at v2.6.35 24 kB view raw
1/* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21#ifndef DMAENGINE_H 22#define DMAENGINE_H 23 24#include <linux/device.h> 25#include <linux/uio.h> 26#include <linux/dma-mapping.h> 27 28/** 29 * typedef dma_cookie_t - an opaque DMA cookie 30 * 31 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 32 */ 33typedef s32 dma_cookie_t; 34#define DMA_MIN_COOKIE 1 35#define DMA_MAX_COOKIE INT_MAX 36 37#define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0) 38 39/** 40 * enum dma_status - DMA transaction status 41 * @DMA_SUCCESS: transaction completed successfully 42 * @DMA_IN_PROGRESS: transaction not yet processed 43 * @DMA_PAUSED: transaction is paused 44 * @DMA_ERROR: transaction failed 45 */ 46enum dma_status { 47 DMA_SUCCESS, 48 DMA_IN_PROGRESS, 49 DMA_PAUSED, 50 DMA_ERROR, 51}; 52 53/** 54 * enum dma_transaction_type - DMA transaction types/indexes 55 * 56 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 57 * automatically set as dma devices are registered. 58 */ 59enum dma_transaction_type { 60 DMA_MEMCPY, 61 DMA_XOR, 62 DMA_PQ, 63 DMA_XOR_VAL, 64 DMA_PQ_VAL, 65 DMA_MEMSET, 66 DMA_INTERRUPT, 67 DMA_PRIVATE, 68 DMA_ASYNC_TX, 69 DMA_SLAVE, 70}; 71 72/* last transaction type for creation of the capabilities mask */ 73#define DMA_TX_TYPE_END (DMA_SLAVE + 1) 74 75 76/** 77 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 78 * control completion, and communicate status. 79 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 80 * this transaction 81 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 82 * acknowledges receipt, i.e. has has a chance to establish any dependency 83 * chains 84 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s) 85 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s) 86 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single 87 * (if not set, do the source dma-unmapping as page) 88 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single 89 * (if not set, do the destination dma-unmapping as page) 90 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 91 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 92 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 93 * sources that were the result of a previous operation, in the case of a PQ 94 * operation it continues the calculation with new sources 95 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 96 * on the result of this operation 97 */ 98enum dma_ctrl_flags { 99 DMA_PREP_INTERRUPT = (1 << 0), 100 DMA_CTRL_ACK = (1 << 1), 101 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2), 102 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3), 103 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4), 104 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5), 105 DMA_PREP_PQ_DISABLE_P = (1 << 6), 106 DMA_PREP_PQ_DISABLE_Q = (1 << 7), 107 DMA_PREP_CONTINUE = (1 << 8), 108 DMA_PREP_FENCE = (1 << 9), 109}; 110 111/** 112 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised 113 * on a running channel. 114 * @DMA_TERMINATE_ALL: terminate all ongoing transfers 115 * @DMA_PAUSE: pause ongoing transfers 116 * @DMA_RESUME: resume paused transfer 117 */ 118enum dma_ctrl_cmd { 119 DMA_TERMINATE_ALL, 120 DMA_PAUSE, 121 DMA_RESUME, 122}; 123 124/** 125 * enum sum_check_bits - bit position of pq_check_flags 126 */ 127enum sum_check_bits { 128 SUM_CHECK_P = 0, 129 SUM_CHECK_Q = 1, 130}; 131 132/** 133 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 134 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 135 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 136 */ 137enum sum_check_flags { 138 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 139 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 140}; 141 142 143/** 144 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 145 * See linux/cpumask.h 146 */ 147typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 148 149/** 150 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 151 * @memcpy_count: transaction counter 152 * @bytes_transferred: byte counter 153 */ 154 155struct dma_chan_percpu { 156 /* stats */ 157 unsigned long memcpy_count; 158 unsigned long bytes_transferred; 159}; 160 161/** 162 * struct dma_chan - devices supply DMA channels, clients use them 163 * @device: ptr to the dma device who supplies this channel, always !%NULL 164 * @cookie: last cookie value returned to client 165 * @chan_id: channel ID for sysfs 166 * @dev: class device for sysfs 167 * @device_node: used to add this to the device chan list 168 * @local: per-cpu pointer to a struct dma_chan_percpu 169 * @client-count: how many clients are using this channel 170 * @table_count: number of appearances in the mem-to-mem allocation table 171 * @private: private data for certain client-channel associations 172 */ 173struct dma_chan { 174 struct dma_device *device; 175 dma_cookie_t cookie; 176 177 /* sysfs */ 178 int chan_id; 179 struct dma_chan_dev *dev; 180 181 struct list_head device_node; 182 struct dma_chan_percpu __percpu *local; 183 int client_count; 184 int table_count; 185 void *private; 186}; 187 188/** 189 * struct dma_chan_dev - relate sysfs device node to backing channel device 190 * @chan - driver channel device 191 * @device - sysfs device 192 * @dev_id - parent dma_device dev_id 193 * @idr_ref - reference count to gate release of dma_device dev_id 194 */ 195struct dma_chan_dev { 196 struct dma_chan *chan; 197 struct device device; 198 int dev_id; 199 atomic_t *idr_ref; 200}; 201 202static inline const char *dma_chan_name(struct dma_chan *chan) 203{ 204 return dev_name(&chan->dev->device); 205} 206 207void dma_chan_cleanup(struct kref *kref); 208 209/** 210 * typedef dma_filter_fn - callback filter for dma_request_channel 211 * @chan: channel to be reviewed 212 * @filter_param: opaque parameter passed through dma_request_channel 213 * 214 * When this optional parameter is specified in a call to dma_request_channel a 215 * suitable channel is passed to this routine for further dispositioning before 216 * being returned. Where 'suitable' indicates a non-busy channel that 217 * satisfies the given capability mask. It returns 'true' to indicate that the 218 * channel is suitable. 219 */ 220typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 221 222typedef void (*dma_async_tx_callback)(void *dma_async_param); 223/** 224 * struct dma_async_tx_descriptor - async transaction descriptor 225 * ---dma generic offload fields--- 226 * @cookie: tracking cookie for this transaction, set to -EBUSY if 227 * this tx is sitting on a dependency list 228 * @flags: flags to augment operation preparation, control completion, and 229 * communicate status 230 * @phys: physical address of the descriptor 231 * @chan: target channel for this operation 232 * @tx_submit: set the prepared descriptor(s) to be executed by the engine 233 * @callback: routine to call after this operation is complete 234 * @callback_param: general parameter to pass to the callback routine 235 * ---async_tx api specific fields--- 236 * @next: at completion submit this descriptor 237 * @parent: pointer to the next level up in the dependency chain 238 * @lock: protect the parent and next pointers 239 */ 240struct dma_async_tx_descriptor { 241 dma_cookie_t cookie; 242 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 243 dma_addr_t phys; 244 struct dma_chan *chan; 245 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 246 dma_async_tx_callback callback; 247 void *callback_param; 248#ifndef CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH 249 struct dma_async_tx_descriptor *next; 250 struct dma_async_tx_descriptor *parent; 251 spinlock_t lock; 252#endif 253}; 254 255#ifdef CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH 256static inline void txd_lock(struct dma_async_tx_descriptor *txd) 257{ 258} 259static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 260{ 261} 262static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 263{ 264 BUG(); 265} 266static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 267{ 268} 269static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 270{ 271} 272static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 273{ 274 return NULL; 275} 276static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 277{ 278 return NULL; 279} 280 281#else 282static inline void txd_lock(struct dma_async_tx_descriptor *txd) 283{ 284 spin_lock_bh(&txd->lock); 285} 286static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 287{ 288 spin_unlock_bh(&txd->lock); 289} 290static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 291{ 292 txd->next = next; 293 next->parent = txd; 294} 295static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 296{ 297 txd->parent = NULL; 298} 299static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 300{ 301 txd->next = NULL; 302} 303static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 304{ 305 return txd->parent; 306} 307static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 308{ 309 return txd->next; 310} 311#endif 312 313/** 314 * struct dma_tx_state - filled in to report the status of 315 * a transfer. 316 * @last: last completed DMA cookie 317 * @used: last issued DMA cookie (i.e. the one in progress) 318 * @residue: the remaining number of bytes left to transmit 319 * on the selected transfer for states DMA_IN_PROGRESS and 320 * DMA_PAUSED if this is implemented in the driver, else 0 321 */ 322struct dma_tx_state { 323 dma_cookie_t last; 324 dma_cookie_t used; 325 u32 residue; 326}; 327 328/** 329 * struct dma_device - info on the entity supplying DMA services 330 * @chancnt: how many DMA channels are supported 331 * @privatecnt: how many DMA channels are requested by dma_request_channel 332 * @channels: the list of struct dma_chan 333 * @global_node: list_head for global dma_device_list 334 * @cap_mask: one or more dma_capability flags 335 * @max_xor: maximum number of xor sources, 0 if no capability 336 * @max_pq: maximum number of PQ sources and PQ-continue capability 337 * @copy_align: alignment shift for memcpy operations 338 * @xor_align: alignment shift for xor operations 339 * @pq_align: alignment shift for pq operations 340 * @fill_align: alignment shift for memset operations 341 * @dev_id: unique device ID 342 * @dev: struct device reference for dma mapping api 343 * @device_alloc_chan_resources: allocate resources and return the 344 * number of allocated descriptors 345 * @device_free_chan_resources: release DMA channel's resources 346 * @device_prep_dma_memcpy: prepares a memcpy operation 347 * @device_prep_dma_xor: prepares a xor operation 348 * @device_prep_dma_xor_val: prepares a xor validation operation 349 * @device_prep_dma_pq: prepares a pq operation 350 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 351 * @device_prep_dma_memset: prepares a memset operation 352 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 353 * @device_prep_slave_sg: prepares a slave dma operation 354 * @device_control: manipulate all pending operations on a channel, returns 355 * zero or error code 356 * @device_tx_status: poll for transaction completion, the optional 357 * txstate parameter can be supplied with a pointer to get a 358 * struct with auxilary transfer status information, otherwise the call 359 * will just return a simple status code 360 * @device_issue_pending: push pending transactions to hardware 361 */ 362struct dma_device { 363 364 unsigned int chancnt; 365 unsigned int privatecnt; 366 struct list_head channels; 367 struct list_head global_node; 368 dma_cap_mask_t cap_mask; 369 unsigned short max_xor; 370 unsigned short max_pq; 371 u8 copy_align; 372 u8 xor_align; 373 u8 pq_align; 374 u8 fill_align; 375 #define DMA_HAS_PQ_CONTINUE (1 << 15) 376 377 int dev_id; 378 struct device *dev; 379 380 int (*device_alloc_chan_resources)(struct dma_chan *chan); 381 void (*device_free_chan_resources)(struct dma_chan *chan); 382 383 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 384 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 385 size_t len, unsigned long flags); 386 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 387 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 388 unsigned int src_cnt, size_t len, unsigned long flags); 389 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 390 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 391 size_t len, enum sum_check_flags *result, unsigned long flags); 392 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 393 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 394 unsigned int src_cnt, const unsigned char *scf, 395 size_t len, unsigned long flags); 396 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 397 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 398 unsigned int src_cnt, const unsigned char *scf, size_t len, 399 enum sum_check_flags *pqres, unsigned long flags); 400 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 401 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 402 unsigned long flags); 403 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 404 struct dma_chan *chan, unsigned long flags); 405 406 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 407 struct dma_chan *chan, struct scatterlist *sgl, 408 unsigned int sg_len, enum dma_data_direction direction, 409 unsigned long flags); 410 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 411 unsigned long arg); 412 413 enum dma_status (*device_tx_status)(struct dma_chan *chan, 414 dma_cookie_t cookie, 415 struct dma_tx_state *txstate); 416 void (*device_issue_pending)(struct dma_chan *chan); 417}; 418 419static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len) 420{ 421 size_t mask; 422 423 if (!align) 424 return true; 425 mask = (1 << align) - 1; 426 if (mask & (off1 | off2 | len)) 427 return false; 428 return true; 429} 430 431static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 432 size_t off2, size_t len) 433{ 434 return dmaengine_check_align(dev->copy_align, off1, off2, len); 435} 436 437static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 438 size_t off2, size_t len) 439{ 440 return dmaengine_check_align(dev->xor_align, off1, off2, len); 441} 442 443static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 444 size_t off2, size_t len) 445{ 446 return dmaengine_check_align(dev->pq_align, off1, off2, len); 447} 448 449static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 450 size_t off2, size_t len) 451{ 452 return dmaengine_check_align(dev->fill_align, off1, off2, len); 453} 454 455static inline void 456dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 457{ 458 dma->max_pq = maxpq; 459 if (has_pq_continue) 460 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 461} 462 463static inline bool dmaf_continue(enum dma_ctrl_flags flags) 464{ 465 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 466} 467 468static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 469{ 470 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 471 472 return (flags & mask) == mask; 473} 474 475static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 476{ 477 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 478} 479 480static unsigned short dma_dev_to_maxpq(struct dma_device *dma) 481{ 482 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 483} 484 485/* dma_maxpq - reduce maxpq in the face of continued operations 486 * @dma - dma device with PQ capability 487 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 488 * 489 * When an engine does not support native continuation we need 3 extra 490 * source slots to reuse P and Q with the following coefficients: 491 * 1/ {00} * P : remove P from Q', but use it as a source for P' 492 * 2/ {01} * Q : use Q to continue Q' calculation 493 * 3/ {00} * Q : subtract Q from P' to cancel (2) 494 * 495 * In the case where P is disabled we only need 1 extra source: 496 * 1/ {01} * Q : use Q to continue Q' calculation 497 */ 498static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 499{ 500 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 501 return dma_dev_to_maxpq(dma); 502 else if (dmaf_p_disabled_continue(flags)) 503 return dma_dev_to_maxpq(dma) - 1; 504 else if (dmaf_continue(flags)) 505 return dma_dev_to_maxpq(dma) - 3; 506 BUG(); 507} 508 509/* --- public DMA engine API --- */ 510 511#ifdef CONFIG_DMA_ENGINE 512void dmaengine_get(void); 513void dmaengine_put(void); 514#else 515static inline void dmaengine_get(void) 516{ 517} 518static inline void dmaengine_put(void) 519{ 520} 521#endif 522 523#ifdef CONFIG_NET_DMA 524#define net_dmaengine_get() dmaengine_get() 525#define net_dmaengine_put() dmaengine_put() 526#else 527static inline void net_dmaengine_get(void) 528{ 529} 530static inline void net_dmaengine_put(void) 531{ 532} 533#endif 534 535#ifdef CONFIG_ASYNC_TX_DMA 536#define async_dmaengine_get() dmaengine_get() 537#define async_dmaengine_put() dmaengine_put() 538#ifdef CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH 539#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 540#else 541#define async_dma_find_channel(type) dma_find_channel(type) 542#endif /* CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH */ 543#else 544static inline void async_dmaengine_get(void) 545{ 546} 547static inline void async_dmaengine_put(void) 548{ 549} 550static inline struct dma_chan * 551async_dma_find_channel(enum dma_transaction_type type) 552{ 553 return NULL; 554} 555#endif /* CONFIG_ASYNC_TX_DMA */ 556 557dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan, 558 void *dest, void *src, size_t len); 559dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan, 560 struct page *page, unsigned int offset, void *kdata, size_t len); 561dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan, 562 struct page *dest_pg, unsigned int dest_off, struct page *src_pg, 563 unsigned int src_off, size_t len); 564void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 565 struct dma_chan *chan); 566 567static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 568{ 569 tx->flags |= DMA_CTRL_ACK; 570} 571 572static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 573{ 574 tx->flags &= ~DMA_CTRL_ACK; 575} 576 577static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 578{ 579 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 580} 581 582#define first_dma_cap(mask) __first_dma_cap(&(mask)) 583static inline int __first_dma_cap(const dma_cap_mask_t *srcp) 584{ 585 return min_t(int, DMA_TX_TYPE_END, 586 find_first_bit(srcp->bits, DMA_TX_TYPE_END)); 587} 588 589#define next_dma_cap(n, mask) __next_dma_cap((n), &(mask)) 590static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp) 591{ 592 return min_t(int, DMA_TX_TYPE_END, 593 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1)); 594} 595 596#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 597static inline void 598__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 599{ 600 set_bit(tx_type, dstp->bits); 601} 602 603#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 604static inline void 605__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 606{ 607 clear_bit(tx_type, dstp->bits); 608} 609 610#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 611static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 612{ 613 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 614} 615 616#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 617static inline int 618__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 619{ 620 return test_bit(tx_type, srcp->bits); 621} 622 623#define for_each_dma_cap_mask(cap, mask) \ 624 for ((cap) = first_dma_cap(mask); \ 625 (cap) < DMA_TX_TYPE_END; \ 626 (cap) = next_dma_cap((cap), (mask))) 627 628/** 629 * dma_async_issue_pending - flush pending transactions to HW 630 * @chan: target DMA channel 631 * 632 * This allows drivers to push copies to HW in batches, 633 * reducing MMIO writes where possible. 634 */ 635static inline void dma_async_issue_pending(struct dma_chan *chan) 636{ 637 chan->device->device_issue_pending(chan); 638} 639 640#define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan) 641 642/** 643 * dma_async_is_tx_complete - poll for transaction completion 644 * @chan: DMA channel 645 * @cookie: transaction identifier to check status of 646 * @last: returns last completed cookie, can be NULL 647 * @used: returns last issued cookie, can be NULL 648 * 649 * If @last and @used are passed in, upon return they reflect the driver 650 * internal state and can be used with dma_async_is_complete() to check 651 * the status of multiple cookies without re-checking hardware state. 652 */ 653static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 654 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 655{ 656 struct dma_tx_state state; 657 enum dma_status status; 658 659 status = chan->device->device_tx_status(chan, cookie, &state); 660 if (last) 661 *last = state.last; 662 if (used) 663 *used = state.used; 664 return status; 665} 666 667#define dma_async_memcpy_complete(chan, cookie, last, used)\ 668 dma_async_is_tx_complete(chan, cookie, last, used) 669 670/** 671 * dma_async_is_complete - test a cookie against chan state 672 * @cookie: transaction identifier to test status of 673 * @last_complete: last know completed transaction 674 * @last_used: last cookie value handed out 675 * 676 * dma_async_is_complete() is used in dma_async_memcpy_complete() 677 * the test logic is separated for lightweight testing of multiple cookies 678 */ 679static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 680 dma_cookie_t last_complete, dma_cookie_t last_used) 681{ 682 if (last_complete <= last_used) { 683 if ((cookie <= last_complete) || (cookie > last_used)) 684 return DMA_SUCCESS; 685 } else { 686 if ((cookie <= last_complete) && (cookie > last_used)) 687 return DMA_SUCCESS; 688 } 689 return DMA_IN_PROGRESS; 690} 691 692static inline void 693dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 694{ 695 if (st) { 696 st->last = last; 697 st->used = used; 698 st->residue = residue; 699 } 700} 701 702enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 703#ifdef CONFIG_DMA_ENGINE 704enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 705void dma_issue_pending_all(void); 706#else 707static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 708{ 709 return DMA_SUCCESS; 710} 711static inline void dma_issue_pending_all(void) 712{ 713 do { } while (0); 714} 715#endif 716 717/* --- DMA device --- */ 718 719int dma_async_device_register(struct dma_device *device); 720void dma_async_device_unregister(struct dma_device *device); 721void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 722struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 723#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 724struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param); 725void dma_release_channel(struct dma_chan *chan); 726 727/* --- Helper iov-locking functions --- */ 728 729struct dma_page_list { 730 char __user *base_address; 731 int nr_pages; 732 struct page **pages; 733}; 734 735struct dma_pinned_list { 736 int nr_iovecs; 737 struct dma_page_list page_list[0]; 738}; 739 740struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 741void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 742 743dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 744 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 745dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 746 struct dma_pinned_list *pinned_list, struct page *page, 747 unsigned int offset, size_t len); 748 749#endif /* DMAENGINE_H */