at v2.6.35 61 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/cache.h> 22 23#include <asm/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <linux/net.h> 27#include <linux/textsearch.h> 28#include <net/checksum.h> 29#include <linux/rcupdate.h> 30#include <linux/dmaengine.h> 31#include <linux/hrtimer.h> 32 33/* Don't change this without changing skb_csum_unnecessary! */ 34#define CHECKSUM_NONE 0 35#define CHECKSUM_UNNECESSARY 1 36#define CHECKSUM_COMPLETE 2 37#define CHECKSUM_PARTIAL 3 38 39#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 40 ~(SMP_CACHE_BYTES - 1)) 41#define SKB_WITH_OVERHEAD(X) \ 42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 43#define SKB_MAX_ORDER(X, ORDER) \ 44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 45#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 46#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 47 48/* A. Checksumming of received packets by device. 49 * 50 * NONE: device failed to checksum this packet. 51 * skb->csum is undefined. 52 * 53 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 54 * skb->csum is undefined. 55 * It is bad option, but, unfortunately, many of vendors do this. 56 * Apparently with secret goal to sell you new device, when you 57 * will add new protocol to your host. F.e. IPv6. 8) 58 * 59 * COMPLETE: the most generic way. Device supplied checksum of _all_ 60 * the packet as seen by netif_rx in skb->csum. 61 * NOTE: Even if device supports only some protocols, but 62 * is able to produce some skb->csum, it MUST use COMPLETE, 63 * not UNNECESSARY. 64 * 65 * PARTIAL: identical to the case for output below. This may occur 66 * on a packet received directly from another Linux OS, e.g., 67 * a virtualised Linux kernel on the same host. The packet can 68 * be treated in the same way as UNNECESSARY except that on 69 * output (i.e., forwarding) the checksum must be filled in 70 * by the OS or the hardware. 71 * 72 * B. Checksumming on output. 73 * 74 * NONE: skb is checksummed by protocol or csum is not required. 75 * 76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 77 * from skb->csum_start to the end and to record the checksum 78 * at skb->csum_start + skb->csum_offset. 79 * 80 * Device must show its capabilities in dev->features, set 81 * at device setup time. 82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 83 * everything. 84 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 86 * TCP/UDP over IPv4. Sigh. Vendors like this 87 * way by an unknown reason. Though, see comment above 88 * about CHECKSUM_UNNECESSARY. 8) 89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 90 * 91 * Any questions? No questions, good. --ANK 92 */ 93 94struct net_device; 95struct scatterlist; 96struct pipe_inode_info; 97 98#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 99struct nf_conntrack { 100 atomic_t use; 101}; 102#endif 103 104#ifdef CONFIG_BRIDGE_NETFILTER 105struct nf_bridge_info { 106 atomic_t use; 107 struct net_device *physindev; 108 struct net_device *physoutdev; 109 unsigned int mask; 110 unsigned long data[32 / sizeof(unsigned long)]; 111}; 112#endif 113 114struct sk_buff_head { 115 /* These two members must be first. */ 116 struct sk_buff *next; 117 struct sk_buff *prev; 118 119 __u32 qlen; 120 spinlock_t lock; 121}; 122 123struct sk_buff; 124 125/* To allow 64K frame to be packed as single skb without frag_list */ 126#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 127 128typedef struct skb_frag_struct skb_frag_t; 129 130struct skb_frag_struct { 131 struct page *page; 132 __u32 page_offset; 133 __u32 size; 134}; 135 136#define HAVE_HW_TIME_STAMP 137 138/** 139 * struct skb_shared_hwtstamps - hardware time stamps 140 * @hwtstamp: hardware time stamp transformed into duration 141 * since arbitrary point in time 142 * @syststamp: hwtstamp transformed to system time base 143 * 144 * Software time stamps generated by ktime_get_real() are stored in 145 * skb->tstamp. The relation between the different kinds of time 146 * stamps is as follows: 147 * 148 * syststamp and tstamp can be compared against each other in 149 * arbitrary combinations. The accuracy of a 150 * syststamp/tstamp/"syststamp from other device" comparison is 151 * limited by the accuracy of the transformation into system time 152 * base. This depends on the device driver and its underlying 153 * hardware. 154 * 155 * hwtstamps can only be compared against other hwtstamps from 156 * the same device. 157 * 158 * This structure is attached to packets as part of the 159 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 160 */ 161struct skb_shared_hwtstamps { 162 ktime_t hwtstamp; 163 ktime_t syststamp; 164}; 165 166/** 167 * struct skb_shared_tx - instructions for time stamping of outgoing packets 168 * @hardware: generate hardware time stamp 169 * @software: generate software time stamp 170 * @in_progress: device driver is going to provide 171 * hardware time stamp 172 * @flags: all shared_tx flags 173 * 174 * These flags are attached to packets as part of the 175 * &skb_shared_info. Use skb_tx() to get a pointer. 176 */ 177union skb_shared_tx { 178 struct { 179 __u8 hardware:1, 180 software:1, 181 in_progress:1; 182 }; 183 __u8 flags; 184}; 185 186/* This data is invariant across clones and lives at 187 * the end of the header data, ie. at skb->end. 188 */ 189struct skb_shared_info { 190 unsigned short nr_frags; 191 unsigned short gso_size; 192 /* Warning: this field is not always filled in (UFO)! */ 193 unsigned short gso_segs; 194 unsigned short gso_type; 195 __be32 ip6_frag_id; 196 union skb_shared_tx tx_flags; 197 struct sk_buff *frag_list; 198 struct skb_shared_hwtstamps hwtstamps; 199 200 /* 201 * Warning : all fields before dataref are cleared in __alloc_skb() 202 */ 203 atomic_t dataref; 204 205 skb_frag_t frags[MAX_SKB_FRAGS]; 206 /* Intermediate layers must ensure that destructor_arg 207 * remains valid until skb destructor */ 208 void * destructor_arg; 209}; 210 211/* We divide dataref into two halves. The higher 16 bits hold references 212 * to the payload part of skb->data. The lower 16 bits hold references to 213 * the entire skb->data. A clone of a headerless skb holds the length of 214 * the header in skb->hdr_len. 215 * 216 * All users must obey the rule that the skb->data reference count must be 217 * greater than or equal to the payload reference count. 218 * 219 * Holding a reference to the payload part means that the user does not 220 * care about modifications to the header part of skb->data. 221 */ 222#define SKB_DATAREF_SHIFT 16 223#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 224 225 226enum { 227 SKB_FCLONE_UNAVAILABLE, 228 SKB_FCLONE_ORIG, 229 SKB_FCLONE_CLONE, 230}; 231 232enum { 233 SKB_GSO_TCPV4 = 1 << 0, 234 SKB_GSO_UDP = 1 << 1, 235 236 /* This indicates the skb is from an untrusted source. */ 237 SKB_GSO_DODGY = 1 << 2, 238 239 /* This indicates the tcp segment has CWR set. */ 240 SKB_GSO_TCP_ECN = 1 << 3, 241 242 SKB_GSO_TCPV6 = 1 << 4, 243 244 SKB_GSO_FCOE = 1 << 5, 245}; 246 247#if BITS_PER_LONG > 32 248#define NET_SKBUFF_DATA_USES_OFFSET 1 249#endif 250 251#ifdef NET_SKBUFF_DATA_USES_OFFSET 252typedef unsigned int sk_buff_data_t; 253#else 254typedef unsigned char *sk_buff_data_t; 255#endif 256 257/** 258 * struct sk_buff - socket buffer 259 * @next: Next buffer in list 260 * @prev: Previous buffer in list 261 * @sk: Socket we are owned by 262 * @tstamp: Time we arrived 263 * @dev: Device we arrived on/are leaving by 264 * @transport_header: Transport layer header 265 * @network_header: Network layer header 266 * @mac_header: Link layer header 267 * @_skb_refdst: destination entry (with norefcount bit) 268 * @sp: the security path, used for xfrm 269 * @cb: Control buffer. Free for use by every layer. Put private vars here 270 * @len: Length of actual data 271 * @data_len: Data length 272 * @mac_len: Length of link layer header 273 * @hdr_len: writable header length of cloned skb 274 * @csum: Checksum (must include start/offset pair) 275 * @csum_start: Offset from skb->head where checksumming should start 276 * @csum_offset: Offset from csum_start where checksum should be stored 277 * @local_df: allow local fragmentation 278 * @cloned: Head may be cloned (check refcnt to be sure) 279 * @nohdr: Payload reference only, must not modify header 280 * @pkt_type: Packet class 281 * @fclone: skbuff clone status 282 * @ip_summed: Driver fed us an IP checksum 283 * @priority: Packet queueing priority 284 * @users: User count - see {datagram,tcp}.c 285 * @protocol: Packet protocol from driver 286 * @truesize: Buffer size 287 * @head: Head of buffer 288 * @data: Data head pointer 289 * @tail: Tail pointer 290 * @end: End pointer 291 * @destructor: Destruct function 292 * @mark: Generic packet mark 293 * @nfct: Associated connection, if any 294 * @ipvs_property: skbuff is owned by ipvs 295 * @peeked: this packet has been seen already, so stats have been 296 * done for it, don't do them again 297 * @nf_trace: netfilter packet trace flag 298 * @nfctinfo: Relationship of this skb to the connection 299 * @nfct_reasm: netfilter conntrack re-assembly pointer 300 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 301 * @skb_iif: ifindex of device we arrived on 302 * @rxhash: the packet hash computed on receive 303 * @queue_mapping: Queue mapping for multiqueue devices 304 * @tc_index: Traffic control index 305 * @tc_verd: traffic control verdict 306 * @ndisc_nodetype: router type (from link layer) 307 * @dma_cookie: a cookie to one of several possible DMA operations 308 * done by skb DMA functions 309 * @secmark: security marking 310 * @vlan_tci: vlan tag control information 311 */ 312 313struct sk_buff { 314 /* These two members must be first. */ 315 struct sk_buff *next; 316 struct sk_buff *prev; 317 318 ktime_t tstamp; 319 320 struct sock *sk; 321 struct net_device *dev; 322 323 /* 324 * This is the control buffer. It is free to use for every 325 * layer. Please put your private variables there. If you 326 * want to keep them across layers you have to do a skb_clone() 327 * first. This is owned by whoever has the skb queued ATM. 328 */ 329 char cb[48] __aligned(8); 330 331 unsigned long _skb_refdst; 332#ifdef CONFIG_XFRM 333 struct sec_path *sp; 334#endif 335 unsigned int len, 336 data_len; 337 __u16 mac_len, 338 hdr_len; 339 union { 340 __wsum csum; 341 struct { 342 __u16 csum_start; 343 __u16 csum_offset; 344 }; 345 }; 346 __u32 priority; 347 kmemcheck_bitfield_begin(flags1); 348 __u8 local_df:1, 349 cloned:1, 350 ip_summed:2, 351 nohdr:1, 352 nfctinfo:3; 353 __u8 pkt_type:3, 354 fclone:2, 355 ipvs_property:1, 356 peeked:1, 357 nf_trace:1; 358 kmemcheck_bitfield_end(flags1); 359 __be16 protocol; 360 361 void (*destructor)(struct sk_buff *skb); 362#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 363 struct nf_conntrack *nfct; 364 struct sk_buff *nfct_reasm; 365#endif 366#ifdef CONFIG_BRIDGE_NETFILTER 367 struct nf_bridge_info *nf_bridge; 368#endif 369 370 int skb_iif; 371#ifdef CONFIG_NET_SCHED 372 __u16 tc_index; /* traffic control index */ 373#ifdef CONFIG_NET_CLS_ACT 374 __u16 tc_verd; /* traffic control verdict */ 375#endif 376#endif 377 378 __u32 rxhash; 379 380 kmemcheck_bitfield_begin(flags2); 381 __u16 queue_mapping:16; 382#ifdef CONFIG_IPV6_NDISC_NODETYPE 383 __u8 ndisc_nodetype:2, 384 deliver_no_wcard:1; 385#else 386 __u8 deliver_no_wcard:1; 387#endif 388 kmemcheck_bitfield_end(flags2); 389 390 /* 0/14 bit hole */ 391 392#ifdef CONFIG_NET_DMA 393 dma_cookie_t dma_cookie; 394#endif 395#ifdef CONFIG_NETWORK_SECMARK 396 __u32 secmark; 397#endif 398 union { 399 __u32 mark; 400 __u32 dropcount; 401 }; 402 403 __u16 vlan_tci; 404 405 sk_buff_data_t transport_header; 406 sk_buff_data_t network_header; 407 sk_buff_data_t mac_header; 408 /* These elements must be at the end, see alloc_skb() for details. */ 409 sk_buff_data_t tail; 410 sk_buff_data_t end; 411 unsigned char *head, 412 *data; 413 unsigned int truesize; 414 atomic_t users; 415}; 416 417#ifdef __KERNEL__ 418/* 419 * Handling routines are only of interest to the kernel 420 */ 421#include <linux/slab.h> 422 423#include <asm/system.h> 424 425/* 426 * skb might have a dst pointer attached, refcounted or not. 427 * _skb_refdst low order bit is set if refcount was _not_ taken 428 */ 429#define SKB_DST_NOREF 1UL 430#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 431 432/** 433 * skb_dst - returns skb dst_entry 434 * @skb: buffer 435 * 436 * Returns skb dst_entry, regardless of reference taken or not. 437 */ 438static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 439{ 440 /* If refdst was not refcounted, check we still are in a 441 * rcu_read_lock section 442 */ 443 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 444 !rcu_read_lock_held() && 445 !rcu_read_lock_bh_held()); 446 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 447} 448 449/** 450 * skb_dst_set - sets skb dst 451 * @skb: buffer 452 * @dst: dst entry 453 * 454 * Sets skb dst, assuming a reference was taken on dst and should 455 * be released by skb_dst_drop() 456 */ 457static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 458{ 459 skb->_skb_refdst = (unsigned long)dst; 460} 461 462/** 463 * skb_dst_set_noref - sets skb dst, without a reference 464 * @skb: buffer 465 * @dst: dst entry 466 * 467 * Sets skb dst, assuming a reference was not taken on dst 468 * skb_dst_drop() should not dst_release() this dst 469 */ 470static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 471{ 472 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 473 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 474} 475 476/** 477 * skb_dst_is_noref - Test if skb dst isnt refcounted 478 * @skb: buffer 479 */ 480static inline bool skb_dst_is_noref(const struct sk_buff *skb) 481{ 482 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 483} 484 485static inline struct rtable *skb_rtable(const struct sk_buff *skb) 486{ 487 return (struct rtable *)skb_dst(skb); 488} 489 490extern void kfree_skb(struct sk_buff *skb); 491extern void consume_skb(struct sk_buff *skb); 492extern void __kfree_skb(struct sk_buff *skb); 493extern struct sk_buff *__alloc_skb(unsigned int size, 494 gfp_t priority, int fclone, int node); 495static inline struct sk_buff *alloc_skb(unsigned int size, 496 gfp_t priority) 497{ 498 return __alloc_skb(size, priority, 0, -1); 499} 500 501static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 502 gfp_t priority) 503{ 504 return __alloc_skb(size, priority, 1, -1); 505} 506 507extern bool skb_recycle_check(struct sk_buff *skb, int skb_size); 508 509extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 510extern struct sk_buff *skb_clone(struct sk_buff *skb, 511 gfp_t priority); 512extern struct sk_buff *skb_copy(const struct sk_buff *skb, 513 gfp_t priority); 514extern struct sk_buff *pskb_copy(struct sk_buff *skb, 515 gfp_t gfp_mask); 516extern int pskb_expand_head(struct sk_buff *skb, 517 int nhead, int ntail, 518 gfp_t gfp_mask); 519extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 520 unsigned int headroom); 521extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 522 int newheadroom, int newtailroom, 523 gfp_t priority); 524extern int skb_to_sgvec(struct sk_buff *skb, 525 struct scatterlist *sg, int offset, 526 int len); 527extern int skb_cow_data(struct sk_buff *skb, int tailbits, 528 struct sk_buff **trailer); 529extern int skb_pad(struct sk_buff *skb, int pad); 530#define dev_kfree_skb(a) consume_skb(a) 531 532extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 533 int getfrag(void *from, char *to, int offset, 534 int len,int odd, struct sk_buff *skb), 535 void *from, int length); 536 537struct skb_seq_state { 538 __u32 lower_offset; 539 __u32 upper_offset; 540 __u32 frag_idx; 541 __u32 stepped_offset; 542 struct sk_buff *root_skb; 543 struct sk_buff *cur_skb; 544 __u8 *frag_data; 545}; 546 547extern void skb_prepare_seq_read(struct sk_buff *skb, 548 unsigned int from, unsigned int to, 549 struct skb_seq_state *st); 550extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 551 struct skb_seq_state *st); 552extern void skb_abort_seq_read(struct skb_seq_state *st); 553 554extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 555 unsigned int to, struct ts_config *config, 556 struct ts_state *state); 557 558#ifdef NET_SKBUFF_DATA_USES_OFFSET 559static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 560{ 561 return skb->head + skb->end; 562} 563#else 564static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 565{ 566 return skb->end; 567} 568#endif 569 570/* Internal */ 571#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 572 573static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 574{ 575 return &skb_shinfo(skb)->hwtstamps; 576} 577 578static inline union skb_shared_tx *skb_tx(struct sk_buff *skb) 579{ 580 return &skb_shinfo(skb)->tx_flags; 581} 582 583/** 584 * skb_queue_empty - check if a queue is empty 585 * @list: queue head 586 * 587 * Returns true if the queue is empty, false otherwise. 588 */ 589static inline int skb_queue_empty(const struct sk_buff_head *list) 590{ 591 return list->next == (struct sk_buff *)list; 592} 593 594/** 595 * skb_queue_is_last - check if skb is the last entry in the queue 596 * @list: queue head 597 * @skb: buffer 598 * 599 * Returns true if @skb is the last buffer on the list. 600 */ 601static inline bool skb_queue_is_last(const struct sk_buff_head *list, 602 const struct sk_buff *skb) 603{ 604 return (skb->next == (struct sk_buff *) list); 605} 606 607/** 608 * skb_queue_is_first - check if skb is the first entry in the queue 609 * @list: queue head 610 * @skb: buffer 611 * 612 * Returns true if @skb is the first buffer on the list. 613 */ 614static inline bool skb_queue_is_first(const struct sk_buff_head *list, 615 const struct sk_buff *skb) 616{ 617 return (skb->prev == (struct sk_buff *) list); 618} 619 620/** 621 * skb_queue_next - return the next packet in the queue 622 * @list: queue head 623 * @skb: current buffer 624 * 625 * Return the next packet in @list after @skb. It is only valid to 626 * call this if skb_queue_is_last() evaluates to false. 627 */ 628static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 629 const struct sk_buff *skb) 630{ 631 /* This BUG_ON may seem severe, but if we just return then we 632 * are going to dereference garbage. 633 */ 634 BUG_ON(skb_queue_is_last(list, skb)); 635 return skb->next; 636} 637 638/** 639 * skb_queue_prev - return the prev packet in the queue 640 * @list: queue head 641 * @skb: current buffer 642 * 643 * Return the prev packet in @list before @skb. It is only valid to 644 * call this if skb_queue_is_first() evaluates to false. 645 */ 646static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 647 const struct sk_buff *skb) 648{ 649 /* This BUG_ON may seem severe, but if we just return then we 650 * are going to dereference garbage. 651 */ 652 BUG_ON(skb_queue_is_first(list, skb)); 653 return skb->prev; 654} 655 656/** 657 * skb_get - reference buffer 658 * @skb: buffer to reference 659 * 660 * Makes another reference to a socket buffer and returns a pointer 661 * to the buffer. 662 */ 663static inline struct sk_buff *skb_get(struct sk_buff *skb) 664{ 665 atomic_inc(&skb->users); 666 return skb; 667} 668 669/* 670 * If users == 1, we are the only owner and are can avoid redundant 671 * atomic change. 672 */ 673 674/** 675 * skb_cloned - is the buffer a clone 676 * @skb: buffer to check 677 * 678 * Returns true if the buffer was generated with skb_clone() and is 679 * one of multiple shared copies of the buffer. Cloned buffers are 680 * shared data so must not be written to under normal circumstances. 681 */ 682static inline int skb_cloned(const struct sk_buff *skb) 683{ 684 return skb->cloned && 685 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 686} 687 688/** 689 * skb_header_cloned - is the header a clone 690 * @skb: buffer to check 691 * 692 * Returns true if modifying the header part of the buffer requires 693 * the data to be copied. 694 */ 695static inline int skb_header_cloned(const struct sk_buff *skb) 696{ 697 int dataref; 698 699 if (!skb->cloned) 700 return 0; 701 702 dataref = atomic_read(&skb_shinfo(skb)->dataref); 703 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 704 return dataref != 1; 705} 706 707/** 708 * skb_header_release - release reference to header 709 * @skb: buffer to operate on 710 * 711 * Drop a reference to the header part of the buffer. This is done 712 * by acquiring a payload reference. You must not read from the header 713 * part of skb->data after this. 714 */ 715static inline void skb_header_release(struct sk_buff *skb) 716{ 717 BUG_ON(skb->nohdr); 718 skb->nohdr = 1; 719 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 720} 721 722/** 723 * skb_shared - is the buffer shared 724 * @skb: buffer to check 725 * 726 * Returns true if more than one person has a reference to this 727 * buffer. 728 */ 729static inline int skb_shared(const struct sk_buff *skb) 730{ 731 return atomic_read(&skb->users) != 1; 732} 733 734/** 735 * skb_share_check - check if buffer is shared and if so clone it 736 * @skb: buffer to check 737 * @pri: priority for memory allocation 738 * 739 * If the buffer is shared the buffer is cloned and the old copy 740 * drops a reference. A new clone with a single reference is returned. 741 * If the buffer is not shared the original buffer is returned. When 742 * being called from interrupt status or with spinlocks held pri must 743 * be GFP_ATOMIC. 744 * 745 * NULL is returned on a memory allocation failure. 746 */ 747static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 748 gfp_t pri) 749{ 750 might_sleep_if(pri & __GFP_WAIT); 751 if (skb_shared(skb)) { 752 struct sk_buff *nskb = skb_clone(skb, pri); 753 kfree_skb(skb); 754 skb = nskb; 755 } 756 return skb; 757} 758 759/* 760 * Copy shared buffers into a new sk_buff. We effectively do COW on 761 * packets to handle cases where we have a local reader and forward 762 * and a couple of other messy ones. The normal one is tcpdumping 763 * a packet thats being forwarded. 764 */ 765 766/** 767 * skb_unshare - make a copy of a shared buffer 768 * @skb: buffer to check 769 * @pri: priority for memory allocation 770 * 771 * If the socket buffer is a clone then this function creates a new 772 * copy of the data, drops a reference count on the old copy and returns 773 * the new copy with the reference count at 1. If the buffer is not a clone 774 * the original buffer is returned. When called with a spinlock held or 775 * from interrupt state @pri must be %GFP_ATOMIC 776 * 777 * %NULL is returned on a memory allocation failure. 778 */ 779static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 780 gfp_t pri) 781{ 782 might_sleep_if(pri & __GFP_WAIT); 783 if (skb_cloned(skb)) { 784 struct sk_buff *nskb = skb_copy(skb, pri); 785 kfree_skb(skb); /* Free our shared copy */ 786 skb = nskb; 787 } 788 return skb; 789} 790 791/** 792 * skb_peek - peek at the head of an &sk_buff_head 793 * @list_: list to peek at 794 * 795 * Peek an &sk_buff. Unlike most other operations you _MUST_ 796 * be careful with this one. A peek leaves the buffer on the 797 * list and someone else may run off with it. You must hold 798 * the appropriate locks or have a private queue to do this. 799 * 800 * Returns %NULL for an empty list or a pointer to the head element. 801 * The reference count is not incremented and the reference is therefore 802 * volatile. Use with caution. 803 */ 804static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 805{ 806 struct sk_buff *list = ((struct sk_buff *)list_)->next; 807 if (list == (struct sk_buff *)list_) 808 list = NULL; 809 return list; 810} 811 812/** 813 * skb_peek_tail - peek at the tail of an &sk_buff_head 814 * @list_: list to peek at 815 * 816 * Peek an &sk_buff. Unlike most other operations you _MUST_ 817 * be careful with this one. A peek leaves the buffer on the 818 * list and someone else may run off with it. You must hold 819 * the appropriate locks or have a private queue to do this. 820 * 821 * Returns %NULL for an empty list or a pointer to the tail element. 822 * The reference count is not incremented and the reference is therefore 823 * volatile. Use with caution. 824 */ 825static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 826{ 827 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 828 if (list == (struct sk_buff *)list_) 829 list = NULL; 830 return list; 831} 832 833/** 834 * skb_queue_len - get queue length 835 * @list_: list to measure 836 * 837 * Return the length of an &sk_buff queue. 838 */ 839static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 840{ 841 return list_->qlen; 842} 843 844/** 845 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 846 * @list: queue to initialize 847 * 848 * This initializes only the list and queue length aspects of 849 * an sk_buff_head object. This allows to initialize the list 850 * aspects of an sk_buff_head without reinitializing things like 851 * the spinlock. It can also be used for on-stack sk_buff_head 852 * objects where the spinlock is known to not be used. 853 */ 854static inline void __skb_queue_head_init(struct sk_buff_head *list) 855{ 856 list->prev = list->next = (struct sk_buff *)list; 857 list->qlen = 0; 858} 859 860/* 861 * This function creates a split out lock class for each invocation; 862 * this is needed for now since a whole lot of users of the skb-queue 863 * infrastructure in drivers have different locking usage (in hardirq) 864 * than the networking core (in softirq only). In the long run either the 865 * network layer or drivers should need annotation to consolidate the 866 * main types of usage into 3 classes. 867 */ 868static inline void skb_queue_head_init(struct sk_buff_head *list) 869{ 870 spin_lock_init(&list->lock); 871 __skb_queue_head_init(list); 872} 873 874static inline void skb_queue_head_init_class(struct sk_buff_head *list, 875 struct lock_class_key *class) 876{ 877 skb_queue_head_init(list); 878 lockdep_set_class(&list->lock, class); 879} 880 881/* 882 * Insert an sk_buff on a list. 883 * 884 * The "__skb_xxxx()" functions are the non-atomic ones that 885 * can only be called with interrupts disabled. 886 */ 887extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 888static inline void __skb_insert(struct sk_buff *newsk, 889 struct sk_buff *prev, struct sk_buff *next, 890 struct sk_buff_head *list) 891{ 892 newsk->next = next; 893 newsk->prev = prev; 894 next->prev = prev->next = newsk; 895 list->qlen++; 896} 897 898static inline void __skb_queue_splice(const struct sk_buff_head *list, 899 struct sk_buff *prev, 900 struct sk_buff *next) 901{ 902 struct sk_buff *first = list->next; 903 struct sk_buff *last = list->prev; 904 905 first->prev = prev; 906 prev->next = first; 907 908 last->next = next; 909 next->prev = last; 910} 911 912/** 913 * skb_queue_splice - join two skb lists, this is designed for stacks 914 * @list: the new list to add 915 * @head: the place to add it in the first list 916 */ 917static inline void skb_queue_splice(const struct sk_buff_head *list, 918 struct sk_buff_head *head) 919{ 920 if (!skb_queue_empty(list)) { 921 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 922 head->qlen += list->qlen; 923 } 924} 925 926/** 927 * skb_queue_splice - join two skb lists and reinitialise the emptied list 928 * @list: the new list to add 929 * @head: the place to add it in the first list 930 * 931 * The list at @list is reinitialised 932 */ 933static inline void skb_queue_splice_init(struct sk_buff_head *list, 934 struct sk_buff_head *head) 935{ 936 if (!skb_queue_empty(list)) { 937 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 938 head->qlen += list->qlen; 939 __skb_queue_head_init(list); 940 } 941} 942 943/** 944 * skb_queue_splice_tail - join two skb lists, each list being a queue 945 * @list: the new list to add 946 * @head: the place to add it in the first list 947 */ 948static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 949 struct sk_buff_head *head) 950{ 951 if (!skb_queue_empty(list)) { 952 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 953 head->qlen += list->qlen; 954 } 955} 956 957/** 958 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list 959 * @list: the new list to add 960 * @head: the place to add it in the first list 961 * 962 * Each of the lists is a queue. 963 * The list at @list is reinitialised 964 */ 965static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 966 struct sk_buff_head *head) 967{ 968 if (!skb_queue_empty(list)) { 969 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 970 head->qlen += list->qlen; 971 __skb_queue_head_init(list); 972 } 973} 974 975/** 976 * __skb_queue_after - queue a buffer at the list head 977 * @list: list to use 978 * @prev: place after this buffer 979 * @newsk: buffer to queue 980 * 981 * Queue a buffer int the middle of a list. This function takes no locks 982 * and you must therefore hold required locks before calling it. 983 * 984 * A buffer cannot be placed on two lists at the same time. 985 */ 986static inline void __skb_queue_after(struct sk_buff_head *list, 987 struct sk_buff *prev, 988 struct sk_buff *newsk) 989{ 990 __skb_insert(newsk, prev, prev->next, list); 991} 992 993extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 994 struct sk_buff_head *list); 995 996static inline void __skb_queue_before(struct sk_buff_head *list, 997 struct sk_buff *next, 998 struct sk_buff *newsk) 999{ 1000 __skb_insert(newsk, next->prev, next, list); 1001} 1002 1003/** 1004 * __skb_queue_head - queue a buffer at the list head 1005 * @list: list to use 1006 * @newsk: buffer to queue 1007 * 1008 * Queue a buffer at the start of a list. This function takes no locks 1009 * and you must therefore hold required locks before calling it. 1010 * 1011 * A buffer cannot be placed on two lists at the same time. 1012 */ 1013extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1014static inline void __skb_queue_head(struct sk_buff_head *list, 1015 struct sk_buff *newsk) 1016{ 1017 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1018} 1019 1020/** 1021 * __skb_queue_tail - queue a buffer at the list tail 1022 * @list: list to use 1023 * @newsk: buffer to queue 1024 * 1025 * Queue a buffer at the end of a list. This function takes no locks 1026 * and you must therefore hold required locks before calling it. 1027 * 1028 * A buffer cannot be placed on two lists at the same time. 1029 */ 1030extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1031static inline void __skb_queue_tail(struct sk_buff_head *list, 1032 struct sk_buff *newsk) 1033{ 1034 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1035} 1036 1037/* 1038 * remove sk_buff from list. _Must_ be called atomically, and with 1039 * the list known.. 1040 */ 1041extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1042static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1043{ 1044 struct sk_buff *next, *prev; 1045 1046 list->qlen--; 1047 next = skb->next; 1048 prev = skb->prev; 1049 skb->next = skb->prev = NULL; 1050 next->prev = prev; 1051 prev->next = next; 1052} 1053 1054/** 1055 * __skb_dequeue - remove from the head of the queue 1056 * @list: list to dequeue from 1057 * 1058 * Remove the head of the list. This function does not take any locks 1059 * so must be used with appropriate locks held only. The head item is 1060 * returned or %NULL if the list is empty. 1061 */ 1062extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1063static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1064{ 1065 struct sk_buff *skb = skb_peek(list); 1066 if (skb) 1067 __skb_unlink(skb, list); 1068 return skb; 1069} 1070 1071/** 1072 * __skb_dequeue_tail - remove from the tail of the queue 1073 * @list: list to dequeue from 1074 * 1075 * Remove the tail of the list. This function does not take any locks 1076 * so must be used with appropriate locks held only. The tail item is 1077 * returned or %NULL if the list is empty. 1078 */ 1079extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1080static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1081{ 1082 struct sk_buff *skb = skb_peek_tail(list); 1083 if (skb) 1084 __skb_unlink(skb, list); 1085 return skb; 1086} 1087 1088 1089static inline int skb_is_nonlinear(const struct sk_buff *skb) 1090{ 1091 return skb->data_len; 1092} 1093 1094static inline unsigned int skb_headlen(const struct sk_buff *skb) 1095{ 1096 return skb->len - skb->data_len; 1097} 1098 1099static inline int skb_pagelen(const struct sk_buff *skb) 1100{ 1101 int i, len = 0; 1102 1103 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1104 len += skb_shinfo(skb)->frags[i].size; 1105 return len + skb_headlen(skb); 1106} 1107 1108static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1109 struct page *page, int off, int size) 1110{ 1111 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1112 1113 frag->page = page; 1114 frag->page_offset = off; 1115 frag->size = size; 1116 skb_shinfo(skb)->nr_frags = i + 1; 1117} 1118 1119extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1120 int off, int size); 1121 1122#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1123#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frags(skb)) 1124#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1125 1126#ifdef NET_SKBUFF_DATA_USES_OFFSET 1127static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1128{ 1129 return skb->head + skb->tail; 1130} 1131 1132static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1133{ 1134 skb->tail = skb->data - skb->head; 1135} 1136 1137static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1138{ 1139 skb_reset_tail_pointer(skb); 1140 skb->tail += offset; 1141} 1142#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1143static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1144{ 1145 return skb->tail; 1146} 1147 1148static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1149{ 1150 skb->tail = skb->data; 1151} 1152 1153static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1154{ 1155 skb->tail = skb->data + offset; 1156} 1157 1158#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1159 1160/* 1161 * Add data to an sk_buff 1162 */ 1163extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1164static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1165{ 1166 unsigned char *tmp = skb_tail_pointer(skb); 1167 SKB_LINEAR_ASSERT(skb); 1168 skb->tail += len; 1169 skb->len += len; 1170 return tmp; 1171} 1172 1173extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1174static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1175{ 1176 skb->data -= len; 1177 skb->len += len; 1178 return skb->data; 1179} 1180 1181extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1182static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1183{ 1184 skb->len -= len; 1185 BUG_ON(skb->len < skb->data_len); 1186 return skb->data += len; 1187} 1188 1189static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1190{ 1191 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1192} 1193 1194extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1195 1196static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1197{ 1198 if (len > skb_headlen(skb) && 1199 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1200 return NULL; 1201 skb->len -= len; 1202 return skb->data += len; 1203} 1204 1205static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1206{ 1207 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1208} 1209 1210static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1211{ 1212 if (likely(len <= skb_headlen(skb))) 1213 return 1; 1214 if (unlikely(len > skb->len)) 1215 return 0; 1216 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1217} 1218 1219/** 1220 * skb_headroom - bytes at buffer head 1221 * @skb: buffer to check 1222 * 1223 * Return the number of bytes of free space at the head of an &sk_buff. 1224 */ 1225static inline unsigned int skb_headroom(const struct sk_buff *skb) 1226{ 1227 return skb->data - skb->head; 1228} 1229 1230/** 1231 * skb_tailroom - bytes at buffer end 1232 * @skb: buffer to check 1233 * 1234 * Return the number of bytes of free space at the tail of an sk_buff 1235 */ 1236static inline int skb_tailroom(const struct sk_buff *skb) 1237{ 1238 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1239} 1240 1241/** 1242 * skb_reserve - adjust headroom 1243 * @skb: buffer to alter 1244 * @len: bytes to move 1245 * 1246 * Increase the headroom of an empty &sk_buff by reducing the tail 1247 * room. This is only allowed for an empty buffer. 1248 */ 1249static inline void skb_reserve(struct sk_buff *skb, int len) 1250{ 1251 skb->data += len; 1252 skb->tail += len; 1253} 1254 1255#ifdef NET_SKBUFF_DATA_USES_OFFSET 1256static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1257{ 1258 return skb->head + skb->transport_header; 1259} 1260 1261static inline void skb_reset_transport_header(struct sk_buff *skb) 1262{ 1263 skb->transport_header = skb->data - skb->head; 1264} 1265 1266static inline void skb_set_transport_header(struct sk_buff *skb, 1267 const int offset) 1268{ 1269 skb_reset_transport_header(skb); 1270 skb->transport_header += offset; 1271} 1272 1273static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1274{ 1275 return skb->head + skb->network_header; 1276} 1277 1278static inline void skb_reset_network_header(struct sk_buff *skb) 1279{ 1280 skb->network_header = skb->data - skb->head; 1281} 1282 1283static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1284{ 1285 skb_reset_network_header(skb); 1286 skb->network_header += offset; 1287} 1288 1289static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1290{ 1291 return skb->head + skb->mac_header; 1292} 1293 1294static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1295{ 1296 return skb->mac_header != ~0U; 1297} 1298 1299static inline void skb_reset_mac_header(struct sk_buff *skb) 1300{ 1301 skb->mac_header = skb->data - skb->head; 1302} 1303 1304static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1305{ 1306 skb_reset_mac_header(skb); 1307 skb->mac_header += offset; 1308} 1309 1310#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1311 1312static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1313{ 1314 return skb->transport_header; 1315} 1316 1317static inline void skb_reset_transport_header(struct sk_buff *skb) 1318{ 1319 skb->transport_header = skb->data; 1320} 1321 1322static inline void skb_set_transport_header(struct sk_buff *skb, 1323 const int offset) 1324{ 1325 skb->transport_header = skb->data + offset; 1326} 1327 1328static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1329{ 1330 return skb->network_header; 1331} 1332 1333static inline void skb_reset_network_header(struct sk_buff *skb) 1334{ 1335 skb->network_header = skb->data; 1336} 1337 1338static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1339{ 1340 skb->network_header = skb->data + offset; 1341} 1342 1343static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1344{ 1345 return skb->mac_header; 1346} 1347 1348static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1349{ 1350 return skb->mac_header != NULL; 1351} 1352 1353static inline void skb_reset_mac_header(struct sk_buff *skb) 1354{ 1355 skb->mac_header = skb->data; 1356} 1357 1358static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1359{ 1360 skb->mac_header = skb->data + offset; 1361} 1362#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1363 1364static inline int skb_transport_offset(const struct sk_buff *skb) 1365{ 1366 return skb_transport_header(skb) - skb->data; 1367} 1368 1369static inline u32 skb_network_header_len(const struct sk_buff *skb) 1370{ 1371 return skb->transport_header - skb->network_header; 1372} 1373 1374static inline int skb_network_offset(const struct sk_buff *skb) 1375{ 1376 return skb_network_header(skb) - skb->data; 1377} 1378 1379/* 1380 * CPUs often take a performance hit when accessing unaligned memory 1381 * locations. The actual performance hit varies, it can be small if the 1382 * hardware handles it or large if we have to take an exception and fix it 1383 * in software. 1384 * 1385 * Since an ethernet header is 14 bytes network drivers often end up with 1386 * the IP header at an unaligned offset. The IP header can be aligned by 1387 * shifting the start of the packet by 2 bytes. Drivers should do this 1388 * with: 1389 * 1390 * skb_reserve(skb, NET_IP_ALIGN); 1391 * 1392 * The downside to this alignment of the IP header is that the DMA is now 1393 * unaligned. On some architectures the cost of an unaligned DMA is high 1394 * and this cost outweighs the gains made by aligning the IP header. 1395 * 1396 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1397 * to be overridden. 1398 */ 1399#ifndef NET_IP_ALIGN 1400#define NET_IP_ALIGN 2 1401#endif 1402 1403/* 1404 * The networking layer reserves some headroom in skb data (via 1405 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1406 * the header has to grow. In the default case, if the header has to grow 1407 * 32 bytes or less we avoid the reallocation. 1408 * 1409 * Unfortunately this headroom changes the DMA alignment of the resulting 1410 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1411 * on some architectures. An architecture can override this value, 1412 * perhaps setting it to a cacheline in size (since that will maintain 1413 * cacheline alignment of the DMA). It must be a power of 2. 1414 * 1415 * Various parts of the networking layer expect at least 32 bytes of 1416 * headroom, you should not reduce this. 1417 * With RPS, we raised NET_SKB_PAD to 64 so that get_rps_cpus() fetches span 1418 * a 64 bytes aligned block to fit modern (>= 64 bytes) cache line sizes 1419 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1420 */ 1421#ifndef NET_SKB_PAD 1422#define NET_SKB_PAD 64 1423#endif 1424 1425extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1426 1427static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1428{ 1429 if (unlikely(skb->data_len)) { 1430 WARN_ON(1); 1431 return; 1432 } 1433 skb->len = len; 1434 skb_set_tail_pointer(skb, len); 1435} 1436 1437extern void skb_trim(struct sk_buff *skb, unsigned int len); 1438 1439static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1440{ 1441 if (skb->data_len) 1442 return ___pskb_trim(skb, len); 1443 __skb_trim(skb, len); 1444 return 0; 1445} 1446 1447static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1448{ 1449 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1450} 1451 1452/** 1453 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1454 * @skb: buffer to alter 1455 * @len: new length 1456 * 1457 * This is identical to pskb_trim except that the caller knows that 1458 * the skb is not cloned so we should never get an error due to out- 1459 * of-memory. 1460 */ 1461static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1462{ 1463 int err = pskb_trim(skb, len); 1464 BUG_ON(err); 1465} 1466 1467/** 1468 * skb_orphan - orphan a buffer 1469 * @skb: buffer to orphan 1470 * 1471 * If a buffer currently has an owner then we call the owner's 1472 * destructor function and make the @skb unowned. The buffer continues 1473 * to exist but is no longer charged to its former owner. 1474 */ 1475static inline void skb_orphan(struct sk_buff *skb) 1476{ 1477 if (skb->destructor) 1478 skb->destructor(skb); 1479 skb->destructor = NULL; 1480 skb->sk = NULL; 1481} 1482 1483/** 1484 * __skb_queue_purge - empty a list 1485 * @list: list to empty 1486 * 1487 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1488 * the list and one reference dropped. This function does not take the 1489 * list lock and the caller must hold the relevant locks to use it. 1490 */ 1491extern void skb_queue_purge(struct sk_buff_head *list); 1492static inline void __skb_queue_purge(struct sk_buff_head *list) 1493{ 1494 struct sk_buff *skb; 1495 while ((skb = __skb_dequeue(list)) != NULL) 1496 kfree_skb(skb); 1497} 1498 1499/** 1500 * __dev_alloc_skb - allocate an skbuff for receiving 1501 * @length: length to allocate 1502 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1503 * 1504 * Allocate a new &sk_buff and assign it a usage count of one. The 1505 * buffer has unspecified headroom built in. Users should allocate 1506 * the headroom they think they need without accounting for the 1507 * built in space. The built in space is used for optimisations. 1508 * 1509 * %NULL is returned if there is no free memory. 1510 */ 1511static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1512 gfp_t gfp_mask) 1513{ 1514 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1515 if (likely(skb)) 1516 skb_reserve(skb, NET_SKB_PAD); 1517 return skb; 1518} 1519 1520extern struct sk_buff *dev_alloc_skb(unsigned int length); 1521 1522extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1523 unsigned int length, gfp_t gfp_mask); 1524 1525/** 1526 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1527 * @dev: network device to receive on 1528 * @length: length to allocate 1529 * 1530 * Allocate a new &sk_buff and assign it a usage count of one. The 1531 * buffer has unspecified headroom built in. Users should allocate 1532 * the headroom they think they need without accounting for the 1533 * built in space. The built in space is used for optimisations. 1534 * 1535 * %NULL is returned if there is no free memory. Although this function 1536 * allocates memory it can be called from an interrupt. 1537 */ 1538static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1539 unsigned int length) 1540{ 1541 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1542} 1543 1544static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1545 unsigned int length) 1546{ 1547 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN); 1548 1549 if (NET_IP_ALIGN && skb) 1550 skb_reserve(skb, NET_IP_ALIGN); 1551 return skb; 1552} 1553 1554extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask); 1555 1556/** 1557 * netdev_alloc_page - allocate a page for ps-rx on a specific device 1558 * @dev: network device to receive on 1559 * 1560 * Allocate a new page node local to the specified device. 1561 * 1562 * %NULL is returned if there is no free memory. 1563 */ 1564static inline struct page *netdev_alloc_page(struct net_device *dev) 1565{ 1566 return __netdev_alloc_page(dev, GFP_ATOMIC); 1567} 1568 1569static inline void netdev_free_page(struct net_device *dev, struct page *page) 1570{ 1571 __free_page(page); 1572} 1573 1574/** 1575 * skb_clone_writable - is the header of a clone writable 1576 * @skb: buffer to check 1577 * @len: length up to which to write 1578 * 1579 * Returns true if modifying the header part of the cloned buffer 1580 * does not requires the data to be copied. 1581 */ 1582static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1583{ 1584 return !skb_header_cloned(skb) && 1585 skb_headroom(skb) + len <= skb->hdr_len; 1586} 1587 1588static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1589 int cloned) 1590{ 1591 int delta = 0; 1592 1593 if (headroom < NET_SKB_PAD) 1594 headroom = NET_SKB_PAD; 1595 if (headroom > skb_headroom(skb)) 1596 delta = headroom - skb_headroom(skb); 1597 1598 if (delta || cloned) 1599 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1600 GFP_ATOMIC); 1601 return 0; 1602} 1603 1604/** 1605 * skb_cow - copy header of skb when it is required 1606 * @skb: buffer to cow 1607 * @headroom: needed headroom 1608 * 1609 * If the skb passed lacks sufficient headroom or its data part 1610 * is shared, data is reallocated. If reallocation fails, an error 1611 * is returned and original skb is not changed. 1612 * 1613 * The result is skb with writable area skb->head...skb->tail 1614 * and at least @headroom of space at head. 1615 */ 1616static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1617{ 1618 return __skb_cow(skb, headroom, skb_cloned(skb)); 1619} 1620 1621/** 1622 * skb_cow_head - skb_cow but only making the head writable 1623 * @skb: buffer to cow 1624 * @headroom: needed headroom 1625 * 1626 * This function is identical to skb_cow except that we replace the 1627 * skb_cloned check by skb_header_cloned. It should be used when 1628 * you only need to push on some header and do not need to modify 1629 * the data. 1630 */ 1631static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1632{ 1633 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1634} 1635 1636/** 1637 * skb_padto - pad an skbuff up to a minimal size 1638 * @skb: buffer to pad 1639 * @len: minimal length 1640 * 1641 * Pads up a buffer to ensure the trailing bytes exist and are 1642 * blanked. If the buffer already contains sufficient data it 1643 * is untouched. Otherwise it is extended. Returns zero on 1644 * success. The skb is freed on error. 1645 */ 1646 1647static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1648{ 1649 unsigned int size = skb->len; 1650 if (likely(size >= len)) 1651 return 0; 1652 return skb_pad(skb, len - size); 1653} 1654 1655static inline int skb_add_data(struct sk_buff *skb, 1656 char __user *from, int copy) 1657{ 1658 const int off = skb->len; 1659 1660 if (skb->ip_summed == CHECKSUM_NONE) { 1661 int err = 0; 1662 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1663 copy, 0, &err); 1664 if (!err) { 1665 skb->csum = csum_block_add(skb->csum, csum, off); 1666 return 0; 1667 } 1668 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1669 return 0; 1670 1671 __skb_trim(skb, off); 1672 return -EFAULT; 1673} 1674 1675static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1676 struct page *page, int off) 1677{ 1678 if (i) { 1679 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1680 1681 return page == frag->page && 1682 off == frag->page_offset + frag->size; 1683 } 1684 return 0; 1685} 1686 1687static inline int __skb_linearize(struct sk_buff *skb) 1688{ 1689 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1690} 1691 1692/** 1693 * skb_linearize - convert paged skb to linear one 1694 * @skb: buffer to linarize 1695 * 1696 * If there is no free memory -ENOMEM is returned, otherwise zero 1697 * is returned and the old skb data released. 1698 */ 1699static inline int skb_linearize(struct sk_buff *skb) 1700{ 1701 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1702} 1703 1704/** 1705 * skb_linearize_cow - make sure skb is linear and writable 1706 * @skb: buffer to process 1707 * 1708 * If there is no free memory -ENOMEM is returned, otherwise zero 1709 * is returned and the old skb data released. 1710 */ 1711static inline int skb_linearize_cow(struct sk_buff *skb) 1712{ 1713 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1714 __skb_linearize(skb) : 0; 1715} 1716 1717/** 1718 * skb_postpull_rcsum - update checksum for received skb after pull 1719 * @skb: buffer to update 1720 * @start: start of data before pull 1721 * @len: length of data pulled 1722 * 1723 * After doing a pull on a received packet, you need to call this to 1724 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1725 * CHECKSUM_NONE so that it can be recomputed from scratch. 1726 */ 1727 1728static inline void skb_postpull_rcsum(struct sk_buff *skb, 1729 const void *start, unsigned int len) 1730{ 1731 if (skb->ip_summed == CHECKSUM_COMPLETE) 1732 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1733} 1734 1735unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1736 1737/** 1738 * pskb_trim_rcsum - trim received skb and update checksum 1739 * @skb: buffer to trim 1740 * @len: new length 1741 * 1742 * This is exactly the same as pskb_trim except that it ensures the 1743 * checksum of received packets are still valid after the operation. 1744 */ 1745 1746static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1747{ 1748 if (likely(len >= skb->len)) 1749 return 0; 1750 if (skb->ip_summed == CHECKSUM_COMPLETE) 1751 skb->ip_summed = CHECKSUM_NONE; 1752 return __pskb_trim(skb, len); 1753} 1754 1755#define skb_queue_walk(queue, skb) \ 1756 for (skb = (queue)->next; \ 1757 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1758 skb = skb->next) 1759 1760#define skb_queue_walk_safe(queue, skb, tmp) \ 1761 for (skb = (queue)->next, tmp = skb->next; \ 1762 skb != (struct sk_buff *)(queue); \ 1763 skb = tmp, tmp = skb->next) 1764 1765#define skb_queue_walk_from(queue, skb) \ 1766 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1767 skb = skb->next) 1768 1769#define skb_queue_walk_from_safe(queue, skb, tmp) \ 1770 for (tmp = skb->next; \ 1771 skb != (struct sk_buff *)(queue); \ 1772 skb = tmp, tmp = skb->next) 1773 1774#define skb_queue_reverse_walk(queue, skb) \ 1775 for (skb = (queue)->prev; \ 1776 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1777 skb = skb->prev) 1778 1779 1780static inline bool skb_has_frags(const struct sk_buff *skb) 1781{ 1782 return skb_shinfo(skb)->frag_list != NULL; 1783} 1784 1785static inline void skb_frag_list_init(struct sk_buff *skb) 1786{ 1787 skb_shinfo(skb)->frag_list = NULL; 1788} 1789 1790static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 1791{ 1792 frag->next = skb_shinfo(skb)->frag_list; 1793 skb_shinfo(skb)->frag_list = frag; 1794} 1795 1796#define skb_walk_frags(skb, iter) \ 1797 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 1798 1799extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1800 int *peeked, int *err); 1801extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1802 int noblock, int *err); 1803extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1804 struct poll_table_struct *wait); 1805extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1806 int offset, struct iovec *to, 1807 int size); 1808extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1809 int hlen, 1810 struct iovec *iov); 1811extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 1812 int offset, 1813 const struct iovec *from, 1814 int from_offset, 1815 int len); 1816extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 1817 int offset, 1818 const struct iovec *to, 1819 int to_offset, 1820 int size); 1821extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1822extern void skb_free_datagram_locked(struct sock *sk, 1823 struct sk_buff *skb); 1824extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1825 unsigned int flags); 1826extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1827 int len, __wsum csum); 1828extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1829 void *to, int len); 1830extern int skb_store_bits(struct sk_buff *skb, int offset, 1831 const void *from, int len); 1832extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1833 int offset, u8 *to, int len, 1834 __wsum csum); 1835extern int skb_splice_bits(struct sk_buff *skb, 1836 unsigned int offset, 1837 struct pipe_inode_info *pipe, 1838 unsigned int len, 1839 unsigned int flags); 1840extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1841extern void skb_split(struct sk_buff *skb, 1842 struct sk_buff *skb1, const u32 len); 1843extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 1844 int shiftlen); 1845 1846extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1847 1848static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1849 int len, void *buffer) 1850{ 1851 int hlen = skb_headlen(skb); 1852 1853 if (hlen - offset >= len) 1854 return skb->data + offset; 1855 1856 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1857 return NULL; 1858 1859 return buffer; 1860} 1861 1862static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1863 void *to, 1864 const unsigned int len) 1865{ 1866 memcpy(to, skb->data, len); 1867} 1868 1869static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1870 const int offset, void *to, 1871 const unsigned int len) 1872{ 1873 memcpy(to, skb->data + offset, len); 1874} 1875 1876static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1877 const void *from, 1878 const unsigned int len) 1879{ 1880 memcpy(skb->data, from, len); 1881} 1882 1883static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1884 const int offset, 1885 const void *from, 1886 const unsigned int len) 1887{ 1888 memcpy(skb->data + offset, from, len); 1889} 1890 1891extern void skb_init(void); 1892 1893static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 1894{ 1895 return skb->tstamp; 1896} 1897 1898/** 1899 * skb_get_timestamp - get timestamp from a skb 1900 * @skb: skb to get stamp from 1901 * @stamp: pointer to struct timeval to store stamp in 1902 * 1903 * Timestamps are stored in the skb as offsets to a base timestamp. 1904 * This function converts the offset back to a struct timeval and stores 1905 * it in stamp. 1906 */ 1907static inline void skb_get_timestamp(const struct sk_buff *skb, 1908 struct timeval *stamp) 1909{ 1910 *stamp = ktime_to_timeval(skb->tstamp); 1911} 1912 1913static inline void skb_get_timestampns(const struct sk_buff *skb, 1914 struct timespec *stamp) 1915{ 1916 *stamp = ktime_to_timespec(skb->tstamp); 1917} 1918 1919static inline void __net_timestamp(struct sk_buff *skb) 1920{ 1921 skb->tstamp = ktime_get_real(); 1922} 1923 1924static inline ktime_t net_timedelta(ktime_t t) 1925{ 1926 return ktime_sub(ktime_get_real(), t); 1927} 1928 1929static inline ktime_t net_invalid_timestamp(void) 1930{ 1931 return ktime_set(0, 0); 1932} 1933 1934/** 1935 * skb_tstamp_tx - queue clone of skb with send time stamps 1936 * @orig_skb: the original outgoing packet 1937 * @hwtstamps: hardware time stamps, may be NULL if not available 1938 * 1939 * If the skb has a socket associated, then this function clones the 1940 * skb (thus sharing the actual data and optional structures), stores 1941 * the optional hardware time stamping information (if non NULL) or 1942 * generates a software time stamp (otherwise), then queues the clone 1943 * to the error queue of the socket. Errors are silently ignored. 1944 */ 1945extern void skb_tstamp_tx(struct sk_buff *orig_skb, 1946 struct skb_shared_hwtstamps *hwtstamps); 1947 1948extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 1949extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1950 1951static inline int skb_csum_unnecessary(const struct sk_buff *skb) 1952{ 1953 return skb->ip_summed & CHECKSUM_UNNECESSARY; 1954} 1955 1956/** 1957 * skb_checksum_complete - Calculate checksum of an entire packet 1958 * @skb: packet to process 1959 * 1960 * This function calculates the checksum over the entire packet plus 1961 * the value of skb->csum. The latter can be used to supply the 1962 * checksum of a pseudo header as used by TCP/UDP. It returns the 1963 * checksum. 1964 * 1965 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1966 * this function can be used to verify that checksum on received 1967 * packets. In that case the function should return zero if the 1968 * checksum is correct. In particular, this function will return zero 1969 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1970 * hardware has already verified the correctness of the checksum. 1971 */ 1972static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 1973{ 1974 return skb_csum_unnecessary(skb) ? 1975 0 : __skb_checksum_complete(skb); 1976} 1977 1978#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1979extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 1980static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1981{ 1982 if (nfct && atomic_dec_and_test(&nfct->use)) 1983 nf_conntrack_destroy(nfct); 1984} 1985static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1986{ 1987 if (nfct) 1988 atomic_inc(&nfct->use); 1989} 1990static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1991{ 1992 if (skb) 1993 atomic_inc(&skb->users); 1994} 1995static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1996{ 1997 if (skb) 1998 kfree_skb(skb); 1999} 2000#endif 2001#ifdef CONFIG_BRIDGE_NETFILTER 2002static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2003{ 2004 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2005 kfree(nf_bridge); 2006} 2007static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2008{ 2009 if (nf_bridge) 2010 atomic_inc(&nf_bridge->use); 2011} 2012#endif /* CONFIG_BRIDGE_NETFILTER */ 2013static inline void nf_reset(struct sk_buff *skb) 2014{ 2015#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2016 nf_conntrack_put(skb->nfct); 2017 skb->nfct = NULL; 2018 nf_conntrack_put_reasm(skb->nfct_reasm); 2019 skb->nfct_reasm = NULL; 2020#endif 2021#ifdef CONFIG_BRIDGE_NETFILTER 2022 nf_bridge_put(skb->nf_bridge); 2023 skb->nf_bridge = NULL; 2024#endif 2025} 2026 2027/* Note: This doesn't put any conntrack and bridge info in dst. */ 2028static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2029{ 2030#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2031 dst->nfct = src->nfct; 2032 nf_conntrack_get(src->nfct); 2033 dst->nfctinfo = src->nfctinfo; 2034 dst->nfct_reasm = src->nfct_reasm; 2035 nf_conntrack_get_reasm(src->nfct_reasm); 2036#endif 2037#ifdef CONFIG_BRIDGE_NETFILTER 2038 dst->nf_bridge = src->nf_bridge; 2039 nf_bridge_get(src->nf_bridge); 2040#endif 2041} 2042 2043static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2044{ 2045#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2046 nf_conntrack_put(dst->nfct); 2047 nf_conntrack_put_reasm(dst->nfct_reasm); 2048#endif 2049#ifdef CONFIG_BRIDGE_NETFILTER 2050 nf_bridge_put(dst->nf_bridge); 2051#endif 2052 __nf_copy(dst, src); 2053} 2054 2055#ifdef CONFIG_NETWORK_SECMARK 2056static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2057{ 2058 to->secmark = from->secmark; 2059} 2060 2061static inline void skb_init_secmark(struct sk_buff *skb) 2062{ 2063 skb->secmark = 0; 2064} 2065#else 2066static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2067{ } 2068 2069static inline void skb_init_secmark(struct sk_buff *skb) 2070{ } 2071#endif 2072 2073static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2074{ 2075 skb->queue_mapping = queue_mapping; 2076} 2077 2078static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2079{ 2080 return skb->queue_mapping; 2081} 2082 2083static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2084{ 2085 to->queue_mapping = from->queue_mapping; 2086} 2087 2088static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2089{ 2090 skb->queue_mapping = rx_queue + 1; 2091} 2092 2093static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2094{ 2095 return skb->queue_mapping - 1; 2096} 2097 2098static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2099{ 2100 return (skb->queue_mapping != 0); 2101} 2102 2103extern u16 skb_tx_hash(const struct net_device *dev, 2104 const struct sk_buff *skb); 2105 2106#ifdef CONFIG_XFRM 2107static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2108{ 2109 return skb->sp; 2110} 2111#else 2112static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2113{ 2114 return NULL; 2115} 2116#endif 2117 2118static inline int skb_is_gso(const struct sk_buff *skb) 2119{ 2120 return skb_shinfo(skb)->gso_size; 2121} 2122 2123static inline int skb_is_gso_v6(const struct sk_buff *skb) 2124{ 2125 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2126} 2127 2128extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2129 2130static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2131{ 2132 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2133 * wanted then gso_type will be set. */ 2134 struct skb_shared_info *shinfo = skb_shinfo(skb); 2135 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) { 2136 __skb_warn_lro_forwarding(skb); 2137 return true; 2138 } 2139 return false; 2140} 2141 2142static inline void skb_forward_csum(struct sk_buff *skb) 2143{ 2144 /* Unfortunately we don't support this one. Any brave souls? */ 2145 if (skb->ip_summed == CHECKSUM_COMPLETE) 2146 skb->ip_summed = CHECKSUM_NONE; 2147} 2148 2149bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2150#endif /* __KERNEL__ */ 2151#endif /* _LINUX_SKBUFF_H */