at v2.6.35 20 kB view raw
1#ifndef __LINUX_PERCPU_H 2#define __LINUX_PERCPU_H 3 4#include <linux/preempt.h> 5#include <linux/smp.h> 6#include <linux/cpumask.h> 7#include <linux/pfn.h> 8#include <linux/init.h> 9 10#include <asm/percpu.h> 11 12/* enough to cover all DEFINE_PER_CPUs in modules */ 13#ifdef CONFIG_MODULES 14#define PERCPU_MODULE_RESERVE (8 << 10) 15#else 16#define PERCPU_MODULE_RESERVE 0 17#endif 18 19#ifndef PERCPU_ENOUGH_ROOM 20#define PERCPU_ENOUGH_ROOM \ 21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 22 PERCPU_MODULE_RESERVE) 23#endif 24 25/* 26 * Must be an lvalue. Since @var must be a simple identifier, 27 * we force a syntax error here if it isn't. 28 */ 29#define get_cpu_var(var) (*({ \ 30 preempt_disable(); \ 31 &__get_cpu_var(var); })) 32 33/* 34 * The weird & is necessary because sparse considers (void)(var) to be 35 * a direct dereference of percpu variable (var). 36 */ 37#define put_cpu_var(var) do { \ 38 (void)&(var); \ 39 preempt_enable(); \ 40} while (0) 41 42#ifdef CONFIG_SMP 43 44/* minimum unit size, also is the maximum supported allocation size */ 45#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10) 46 47/* 48 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 49 * back on the first chunk for dynamic percpu allocation if arch is 50 * manually allocating and mapping it for faster access (as a part of 51 * large page mapping for example). 52 * 53 * The following values give between one and two pages of free space 54 * after typical minimal boot (2-way SMP, single disk and NIC) with 55 * both defconfig and a distro config on x86_64 and 32. More 56 * intelligent way to determine this would be nice. 57 */ 58#if BITS_PER_LONG > 32 59#define PERCPU_DYNAMIC_RESERVE (20 << 10) 60#else 61#define PERCPU_DYNAMIC_RESERVE (12 << 10) 62#endif 63 64extern void *pcpu_base_addr; 65extern const unsigned long *pcpu_unit_offsets; 66 67struct pcpu_group_info { 68 int nr_units; /* aligned # of units */ 69 unsigned long base_offset; /* base address offset */ 70 unsigned int *cpu_map; /* unit->cpu map, empty 71 * entries contain NR_CPUS */ 72}; 73 74struct pcpu_alloc_info { 75 size_t static_size; 76 size_t reserved_size; 77 size_t dyn_size; 78 size_t unit_size; 79 size_t atom_size; 80 size_t alloc_size; 81 size_t __ai_size; /* internal, don't use */ 82 int nr_groups; /* 0 if grouping unnecessary */ 83 struct pcpu_group_info groups[]; 84}; 85 86enum pcpu_fc { 87 PCPU_FC_AUTO, 88 PCPU_FC_EMBED, 89 PCPU_FC_PAGE, 90 91 PCPU_FC_NR, 92}; 93extern const char *pcpu_fc_names[PCPU_FC_NR]; 94 95extern enum pcpu_fc pcpu_chosen_fc; 96 97typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 98 size_t align); 99typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 100typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 101typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 102 103extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 104 int nr_units); 105extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 106 107extern struct pcpu_alloc_info * __init pcpu_build_alloc_info( 108 size_t reserved_size, ssize_t dyn_size, 109 size_t atom_size, 110 pcpu_fc_cpu_distance_fn_t cpu_distance_fn); 111 112extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 113 void *base_addr); 114 115#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 116extern int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size, 117 size_t atom_size, 118 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 119 pcpu_fc_alloc_fn_t alloc_fn, 120 pcpu_fc_free_fn_t free_fn); 121#endif 122 123#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 124extern int __init pcpu_page_first_chunk(size_t reserved_size, 125 pcpu_fc_alloc_fn_t alloc_fn, 126 pcpu_fc_free_fn_t free_fn, 127 pcpu_fc_populate_pte_fn_t populate_pte_fn); 128#endif 129 130/* 131 * Use this to get to a cpu's version of the per-cpu object 132 * dynamically allocated. Non-atomic access to the current CPU's 133 * version should probably be combined with get_cpu()/put_cpu(). 134 */ 135#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 136 137extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); 138extern bool is_kernel_percpu_address(unsigned long addr); 139 140#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 141extern void __init setup_per_cpu_areas(void); 142#endif 143 144#else /* CONFIG_SMP */ 145 146#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); (ptr); }) 147 148/* can't distinguish from other static vars, always false */ 149static inline bool is_kernel_percpu_address(unsigned long addr) 150{ 151 return false; 152} 153 154static inline void __init setup_per_cpu_areas(void) { } 155 156static inline void *pcpu_lpage_remapped(void *kaddr) 157{ 158 return NULL; 159} 160 161#endif /* CONFIG_SMP */ 162 163extern void __percpu *__alloc_percpu(size_t size, size_t align); 164extern void free_percpu(void __percpu *__pdata); 165extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 166 167#define alloc_percpu(type) \ 168 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) 169 170/* 171 * Optional methods for optimized non-lvalue per-cpu variable access. 172 * 173 * @var can be a percpu variable or a field of it and its size should 174 * equal char, int or long. percpu_read() evaluates to a lvalue and 175 * all others to void. 176 * 177 * These operations are guaranteed to be atomic w.r.t. preemption. 178 * The generic versions use plain get/put_cpu_var(). Archs are 179 * encouraged to implement single-instruction alternatives which don't 180 * require preemption protection. 181 */ 182#ifndef percpu_read 183# define percpu_read(var) \ 184 ({ \ 185 typeof(var) *pr_ptr__ = &(var); \ 186 typeof(var) pr_ret__; \ 187 pr_ret__ = get_cpu_var(*pr_ptr__); \ 188 put_cpu_var(*pr_ptr__); \ 189 pr_ret__; \ 190 }) 191#endif 192 193#define __percpu_generic_to_op(var, val, op) \ 194do { \ 195 typeof(var) *pgto_ptr__ = &(var); \ 196 get_cpu_var(*pgto_ptr__) op val; \ 197 put_cpu_var(*pgto_ptr__); \ 198} while (0) 199 200#ifndef percpu_write 201# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) 202#endif 203 204#ifndef percpu_add 205# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) 206#endif 207 208#ifndef percpu_sub 209# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) 210#endif 211 212#ifndef percpu_and 213# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) 214#endif 215 216#ifndef percpu_or 217# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) 218#endif 219 220#ifndef percpu_xor 221# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) 222#endif 223 224/* 225 * Branching function to split up a function into a set of functions that 226 * are called for different scalar sizes of the objects handled. 227 */ 228 229extern void __bad_size_call_parameter(void); 230 231#define __pcpu_size_call_return(stem, variable) \ 232({ typeof(variable) pscr_ret__; \ 233 __verify_pcpu_ptr(&(variable)); \ 234 switch(sizeof(variable)) { \ 235 case 1: pscr_ret__ = stem##1(variable);break; \ 236 case 2: pscr_ret__ = stem##2(variable);break; \ 237 case 4: pscr_ret__ = stem##4(variable);break; \ 238 case 8: pscr_ret__ = stem##8(variable);break; \ 239 default: \ 240 __bad_size_call_parameter();break; \ 241 } \ 242 pscr_ret__; \ 243}) 244 245#define __pcpu_size_call(stem, variable, ...) \ 246do { \ 247 __verify_pcpu_ptr(&(variable)); \ 248 switch(sizeof(variable)) { \ 249 case 1: stem##1(variable, __VA_ARGS__);break; \ 250 case 2: stem##2(variable, __VA_ARGS__);break; \ 251 case 4: stem##4(variable, __VA_ARGS__);break; \ 252 case 8: stem##8(variable, __VA_ARGS__);break; \ 253 default: \ 254 __bad_size_call_parameter();break; \ 255 } \ 256} while (0) 257 258/* 259 * Optimized manipulation for memory allocated through the per cpu 260 * allocator or for addresses of per cpu variables. 261 * 262 * These operation guarantee exclusivity of access for other operations 263 * on the *same* processor. The assumption is that per cpu data is only 264 * accessed by a single processor instance (the current one). 265 * 266 * The first group is used for accesses that must be done in a 267 * preemption safe way since we know that the context is not preempt 268 * safe. Interrupts may occur. If the interrupt modifies the variable 269 * too then RMW actions will not be reliable. 270 * 271 * The arch code can provide optimized functions in two ways: 272 * 273 * 1. Override the function completely. F.e. define this_cpu_add(). 274 * The arch must then ensure that the various scalar format passed 275 * are handled correctly. 276 * 277 * 2. Provide functions for certain scalar sizes. F.e. provide 278 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 279 * sized RMW actions. If arch code does not provide operations for 280 * a scalar size then the fallback in the generic code will be 281 * used. 282 */ 283 284#define _this_cpu_generic_read(pcp) \ 285({ typeof(pcp) ret__; \ 286 preempt_disable(); \ 287 ret__ = *this_cpu_ptr(&(pcp)); \ 288 preempt_enable(); \ 289 ret__; \ 290}) 291 292#ifndef this_cpu_read 293# ifndef this_cpu_read_1 294# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 295# endif 296# ifndef this_cpu_read_2 297# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 298# endif 299# ifndef this_cpu_read_4 300# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 301# endif 302# ifndef this_cpu_read_8 303# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 304# endif 305# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 306#endif 307 308#define _this_cpu_generic_to_op(pcp, val, op) \ 309do { \ 310 preempt_disable(); \ 311 *__this_cpu_ptr(&(pcp)) op val; \ 312 preempt_enable(); \ 313} while (0) 314 315#ifndef this_cpu_write 316# ifndef this_cpu_write_1 317# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 318# endif 319# ifndef this_cpu_write_2 320# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 321# endif 322# ifndef this_cpu_write_4 323# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 324# endif 325# ifndef this_cpu_write_8 326# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 327# endif 328# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 329#endif 330 331#ifndef this_cpu_add 332# ifndef this_cpu_add_1 333# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 334# endif 335# ifndef this_cpu_add_2 336# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 337# endif 338# ifndef this_cpu_add_4 339# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 340# endif 341# ifndef this_cpu_add_8 342# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 343# endif 344# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 345#endif 346 347#ifndef this_cpu_sub 348# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) 349#endif 350 351#ifndef this_cpu_inc 352# define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 353#endif 354 355#ifndef this_cpu_dec 356# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 357#endif 358 359#ifndef this_cpu_and 360# ifndef this_cpu_and_1 361# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 362# endif 363# ifndef this_cpu_and_2 364# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 365# endif 366# ifndef this_cpu_and_4 367# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 368# endif 369# ifndef this_cpu_and_8 370# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 371# endif 372# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 373#endif 374 375#ifndef this_cpu_or 376# ifndef this_cpu_or_1 377# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 378# endif 379# ifndef this_cpu_or_2 380# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 381# endif 382# ifndef this_cpu_or_4 383# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 384# endif 385# ifndef this_cpu_or_8 386# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 387# endif 388# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 389#endif 390 391#ifndef this_cpu_xor 392# ifndef this_cpu_xor_1 393# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 394# endif 395# ifndef this_cpu_xor_2 396# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 397# endif 398# ifndef this_cpu_xor_4 399# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 400# endif 401# ifndef this_cpu_xor_8 402# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 403# endif 404# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 405#endif 406 407/* 408 * Generic percpu operations that do not require preemption handling. 409 * Either we do not care about races or the caller has the 410 * responsibility of handling preemptions issues. Arch code can still 411 * override these instructions since the arch per cpu code may be more 412 * efficient and may actually get race freeness for free (that is the 413 * case for x86 for example). 414 * 415 * If there is no other protection through preempt disable and/or 416 * disabling interupts then one of these RMW operations can show unexpected 417 * behavior because the execution thread was rescheduled on another processor 418 * or an interrupt occurred and the same percpu variable was modified from 419 * the interrupt context. 420 */ 421#ifndef __this_cpu_read 422# ifndef __this_cpu_read_1 423# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) 424# endif 425# ifndef __this_cpu_read_2 426# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) 427# endif 428# ifndef __this_cpu_read_4 429# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) 430# endif 431# ifndef __this_cpu_read_8 432# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) 433# endif 434# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) 435#endif 436 437#define __this_cpu_generic_to_op(pcp, val, op) \ 438do { \ 439 *__this_cpu_ptr(&(pcp)) op val; \ 440} while (0) 441 442#ifndef __this_cpu_write 443# ifndef __this_cpu_write_1 444# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 445# endif 446# ifndef __this_cpu_write_2 447# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 448# endif 449# ifndef __this_cpu_write_4 450# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 451# endif 452# ifndef __this_cpu_write_8 453# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 454# endif 455# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) 456#endif 457 458#ifndef __this_cpu_add 459# ifndef __this_cpu_add_1 460# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 461# endif 462# ifndef __this_cpu_add_2 463# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 464# endif 465# ifndef __this_cpu_add_4 466# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 467# endif 468# ifndef __this_cpu_add_8 469# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 470# endif 471# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) 472#endif 473 474#ifndef __this_cpu_sub 475# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) 476#endif 477 478#ifndef __this_cpu_inc 479# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 480#endif 481 482#ifndef __this_cpu_dec 483# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 484#endif 485 486#ifndef __this_cpu_and 487# ifndef __this_cpu_and_1 488# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 489# endif 490# ifndef __this_cpu_and_2 491# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 492# endif 493# ifndef __this_cpu_and_4 494# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 495# endif 496# ifndef __this_cpu_and_8 497# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 498# endif 499# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) 500#endif 501 502#ifndef __this_cpu_or 503# ifndef __this_cpu_or_1 504# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 505# endif 506# ifndef __this_cpu_or_2 507# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 508# endif 509# ifndef __this_cpu_or_4 510# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 511# endif 512# ifndef __this_cpu_or_8 513# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 514# endif 515# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) 516#endif 517 518#ifndef __this_cpu_xor 519# ifndef __this_cpu_xor_1 520# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 521# endif 522# ifndef __this_cpu_xor_2 523# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 524# endif 525# ifndef __this_cpu_xor_4 526# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 527# endif 528# ifndef __this_cpu_xor_8 529# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 530# endif 531# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) 532#endif 533 534/* 535 * IRQ safe versions of the per cpu RMW operations. Note that these operations 536 * are *not* safe against modification of the same variable from another 537 * processors (which one gets when using regular atomic operations) 538 . They are guaranteed to be atomic vs. local interrupts and 539 * preemption only. 540 */ 541#define irqsafe_cpu_generic_to_op(pcp, val, op) \ 542do { \ 543 unsigned long flags; \ 544 local_irq_save(flags); \ 545 *__this_cpu_ptr(&(pcp)) op val; \ 546 local_irq_restore(flags); \ 547} while (0) 548 549#ifndef irqsafe_cpu_add 550# ifndef irqsafe_cpu_add_1 551# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 552# endif 553# ifndef irqsafe_cpu_add_2 554# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 555# endif 556# ifndef irqsafe_cpu_add_4 557# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 558# endif 559# ifndef irqsafe_cpu_add_8 560# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) 561# endif 562# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val)) 563#endif 564 565#ifndef irqsafe_cpu_sub 566# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val)) 567#endif 568 569#ifndef irqsafe_cpu_inc 570# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1) 571#endif 572 573#ifndef irqsafe_cpu_dec 574# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1) 575#endif 576 577#ifndef irqsafe_cpu_and 578# ifndef irqsafe_cpu_and_1 579# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 580# endif 581# ifndef irqsafe_cpu_and_2 582# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 583# endif 584# ifndef irqsafe_cpu_and_4 585# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 586# endif 587# ifndef irqsafe_cpu_and_8 588# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) 589# endif 590# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val)) 591#endif 592 593#ifndef irqsafe_cpu_or 594# ifndef irqsafe_cpu_or_1 595# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 596# endif 597# ifndef irqsafe_cpu_or_2 598# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 599# endif 600# ifndef irqsafe_cpu_or_4 601# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 602# endif 603# ifndef irqsafe_cpu_or_8 604# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) 605# endif 606# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val)) 607#endif 608 609#ifndef irqsafe_cpu_xor 610# ifndef irqsafe_cpu_xor_1 611# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 612# endif 613# ifndef irqsafe_cpu_xor_2 614# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 615# endif 616# ifndef irqsafe_cpu_xor_4 617# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 618# endif 619# ifndef irqsafe_cpu_xor_8 620# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) 621# endif 622# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val)) 623#endif 624 625#endif /* __LINUX_PERCPU_H */