at v2.6.35 63 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23 24struct usb_device; 25struct usb_driver; 26struct wusb_dev; 27 28/*-------------------------------------------------------------------------*/ 29 30/* 31 * Host-side wrappers for standard USB descriptors ... these are parsed 32 * from the data provided by devices. Parsing turns them from a flat 33 * sequence of descriptors into a hierarchy: 34 * 35 * - devices have one (usually) or more configs; 36 * - configs have one (often) or more interfaces; 37 * - interfaces have one (usually) or more settings; 38 * - each interface setting has zero or (usually) more endpoints. 39 * - a SuperSpeed endpoint has a companion descriptor 40 * 41 * And there might be other descriptors mixed in with those. 42 * 43 * Devices may also have class-specific or vendor-specific descriptors. 44 */ 45 46struct ep_device; 47 48/** 49 * struct usb_host_endpoint - host-side endpoint descriptor and queue 50 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 51 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 52 * @urb_list: urbs queued to this endpoint; maintained by usbcore 53 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 54 * with one or more transfer descriptors (TDs) per urb 55 * @ep_dev: ep_device for sysfs info 56 * @extra: descriptors following this endpoint in the configuration 57 * @extralen: how many bytes of "extra" are valid 58 * @enabled: URBs may be submitted to this endpoint 59 * 60 * USB requests are always queued to a given endpoint, identified by a 61 * descriptor within an active interface in a given USB configuration. 62 */ 63struct usb_host_endpoint { 64 struct usb_endpoint_descriptor desc; 65 struct usb_ss_ep_comp_descriptor ss_ep_comp; 66 struct list_head urb_list; 67 void *hcpriv; 68 struct ep_device *ep_dev; /* For sysfs info */ 69 70 unsigned char *extra; /* Extra descriptors */ 71 int extralen; 72 int enabled; 73}; 74 75/* host-side wrapper for one interface setting's parsed descriptors */ 76struct usb_host_interface { 77 struct usb_interface_descriptor desc; 78 79 /* array of desc.bNumEndpoint endpoints associated with this 80 * interface setting. these will be in no particular order. 81 */ 82 struct usb_host_endpoint *endpoint; 83 84 char *string; /* iInterface string, if present */ 85 unsigned char *extra; /* Extra descriptors */ 86 int extralen; 87}; 88 89enum usb_interface_condition { 90 USB_INTERFACE_UNBOUND = 0, 91 USB_INTERFACE_BINDING, 92 USB_INTERFACE_BOUND, 93 USB_INTERFACE_UNBINDING, 94}; 95 96/** 97 * struct usb_interface - what usb device drivers talk to 98 * @altsetting: array of interface structures, one for each alternate 99 * setting that may be selected. Each one includes a set of 100 * endpoint configurations. They will be in no particular order. 101 * @cur_altsetting: the current altsetting. 102 * @num_altsetting: number of altsettings defined. 103 * @intf_assoc: interface association descriptor 104 * @minor: the minor number assigned to this interface, if this 105 * interface is bound to a driver that uses the USB major number. 106 * If this interface does not use the USB major, this field should 107 * be unused. The driver should set this value in the probe() 108 * function of the driver, after it has been assigned a minor 109 * number from the USB core by calling usb_register_dev(). 110 * @condition: binding state of the interface: not bound, binding 111 * (in probe()), bound to a driver, or unbinding (in disconnect()) 112 * @sysfs_files_created: sysfs attributes exist 113 * @ep_devs_created: endpoint child pseudo-devices exist 114 * @unregistering: flag set when the interface is being unregistered 115 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 116 * capability during autosuspend. 117 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 118 * has been deferred. 119 * @needs_binding: flag set when the driver should be re-probed or unbound 120 * following a reset or suspend operation it doesn't support. 121 * @dev: driver model's view of this device 122 * @usb_dev: if an interface is bound to the USB major, this will point 123 * to the sysfs representation for that device. 124 * @pm_usage_cnt: PM usage counter for this interface 125 * @reset_ws: Used for scheduling resets from atomic context. 126 * @reset_running: set to 1 if the interface is currently running a 127 * queued reset so that usb_cancel_queued_reset() doesn't try to 128 * remove from the workqueue when running inside the worker 129 * thread. See __usb_queue_reset_device(). 130 * 131 * USB device drivers attach to interfaces on a physical device. Each 132 * interface encapsulates a single high level function, such as feeding 133 * an audio stream to a speaker or reporting a change in a volume control. 134 * Many USB devices only have one interface. The protocol used to talk to 135 * an interface's endpoints can be defined in a usb "class" specification, 136 * or by a product's vendor. The (default) control endpoint is part of 137 * every interface, but is never listed among the interface's descriptors. 138 * 139 * The driver that is bound to the interface can use standard driver model 140 * calls such as dev_get_drvdata() on the dev member of this structure. 141 * 142 * Each interface may have alternate settings. The initial configuration 143 * of a device sets altsetting 0, but the device driver can change 144 * that setting using usb_set_interface(). Alternate settings are often 145 * used to control the use of periodic endpoints, such as by having 146 * different endpoints use different amounts of reserved USB bandwidth. 147 * All standards-conformant USB devices that use isochronous endpoints 148 * will use them in non-default settings. 149 * 150 * The USB specification says that alternate setting numbers must run from 151 * 0 to one less than the total number of alternate settings. But some 152 * devices manage to mess this up, and the structures aren't necessarily 153 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 154 * look up an alternate setting in the altsetting array based on its number. 155 */ 156struct usb_interface { 157 /* array of alternate settings for this interface, 158 * stored in no particular order */ 159 struct usb_host_interface *altsetting; 160 161 struct usb_host_interface *cur_altsetting; /* the currently 162 * active alternate setting */ 163 unsigned num_altsetting; /* number of alternate settings */ 164 165 /* If there is an interface association descriptor then it will list 166 * the associated interfaces */ 167 struct usb_interface_assoc_descriptor *intf_assoc; 168 169 int minor; /* minor number this interface is 170 * bound to */ 171 enum usb_interface_condition condition; /* state of binding */ 172 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 173 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 174 unsigned unregistering:1; /* unregistration is in progress */ 175 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 176 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 177 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 178 unsigned reset_running:1; 179 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 180 181 struct device dev; /* interface specific device info */ 182 struct device *usb_dev; 183 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 184 struct work_struct reset_ws; /* for resets in atomic context */ 185}; 186#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 187 188static inline void *usb_get_intfdata(struct usb_interface *intf) 189{ 190 return dev_get_drvdata(&intf->dev); 191} 192 193static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 194{ 195 dev_set_drvdata(&intf->dev, data); 196} 197 198struct usb_interface *usb_get_intf(struct usb_interface *intf); 199void usb_put_intf(struct usb_interface *intf); 200 201/* this maximum is arbitrary */ 202#define USB_MAXINTERFACES 32 203#define USB_MAXIADS (USB_MAXINTERFACES/2) 204 205/** 206 * struct usb_interface_cache - long-term representation of a device interface 207 * @num_altsetting: number of altsettings defined. 208 * @ref: reference counter. 209 * @altsetting: variable-length array of interface structures, one for 210 * each alternate setting that may be selected. Each one includes a 211 * set of endpoint configurations. They will be in no particular order. 212 * 213 * These structures persist for the lifetime of a usb_device, unlike 214 * struct usb_interface (which persists only as long as its configuration 215 * is installed). The altsetting arrays can be accessed through these 216 * structures at any time, permitting comparison of configurations and 217 * providing support for the /proc/bus/usb/devices pseudo-file. 218 */ 219struct usb_interface_cache { 220 unsigned num_altsetting; /* number of alternate settings */ 221 struct kref ref; /* reference counter */ 222 223 /* variable-length array of alternate settings for this interface, 224 * stored in no particular order */ 225 struct usb_host_interface altsetting[0]; 226}; 227#define ref_to_usb_interface_cache(r) \ 228 container_of(r, struct usb_interface_cache, ref) 229#define altsetting_to_usb_interface_cache(a) \ 230 container_of(a, struct usb_interface_cache, altsetting[0]) 231 232/** 233 * struct usb_host_config - representation of a device's configuration 234 * @desc: the device's configuration descriptor. 235 * @string: pointer to the cached version of the iConfiguration string, if 236 * present for this configuration. 237 * @intf_assoc: list of any interface association descriptors in this config 238 * @interface: array of pointers to usb_interface structures, one for each 239 * interface in the configuration. The number of interfaces is stored 240 * in desc.bNumInterfaces. These pointers are valid only while the 241 * the configuration is active. 242 * @intf_cache: array of pointers to usb_interface_cache structures, one 243 * for each interface in the configuration. These structures exist 244 * for the entire life of the device. 245 * @extra: pointer to buffer containing all extra descriptors associated 246 * with this configuration (those preceding the first interface 247 * descriptor). 248 * @extralen: length of the extra descriptors buffer. 249 * 250 * USB devices may have multiple configurations, but only one can be active 251 * at any time. Each encapsulates a different operational environment; 252 * for example, a dual-speed device would have separate configurations for 253 * full-speed and high-speed operation. The number of configurations 254 * available is stored in the device descriptor as bNumConfigurations. 255 * 256 * A configuration can contain multiple interfaces. Each corresponds to 257 * a different function of the USB device, and all are available whenever 258 * the configuration is active. The USB standard says that interfaces 259 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 260 * of devices get this wrong. In addition, the interface array is not 261 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 262 * look up an interface entry based on its number. 263 * 264 * Device drivers should not attempt to activate configurations. The choice 265 * of which configuration to install is a policy decision based on such 266 * considerations as available power, functionality provided, and the user's 267 * desires (expressed through userspace tools). However, drivers can call 268 * usb_reset_configuration() to reinitialize the current configuration and 269 * all its interfaces. 270 */ 271struct usb_host_config { 272 struct usb_config_descriptor desc; 273 274 char *string; /* iConfiguration string, if present */ 275 276 /* List of any Interface Association Descriptors in this 277 * configuration. */ 278 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 279 280 /* the interfaces associated with this configuration, 281 * stored in no particular order */ 282 struct usb_interface *interface[USB_MAXINTERFACES]; 283 284 /* Interface information available even when this is not the 285 * active configuration */ 286 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 287 288 unsigned char *extra; /* Extra descriptors */ 289 int extralen; 290}; 291 292int __usb_get_extra_descriptor(char *buffer, unsigned size, 293 unsigned char type, void **ptr); 294#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 295 __usb_get_extra_descriptor((ifpoint)->extra, \ 296 (ifpoint)->extralen, \ 297 type, (void **)ptr) 298 299/* ----------------------------------------------------------------------- */ 300 301/* USB device number allocation bitmap */ 302struct usb_devmap { 303 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 304}; 305 306/* 307 * Allocated per bus (tree of devices) we have: 308 */ 309struct usb_bus { 310 struct device *controller; /* host/master side hardware */ 311 int busnum; /* Bus number (in order of reg) */ 312 const char *bus_name; /* stable id (PCI slot_name etc) */ 313 u8 uses_dma; /* Does the host controller use DMA? */ 314 u8 otg_port; /* 0, or number of OTG/HNP port */ 315 unsigned is_b_host:1; /* true during some HNP roleswitches */ 316 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 317 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 318 319 int devnum_next; /* Next open device number in 320 * round-robin allocation */ 321 322 struct usb_devmap devmap; /* device address allocation map */ 323 struct usb_device *root_hub; /* Root hub */ 324 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 325 struct list_head bus_list; /* list of busses */ 326 327 int bandwidth_allocated; /* on this bus: how much of the time 328 * reserved for periodic (intr/iso) 329 * requests is used, on average? 330 * Units: microseconds/frame. 331 * Limits: Full/low speed reserve 90%, 332 * while high speed reserves 80%. 333 */ 334 int bandwidth_int_reqs; /* number of Interrupt requests */ 335 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 336 337#ifdef CONFIG_USB_DEVICEFS 338 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 339#endif 340 341#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 342 struct mon_bus *mon_bus; /* non-null when associated */ 343 int monitored; /* non-zero when monitored */ 344#endif 345}; 346 347/* ----------------------------------------------------------------------- */ 348 349/* This is arbitrary. 350 * From USB 2.0 spec Table 11-13, offset 7, a hub can 351 * have up to 255 ports. The most yet reported is 10. 352 * 353 * Current Wireless USB host hardware (Intel i1480 for example) allows 354 * up to 22 devices to connect. Upcoming hardware might raise that 355 * limit. Because the arrays need to add a bit for hub status data, we 356 * do 31, so plus one evens out to four bytes. 357 */ 358#define USB_MAXCHILDREN (31) 359 360struct usb_tt; 361 362/** 363 * struct usb_device - kernel's representation of a USB device 364 * @devnum: device number; address on a USB bus 365 * @devpath: device ID string for use in messages (e.g., /port/...) 366 * @route: tree topology hex string for use with xHCI 367 * @state: device state: configured, not attached, etc. 368 * @speed: device speed: high/full/low (or error) 369 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 370 * @ttport: device port on that tt hub 371 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 372 * @parent: our hub, unless we're the root 373 * @bus: bus we're part of 374 * @ep0: endpoint 0 data (default control pipe) 375 * @dev: generic device interface 376 * @descriptor: USB device descriptor 377 * @config: all of the device's configs 378 * @actconfig: the active configuration 379 * @ep_in: array of IN endpoints 380 * @ep_out: array of OUT endpoints 381 * @rawdescriptors: raw descriptors for each config 382 * @bus_mA: Current available from the bus 383 * @portnum: parent port number (origin 1) 384 * @level: number of USB hub ancestors 385 * @can_submit: URBs may be submitted 386 * @persist_enabled: USB_PERSIST enabled for this device 387 * @have_langid: whether string_langid is valid 388 * @authorized: policy has said we can use it; 389 * (user space) policy determines if we authorize this device to be 390 * used or not. By default, wired USB devices are authorized. 391 * WUSB devices are not, until we authorize them from user space. 392 * FIXME -- complete doc 393 * @authenticated: Crypto authentication passed 394 * @wusb: device is Wireless USB 395 * @string_langid: language ID for strings 396 * @product: iProduct string, if present (static) 397 * @manufacturer: iManufacturer string, if present (static) 398 * @serial: iSerialNumber string, if present (static) 399 * @filelist: usbfs files that are open to this device 400 * @usb_classdev: USB class device that was created for usbfs device 401 * access from userspace 402 * @usbfs_dentry: usbfs dentry entry for the device 403 * @maxchild: number of ports if hub 404 * @children: child devices - USB devices that are attached to this hub 405 * @quirks: quirks of the whole device 406 * @urbnum: number of URBs submitted for the whole device 407 * @active_duration: total time device is not suspended 408 * @last_busy: time of last use 409 * @autosuspend_delay: in jiffies 410 * @connect_time: time device was first connected 411 * @do_remote_wakeup: remote wakeup should be enabled 412 * @reset_resume: needs reset instead of resume 413 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 414 * specific data for the device. 415 * @slot_id: Slot ID assigned by xHCI 416 * 417 * Notes: 418 * Usbcore drivers should not set usbdev->state directly. Instead use 419 * usb_set_device_state(). 420 */ 421struct usb_device { 422 int devnum; 423 char devpath[16]; 424 u32 route; 425 enum usb_device_state state; 426 enum usb_device_speed speed; 427 428 struct usb_tt *tt; 429 int ttport; 430 431 unsigned int toggle[2]; 432 433 struct usb_device *parent; 434 struct usb_bus *bus; 435 struct usb_host_endpoint ep0; 436 437 struct device dev; 438 439 struct usb_device_descriptor descriptor; 440 struct usb_host_config *config; 441 442 struct usb_host_config *actconfig; 443 struct usb_host_endpoint *ep_in[16]; 444 struct usb_host_endpoint *ep_out[16]; 445 446 char **rawdescriptors; 447 448 unsigned short bus_mA; 449 u8 portnum; 450 u8 level; 451 452 unsigned can_submit:1; 453 unsigned persist_enabled:1; 454 unsigned have_langid:1; 455 unsigned authorized:1; 456 unsigned authenticated:1; 457 unsigned wusb:1; 458 int string_langid; 459 460 /* static strings from the device */ 461 char *product; 462 char *manufacturer; 463 char *serial; 464 465 struct list_head filelist; 466#ifdef CONFIG_USB_DEVICE_CLASS 467 struct device *usb_classdev; 468#endif 469#ifdef CONFIG_USB_DEVICEFS 470 struct dentry *usbfs_dentry; 471#endif 472 473 int maxchild; 474 struct usb_device *children[USB_MAXCHILDREN]; 475 476 u32 quirks; 477 atomic_t urbnum; 478 479 unsigned long active_duration; 480 481#ifdef CONFIG_PM 482 unsigned long last_busy; 483 int autosuspend_delay; 484 unsigned long connect_time; 485 486 unsigned do_remote_wakeup:1; 487 unsigned reset_resume:1; 488#endif 489 struct wusb_dev *wusb_dev; 490 int slot_id; 491}; 492#define to_usb_device(d) container_of(d, struct usb_device, dev) 493 494static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 495{ 496 return to_usb_device(intf->dev.parent); 497} 498 499extern struct usb_device *usb_get_dev(struct usb_device *dev); 500extern void usb_put_dev(struct usb_device *dev); 501 502/* USB device locking */ 503#define usb_lock_device(udev) device_lock(&(udev)->dev) 504#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 505#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 506extern int usb_lock_device_for_reset(struct usb_device *udev, 507 const struct usb_interface *iface); 508 509/* USB port reset for device reinitialization */ 510extern int usb_reset_device(struct usb_device *dev); 511extern void usb_queue_reset_device(struct usb_interface *dev); 512 513 514/* USB autosuspend and autoresume */ 515#ifdef CONFIG_USB_SUSPEND 516extern void usb_enable_autosuspend(struct usb_device *udev); 517extern void usb_disable_autosuspend(struct usb_device *udev); 518 519extern int usb_autopm_get_interface(struct usb_interface *intf); 520extern void usb_autopm_put_interface(struct usb_interface *intf); 521extern int usb_autopm_get_interface_async(struct usb_interface *intf); 522extern void usb_autopm_put_interface_async(struct usb_interface *intf); 523extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 524extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 525 526static inline void usb_mark_last_busy(struct usb_device *udev) 527{ 528 udev->last_busy = jiffies; 529} 530 531#else 532 533static inline int usb_enable_autosuspend(struct usb_device *udev) 534{ return 0; } 535static inline int usb_disable_autosuspend(struct usb_device *udev) 536{ return 0; } 537 538static inline int usb_autopm_get_interface(struct usb_interface *intf) 539{ return 0; } 540static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 541{ return 0; } 542 543static inline void usb_autopm_put_interface(struct usb_interface *intf) 544{ } 545static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 546{ } 547static inline void usb_autopm_get_interface_no_resume( 548 struct usb_interface *intf) 549{ } 550static inline void usb_autopm_put_interface_no_suspend( 551 struct usb_interface *intf) 552{ } 553static inline void usb_mark_last_busy(struct usb_device *udev) 554{ } 555#endif 556 557/*-------------------------------------------------------------------------*/ 558 559/* for drivers using iso endpoints */ 560extern int usb_get_current_frame_number(struct usb_device *usb_dev); 561 562/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 563extern int usb_alloc_streams(struct usb_interface *interface, 564 struct usb_host_endpoint **eps, unsigned int num_eps, 565 unsigned int num_streams, gfp_t mem_flags); 566 567/* Reverts a group of bulk endpoints back to not using stream IDs. */ 568extern void usb_free_streams(struct usb_interface *interface, 569 struct usb_host_endpoint **eps, unsigned int num_eps, 570 gfp_t mem_flags); 571 572/* used these for multi-interface device registration */ 573extern int usb_driver_claim_interface(struct usb_driver *driver, 574 struct usb_interface *iface, void *priv); 575 576/** 577 * usb_interface_claimed - returns true iff an interface is claimed 578 * @iface: the interface being checked 579 * 580 * Returns true (nonzero) iff the interface is claimed, else false (zero). 581 * Callers must own the driver model's usb bus readlock. So driver 582 * probe() entries don't need extra locking, but other call contexts 583 * may need to explicitly claim that lock. 584 * 585 */ 586static inline int usb_interface_claimed(struct usb_interface *iface) 587{ 588 return (iface->dev.driver != NULL); 589} 590 591extern void usb_driver_release_interface(struct usb_driver *driver, 592 struct usb_interface *iface); 593const struct usb_device_id *usb_match_id(struct usb_interface *interface, 594 const struct usb_device_id *id); 595extern int usb_match_one_id(struct usb_interface *interface, 596 const struct usb_device_id *id); 597 598extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 599 int minor); 600extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 601 unsigned ifnum); 602extern struct usb_host_interface *usb_altnum_to_altsetting( 603 const struct usb_interface *intf, unsigned int altnum); 604extern struct usb_host_interface *usb_find_alt_setting( 605 struct usb_host_config *config, 606 unsigned int iface_num, 607 unsigned int alt_num); 608 609 610/** 611 * usb_make_path - returns stable device path in the usb tree 612 * @dev: the device whose path is being constructed 613 * @buf: where to put the string 614 * @size: how big is "buf"? 615 * 616 * Returns length of the string (> 0) or negative if size was too small. 617 * 618 * This identifier is intended to be "stable", reflecting physical paths in 619 * hardware such as physical bus addresses for host controllers or ports on 620 * USB hubs. That makes it stay the same until systems are physically 621 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 622 * controllers. Adding and removing devices, including virtual root hubs 623 * in host controller driver modules, does not change these path identifers; 624 * neither does rebooting or re-enumerating. These are more useful identifiers 625 * than changeable ("unstable") ones like bus numbers or device addresses. 626 * 627 * With a partial exception for devices connected to USB 2.0 root hubs, these 628 * identifiers are also predictable. So long as the device tree isn't changed, 629 * plugging any USB device into a given hub port always gives it the same path. 630 * Because of the use of "companion" controllers, devices connected to ports on 631 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 632 * high speed, and a different one if they are full or low speed. 633 */ 634static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 635{ 636 int actual; 637 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 638 dev->devpath); 639 return (actual >= (int)size) ? -1 : actual; 640} 641 642/*-------------------------------------------------------------------------*/ 643 644#define USB_DEVICE_ID_MATCH_DEVICE \ 645 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 646#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 647 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 648#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 649 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 650#define USB_DEVICE_ID_MATCH_DEV_INFO \ 651 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 652 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 653 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 654#define USB_DEVICE_ID_MATCH_INT_INFO \ 655 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 656 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 657 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 658 659/** 660 * USB_DEVICE - macro used to describe a specific usb device 661 * @vend: the 16 bit USB Vendor ID 662 * @prod: the 16 bit USB Product ID 663 * 664 * This macro is used to create a struct usb_device_id that matches a 665 * specific device. 666 */ 667#define USB_DEVICE(vend, prod) \ 668 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 669 .idVendor = (vend), \ 670 .idProduct = (prod) 671/** 672 * USB_DEVICE_VER - describe a specific usb device with a version range 673 * @vend: the 16 bit USB Vendor ID 674 * @prod: the 16 bit USB Product ID 675 * @lo: the bcdDevice_lo value 676 * @hi: the bcdDevice_hi value 677 * 678 * This macro is used to create a struct usb_device_id that matches a 679 * specific device, with a version range. 680 */ 681#define USB_DEVICE_VER(vend, prod, lo, hi) \ 682 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 683 .idVendor = (vend), \ 684 .idProduct = (prod), \ 685 .bcdDevice_lo = (lo), \ 686 .bcdDevice_hi = (hi) 687 688/** 689 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 690 * @vend: the 16 bit USB Vendor ID 691 * @prod: the 16 bit USB Product ID 692 * @pr: bInterfaceProtocol value 693 * 694 * This macro is used to create a struct usb_device_id that matches a 695 * specific interface protocol of devices. 696 */ 697#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 698 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 699 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 700 .idVendor = (vend), \ 701 .idProduct = (prod), \ 702 .bInterfaceProtocol = (pr) 703 704/** 705 * USB_DEVICE_INFO - macro used to describe a class of usb devices 706 * @cl: bDeviceClass value 707 * @sc: bDeviceSubClass value 708 * @pr: bDeviceProtocol value 709 * 710 * This macro is used to create a struct usb_device_id that matches a 711 * specific class of devices. 712 */ 713#define USB_DEVICE_INFO(cl, sc, pr) \ 714 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 715 .bDeviceClass = (cl), \ 716 .bDeviceSubClass = (sc), \ 717 .bDeviceProtocol = (pr) 718 719/** 720 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 721 * @cl: bInterfaceClass value 722 * @sc: bInterfaceSubClass value 723 * @pr: bInterfaceProtocol value 724 * 725 * This macro is used to create a struct usb_device_id that matches a 726 * specific class of interfaces. 727 */ 728#define USB_INTERFACE_INFO(cl, sc, pr) \ 729 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 730 .bInterfaceClass = (cl), \ 731 .bInterfaceSubClass = (sc), \ 732 .bInterfaceProtocol = (pr) 733 734/** 735 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 736 * @vend: the 16 bit USB Vendor ID 737 * @prod: the 16 bit USB Product ID 738 * @cl: bInterfaceClass value 739 * @sc: bInterfaceSubClass value 740 * @pr: bInterfaceProtocol value 741 * 742 * This macro is used to create a struct usb_device_id that matches a 743 * specific device with a specific class of interfaces. 744 * 745 * This is especially useful when explicitly matching devices that have 746 * vendor specific bDeviceClass values, but standards-compliant interfaces. 747 */ 748#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 749 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 750 | USB_DEVICE_ID_MATCH_DEVICE, \ 751 .idVendor = (vend), \ 752 .idProduct = (prod), \ 753 .bInterfaceClass = (cl), \ 754 .bInterfaceSubClass = (sc), \ 755 .bInterfaceProtocol = (pr) 756 757/* ----------------------------------------------------------------------- */ 758 759/* Stuff for dynamic usb ids */ 760struct usb_dynids { 761 spinlock_t lock; 762 struct list_head list; 763}; 764 765struct usb_dynid { 766 struct list_head node; 767 struct usb_device_id id; 768}; 769 770extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 771 struct device_driver *driver, 772 const char *buf, size_t count); 773 774/** 775 * struct usbdrv_wrap - wrapper for driver-model structure 776 * @driver: The driver-model core driver structure. 777 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 778 */ 779struct usbdrv_wrap { 780 struct device_driver driver; 781 int for_devices; 782}; 783 784/** 785 * struct usb_driver - identifies USB interface driver to usbcore 786 * @name: The driver name should be unique among USB drivers, 787 * and should normally be the same as the module name. 788 * @probe: Called to see if the driver is willing to manage a particular 789 * interface on a device. If it is, probe returns zero and uses 790 * usb_set_intfdata() to associate driver-specific data with the 791 * interface. It may also use usb_set_interface() to specify the 792 * appropriate altsetting. If unwilling to manage the interface, 793 * return -ENODEV, if genuine IO errors occured, an appropriate 794 * negative errno value. 795 * @disconnect: Called when the interface is no longer accessible, usually 796 * because its device has been (or is being) disconnected or the 797 * driver module is being unloaded. 798 * @ioctl: Used for drivers that want to talk to userspace through 799 * the "usbfs" filesystem. This lets devices provide ways to 800 * expose information to user space regardless of where they 801 * do (or don't) show up otherwise in the filesystem. 802 * @suspend: Called when the device is going to be suspended by the system. 803 * @resume: Called when the device is being resumed by the system. 804 * @reset_resume: Called when the suspended device has been reset instead 805 * of being resumed. 806 * @pre_reset: Called by usb_reset_device() when the device 807 * is about to be reset. 808 * @post_reset: Called by usb_reset_device() after the device 809 * has been reset 810 * @id_table: USB drivers use ID table to support hotplugging. 811 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 812 * or your driver's probe function will never get called. 813 * @dynids: used internally to hold the list of dynamically added device 814 * ids for this driver. 815 * @drvwrap: Driver-model core structure wrapper. 816 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 817 * added to this driver by preventing the sysfs file from being created. 818 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 819 * for interfaces bound to this driver. 820 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 821 * endpoints before calling the driver's disconnect method. 822 * 823 * USB interface drivers must provide a name, probe() and disconnect() 824 * methods, and an id_table. Other driver fields are optional. 825 * 826 * The id_table is used in hotplugging. It holds a set of descriptors, 827 * and specialized data may be associated with each entry. That table 828 * is used by both user and kernel mode hotplugging support. 829 * 830 * The probe() and disconnect() methods are called in a context where 831 * they can sleep, but they should avoid abusing the privilege. Most 832 * work to connect to a device should be done when the device is opened, 833 * and undone at the last close. The disconnect code needs to address 834 * concurrency issues with respect to open() and close() methods, as 835 * well as forcing all pending I/O requests to complete (by unlinking 836 * them as necessary, and blocking until the unlinks complete). 837 */ 838struct usb_driver { 839 const char *name; 840 841 int (*probe) (struct usb_interface *intf, 842 const struct usb_device_id *id); 843 844 void (*disconnect) (struct usb_interface *intf); 845 846 int (*ioctl) (struct usb_interface *intf, unsigned int code, 847 void *buf); 848 849 int (*suspend) (struct usb_interface *intf, pm_message_t message); 850 int (*resume) (struct usb_interface *intf); 851 int (*reset_resume)(struct usb_interface *intf); 852 853 int (*pre_reset)(struct usb_interface *intf); 854 int (*post_reset)(struct usb_interface *intf); 855 856 const struct usb_device_id *id_table; 857 858 struct usb_dynids dynids; 859 struct usbdrv_wrap drvwrap; 860 unsigned int no_dynamic_id:1; 861 unsigned int supports_autosuspend:1; 862 unsigned int soft_unbind:1; 863}; 864#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 865 866/** 867 * struct usb_device_driver - identifies USB device driver to usbcore 868 * @name: The driver name should be unique among USB drivers, 869 * and should normally be the same as the module name. 870 * @probe: Called to see if the driver is willing to manage a particular 871 * device. If it is, probe returns zero and uses dev_set_drvdata() 872 * to associate driver-specific data with the device. If unwilling 873 * to manage the device, return a negative errno value. 874 * @disconnect: Called when the device is no longer accessible, usually 875 * because it has been (or is being) disconnected or the driver's 876 * module is being unloaded. 877 * @suspend: Called when the device is going to be suspended by the system. 878 * @resume: Called when the device is being resumed by the system. 879 * @drvwrap: Driver-model core structure wrapper. 880 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 881 * for devices bound to this driver. 882 * 883 * USB drivers must provide all the fields listed above except drvwrap. 884 */ 885struct usb_device_driver { 886 const char *name; 887 888 int (*probe) (struct usb_device *udev); 889 void (*disconnect) (struct usb_device *udev); 890 891 int (*suspend) (struct usb_device *udev, pm_message_t message); 892 int (*resume) (struct usb_device *udev, pm_message_t message); 893 struct usbdrv_wrap drvwrap; 894 unsigned int supports_autosuspend:1; 895}; 896#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 897 drvwrap.driver) 898 899extern struct bus_type usb_bus_type; 900 901/** 902 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 903 * @name: the usb class device name for this driver. Will show up in sysfs. 904 * @devnode: Callback to provide a naming hint for a possible 905 * device node to create. 906 * @fops: pointer to the struct file_operations of this driver. 907 * @minor_base: the start of the minor range for this driver. 908 * 909 * This structure is used for the usb_register_dev() and 910 * usb_unregister_dev() functions, to consolidate a number of the 911 * parameters used for them. 912 */ 913struct usb_class_driver { 914 char *name; 915 char *(*devnode)(struct device *dev, mode_t *mode); 916 const struct file_operations *fops; 917 int minor_base; 918}; 919 920/* 921 * use these in module_init()/module_exit() 922 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 923 */ 924extern int usb_register_driver(struct usb_driver *, struct module *, 925 const char *); 926static inline int usb_register(struct usb_driver *driver) 927{ 928 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 929} 930extern void usb_deregister(struct usb_driver *); 931 932extern int usb_register_device_driver(struct usb_device_driver *, 933 struct module *); 934extern void usb_deregister_device_driver(struct usb_device_driver *); 935 936extern int usb_register_dev(struct usb_interface *intf, 937 struct usb_class_driver *class_driver); 938extern void usb_deregister_dev(struct usb_interface *intf, 939 struct usb_class_driver *class_driver); 940 941extern int usb_disabled(void); 942 943/* ----------------------------------------------------------------------- */ 944 945/* 946 * URB support, for asynchronous request completions 947 */ 948 949/* 950 * urb->transfer_flags: 951 * 952 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 953 */ 954#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 955#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 956 * ignored */ 957#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 958#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 959#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 960#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 961 * needed */ 962#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 963 964/* The following flags are used internally by usbcore and HCDs */ 965#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 966#define URB_DIR_OUT 0 967#define URB_DIR_MASK URB_DIR_IN 968 969#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 970#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 971#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 972#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 973#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 974#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 975#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 976 977struct usb_iso_packet_descriptor { 978 unsigned int offset; 979 unsigned int length; /* expected length */ 980 unsigned int actual_length; 981 int status; 982}; 983 984struct urb; 985 986struct usb_anchor { 987 struct list_head urb_list; 988 wait_queue_head_t wait; 989 spinlock_t lock; 990 unsigned int poisoned:1; 991}; 992 993static inline void init_usb_anchor(struct usb_anchor *anchor) 994{ 995 INIT_LIST_HEAD(&anchor->urb_list); 996 init_waitqueue_head(&anchor->wait); 997 spin_lock_init(&anchor->lock); 998} 999 1000typedef void (*usb_complete_t)(struct urb *); 1001 1002/** 1003 * struct urb - USB Request Block 1004 * @urb_list: For use by current owner of the URB. 1005 * @anchor_list: membership in the list of an anchor 1006 * @anchor: to anchor URBs to a common mooring 1007 * @ep: Points to the endpoint's data structure. Will eventually 1008 * replace @pipe. 1009 * @pipe: Holds endpoint number, direction, type, and more. 1010 * Create these values with the eight macros available; 1011 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1012 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1013 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1014 * numbers range from zero to fifteen. Note that "in" endpoint two 1015 * is a different endpoint (and pipe) from "out" endpoint two. 1016 * The current configuration controls the existence, type, and 1017 * maximum packet size of any given endpoint. 1018 * @dev: Identifies the USB device to perform the request. 1019 * @status: This is read in non-iso completion functions to get the 1020 * status of the particular request. ISO requests only use it 1021 * to tell whether the URB was unlinked; detailed status for 1022 * each frame is in the fields of the iso_frame-desc. 1023 * @transfer_flags: A variety of flags may be used to affect how URB 1024 * submission, unlinking, or operation are handled. Different 1025 * kinds of URB can use different flags. 1026 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1027 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1028 * (however, do not leave garbage in transfer_buffer even then). 1029 * This buffer must be suitable for DMA; allocate it with 1030 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1031 * of this buffer will be modified. This buffer is used for the data 1032 * stage of control transfers. 1033 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1034 * the device driver is saying that it provided this DMA address, 1035 * which the host controller driver should use in preference to the 1036 * transfer_buffer. 1037 * @sg: scatter gather buffer list 1038 * @num_sgs: number of entries in the sg list 1039 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1040 * be broken up into chunks according to the current maximum packet 1041 * size for the endpoint, which is a function of the configuration 1042 * and is encoded in the pipe. When the length is zero, neither 1043 * transfer_buffer nor transfer_dma is used. 1044 * @actual_length: This is read in non-iso completion functions, and 1045 * it tells how many bytes (out of transfer_buffer_length) were 1046 * transferred. It will normally be the same as requested, unless 1047 * either an error was reported or a short read was performed. 1048 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1049 * short reads be reported as errors. 1050 * @setup_packet: Only used for control transfers, this points to eight bytes 1051 * of setup data. Control transfers always start by sending this data 1052 * to the device. Then transfer_buffer is read or written, if needed. 1053 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1054 * this field; setup_packet must point to a valid buffer. 1055 * @start_frame: Returns the initial frame for isochronous transfers. 1056 * @number_of_packets: Lists the number of ISO transfer buffers. 1057 * @interval: Specifies the polling interval for interrupt or isochronous 1058 * transfers. The units are frames (milliseconds) for full and low 1059 * speed devices, and microframes (1/8 millisecond) for highspeed 1060 * and SuperSpeed devices. 1061 * @error_count: Returns the number of ISO transfers that reported errors. 1062 * @context: For use in completion functions. This normally points to 1063 * request-specific driver context. 1064 * @complete: Completion handler. This URB is passed as the parameter to the 1065 * completion function. The completion function may then do what 1066 * it likes with the URB, including resubmitting or freeing it. 1067 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1068 * collect the transfer status for each buffer. 1069 * 1070 * This structure identifies USB transfer requests. URBs must be allocated by 1071 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1072 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1073 * are submitted using usb_submit_urb(), and pending requests may be canceled 1074 * using usb_unlink_urb() or usb_kill_urb(). 1075 * 1076 * Data Transfer Buffers: 1077 * 1078 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1079 * taken from the general page pool. That is provided by transfer_buffer 1080 * (control requests also use setup_packet), and host controller drivers 1081 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1082 * mapping operations can be expensive on some platforms (perhaps using a dma 1083 * bounce buffer or talking to an IOMMU), 1084 * although they're cheap on commodity x86 and ppc hardware. 1085 * 1086 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1087 * which tells the host controller driver that no such mapping is needed for 1088 * the transfer_buffer since 1089 * the device driver is DMA-aware. For example, a device driver might 1090 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1091 * When this transfer flag is provided, host controller drivers will 1092 * attempt to use the dma address found in the transfer_dma 1093 * field rather than determining a dma address themselves. 1094 * 1095 * Note that transfer_buffer must still be set if the controller 1096 * does not support DMA (as indicated by bus.uses_dma) and when talking 1097 * to root hub. If you have to trasfer between highmem zone and the device 1098 * on such controller, create a bounce buffer or bail out with an error. 1099 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1100 * capable, assign NULL to it, so that usbmon knows not to use the value. 1101 * The setup_packet must always be set, so it cannot be located in highmem. 1102 * 1103 * Initialization: 1104 * 1105 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1106 * zero), and complete fields. All URBs must also initialize 1107 * transfer_buffer and transfer_buffer_length. They may provide the 1108 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1109 * to be treated as errors; that flag is invalid for write requests. 1110 * 1111 * Bulk URBs may 1112 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1113 * should always terminate with a short packet, even if it means adding an 1114 * extra zero length packet. 1115 * 1116 * Control URBs must provide a valid pointer in the setup_packet field. 1117 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1118 * beforehand. 1119 * 1120 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1121 * or, for highspeed devices, 125 microsecond units) 1122 * to poll for transfers. After the URB has been submitted, the interval 1123 * field reflects how the transfer was actually scheduled. 1124 * The polling interval may be more frequent than requested. 1125 * For example, some controllers have a maximum interval of 32 milliseconds, 1126 * while others support intervals of up to 1024 milliseconds. 1127 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1128 * endpoints, as well as high speed interrupt endpoints, the encoding of 1129 * the transfer interval in the endpoint descriptor is logarithmic. 1130 * Device drivers must convert that value to linear units themselves.) 1131 * 1132 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1133 * the host controller to schedule the transfer as soon as bandwidth 1134 * utilization allows, and then set start_frame to reflect the actual frame 1135 * selected during submission. Otherwise drivers must specify the start_frame 1136 * and handle the case where the transfer can't begin then. However, drivers 1137 * won't know how bandwidth is currently allocated, and while they can 1138 * find the current frame using usb_get_current_frame_number () they can't 1139 * know the range for that frame number. (Ranges for frame counter values 1140 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1141 * 1142 * Isochronous URBs have a different data transfer model, in part because 1143 * the quality of service is only "best effort". Callers provide specially 1144 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1145 * at the end. Each such packet is an individual ISO transfer. Isochronous 1146 * URBs are normally queued, submitted by drivers to arrange that 1147 * transfers are at least double buffered, and then explicitly resubmitted 1148 * in completion handlers, so 1149 * that data (such as audio or video) streams at as constant a rate as the 1150 * host controller scheduler can support. 1151 * 1152 * Completion Callbacks: 1153 * 1154 * The completion callback is made in_interrupt(), and one of the first 1155 * things that a completion handler should do is check the status field. 1156 * The status field is provided for all URBs. It is used to report 1157 * unlinked URBs, and status for all non-ISO transfers. It should not 1158 * be examined before the URB is returned to the completion handler. 1159 * 1160 * The context field is normally used to link URBs back to the relevant 1161 * driver or request state. 1162 * 1163 * When the completion callback is invoked for non-isochronous URBs, the 1164 * actual_length field tells how many bytes were transferred. This field 1165 * is updated even when the URB terminated with an error or was unlinked. 1166 * 1167 * ISO transfer status is reported in the status and actual_length fields 1168 * of the iso_frame_desc array, and the number of errors is reported in 1169 * error_count. Completion callbacks for ISO transfers will normally 1170 * (re)submit URBs to ensure a constant transfer rate. 1171 * 1172 * Note that even fields marked "public" should not be touched by the driver 1173 * when the urb is owned by the hcd, that is, since the call to 1174 * usb_submit_urb() till the entry into the completion routine. 1175 */ 1176struct urb { 1177 /* private: usb core and host controller only fields in the urb */ 1178 struct kref kref; /* reference count of the URB */ 1179 void *hcpriv; /* private data for host controller */ 1180 atomic_t use_count; /* concurrent submissions counter */ 1181 atomic_t reject; /* submissions will fail */ 1182 int unlinked; /* unlink error code */ 1183 1184 /* public: documented fields in the urb that can be used by drivers */ 1185 struct list_head urb_list; /* list head for use by the urb's 1186 * current owner */ 1187 struct list_head anchor_list; /* the URB may be anchored */ 1188 struct usb_anchor *anchor; 1189 struct usb_device *dev; /* (in) pointer to associated device */ 1190 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1191 unsigned int pipe; /* (in) pipe information */ 1192 unsigned int stream_id; /* (in) stream ID */ 1193 int status; /* (return) non-ISO status */ 1194 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1195 void *transfer_buffer; /* (in) associated data buffer */ 1196 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1197 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1198 int num_sgs; /* (in) number of entries in the sg list */ 1199 u32 transfer_buffer_length; /* (in) data buffer length */ 1200 u32 actual_length; /* (return) actual transfer length */ 1201 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1202 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1203 int start_frame; /* (modify) start frame (ISO) */ 1204 int number_of_packets; /* (in) number of ISO packets */ 1205 int interval; /* (modify) transfer interval 1206 * (INT/ISO) */ 1207 int error_count; /* (return) number of ISO errors */ 1208 void *context; /* (in) context for completion */ 1209 usb_complete_t complete; /* (in) completion routine */ 1210 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1211 /* (in) ISO ONLY */ 1212}; 1213 1214/* ----------------------------------------------------------------------- */ 1215 1216/** 1217 * usb_fill_control_urb - initializes a control urb 1218 * @urb: pointer to the urb to initialize. 1219 * @dev: pointer to the struct usb_device for this urb. 1220 * @pipe: the endpoint pipe 1221 * @setup_packet: pointer to the setup_packet buffer 1222 * @transfer_buffer: pointer to the transfer buffer 1223 * @buffer_length: length of the transfer buffer 1224 * @complete_fn: pointer to the usb_complete_t function 1225 * @context: what to set the urb context to. 1226 * 1227 * Initializes a control urb with the proper information needed to submit 1228 * it to a device. 1229 */ 1230static inline void usb_fill_control_urb(struct urb *urb, 1231 struct usb_device *dev, 1232 unsigned int pipe, 1233 unsigned char *setup_packet, 1234 void *transfer_buffer, 1235 int buffer_length, 1236 usb_complete_t complete_fn, 1237 void *context) 1238{ 1239 urb->dev = dev; 1240 urb->pipe = pipe; 1241 urb->setup_packet = setup_packet; 1242 urb->transfer_buffer = transfer_buffer; 1243 urb->transfer_buffer_length = buffer_length; 1244 urb->complete = complete_fn; 1245 urb->context = context; 1246} 1247 1248/** 1249 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1250 * @urb: pointer to the urb to initialize. 1251 * @dev: pointer to the struct usb_device for this urb. 1252 * @pipe: the endpoint pipe 1253 * @transfer_buffer: pointer to the transfer buffer 1254 * @buffer_length: length of the transfer buffer 1255 * @complete_fn: pointer to the usb_complete_t function 1256 * @context: what to set the urb context to. 1257 * 1258 * Initializes a bulk urb with the proper information needed to submit it 1259 * to a device. 1260 */ 1261static inline void usb_fill_bulk_urb(struct urb *urb, 1262 struct usb_device *dev, 1263 unsigned int pipe, 1264 void *transfer_buffer, 1265 int buffer_length, 1266 usb_complete_t complete_fn, 1267 void *context) 1268{ 1269 urb->dev = dev; 1270 urb->pipe = pipe; 1271 urb->transfer_buffer = transfer_buffer; 1272 urb->transfer_buffer_length = buffer_length; 1273 urb->complete = complete_fn; 1274 urb->context = context; 1275} 1276 1277/** 1278 * usb_fill_int_urb - macro to help initialize a interrupt urb 1279 * @urb: pointer to the urb to initialize. 1280 * @dev: pointer to the struct usb_device for this urb. 1281 * @pipe: the endpoint pipe 1282 * @transfer_buffer: pointer to the transfer buffer 1283 * @buffer_length: length of the transfer buffer 1284 * @complete_fn: pointer to the usb_complete_t function 1285 * @context: what to set the urb context to. 1286 * @interval: what to set the urb interval to, encoded like 1287 * the endpoint descriptor's bInterval value. 1288 * 1289 * Initializes a interrupt urb with the proper information needed to submit 1290 * it to a device. 1291 * 1292 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic 1293 * encoding of the endpoint interval, and express polling intervals in 1294 * microframes (eight per millisecond) rather than in frames (one per 1295 * millisecond). 1296 * 1297 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1298 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1299 * through to the host controller, rather than being translated into microframe 1300 * units. 1301 */ 1302static inline void usb_fill_int_urb(struct urb *urb, 1303 struct usb_device *dev, 1304 unsigned int pipe, 1305 void *transfer_buffer, 1306 int buffer_length, 1307 usb_complete_t complete_fn, 1308 void *context, 1309 int interval) 1310{ 1311 urb->dev = dev; 1312 urb->pipe = pipe; 1313 urb->transfer_buffer = transfer_buffer; 1314 urb->transfer_buffer_length = buffer_length; 1315 urb->complete = complete_fn; 1316 urb->context = context; 1317 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) 1318 urb->interval = 1 << (interval - 1); 1319 else 1320 urb->interval = interval; 1321 urb->start_frame = -1; 1322} 1323 1324extern void usb_init_urb(struct urb *urb); 1325extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1326extern void usb_free_urb(struct urb *urb); 1327#define usb_put_urb usb_free_urb 1328extern struct urb *usb_get_urb(struct urb *urb); 1329extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1330extern int usb_unlink_urb(struct urb *urb); 1331extern void usb_kill_urb(struct urb *urb); 1332extern void usb_poison_urb(struct urb *urb); 1333extern void usb_unpoison_urb(struct urb *urb); 1334extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1335extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1336extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1337extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1338extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1339extern void usb_unanchor_urb(struct urb *urb); 1340extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1341 unsigned int timeout); 1342extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1343extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1344extern int usb_anchor_empty(struct usb_anchor *anchor); 1345 1346/** 1347 * usb_urb_dir_in - check if an URB describes an IN transfer 1348 * @urb: URB to be checked 1349 * 1350 * Returns 1 if @urb describes an IN transfer (device-to-host), 1351 * otherwise 0. 1352 */ 1353static inline int usb_urb_dir_in(struct urb *urb) 1354{ 1355 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1356} 1357 1358/** 1359 * usb_urb_dir_out - check if an URB describes an OUT transfer 1360 * @urb: URB to be checked 1361 * 1362 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1363 * otherwise 0. 1364 */ 1365static inline int usb_urb_dir_out(struct urb *urb) 1366{ 1367 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1368} 1369 1370void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1371 gfp_t mem_flags, dma_addr_t *dma); 1372void usb_free_coherent(struct usb_device *dev, size_t size, 1373 void *addr, dma_addr_t dma); 1374 1375#if 0 1376struct urb *usb_buffer_map(struct urb *urb); 1377void usb_buffer_dmasync(struct urb *urb); 1378void usb_buffer_unmap(struct urb *urb); 1379#endif 1380 1381struct scatterlist; 1382int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1383 struct scatterlist *sg, int nents); 1384#if 0 1385void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1386 struct scatterlist *sg, int n_hw_ents); 1387#endif 1388void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1389 struct scatterlist *sg, int n_hw_ents); 1390 1391/*-------------------------------------------------------------------* 1392 * SYNCHRONOUS CALL SUPPORT * 1393 *-------------------------------------------------------------------*/ 1394 1395extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1396 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1397 void *data, __u16 size, int timeout); 1398extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1399 void *data, int len, int *actual_length, int timeout); 1400extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1401 void *data, int len, int *actual_length, 1402 int timeout); 1403 1404/* wrappers around usb_control_msg() for the most common standard requests */ 1405extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1406 unsigned char descindex, void *buf, int size); 1407extern int usb_get_status(struct usb_device *dev, 1408 int type, int target, void *data); 1409extern int usb_string(struct usb_device *dev, int index, 1410 char *buf, size_t size); 1411 1412/* wrappers that also update important state inside usbcore */ 1413extern int usb_clear_halt(struct usb_device *dev, int pipe); 1414extern int usb_reset_configuration(struct usb_device *dev); 1415extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1416extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1417 1418/* this request isn't really synchronous, but it belongs with the others */ 1419extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1420 1421/* 1422 * timeouts, in milliseconds, used for sending/receiving control messages 1423 * they typically complete within a few frames (msec) after they're issued 1424 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1425 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1426 */ 1427#define USB_CTRL_GET_TIMEOUT 5000 1428#define USB_CTRL_SET_TIMEOUT 5000 1429 1430 1431/** 1432 * struct usb_sg_request - support for scatter/gather I/O 1433 * @status: zero indicates success, else negative errno 1434 * @bytes: counts bytes transferred. 1435 * 1436 * These requests are initialized using usb_sg_init(), and then are used 1437 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1438 * members of the request object aren't for driver access. 1439 * 1440 * The status and bytecount values are valid only after usb_sg_wait() 1441 * returns. If the status is zero, then the bytecount matches the total 1442 * from the request. 1443 * 1444 * After an error completion, drivers may need to clear a halt condition 1445 * on the endpoint. 1446 */ 1447struct usb_sg_request { 1448 int status; 1449 size_t bytes; 1450 1451 /* private: 1452 * members below are private to usbcore, 1453 * and are not provided for driver access! 1454 */ 1455 spinlock_t lock; 1456 1457 struct usb_device *dev; 1458 int pipe; 1459 1460 int entries; 1461 struct urb **urbs; 1462 1463 int count; 1464 struct completion complete; 1465}; 1466 1467int usb_sg_init( 1468 struct usb_sg_request *io, 1469 struct usb_device *dev, 1470 unsigned pipe, 1471 unsigned period, 1472 struct scatterlist *sg, 1473 int nents, 1474 size_t length, 1475 gfp_t mem_flags 1476); 1477void usb_sg_cancel(struct usb_sg_request *io); 1478void usb_sg_wait(struct usb_sg_request *io); 1479 1480 1481/* ----------------------------------------------------------------------- */ 1482 1483/* 1484 * For various legacy reasons, Linux has a small cookie that's paired with 1485 * a struct usb_device to identify an endpoint queue. Queue characteristics 1486 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1487 * an unsigned int encoded as: 1488 * 1489 * - direction: bit 7 (0 = Host-to-Device [Out], 1490 * 1 = Device-to-Host [In] ... 1491 * like endpoint bEndpointAddress) 1492 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1493 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1494 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1495 * 10 = control, 11 = bulk) 1496 * 1497 * Given the device address and endpoint descriptor, pipes are redundant. 1498 */ 1499 1500/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1501/* (yet ... they're the values used by usbfs) */ 1502#define PIPE_ISOCHRONOUS 0 1503#define PIPE_INTERRUPT 1 1504#define PIPE_CONTROL 2 1505#define PIPE_BULK 3 1506 1507#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1508#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1509 1510#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1511#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1512 1513#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1514#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1515#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1516#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1517#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1518 1519static inline unsigned int __create_pipe(struct usb_device *dev, 1520 unsigned int endpoint) 1521{ 1522 return (dev->devnum << 8) | (endpoint << 15); 1523} 1524 1525/* Create various pipes... */ 1526#define usb_sndctrlpipe(dev, endpoint) \ 1527 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1528#define usb_rcvctrlpipe(dev, endpoint) \ 1529 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1530#define usb_sndisocpipe(dev, endpoint) \ 1531 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1532#define usb_rcvisocpipe(dev, endpoint) \ 1533 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1534#define usb_sndbulkpipe(dev, endpoint) \ 1535 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1536#define usb_rcvbulkpipe(dev, endpoint) \ 1537 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1538#define usb_sndintpipe(dev, endpoint) \ 1539 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1540#define usb_rcvintpipe(dev, endpoint) \ 1541 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1542 1543static inline struct usb_host_endpoint * 1544usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1545{ 1546 struct usb_host_endpoint **eps; 1547 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1548 return eps[usb_pipeendpoint(pipe)]; 1549} 1550 1551/*-------------------------------------------------------------------------*/ 1552 1553static inline __u16 1554usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1555{ 1556 struct usb_host_endpoint *ep; 1557 unsigned epnum = usb_pipeendpoint(pipe); 1558 1559 if (is_out) { 1560 WARN_ON(usb_pipein(pipe)); 1561 ep = udev->ep_out[epnum]; 1562 } else { 1563 WARN_ON(usb_pipeout(pipe)); 1564 ep = udev->ep_in[epnum]; 1565 } 1566 if (!ep) 1567 return 0; 1568 1569 /* NOTE: only 0x07ff bits are for packet size... */ 1570 return le16_to_cpu(ep->desc.wMaxPacketSize); 1571} 1572 1573/* ----------------------------------------------------------------------- */ 1574 1575/* Events from the usb core */ 1576#define USB_DEVICE_ADD 0x0001 1577#define USB_DEVICE_REMOVE 0x0002 1578#define USB_BUS_ADD 0x0003 1579#define USB_BUS_REMOVE 0x0004 1580extern void usb_register_notify(struct notifier_block *nb); 1581extern void usb_unregister_notify(struct notifier_block *nb); 1582 1583#ifdef DEBUG 1584#define dbg(format, arg...) \ 1585 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg) 1586#else 1587#define dbg(format, arg...) \ 1588do { \ 1589 if (0) \ 1590 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \ 1591} while (0) 1592#endif 1593 1594#define err(format, arg...) \ 1595 printk(KERN_ERR KBUILD_MODNAME ": " format "\n", ##arg) 1596 1597/* debugfs stuff */ 1598extern struct dentry *usb_debug_root; 1599 1600#endif /* __KERNEL__ */ 1601 1602#endif