netdevice(dev); 4800 4801 dev->reg_state = NETREG_UNREGISTERING; 4802 } 4803 4804 synchronize_net(); 4805 4806 list_for_each_entry(dev, head, unreg_list) { 4807 /* Shutdown queueing discipline. */ 4808 dev_shutdown(dev); 4809 4810 4811 /* Notify protocols, that we are about to destroy 4812 this device. They should clean all the things. 4813 */ 4814 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4815 4816 if (!dev->rtnl_link_ops || 4817 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 4818 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 4819 4820 /* 4821 * Flush the unicast and multicast chains 4822 */ 4823 dev_uc_flush(dev); 4824 dev_mc_flush(dev); 4825 4826 if (dev->netdev_ops->ndo_uninit) 4827 dev->netdev_ops->ndo_uninit(dev); 4828 4829 /* Notifier chain MUST detach us from master device. */ 4830 WARN_ON(dev->master); 4831 4832 /* Remove entries from kobject tree */ 4833 netdev_unregister_kobject(dev); 4834 } 4835 4836 /* Process any work delayed until the end of the batch */ 4837 dev = list_first_entry(head, struct net_device, unreg_list); 4838 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 4839 4840 synchronize_net(); 4841 4842 list_for_each_entry(dev, head, unreg_list) 4843 dev_put(dev); 4844} 4845 4846static void rollback_registered(struct net_device *dev) 4847{ 4848 LIST_HEAD(single); 4849 4850 list_add(&dev->unreg_list, &single); 4851 rollback_registered_many(&single); 4852} 4853 4854static void __netdev_init_queue_locks_one(struct net_device *dev, 4855 struct netdev_queue *dev_queue, 4856 void *_unused) 4857{ 4858 spin_lock_init(&dev_queue->_xmit_lock); 4859 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4860 dev_queue->xmit_lock_owner = -1; 4861} 4862 4863static void netdev_init_queue_locks(struct net_device *dev) 4864{ 4865 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4866 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4867} 4868 4869unsigned long netdev_fix_features(unsigned long features, const char *name) 4870{ 4871 /* Fix illegal SG+CSUM combinations. */ 4872 if ((features & NETIF_F_SG) && 4873 !(features & NETIF_F_ALL_CSUM)) { 4874 if (name) 4875 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4876 "checksum feature.\n", name); 4877 features &= ~NETIF_F_SG; 4878 } 4879 4880 /* TSO requires that SG is present as well. */ 4881 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4882 if (name) 4883 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4884 "SG feature.\n", name); 4885 features &= ~NETIF_F_TSO; 4886 } 4887 4888 if (features & NETIF_F_UFO) { 4889 if (!(features & NETIF_F_GEN_CSUM)) { 4890 if (name) 4891 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4892 "since no NETIF_F_HW_CSUM feature.\n", 4893 name); 4894 features &= ~NETIF_F_UFO; 4895 } 4896 4897 if (!(features & NETIF_F_SG)) { 4898 if (name) 4899 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4900 "since no NETIF_F_SG feature.\n", name); 4901 features &= ~NETIF_F_UFO; 4902 } 4903 } 4904 4905 return features; 4906} 4907EXPORT_SYMBOL(netdev_fix_features); 4908 4909/** 4910 * netif_stacked_transfer_operstate - transfer operstate 4911 * @rootdev: the root or lower level device to transfer state from 4912 * @dev: the device to transfer operstate to 4913 * 4914 * Transfer operational state from root to device. This is normally 4915 * called when a stacking relationship exists between the root 4916 * device and the device(a leaf device). 4917 */ 4918void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4919 struct net_device *dev) 4920{ 4921 if (rootdev->operstate == IF_OPER_DORMANT) 4922 netif_dormant_on(dev); 4923 else 4924 netif_dormant_off(dev); 4925 4926 if (netif_carrier_ok(rootdev)) { 4927 if (!netif_carrier_ok(dev)) 4928 netif_carrier_on(dev); 4929 } else { 4930 if (netif_carrier_ok(dev)) 4931 netif_carrier_off(dev); 4932 } 4933} 4934EXPORT_SYMBOL(netif_stacked_transfer_operstate); 4935 4936/** 4937 * register_netdevice - register a network device 4938 * @dev: device to register 4939 * 4940 * Take a completed network device structure and add it to the kernel 4941 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4942 * chain. 0 is returned on success. A negative errno code is returned 4943 * on a failure to set up the device, or if the name is a duplicate. 4944 * 4945 * Callers must hold the rtnl semaphore. You may want 4946 * register_netdev() instead of this. 4947 * 4948 * BUGS: 4949 * The locking appears insufficient to guarantee two parallel registers 4950 * will not get the same name. 4951 */ 4952 4953int register_netdevice(struct net_device *dev) 4954{ 4955 int ret; 4956 struct net *net = dev_net(dev); 4957 4958 BUG_ON(dev_boot_phase); 4959 ASSERT_RTNL(); 4960 4961 might_sleep(); 4962 4963 /* When net_device's are persistent, this will be fatal. */ 4964 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4965 BUG_ON(!net); 4966 4967 spin_lock_init(&dev->addr_list_lock); 4968 netdev_set_addr_lockdep_class(dev); 4969 netdev_init_queue_locks(dev); 4970 4971 dev->iflink = -1; 4972 4973#ifdef CONFIG_RPS 4974 if (!dev->num_rx_queues) { 4975 /* 4976 * Allocate a single RX queue if driver never called 4977 * alloc_netdev_mq 4978 */ 4979 4980 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL); 4981 if (!dev->_rx) { 4982 ret = -ENOMEM; 4983 goto out; 4984 } 4985 4986 dev->_rx->first = dev->_rx; 4987 atomic_set(&dev->_rx->count, 1); 4988 dev->num_rx_queues = 1; 4989 } 4990#endif 4991 /* Init, if this function is available */ 4992 if (dev->netdev_ops->ndo_init) { 4993 ret = dev->netdev_ops->ndo_init(dev); 4994 if (ret) { 4995 if (ret > 0) 4996 ret = -EIO; 4997 goto out; 4998 } 4999 } 5000 5001 ret = dev_get_valid_name(dev, dev->name, 0); 5002 if (ret) 5003 goto err_uninit; 5004 5005 dev->ifindex = dev_new_index(net); 5006 if (dev->iflink == -1) 5007 dev->iflink = dev->ifindex; 5008 5009 /* Fix illegal checksum combinations */ 5010 if ((dev->features & NETIF_F_HW_CSUM) && 5011 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5012 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 5013 dev->name); 5014 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5015 } 5016 5017 if ((dev->features & NETIF_F_NO_CSUM) && 5018 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5019 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 5020 dev->name); 5021 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5022 } 5023 5024 dev->features = netdev_fix_features(dev->features, dev->name); 5025 5026 /* Enable software GSO if SG is supported. */ 5027 if (dev->features & NETIF_F_SG) 5028 dev->features |= NETIF_F_GSO; 5029 5030 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5031 ret = notifier_to_errno(ret); 5032 if (ret) 5033 goto err_uninit; 5034 5035 ret = netdev_register_kobject(dev); 5036 if (ret) 5037 goto err_uninit; 5038 dev->reg_state = NETREG_REGISTERED; 5039 5040 /* 5041 * Default initial state at registry is that the 5042 * device is present. 5043 */ 5044 5045 set_bit(__LINK_STATE_PRESENT, &dev->state); 5046 5047 dev_init_scheduler(dev); 5048 dev_hold(dev); 5049 list_netdevice(dev); 5050 5051 /* Notify protocols, that a new device appeared. */ 5052 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5053 ret = notifier_to_errno(ret); 5054 if (ret) { 5055 rollback_registered(dev); 5056 dev->reg_state = NETREG_UNREGISTERED; 5057 } 5058 /* 5059 * Prevent userspace races by waiting until the network 5060 * device is fully setup before sending notifications. 5061 */ 5062 if (!dev->rtnl_link_ops || 5063 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5064 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5065 5066out: 5067 return ret; 5068 5069err_uninit: 5070 if (dev->netdev_ops->ndo_uninit) 5071 dev->netdev_ops->ndo_uninit(dev); 5072 goto out; 5073} 5074EXPORT_SYMBOL(register_netdevice); 5075 5076/** 5077 * init_dummy_netdev - init a dummy network device for NAPI 5078 * @dev: device to init 5079 * 5080 * This takes a network device structure and initialize the minimum 5081 * amount of fields so it can be used to schedule NAPI polls without 5082 * registering a full blown interface. This is to be used by drivers 5083 * that need to tie several hardware interfaces to a single NAPI 5084 * poll scheduler due to HW limitations. 5085 */ 5086int init_dummy_netdev(struct net_device *dev) 5087{ 5088 /* Clear everything. Note we don't initialize spinlocks 5089 * are they aren't supposed to be taken by any of the 5090 * NAPI code and this dummy netdev is supposed to be 5091 * only ever used for NAPI polls 5092 */ 5093 memset(dev, 0, sizeof(struct net_device)); 5094 5095 /* make sure we BUG if trying to hit standard 5096 * register/unregister code path 5097 */ 5098 dev->reg_state = NETREG_DUMMY; 5099 5100 /* initialize the ref count */ 5101 atomic_set(&dev->refcnt, 1); 5102 5103 /* NAPI wants this */ 5104 INIT_LIST_HEAD(&dev->napi_list); 5105 5106 /* a dummy interface is started by default */ 5107 set_bit(__LINK_STATE_PRESENT, &dev->state); 5108 set_bit(__LINK_STATE_START, &dev->state); 5109 5110 return 0; 5111} 5112EXPORT_SYMBOL_GPL(init_dummy_netdev); 5113 5114 5115/** 5116 * register_netdev - register a network device 5117 * @dev: device to register 5118 * 5119 * Take a completed network device structure and add it to the kernel 5120 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5121 * chain. 0 is returned on success. A negative errno code is returned 5122 * on a failure to set up the device, or if the name is a duplicate. 5123 * 5124 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5125 * and expands the device name if you passed a format string to 5126 * alloc_netdev. 5127 */ 5128int register_netdev(struct net_device *dev) 5129{ 5130 int err; 5131 5132 rtnl_lock(); 5133 5134 /* 5135 * If the name is a format string the caller wants us to do a 5136 * name allocation. 5137 */ 5138 if (strchr(dev->name, '%')) { 5139 err = dev_alloc_name(dev, dev->name); 5140 if (err < 0) 5141 goto out; 5142 } 5143 5144 err = register_netdevice(dev); 5145out: 5146 rtnl_unlock(); 5147 return err; 5148} 5149EXPORT_SYMBOL(register_netdev); 5150 5151/* 5152 * netdev_wait_allrefs - wait until all references are gone. 5153 * 5154 * This is called when unregistering network devices. 5155 * 5156 * Any protocol or device that holds a reference should register 5157 * for netdevice notification, and cleanup and put back the 5158 * reference if they receive an UNREGISTER event. 5159 * We can get stuck here if buggy protocols don't correctly 5160 * call dev_put. 5161 */ 5162static void netdev_wait_allrefs(struct net_device *dev) 5163{ 5164 unsigned long rebroadcast_time, warning_time; 5165 5166 linkwatch_forget_dev(dev); 5167 5168 rebroadcast_time = warning_time = jiffies; 5169 while (atomic_read(&dev->refcnt) != 0) { 5170 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5171 rtnl_lock(); 5172 5173 /* Rebroadcast unregister notification */ 5174 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5175 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5176 * should have already handle it the first time */ 5177 5178 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5179 &dev->state)) { 5180 /* We must not have linkwatch events 5181 * pending on unregister. If this 5182 * happens, we simply run the queue 5183 * unscheduled, resulting in a noop 5184 * for this device. 5185 */ 5186 linkwatch_run_queue(); 5187 } 5188 5189 __rtnl_unlock(); 5190 5191 rebroadcast_time = jiffies; 5192 } 5193 5194 msleep(250); 5195 5196 if (time_after(jiffies, warning_time + 10 * HZ)) { 5197 printk(KERN_EMERG "unregister_netdevice: " 5198 "waiting for %s to become free. Usage " 5199 "count = %d\n", 5200 dev->name, atomic_read(&dev->refcnt)); 5201 warning_time = jiffies; 5202 } 5203 } 5204} 5205 5206/* The sequence is: 5207 * 5208 * rtnl_lock(); 5209 * ... 5210 * register_netdevice(x1); 5211 * register_netdevice(x2); 5212 * ... 5213 * unregister_netdevice(y1); 5214 * unregister_netdevice(y2); 5215 * ... 5216 * rtnl_unlock(); 5217 * free_netdev(y1); 5218 * free_netdev(y2); 5219 * 5220 * We are invoked by rtnl_unlock(). 5221 * This allows us to deal with problems: 5222 * 1) We can delete sysfs objects which invoke hotplug 5223 * without deadlocking with linkwatch via keventd. 5224 * 2) Since we run with the RTNL semaphore not held, we can sleep 5225 * safely in order to wait for the netdev refcnt to drop to zero. 5226 * 5227 * We must not return until all unregister events added during 5228 * the interval the lock was held have been completed. 5229 */ 5230void netdev_run_todo(void) 5231{ 5232 struct list_head list; 5233 5234 /* Snapshot list, allow later requests */ 5235 list_replace_init(&net_todo_list, &list); 5236 5237 __rtnl_unlock(); 5238 5239 while (!list_empty(&list)) { 5240 struct net_device *dev 5241 = list_first_entry(&list, struct net_device, todo_list); 5242 list_del(&dev->todo_list); 5243 5244 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5245 printk(KERN_ERR "network todo '%s' but state %d\n", 5246 dev->name, dev->reg_state); 5247 dump_stack(); 5248 continue; 5249 } 5250 5251 dev->reg_state = NETREG_UNREGISTERED; 5252 5253 on_each_cpu(flush_backlog, dev, 1); 5254 5255 netdev_wait_allrefs(dev); 5256 5257 /* paranoia */ 5258 BUG_ON(atomic_read(&dev->refcnt)); 5259 WARN_ON(dev->ip_ptr); 5260 WARN_ON(dev->ip6_ptr); 5261 WARN_ON(dev->dn_ptr); 5262 5263 if (dev->destructor) 5264 dev->destructor(dev); 5265 5266 /* Free network device */ 5267 kobject_put(&dev->dev.kobj); 5268 } 5269} 5270 5271/** 5272 * dev_txq_stats_fold - fold tx_queues stats 5273 * @dev: device to get statistics from 5274 * @stats: struct net_device_stats to hold results 5275 */ 5276void dev_txq_stats_fold(const struct net_device *dev, 5277 struct net_device_stats *stats) 5278{ 5279 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0; 5280 unsigned int i; 5281 struct netdev_queue *txq; 5282 5283 for (i = 0; i < dev->num_tx_queues; i++) { 5284 txq = netdev_get_tx_queue(dev, i); 5285 tx_bytes += txq->tx_bytes; 5286 tx_packets += txq->tx_packets; 5287 tx_dropped += txq->tx_dropped; 5288 } 5289 if (tx_bytes || tx_packets || tx_dropped) { 5290 stats->tx_bytes = tx_bytes; 5291 stats->tx_packets = tx_packets; 5292 stats->tx_dropped = tx_dropped; 5293 } 5294} 5295EXPORT_SYMBOL(dev_txq_stats_fold); 5296 5297/** 5298 * dev_get_stats - get network device statistics 5299 * @dev: device to get statistics from 5300 * 5301 * Get network statistics from device. The device driver may provide 5302 * its own method by setting dev->netdev_ops->get_stats; otherwise 5303 * the internal statistics structure is used. 5304 */ 5305const struct net_device_stats *dev_get_stats(struct net_device *dev) 5306{ 5307 const struct net_device_ops *ops = dev->netdev_ops; 5308 5309 if (ops->ndo_get_stats) 5310 return ops->ndo_get_stats(dev); 5311 5312 dev_txq_stats_fold(dev, &dev->stats); 5313 return &dev->stats; 5314} 5315EXPORT_SYMBOL(dev_get_stats); 5316 5317static void netdev_init_one_queue(struct net_device *dev, 5318 struct netdev_queue *queue, 5319 void *_unused) 5320{ 5321 queue->dev = dev; 5322} 5323 5324static void netdev_init_queues(struct net_device *dev) 5325{ 5326 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 5327 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5328 spin_lock_init(&dev->tx_global_lock); 5329} 5330 5331/** 5332 * alloc_netdev_mq - allocate network device 5333 * @sizeof_priv: size of private data to allocate space for 5334 * @name: device name format string 5335 * @setup: callback to initialize device 5336 * @queue_count: the number of subqueues to allocate 5337 * 5338 * Allocates a struct net_device with private data area for driver use 5339 * and performs basic initialization. Also allocates subquue structs 5340 * for each queue on the device at the end of the netdevice. 5341 */ 5342struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 5343 void (*setup)(struct net_device *), unsigned int queue_count) 5344{ 5345 struct netdev_queue *tx; 5346 struct net_device *dev; 5347 size_t alloc_size; 5348 struct net_device *p; 5349#ifdef CONFIG_RPS 5350 struct netdev_rx_queue *rx; 5351 int i; 5352#endif 5353 5354 BUG_ON(strlen(name) >= sizeof(dev->name)); 5355 5356 alloc_size = sizeof(struct net_device); 5357 if (sizeof_priv) { 5358 /* ensure 32-byte alignment of private area */ 5359 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5360 alloc_size += sizeof_priv; 5361 } 5362 /* ensure 32-byte alignment of whole construct */ 5363 alloc_size += NETDEV_ALIGN - 1; 5364 5365 p = kzalloc(alloc_size, GFP_KERNEL); 5366 if (!p) { 5367 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5368 return NULL; 5369 } 5370 5371 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 5372 if (!tx) { 5373 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5374 "tx qdiscs.\n"); 5375 goto free_p; 5376 } 5377 5378#ifdef CONFIG_RPS 5379 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5380 if (!rx) { 5381 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5382 "rx queues.\n"); 5383 goto free_tx; 5384 } 5385 5386 atomic_set(&rx->count, queue_count); 5387 5388 /* 5389 * Set a pointer to first element in the array which holds the 5390 * reference count. 5391 */ 5392 for (i = 0; i < queue_count; i++) 5393 rx[i].first = rx; 5394#endif 5395 5396 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5397 dev->padded = (char *)dev - (char *)p; 5398 5399 if (dev_addr_init(dev)) 5400 goto free_rx; 5401 5402 dev_mc_init(dev); 5403 dev_uc_init(dev); 5404 5405 dev_net_set(dev, &init_net); 5406 5407 dev->_tx = tx; 5408 dev->num_tx_queues = queue_count; 5409 dev->real_num_tx_queues = queue_count; 5410 5411#ifdef CONFIG_RPS 5412 dev->_rx = rx; 5413 dev->num_rx_queues = queue_count; 5414#endif 5415 5416 dev->gso_max_size = GSO_MAX_SIZE; 5417 5418 netdev_init_queues(dev); 5419 5420 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5421 dev->ethtool_ntuple_list.count = 0; 5422 INIT_LIST_HEAD(&dev->napi_list); 5423 INIT_LIST_HEAD(&dev->unreg_list); 5424 INIT_LIST_HEAD(&dev->link_watch_list); 5425 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5426 setup(dev); 5427 strcpy(dev->name, name); 5428 return dev; 5429 5430free_rx: 5431#ifdef CONFIG_RPS 5432 kfree(rx); 5433free_tx: 5434#endif 5435 kfree(tx); 5436free_p: 5437 kfree(p); 5438 return NULL; 5439} 5440EXPORT_SYMBOL(alloc_netdev_mq); 5441 5442/** 5443 * free_netdev - free network device 5444 * @dev: device 5445 * 5446 * This function does the last stage of destroying an allocated device 5447 * interface. The reference to the device object is released. 5448 * If this is the last reference then it will be freed. 5449 */ 5450void free_netdev(struct net_device *dev) 5451{ 5452 struct napi_struct *p, *n; 5453 5454 release_net(dev_net(dev)); 5455 5456 kfree(dev->_tx); 5457 5458 /* Flush device addresses */ 5459 dev_addr_flush(dev); 5460 5461 /* Clear ethtool n-tuple list */ 5462 ethtool_ntuple_flush(dev); 5463 5464 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5465 netif_napi_del(p); 5466 5467 /* Compatibility with error handling in drivers */ 5468 if (dev->reg_state == NETREG_UNINITIALIZED) { 5469 kfree((char *)dev - dev->padded); 5470 return; 5471 } 5472 5473 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5474 dev->reg_state = NETREG_RELEASED; 5475 5476 /* will free via device release */ 5477 put_device(&dev->dev); 5478} 5479EXPORT_SYMBOL(free_netdev); 5480 5481/** 5482 * synchronize_net - Synchronize with packet receive processing 5483 * 5484 * Wait for packets currently being received to be done. 5485 * Does not block later packets from starting. 5486 */ 5487void synchronize_net(void) 5488{ 5489 might_sleep(); 5490 synchronize_rcu(); 5491} 5492EXPORT_SYMBOL(synchronize_net); 5493 5494/** 5495 * unregister_netdevice_queue - remove device from the kernel 5496 * @dev: device 5497 * @head: list 5498 * 5499 * This function shuts down a device interface and removes it 5500 * from the kernel tables. 5501 * If head not NULL, device is queued to be unregistered later. 5502 * 5503 * Callers must hold the rtnl semaphore. You may want 5504 * unregister_netdev() instead of this. 5505 */ 5506 5507void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5508{ 5509 ASSERT_RTNL(); 5510 5511 if (head) { 5512 list_move_tail(&dev->unreg_list, head); 5513 } else { 5514 rollback_registered(dev); 5515 /* Finish processing unregister after unlock */ 5516 net_set_todo(dev); 5517 } 5518} 5519EXPORT_SYMBOL(unregister_netdevice_queue); 5520 5521/** 5522 * unregister_netdevice_many - unregister many devices 5523 * @head: list of devices 5524 */ 5525void unregister_netdevice_many(struct list_head *head) 5526{ 5527 struct net_device *dev; 5528 5529 if (!list_empty(head)) { 5530 rollback_registered_many(head); 5531 list_for_each_entry(dev, head, unreg_list) 5532 net_set_todo(dev); 5533 } 5534} 5535EXPORT_SYMBOL(unregister_netdevice_many); 5536 5537/** 5538 * unregister_netdev - remove device from the kernel 5539 * @dev: device 5540 * 5541 * This function shuts down a device interface and removes it 5542 * from the kernel tables. 5543 * 5544 * This is just a wrapper for unregister_netdevice that takes 5545 * the rtnl semaphore. In general you want to use this and not 5546 * unregister_netdevice. 5547 */ 5548void unregister_netdev(struct net_device *dev) 5549{ 5550 rtnl_lock(); 5551 unregister_netdevice(dev); 5552 rtnl_unlock(); 5553} 5554EXPORT_SYMBOL(unregister_netdev); 5555 5556/** 5557 * dev_change_net_namespace - move device to different nethost namespace 5558 * @dev: device 5559 * @net: network namespace 5560 * @pat: If not NULL name pattern to try if the current device name 5561 * is already taken in the destination network namespace. 5562 * 5563 * This function shuts down a device interface and moves it 5564 * to a new network namespace. On success 0 is returned, on 5565 * a failure a netagive errno code is returned. 5566 * 5567 * Callers must hold the rtnl semaphore. 5568 */ 5569 5570int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5571{ 5572 int err; 5573 5574 ASSERT_RTNL(); 5575 5576 /* Don't allow namespace local devices to be moved. */ 5577 err = -EINVAL; 5578 if (dev->features & NETIF_F_NETNS_LOCAL) 5579 goto out; 5580 5581 /* Ensure the device has been registrered */ 5582 err = -EINVAL; 5583 if (dev->reg_state != NETREG_REGISTERED) 5584 goto out; 5585 5586 /* Get out if there is nothing todo */ 5587 err = 0; 5588 if (net_eq(dev_net(dev), net)) 5589 goto out; 5590 5591 /* Pick the destination device name, and ensure 5592 * we can use it in the destination network namespace. 5593 */ 5594 err = -EEXIST; 5595 if (__dev_get_by_name(net, dev->name)) { 5596 /* We get here if we can't use the current device name */ 5597 if (!pat) 5598 goto out; 5599 if (dev_get_valid_name(dev, pat, 1)) 5600 goto out; 5601 } 5602 5603 /* 5604 * And now a mini version of register_netdevice unregister_netdevice. 5605 */ 5606 5607 /* If device is running close it first. */ 5608 dev_close(dev); 5609 5610 /* And unlink it from device chain */ 5611 err = -ENODEV; 5612 unlist_netdevice(dev); 5613 5614 synchronize_net(); 5615 5616 /* Shutdown queueing discipline. */ 5617 dev_shutdown(dev); 5618 5619 /* Notify protocols, that we are about to destroy 5620 this device. They should clean all the things. 5621 */ 5622 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5623 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5624 5625 /* 5626 * Flush the unicast and multicast chains 5627 */ 5628 dev_uc_flush(dev); 5629 dev_mc_flush(dev); 5630 5631 /* Actually switch the network namespace */ 5632 dev_net_set(dev, net); 5633 5634 /* If there is an ifindex conflict assign a new one */ 5635 if (__dev_get_by_index(net, dev->ifindex)) { 5636 int iflink = (dev->iflink == dev->ifindex); 5637 dev->ifindex = dev_new_index(net); 5638 if (iflink) 5639 dev->iflink = dev->ifindex; 5640 } 5641 5642 /* Fixup kobjects */ 5643 err = device_rename(&dev->dev, dev->name); 5644 WARN_ON(err); 5645 5646 /* Add the device back in the hashes */ 5647 list_netdevice(dev); 5648 5649 /* Notify protocols, that a new device appeared. */ 5650 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5651 5652 /* 5653 * Prevent userspace races by waiting until the network 5654 * device is fully setup before sending notifications. 5655 */ 5656 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5657 5658 synchronize_net(); 5659 err = 0; 5660out: 5661 return err; 5662} 5663EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5664 5665static int dev_cpu_callback(struct notifier_block *nfb, 5666 unsigned long action, 5667 void *ocpu) 5668{ 5669 struct sk_buff **list_skb; 5670 struct sk_buff *skb; 5671 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5672 struct softnet_data *sd, *oldsd; 5673 5674 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5675 return NOTIFY_OK; 5676 5677 local_irq_disable(); 5678 cpu = smp_processor_id(); 5679 sd = &per_cpu(softnet_data, cpu); 5680 oldsd = &per_cpu(softnet_data, oldcpu); 5681 5682 /* Find end of our completion_queue. */ 5683 list_skb = &sd->completion_queue; 5684 while (*list_skb) 5685 list_skb = &(*list_skb)->next; 5686 /* Append completion queue from offline CPU. */ 5687 *list_skb = oldsd->completion_queue; 5688 oldsd->completion_queue = NULL; 5689 5690 /* Append output queue from offline CPU. */ 5691 if (oldsd->output_queue) { 5692 *sd->output_queue_tailp = oldsd->output_queue; 5693 sd->output_queue_tailp = oldsd->output_queue_tailp; 5694 oldsd->output_queue = NULL; 5695 oldsd->output_queue_tailp = &oldsd->output_queue; 5696 } 5697 5698 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5699 local_irq_enable(); 5700 5701 /* Process offline CPU's input_pkt_queue */ 5702 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 5703 netif_rx(skb); 5704 input_queue_head_incr(oldsd); 5705 } 5706 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 5707 netif_rx(skb); 5708 input_queue_head_incr(oldsd); 5709 } 5710 5711 return NOTIFY_OK; 5712} 5713 5714 5715/** 5716 * netdev_increment_features - increment feature set by one 5717 * @all: current feature set 5718 * @one: new feature set 5719 * @mask: mask feature set 5720 * 5721 * Computes a new feature set after adding a device with feature set 5722 * @one to the master device with current feature set @all. Will not 5723 * enable anything that is off in @mask. Returns the new feature set. 5724 */ 5725unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5726 unsigned long mask) 5727{ 5728 /* If device needs checksumming, downgrade to it. */ 5729 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5730 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5731 else if (mask & NETIF_F_ALL_CSUM) { 5732 /* If one device supports v4/v6 checksumming, set for all. */ 5733 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5734 !(all & NETIF_F_GEN_CSUM)) { 5735 all &= ~NETIF_F_ALL_CSUM; 5736 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5737 } 5738 5739 /* If one device supports hw checksumming, set for all. */ 5740 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5741 all &= ~NETIF_F_ALL_CSUM; 5742 all |= NETIF_F_HW_CSUM; 5743 } 5744 } 5745 5746 one |= NETIF_F_ALL_CSUM; 5747 5748 one |= all & NETIF_F_ONE_FOR_ALL; 5749 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO; 5750 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5751 5752 return all; 5753} 5754EXPORT_SYMBOL(netdev_increment_features); 5755 5756static struct hlist_head *netdev_create_hash(void) 5757{ 5758 int i; 5759 struct hlist_head *hash; 5760 5761 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5762 if (hash != NULL) 5763 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5764 INIT_HLIST_HEAD(&hash[i]); 5765 5766 return hash; 5767} 5768 5769/* Initialize per network namespace state */ 5770static int __net_init netdev_init(struct net *net) 5771{ 5772 INIT_LIST_HEAD(&net->dev_base_head); 5773 5774 net->dev_name_head = netdev_create_hash(); 5775 if (net->dev_name_head == NULL) 5776 goto err_name; 5777 5778 net->dev_index_head = netdev_create_hash(); 5779 if (net->dev_index_head == NULL) 5780 goto err_idx; 5781 5782 return 0; 5783 5784err_idx: 5785 kfree(net->dev_name_head); 5786err_name: 5787 return -ENOMEM; 5788} 5789 5790/** 5791 * netdev_drivername - network driver for the device 5792 * @dev: network device 5793 * @buffer: buffer for resulting name 5794 * @len: size of buffer 5795 * 5796 * Determine network driver for device. 5797 */ 5798char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5799{ 5800 const struct device_driver *driver; 5801 const struct device *parent; 5802 5803 if (len <= 0 || !buffer) 5804 return buffer; 5805 buffer[0] = 0; 5806 5807 parent = dev->dev.parent; 5808 5809 if (!parent) 5810 return buffer; 5811 5812 driver = parent->driver; 5813 if (driver && driver->name) 5814 strlcpy(buffer, driver->name, len); 5815 return buffer; 5816} 5817 5818static void __net_exit netdev_exit(struct net *net) 5819{ 5820 kfree(net->dev_name_head); 5821 kfree(net->dev_index_head); 5822} 5823 5824static struct pernet_operations __net_initdata netdev_net_ops = { 5825 .init = netdev_init, 5826 .exit = netdev_exit, 5827}; 5828 5829static void __net_exit default_device_exit(struct net *net) 5830{ 5831 struct net_device *dev, *aux; 5832 /* 5833 * Push all migratable network devices back to the 5834 * initial network namespace 5835 */ 5836 rtnl_lock(); 5837 for_each_netdev_safe(net, dev, aux) { 5838 int err; 5839 char fb_name[IFNAMSIZ]; 5840 5841 /* Ignore unmoveable devices (i.e. loopback) */ 5842 if (dev->features & NETIF_F_NETNS_LOCAL) 5843 continue; 5844 5845 /* Leave virtual devices for the generic cleanup */ 5846 if (dev->rtnl_link_ops) 5847 continue; 5848 5849 /* Push remaing network devices to init_net */ 5850 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5851 err = dev_change_net_namespace(dev, &init_net, fb_name); 5852 if (err) { 5853 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5854 __func__, dev->name, err); 5855 BUG(); 5856 } 5857 } 5858 rtnl_unlock(); 5859} 5860 5861static void __net_exit default_device_exit_batch(struct list_head *net_list) 5862{ 5863 /* At exit all network devices most be removed from a network 5864 * namespace. Do this in the reverse order of registeration. 5865 * Do this across as many network namespaces as possible to 5866 * improve batching efficiency. 5867 */ 5868 struct net_device *dev; 5869 struct net *net; 5870 LIST_HEAD(dev_kill_list); 5871 5872 rtnl_lock(); 5873 list_for_each_entry(net, net_list, exit_list) { 5874 for_each_netdev_reverse(net, dev) { 5875 if (dev->rtnl_link_ops) 5876 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 5877 else 5878 unregister_netdevice_queue(dev, &dev_kill_list); 5879 } 5880 } 5881 unregister_netdevice_many(&dev_kill_list); 5882 rtnl_unlock(); 5883} 5884 5885static struct pernet_operations __net_initdata default_device_ops = { 5886 .exit = default_device_exit, 5887 .exit_batch = default_device_exit_batch, 5888}; 5889 5890/* 5891 * Initialize the DEV module. At boot time this walks the device list and 5892 * unhooks any devices that fail to initialise (normally hardware not 5893 * present) and leaves us with a valid list of present and active devices. 5894 * 5895 */ 5896 5897/* 5898 * This is called single threaded during boot, so no need 5899 * to take the rtnl semaphore. 5900 */ 5901static int __init net_dev_init(void) 5902{ 5903 int i, rc = -ENOMEM; 5904 5905 BUG_ON(!dev_boot_phase); 5906 5907 if (dev_proc_init()) 5908 goto out; 5909 5910 if (netdev_kobject_init()) 5911 goto out; 5912 5913 INIT_LIST_HEAD(&ptype_all); 5914 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5915 INIT_LIST_HEAD(&ptype_base[i]); 5916 5917 if (register_pernet_subsys(&netdev_net_ops)) 5918 goto out; 5919 5920 /* 5921 * Initialise the packet receive queues. 5922 */ 5923 5924 for_each_possible_cpu(i) { 5925 struct softnet_data *sd = &per_cpu(softnet_data, i); 5926 5927 memset(sd, 0, sizeof(*sd)); 5928 skb_queue_head_init(&sd->input_pkt_queue); 5929 skb_queue_head_init(&sd->process_queue); 5930 sd->completion_queue = NULL; 5931 INIT_LIST_HEAD(&sd->poll_list); 5932 sd->output_queue = NULL; 5933 sd->output_queue_tailp = &sd->output_queue; 5934#ifdef CONFIG_RPS 5935 sd->csd.func = rps_trigger_softirq; 5936 sd->csd.info = sd; 5937 sd->csd.flags = 0; 5938 sd->cpu = i; 5939#endif 5940 5941 sd->backlog.poll = process_backlog; 5942 sd->backlog.weight = weight_p; 5943 sd->backlog.gro_list = NULL; 5944 sd->backlog.gro_count = 0; 5945 } 5946 5947 dev_boot_phase = 0; 5948 5949 /* The loopback device is special if any other network devices 5950 * is present in a network namespace the loopback device must 5951 * be present. Since we now dynamically allocate and free the 5952 * loopback device ensure this invariant is maintained by 5953 * keeping the loopback device as the first device on the 5954 * list of network devices. Ensuring the loopback devices 5955 * is the first device that appears and the last network device 5956 * that disappears. 5957 */ 5958 if (register_pernet_device(&loopback_net_ops)) 5959 goto out; 5960 5961 if (register_pernet_device(&default_device_ops)) 5962 goto out; 5963 5964 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 5965 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 5966 5967 hotcpu_notifier(dev_cpu_callback, 0); 5968 dst_init(); 5969 dev_mcast_init(); 5970 rc = 0; 5971out: 5972 return rc; 5973} 5974 5975subsys_initcall(net_dev_init); 5976 5977static int __init initialize_hashrnd(void) 5978{ 5979 get_random_bytes(&hashrnd, sizeof(hashrnd)); 5980 return 0; 5981} 5982 5983late_initcall_sync(initialize_hashrnd); 5984