at v2.6.35 680 lines 19 kB view raw
1/* 2 * linux/fs/mbcache.c 3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org> 4 */ 5 6/* 7 * Filesystem Meta Information Block Cache (mbcache) 8 * 9 * The mbcache caches blocks of block devices that need to be located 10 * by their device/block number, as well as by other criteria (such 11 * as the block's contents). 12 * 13 * There can only be one cache entry in a cache per device and block number. 14 * Additional indexes need not be unique in this sense. The number of 15 * additional indexes (=other criteria) can be hardwired at compile time 16 * or specified at cache create time. 17 * 18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid' 19 * in the cache. A valid entry is in the main hash tables of the cache, 20 * and may also be in the lru list. An invalid entry is not in any hashes 21 * or lists. 22 * 23 * A valid cache entry is only in the lru list if no handles refer to it. 24 * Invalid cache entries will be freed when the last handle to the cache 25 * entry is released. Entries that cannot be freed immediately are put 26 * back on the lru list. 27 */ 28 29#include <linux/kernel.h> 30#include <linux/module.h> 31 32#include <linux/hash.h> 33#include <linux/fs.h> 34#include <linux/mm.h> 35#include <linux/slab.h> 36#include <linux/sched.h> 37#include <linux/init.h> 38#include <linux/mbcache.h> 39 40 41#ifdef MB_CACHE_DEBUG 42# define mb_debug(f...) do { \ 43 printk(KERN_DEBUG f); \ 44 printk("\n"); \ 45 } while (0) 46#define mb_assert(c) do { if (!(c)) \ 47 printk(KERN_ERR "assertion " #c " failed\n"); \ 48 } while(0) 49#else 50# define mb_debug(f...) do { } while(0) 51# define mb_assert(c) do { } while(0) 52#endif 53#define mb_error(f...) do { \ 54 printk(KERN_ERR f); \ 55 printk("\n"); \ 56 } while(0) 57 58#define MB_CACHE_WRITER ((unsigned short)~0U >> 1) 59 60static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue); 61 62MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>"); 63MODULE_DESCRIPTION("Meta block cache (for extended attributes)"); 64MODULE_LICENSE("GPL"); 65 66EXPORT_SYMBOL(mb_cache_create); 67EXPORT_SYMBOL(mb_cache_shrink); 68EXPORT_SYMBOL(mb_cache_destroy); 69EXPORT_SYMBOL(mb_cache_entry_alloc); 70EXPORT_SYMBOL(mb_cache_entry_insert); 71EXPORT_SYMBOL(mb_cache_entry_release); 72EXPORT_SYMBOL(mb_cache_entry_free); 73EXPORT_SYMBOL(mb_cache_entry_get); 74#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) 75EXPORT_SYMBOL(mb_cache_entry_find_first); 76EXPORT_SYMBOL(mb_cache_entry_find_next); 77#endif 78 79struct mb_cache { 80 struct list_head c_cache_list; 81 const char *c_name; 82 struct mb_cache_op c_op; 83 atomic_t c_entry_count; 84 int c_bucket_bits; 85#ifndef MB_CACHE_INDEXES_COUNT 86 int c_indexes_count; 87#endif 88 struct kmem_cache *c_entry_cache; 89 struct list_head *c_block_hash; 90 struct list_head *c_indexes_hash[0]; 91}; 92 93 94/* 95 * Global data: list of all mbcache's, lru list, and a spinlock for 96 * accessing cache data structures on SMP machines. The lru list is 97 * global across all mbcaches. 98 */ 99 100static LIST_HEAD(mb_cache_list); 101static LIST_HEAD(mb_cache_lru_list); 102static DEFINE_SPINLOCK(mb_cache_spinlock); 103 104static inline int 105mb_cache_indexes(struct mb_cache *cache) 106{ 107#ifdef MB_CACHE_INDEXES_COUNT 108 return MB_CACHE_INDEXES_COUNT; 109#else 110 return cache->c_indexes_count; 111#endif 112} 113 114/* 115 * What the mbcache registers as to get shrunk dynamically. 116 */ 117 118static int mb_cache_shrink_fn(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask); 119 120static struct shrinker mb_cache_shrinker = { 121 .shrink = mb_cache_shrink_fn, 122 .seeks = DEFAULT_SEEKS, 123}; 124 125static inline int 126__mb_cache_entry_is_hashed(struct mb_cache_entry *ce) 127{ 128 return !list_empty(&ce->e_block_list); 129} 130 131 132static void 133__mb_cache_entry_unhash(struct mb_cache_entry *ce) 134{ 135 int n; 136 137 if (__mb_cache_entry_is_hashed(ce)) { 138 list_del_init(&ce->e_block_list); 139 for (n=0; n<mb_cache_indexes(ce->e_cache); n++) 140 list_del(&ce->e_indexes[n].o_list); 141 } 142} 143 144 145static void 146__mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask) 147{ 148 struct mb_cache *cache = ce->e_cache; 149 150 mb_assert(!(ce->e_used || ce->e_queued)); 151 if (cache->c_op.free && cache->c_op.free(ce, gfp_mask)) { 152 /* free failed -- put back on the lru list 153 for freeing later. */ 154 spin_lock(&mb_cache_spinlock); 155 list_add(&ce->e_lru_list, &mb_cache_lru_list); 156 spin_unlock(&mb_cache_spinlock); 157 } else { 158 kmem_cache_free(cache->c_entry_cache, ce); 159 atomic_dec(&cache->c_entry_count); 160 } 161} 162 163 164static void 165__mb_cache_entry_release_unlock(struct mb_cache_entry *ce) 166 __releases(mb_cache_spinlock) 167{ 168 /* Wake up all processes queuing for this cache entry. */ 169 if (ce->e_queued) 170 wake_up_all(&mb_cache_queue); 171 if (ce->e_used >= MB_CACHE_WRITER) 172 ce->e_used -= MB_CACHE_WRITER; 173 ce->e_used--; 174 if (!(ce->e_used || ce->e_queued)) { 175 if (!__mb_cache_entry_is_hashed(ce)) 176 goto forget; 177 mb_assert(list_empty(&ce->e_lru_list)); 178 list_add_tail(&ce->e_lru_list, &mb_cache_lru_list); 179 } 180 spin_unlock(&mb_cache_spinlock); 181 return; 182forget: 183 spin_unlock(&mb_cache_spinlock); 184 __mb_cache_entry_forget(ce, GFP_KERNEL); 185} 186 187 188/* 189 * mb_cache_shrink_fn() memory pressure callback 190 * 191 * This function is called by the kernel memory management when memory 192 * gets low. 193 * 194 * @shrink: (ignored) 195 * @nr_to_scan: Number of objects to scan 196 * @gfp_mask: (ignored) 197 * 198 * Returns the number of objects which are present in the cache. 199 */ 200static int 201mb_cache_shrink_fn(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask) 202{ 203 LIST_HEAD(free_list); 204 struct list_head *l, *ltmp; 205 int count = 0; 206 207 spin_lock(&mb_cache_spinlock); 208 list_for_each(l, &mb_cache_list) { 209 struct mb_cache *cache = 210 list_entry(l, struct mb_cache, c_cache_list); 211 mb_debug("cache %s (%d)", cache->c_name, 212 atomic_read(&cache->c_entry_count)); 213 count += atomic_read(&cache->c_entry_count); 214 } 215 mb_debug("trying to free %d entries", nr_to_scan); 216 if (nr_to_scan == 0) { 217 spin_unlock(&mb_cache_spinlock); 218 goto out; 219 } 220 while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) { 221 struct mb_cache_entry *ce = 222 list_entry(mb_cache_lru_list.next, 223 struct mb_cache_entry, e_lru_list); 224 list_move_tail(&ce->e_lru_list, &free_list); 225 __mb_cache_entry_unhash(ce); 226 } 227 spin_unlock(&mb_cache_spinlock); 228 list_for_each_safe(l, ltmp, &free_list) { 229 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 230 e_lru_list), gfp_mask); 231 } 232out: 233 return (count / 100) * sysctl_vfs_cache_pressure; 234} 235 236 237/* 238 * mb_cache_create() create a new cache 239 * 240 * All entries in one cache are equal size. Cache entries may be from 241 * multiple devices. If this is the first mbcache created, registers 242 * the cache with kernel memory management. Returns NULL if no more 243 * memory was available. 244 * 245 * @name: name of the cache (informal) 246 * @cache_op: contains the callback called when freeing a cache entry 247 * @entry_size: The size of a cache entry, including 248 * struct mb_cache_entry 249 * @indexes_count: number of additional indexes in the cache. Must equal 250 * MB_CACHE_INDEXES_COUNT if the number of indexes is 251 * hardwired. 252 * @bucket_bits: log2(number of hash buckets) 253 */ 254struct mb_cache * 255mb_cache_create(const char *name, struct mb_cache_op *cache_op, 256 size_t entry_size, int indexes_count, int bucket_bits) 257{ 258 int m=0, n, bucket_count = 1 << bucket_bits; 259 struct mb_cache *cache = NULL; 260 261 if(entry_size < sizeof(struct mb_cache_entry) + 262 indexes_count * sizeof(((struct mb_cache_entry *) 0)->e_indexes[0])) 263 return NULL; 264 265 cache = kmalloc(sizeof(struct mb_cache) + 266 indexes_count * sizeof(struct list_head), GFP_KERNEL); 267 if (!cache) 268 goto fail; 269 cache->c_name = name; 270 cache->c_op.free = NULL; 271 if (cache_op) 272 cache->c_op.free = cache_op->free; 273 atomic_set(&cache->c_entry_count, 0); 274 cache->c_bucket_bits = bucket_bits; 275#ifdef MB_CACHE_INDEXES_COUNT 276 mb_assert(indexes_count == MB_CACHE_INDEXES_COUNT); 277#else 278 cache->c_indexes_count = indexes_count; 279#endif 280 cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head), 281 GFP_KERNEL); 282 if (!cache->c_block_hash) 283 goto fail; 284 for (n=0; n<bucket_count; n++) 285 INIT_LIST_HEAD(&cache->c_block_hash[n]); 286 for (m=0; m<indexes_count; m++) { 287 cache->c_indexes_hash[m] = kmalloc(bucket_count * 288 sizeof(struct list_head), 289 GFP_KERNEL); 290 if (!cache->c_indexes_hash[m]) 291 goto fail; 292 for (n=0; n<bucket_count; n++) 293 INIT_LIST_HEAD(&cache->c_indexes_hash[m][n]); 294 } 295 cache->c_entry_cache = kmem_cache_create(name, entry_size, 0, 296 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); 297 if (!cache->c_entry_cache) 298 goto fail; 299 300 spin_lock(&mb_cache_spinlock); 301 list_add(&cache->c_cache_list, &mb_cache_list); 302 spin_unlock(&mb_cache_spinlock); 303 return cache; 304 305fail: 306 if (cache) { 307 while (--m >= 0) 308 kfree(cache->c_indexes_hash[m]); 309 kfree(cache->c_block_hash); 310 kfree(cache); 311 } 312 return NULL; 313} 314 315 316/* 317 * mb_cache_shrink() 318 * 319 * Removes all cache entries of a device from the cache. All cache entries 320 * currently in use cannot be freed, and thus remain in the cache. All others 321 * are freed. 322 * 323 * @bdev: which device's cache entries to shrink 324 */ 325void 326mb_cache_shrink(struct block_device *bdev) 327{ 328 LIST_HEAD(free_list); 329 struct list_head *l, *ltmp; 330 331 spin_lock(&mb_cache_spinlock); 332 list_for_each_safe(l, ltmp, &mb_cache_lru_list) { 333 struct mb_cache_entry *ce = 334 list_entry(l, struct mb_cache_entry, e_lru_list); 335 if (ce->e_bdev == bdev) { 336 list_move_tail(&ce->e_lru_list, &free_list); 337 __mb_cache_entry_unhash(ce); 338 } 339 } 340 spin_unlock(&mb_cache_spinlock); 341 list_for_each_safe(l, ltmp, &free_list) { 342 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 343 e_lru_list), GFP_KERNEL); 344 } 345} 346 347 348/* 349 * mb_cache_destroy() 350 * 351 * Shrinks the cache to its minimum possible size (hopefully 0 entries), 352 * and then destroys it. If this was the last mbcache, un-registers the 353 * mbcache from kernel memory management. 354 */ 355void 356mb_cache_destroy(struct mb_cache *cache) 357{ 358 LIST_HEAD(free_list); 359 struct list_head *l, *ltmp; 360 int n; 361 362 spin_lock(&mb_cache_spinlock); 363 list_for_each_safe(l, ltmp, &mb_cache_lru_list) { 364 struct mb_cache_entry *ce = 365 list_entry(l, struct mb_cache_entry, e_lru_list); 366 if (ce->e_cache == cache) { 367 list_move_tail(&ce->e_lru_list, &free_list); 368 __mb_cache_entry_unhash(ce); 369 } 370 } 371 list_del(&cache->c_cache_list); 372 spin_unlock(&mb_cache_spinlock); 373 374 list_for_each_safe(l, ltmp, &free_list) { 375 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 376 e_lru_list), GFP_KERNEL); 377 } 378 379 if (atomic_read(&cache->c_entry_count) > 0) { 380 mb_error("cache %s: %d orphaned entries", 381 cache->c_name, 382 atomic_read(&cache->c_entry_count)); 383 } 384 385 kmem_cache_destroy(cache->c_entry_cache); 386 387 for (n=0; n < mb_cache_indexes(cache); n++) 388 kfree(cache->c_indexes_hash[n]); 389 kfree(cache->c_block_hash); 390 kfree(cache); 391} 392 393 394/* 395 * mb_cache_entry_alloc() 396 * 397 * Allocates a new cache entry. The new entry will not be valid initially, 398 * and thus cannot be looked up yet. It should be filled with data, and 399 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL 400 * if no more memory was available. 401 */ 402struct mb_cache_entry * 403mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags) 404{ 405 struct mb_cache_entry *ce; 406 407 ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags); 408 if (ce) { 409 atomic_inc(&cache->c_entry_count); 410 INIT_LIST_HEAD(&ce->e_lru_list); 411 INIT_LIST_HEAD(&ce->e_block_list); 412 ce->e_cache = cache; 413 ce->e_used = 1 + MB_CACHE_WRITER; 414 ce->e_queued = 0; 415 } 416 return ce; 417} 418 419 420/* 421 * mb_cache_entry_insert() 422 * 423 * Inserts an entry that was allocated using mb_cache_entry_alloc() into 424 * the cache. After this, the cache entry can be looked up, but is not yet 425 * in the lru list as the caller still holds a handle to it. Returns 0 on 426 * success, or -EBUSY if a cache entry for that device + inode exists 427 * already (this may happen after a failed lookup, but when another process 428 * has inserted the same cache entry in the meantime). 429 * 430 * @bdev: device the cache entry belongs to 431 * @block: block number 432 * @keys: array of additional keys. There must be indexes_count entries 433 * in the array (as specified when creating the cache). 434 */ 435int 436mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev, 437 sector_t block, unsigned int keys[]) 438{ 439 struct mb_cache *cache = ce->e_cache; 440 unsigned int bucket; 441 struct list_head *l; 442 int error = -EBUSY, n; 443 444 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 445 cache->c_bucket_bits); 446 spin_lock(&mb_cache_spinlock); 447 list_for_each_prev(l, &cache->c_block_hash[bucket]) { 448 struct mb_cache_entry *ce = 449 list_entry(l, struct mb_cache_entry, e_block_list); 450 if (ce->e_bdev == bdev && ce->e_block == block) 451 goto out; 452 } 453 __mb_cache_entry_unhash(ce); 454 ce->e_bdev = bdev; 455 ce->e_block = block; 456 list_add(&ce->e_block_list, &cache->c_block_hash[bucket]); 457 for (n=0; n<mb_cache_indexes(cache); n++) { 458 ce->e_indexes[n].o_key = keys[n]; 459 bucket = hash_long(keys[n], cache->c_bucket_bits); 460 list_add(&ce->e_indexes[n].o_list, 461 &cache->c_indexes_hash[n][bucket]); 462 } 463 error = 0; 464out: 465 spin_unlock(&mb_cache_spinlock); 466 return error; 467} 468 469 470/* 471 * mb_cache_entry_release() 472 * 473 * Release a handle to a cache entry. When the last handle to a cache entry 474 * is released it is either freed (if it is invalid) or otherwise inserted 475 * in to the lru list. 476 */ 477void 478mb_cache_entry_release(struct mb_cache_entry *ce) 479{ 480 spin_lock(&mb_cache_spinlock); 481 __mb_cache_entry_release_unlock(ce); 482} 483 484 485/* 486 * mb_cache_entry_free() 487 * 488 * This is equivalent to the sequence mb_cache_entry_takeout() -- 489 * mb_cache_entry_release(). 490 */ 491void 492mb_cache_entry_free(struct mb_cache_entry *ce) 493{ 494 spin_lock(&mb_cache_spinlock); 495 mb_assert(list_empty(&ce->e_lru_list)); 496 __mb_cache_entry_unhash(ce); 497 __mb_cache_entry_release_unlock(ce); 498} 499 500 501/* 502 * mb_cache_entry_get() 503 * 504 * Get a cache entry by device / block number. (There can only be one entry 505 * in the cache per device and block.) Returns NULL if no such cache entry 506 * exists. The returned cache entry is locked for exclusive access ("single 507 * writer"). 508 */ 509struct mb_cache_entry * 510mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev, 511 sector_t block) 512{ 513 unsigned int bucket; 514 struct list_head *l; 515 struct mb_cache_entry *ce; 516 517 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 518 cache->c_bucket_bits); 519 spin_lock(&mb_cache_spinlock); 520 list_for_each(l, &cache->c_block_hash[bucket]) { 521 ce = list_entry(l, struct mb_cache_entry, e_block_list); 522 if (ce->e_bdev == bdev && ce->e_block == block) { 523 DEFINE_WAIT(wait); 524 525 if (!list_empty(&ce->e_lru_list)) 526 list_del_init(&ce->e_lru_list); 527 528 while (ce->e_used > 0) { 529 ce->e_queued++; 530 prepare_to_wait(&mb_cache_queue, &wait, 531 TASK_UNINTERRUPTIBLE); 532 spin_unlock(&mb_cache_spinlock); 533 schedule(); 534 spin_lock(&mb_cache_spinlock); 535 ce->e_queued--; 536 } 537 finish_wait(&mb_cache_queue, &wait); 538 ce->e_used += 1 + MB_CACHE_WRITER; 539 540 if (!__mb_cache_entry_is_hashed(ce)) { 541 __mb_cache_entry_release_unlock(ce); 542 return NULL; 543 } 544 goto cleanup; 545 } 546 } 547 ce = NULL; 548 549cleanup: 550 spin_unlock(&mb_cache_spinlock); 551 return ce; 552} 553 554#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) 555 556static struct mb_cache_entry * 557__mb_cache_entry_find(struct list_head *l, struct list_head *head, 558 int index, struct block_device *bdev, unsigned int key) 559{ 560 while (l != head) { 561 struct mb_cache_entry *ce = 562 list_entry(l, struct mb_cache_entry, 563 e_indexes[index].o_list); 564 if (ce->e_bdev == bdev && ce->e_indexes[index].o_key == key) { 565 DEFINE_WAIT(wait); 566 567 if (!list_empty(&ce->e_lru_list)) 568 list_del_init(&ce->e_lru_list); 569 570 /* Incrementing before holding the lock gives readers 571 priority over writers. */ 572 ce->e_used++; 573 while (ce->e_used >= MB_CACHE_WRITER) { 574 ce->e_queued++; 575 prepare_to_wait(&mb_cache_queue, &wait, 576 TASK_UNINTERRUPTIBLE); 577 spin_unlock(&mb_cache_spinlock); 578 schedule(); 579 spin_lock(&mb_cache_spinlock); 580 ce->e_queued--; 581 } 582 finish_wait(&mb_cache_queue, &wait); 583 584 if (!__mb_cache_entry_is_hashed(ce)) { 585 __mb_cache_entry_release_unlock(ce); 586 spin_lock(&mb_cache_spinlock); 587 return ERR_PTR(-EAGAIN); 588 } 589 return ce; 590 } 591 l = l->next; 592 } 593 return NULL; 594} 595 596 597/* 598 * mb_cache_entry_find_first() 599 * 600 * Find the first cache entry on a given device with a certain key in 601 * an additional index. Additonal matches can be found with 602 * mb_cache_entry_find_next(). Returns NULL if no match was found. The 603 * returned cache entry is locked for shared access ("multiple readers"). 604 * 605 * @cache: the cache to search 606 * @index: the number of the additonal index to search (0<=index<indexes_count) 607 * @bdev: the device the cache entry should belong to 608 * @key: the key in the index 609 */ 610struct mb_cache_entry * 611mb_cache_entry_find_first(struct mb_cache *cache, int index, 612 struct block_device *bdev, unsigned int key) 613{ 614 unsigned int bucket = hash_long(key, cache->c_bucket_bits); 615 struct list_head *l; 616 struct mb_cache_entry *ce; 617 618 mb_assert(index < mb_cache_indexes(cache)); 619 spin_lock(&mb_cache_spinlock); 620 l = cache->c_indexes_hash[index][bucket].next; 621 ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket], 622 index, bdev, key); 623 spin_unlock(&mb_cache_spinlock); 624 return ce; 625} 626 627 628/* 629 * mb_cache_entry_find_next() 630 * 631 * Find the next cache entry on a given device with a certain key in an 632 * additional index. Returns NULL if no match could be found. The previous 633 * entry is atomatically released, so that mb_cache_entry_find_next() can 634 * be called like this: 635 * 636 * entry = mb_cache_entry_find_first(); 637 * while (entry) { 638 * ... 639 * entry = mb_cache_entry_find_next(entry, ...); 640 * } 641 * 642 * @prev: The previous match 643 * @index: the number of the additonal index to search (0<=index<indexes_count) 644 * @bdev: the device the cache entry should belong to 645 * @key: the key in the index 646 */ 647struct mb_cache_entry * 648mb_cache_entry_find_next(struct mb_cache_entry *prev, int index, 649 struct block_device *bdev, unsigned int key) 650{ 651 struct mb_cache *cache = prev->e_cache; 652 unsigned int bucket = hash_long(key, cache->c_bucket_bits); 653 struct list_head *l; 654 struct mb_cache_entry *ce; 655 656 mb_assert(index < mb_cache_indexes(cache)); 657 spin_lock(&mb_cache_spinlock); 658 l = prev->e_indexes[index].o_list.next; 659 ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket], 660 index, bdev, key); 661 __mb_cache_entry_release_unlock(prev); 662 return ce; 663} 664 665#endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */ 666 667static int __init init_mbcache(void) 668{ 669 register_shrinker(&mb_cache_shrinker); 670 return 0; 671} 672 673static void __exit exit_mbcache(void) 674{ 675 unregister_shrinker(&mb_cache_shrinker); 676} 677 678module_init(init_mbcache) 679module_exit(exit_mbcache) 680