at v2.6.35 1786 lines 44 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/smp_lock.h> 15#include <linux/device_cgroup.h> 16#include <linux/highmem.h> 17#include <linux/blkdev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/buffer_head.h> 21#include <linux/pagevec.h> 22#include <linux/writeback.h> 23#include <linux/mpage.h> 24#include <linux/mount.h> 25#include <linux/uio.h> 26#include <linux/namei.h> 27#include <linux/log2.h> 28#include <linux/kmemleak.h> 29#include <asm/uaccess.h> 30#include "internal.h" 31 32struct bdev_inode { 33 struct block_device bdev; 34 struct inode vfs_inode; 35}; 36 37static const struct address_space_operations def_blk_aops; 38 39static inline struct bdev_inode *BDEV_I(struct inode *inode) 40{ 41 return container_of(inode, struct bdev_inode, vfs_inode); 42} 43 44inline struct block_device *I_BDEV(struct inode *inode) 45{ 46 return &BDEV_I(inode)->bdev; 47} 48 49EXPORT_SYMBOL(I_BDEV); 50 51static sector_t max_block(struct block_device *bdev) 52{ 53 sector_t retval = ~((sector_t)0); 54 loff_t sz = i_size_read(bdev->bd_inode); 55 56 if (sz) { 57 unsigned int size = block_size(bdev); 58 unsigned int sizebits = blksize_bits(size); 59 retval = (sz >> sizebits); 60 } 61 return retval; 62} 63 64/* Kill _all_ buffers and pagecache , dirty or not.. */ 65static void kill_bdev(struct block_device *bdev) 66{ 67 if (bdev->bd_inode->i_mapping->nrpages == 0) 68 return; 69 invalidate_bh_lrus(); 70 truncate_inode_pages(bdev->bd_inode->i_mapping, 0); 71} 72 73int set_blocksize(struct block_device *bdev, int size) 74{ 75 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 76 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 77 return -EINVAL; 78 79 /* Size cannot be smaller than the size supported by the device */ 80 if (size < bdev_logical_block_size(bdev)) 81 return -EINVAL; 82 83 /* Don't change the size if it is same as current */ 84 if (bdev->bd_block_size != size) { 85 sync_blockdev(bdev); 86 bdev->bd_block_size = size; 87 bdev->bd_inode->i_blkbits = blksize_bits(size); 88 kill_bdev(bdev); 89 } 90 return 0; 91} 92 93EXPORT_SYMBOL(set_blocksize); 94 95int sb_set_blocksize(struct super_block *sb, int size) 96{ 97 if (set_blocksize(sb->s_bdev, size)) 98 return 0; 99 /* If we get here, we know size is power of two 100 * and it's value is between 512 and PAGE_SIZE */ 101 sb->s_blocksize = size; 102 sb->s_blocksize_bits = blksize_bits(size); 103 return sb->s_blocksize; 104} 105 106EXPORT_SYMBOL(sb_set_blocksize); 107 108int sb_min_blocksize(struct super_block *sb, int size) 109{ 110 int minsize = bdev_logical_block_size(sb->s_bdev); 111 if (size < minsize) 112 size = minsize; 113 return sb_set_blocksize(sb, size); 114} 115 116EXPORT_SYMBOL(sb_min_blocksize); 117 118static int 119blkdev_get_block(struct inode *inode, sector_t iblock, 120 struct buffer_head *bh, int create) 121{ 122 if (iblock >= max_block(I_BDEV(inode))) { 123 if (create) 124 return -EIO; 125 126 /* 127 * for reads, we're just trying to fill a partial page. 128 * return a hole, they will have to call get_block again 129 * before they can fill it, and they will get -EIO at that 130 * time 131 */ 132 return 0; 133 } 134 bh->b_bdev = I_BDEV(inode); 135 bh->b_blocknr = iblock; 136 set_buffer_mapped(bh); 137 return 0; 138} 139 140static int 141blkdev_get_blocks(struct inode *inode, sector_t iblock, 142 struct buffer_head *bh, int create) 143{ 144 sector_t end_block = max_block(I_BDEV(inode)); 145 unsigned long max_blocks = bh->b_size >> inode->i_blkbits; 146 147 if ((iblock + max_blocks) > end_block) { 148 max_blocks = end_block - iblock; 149 if ((long)max_blocks <= 0) { 150 if (create) 151 return -EIO; /* write fully beyond EOF */ 152 /* 153 * It is a read which is fully beyond EOF. We return 154 * a !buffer_mapped buffer 155 */ 156 max_blocks = 0; 157 } 158 } 159 160 bh->b_bdev = I_BDEV(inode); 161 bh->b_blocknr = iblock; 162 bh->b_size = max_blocks << inode->i_blkbits; 163 if (max_blocks) 164 set_buffer_mapped(bh); 165 return 0; 166} 167 168static ssize_t 169blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 170 loff_t offset, unsigned long nr_segs) 171{ 172 struct file *file = iocb->ki_filp; 173 struct inode *inode = file->f_mapping->host; 174 175 return blockdev_direct_IO_no_locking_newtrunc(rw, iocb, inode, 176 I_BDEV(inode), iov, offset, nr_segs, 177 blkdev_get_blocks, NULL); 178} 179 180int __sync_blockdev(struct block_device *bdev, int wait) 181{ 182 if (!bdev) 183 return 0; 184 if (!wait) 185 return filemap_flush(bdev->bd_inode->i_mapping); 186 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 187} 188 189/* 190 * Write out and wait upon all the dirty data associated with a block 191 * device via its mapping. Does not take the superblock lock. 192 */ 193int sync_blockdev(struct block_device *bdev) 194{ 195 return __sync_blockdev(bdev, 1); 196} 197EXPORT_SYMBOL(sync_blockdev); 198 199/* 200 * Write out and wait upon all dirty data associated with this 201 * device. Filesystem data as well as the underlying block 202 * device. Takes the superblock lock. 203 */ 204int fsync_bdev(struct block_device *bdev) 205{ 206 struct super_block *sb = get_super(bdev); 207 if (sb) { 208 int res = sync_filesystem(sb); 209 drop_super(sb); 210 return res; 211 } 212 return sync_blockdev(bdev); 213} 214EXPORT_SYMBOL(fsync_bdev); 215 216/** 217 * freeze_bdev -- lock a filesystem and force it into a consistent state 218 * @bdev: blockdevice to lock 219 * 220 * If a superblock is found on this device, we take the s_umount semaphore 221 * on it to make sure nobody unmounts until the snapshot creation is done. 222 * The reference counter (bd_fsfreeze_count) guarantees that only the last 223 * unfreeze process can unfreeze the frozen filesystem actually when multiple 224 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 225 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 226 * actually. 227 */ 228struct super_block *freeze_bdev(struct block_device *bdev) 229{ 230 struct super_block *sb; 231 int error = 0; 232 233 mutex_lock(&bdev->bd_fsfreeze_mutex); 234 if (++bdev->bd_fsfreeze_count > 1) { 235 /* 236 * We don't even need to grab a reference - the first call 237 * to freeze_bdev grab an active reference and only the last 238 * thaw_bdev drops it. 239 */ 240 sb = get_super(bdev); 241 drop_super(sb); 242 mutex_unlock(&bdev->bd_fsfreeze_mutex); 243 return sb; 244 } 245 246 sb = get_active_super(bdev); 247 if (!sb) 248 goto out; 249 error = freeze_super(sb); 250 if (error) { 251 deactivate_super(sb); 252 bdev->bd_fsfreeze_count--; 253 mutex_unlock(&bdev->bd_fsfreeze_mutex); 254 return ERR_PTR(error); 255 } 256 deactivate_super(sb); 257 out: 258 sync_blockdev(bdev); 259 mutex_unlock(&bdev->bd_fsfreeze_mutex); 260 return sb; /* thaw_bdev releases s->s_umount */ 261} 262EXPORT_SYMBOL(freeze_bdev); 263 264/** 265 * thaw_bdev -- unlock filesystem 266 * @bdev: blockdevice to unlock 267 * @sb: associated superblock 268 * 269 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 270 */ 271int thaw_bdev(struct block_device *bdev, struct super_block *sb) 272{ 273 int error = -EINVAL; 274 275 mutex_lock(&bdev->bd_fsfreeze_mutex); 276 if (!bdev->bd_fsfreeze_count) 277 goto out; 278 279 error = 0; 280 if (--bdev->bd_fsfreeze_count > 0) 281 goto out; 282 283 if (!sb) 284 goto out; 285 286 error = thaw_super(sb); 287 if (error) { 288 bdev->bd_fsfreeze_count++; 289 mutex_unlock(&bdev->bd_fsfreeze_mutex); 290 return error; 291 } 292out: 293 mutex_unlock(&bdev->bd_fsfreeze_mutex); 294 return 0; 295} 296EXPORT_SYMBOL(thaw_bdev); 297 298static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 299{ 300 return block_write_full_page(page, blkdev_get_block, wbc); 301} 302 303static int blkdev_readpage(struct file * file, struct page * page) 304{ 305 return block_read_full_page(page, blkdev_get_block); 306} 307 308static int blkdev_write_begin(struct file *file, struct address_space *mapping, 309 loff_t pos, unsigned len, unsigned flags, 310 struct page **pagep, void **fsdata) 311{ 312 *pagep = NULL; 313 return block_write_begin_newtrunc(file, mapping, pos, len, flags, 314 pagep, fsdata, blkdev_get_block); 315} 316 317static int blkdev_write_end(struct file *file, struct address_space *mapping, 318 loff_t pos, unsigned len, unsigned copied, 319 struct page *page, void *fsdata) 320{ 321 int ret; 322 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 323 324 unlock_page(page); 325 page_cache_release(page); 326 327 return ret; 328} 329 330/* 331 * private llseek: 332 * for a block special file file->f_path.dentry->d_inode->i_size is zero 333 * so we compute the size by hand (just as in block_read/write above) 334 */ 335static loff_t block_llseek(struct file *file, loff_t offset, int origin) 336{ 337 struct inode *bd_inode = file->f_mapping->host; 338 loff_t size; 339 loff_t retval; 340 341 mutex_lock(&bd_inode->i_mutex); 342 size = i_size_read(bd_inode); 343 344 switch (origin) { 345 case 2: 346 offset += size; 347 break; 348 case 1: 349 offset += file->f_pos; 350 } 351 retval = -EINVAL; 352 if (offset >= 0 && offset <= size) { 353 if (offset != file->f_pos) { 354 file->f_pos = offset; 355 } 356 retval = offset; 357 } 358 mutex_unlock(&bd_inode->i_mutex); 359 return retval; 360} 361 362int blkdev_fsync(struct file *filp, int datasync) 363{ 364 struct inode *bd_inode = filp->f_mapping->host; 365 struct block_device *bdev = I_BDEV(bd_inode); 366 int error; 367 368 /* 369 * There is no need to serialise calls to blkdev_issue_flush with 370 * i_mutex and doing so causes performance issues with concurrent 371 * O_SYNC writers to a block device. 372 */ 373 mutex_unlock(&bd_inode->i_mutex); 374 375 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL, BLKDEV_IFL_WAIT); 376 if (error == -EOPNOTSUPP) 377 error = 0; 378 379 mutex_lock(&bd_inode->i_mutex); 380 381 return error; 382} 383EXPORT_SYMBOL(blkdev_fsync); 384 385/* 386 * pseudo-fs 387 */ 388 389static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 390static struct kmem_cache * bdev_cachep __read_mostly; 391 392static struct inode *bdev_alloc_inode(struct super_block *sb) 393{ 394 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 395 if (!ei) 396 return NULL; 397 return &ei->vfs_inode; 398} 399 400static void bdev_destroy_inode(struct inode *inode) 401{ 402 struct bdev_inode *bdi = BDEV_I(inode); 403 404 kmem_cache_free(bdev_cachep, bdi); 405} 406 407static void init_once(void *foo) 408{ 409 struct bdev_inode *ei = (struct bdev_inode *) foo; 410 struct block_device *bdev = &ei->bdev; 411 412 memset(bdev, 0, sizeof(*bdev)); 413 mutex_init(&bdev->bd_mutex); 414 INIT_LIST_HEAD(&bdev->bd_inodes); 415 INIT_LIST_HEAD(&bdev->bd_list); 416#ifdef CONFIG_SYSFS 417 INIT_LIST_HEAD(&bdev->bd_holder_list); 418#endif 419 inode_init_once(&ei->vfs_inode); 420 /* Initialize mutex for freeze. */ 421 mutex_init(&bdev->bd_fsfreeze_mutex); 422} 423 424static inline void __bd_forget(struct inode *inode) 425{ 426 list_del_init(&inode->i_devices); 427 inode->i_bdev = NULL; 428 inode->i_mapping = &inode->i_data; 429} 430 431static void bdev_clear_inode(struct inode *inode) 432{ 433 struct block_device *bdev = &BDEV_I(inode)->bdev; 434 struct list_head *p; 435 spin_lock(&bdev_lock); 436 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) { 437 __bd_forget(list_entry(p, struct inode, i_devices)); 438 } 439 list_del_init(&bdev->bd_list); 440 spin_unlock(&bdev_lock); 441} 442 443static const struct super_operations bdev_sops = { 444 .statfs = simple_statfs, 445 .alloc_inode = bdev_alloc_inode, 446 .destroy_inode = bdev_destroy_inode, 447 .drop_inode = generic_delete_inode, 448 .clear_inode = bdev_clear_inode, 449}; 450 451static int bd_get_sb(struct file_system_type *fs_type, 452 int flags, const char *dev_name, void *data, struct vfsmount *mnt) 453{ 454 return get_sb_pseudo(fs_type, "bdev:", &bdev_sops, 0x62646576, mnt); 455} 456 457static struct file_system_type bd_type = { 458 .name = "bdev", 459 .get_sb = bd_get_sb, 460 .kill_sb = kill_anon_super, 461}; 462 463struct super_block *blockdev_superblock __read_mostly; 464 465void __init bdev_cache_init(void) 466{ 467 int err; 468 struct vfsmount *bd_mnt; 469 470 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 471 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 472 SLAB_MEM_SPREAD|SLAB_PANIC), 473 init_once); 474 err = register_filesystem(&bd_type); 475 if (err) 476 panic("Cannot register bdev pseudo-fs"); 477 bd_mnt = kern_mount(&bd_type); 478 if (IS_ERR(bd_mnt)) 479 panic("Cannot create bdev pseudo-fs"); 480 /* 481 * This vfsmount structure is only used to obtain the 482 * blockdev_superblock, so tell kmemleak not to report it. 483 */ 484 kmemleak_not_leak(bd_mnt); 485 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 486} 487 488/* 489 * Most likely _very_ bad one - but then it's hardly critical for small 490 * /dev and can be fixed when somebody will need really large one. 491 * Keep in mind that it will be fed through icache hash function too. 492 */ 493static inline unsigned long hash(dev_t dev) 494{ 495 return MAJOR(dev)+MINOR(dev); 496} 497 498static int bdev_test(struct inode *inode, void *data) 499{ 500 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 501} 502 503static int bdev_set(struct inode *inode, void *data) 504{ 505 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 506 return 0; 507} 508 509static LIST_HEAD(all_bdevs); 510 511struct block_device *bdget(dev_t dev) 512{ 513 struct block_device *bdev; 514 struct inode *inode; 515 516 inode = iget5_locked(blockdev_superblock, hash(dev), 517 bdev_test, bdev_set, &dev); 518 519 if (!inode) 520 return NULL; 521 522 bdev = &BDEV_I(inode)->bdev; 523 524 if (inode->i_state & I_NEW) { 525 bdev->bd_contains = NULL; 526 bdev->bd_inode = inode; 527 bdev->bd_block_size = (1 << inode->i_blkbits); 528 bdev->bd_part_count = 0; 529 bdev->bd_invalidated = 0; 530 inode->i_mode = S_IFBLK; 531 inode->i_rdev = dev; 532 inode->i_bdev = bdev; 533 inode->i_data.a_ops = &def_blk_aops; 534 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 535 inode->i_data.backing_dev_info = &default_backing_dev_info; 536 spin_lock(&bdev_lock); 537 list_add(&bdev->bd_list, &all_bdevs); 538 spin_unlock(&bdev_lock); 539 unlock_new_inode(inode); 540 } 541 return bdev; 542} 543 544EXPORT_SYMBOL(bdget); 545 546/** 547 * bdgrab -- Grab a reference to an already referenced block device 548 * @bdev: Block device to grab a reference to. 549 */ 550struct block_device *bdgrab(struct block_device *bdev) 551{ 552 atomic_inc(&bdev->bd_inode->i_count); 553 return bdev; 554} 555 556long nr_blockdev_pages(void) 557{ 558 struct block_device *bdev; 559 long ret = 0; 560 spin_lock(&bdev_lock); 561 list_for_each_entry(bdev, &all_bdevs, bd_list) { 562 ret += bdev->bd_inode->i_mapping->nrpages; 563 } 564 spin_unlock(&bdev_lock); 565 return ret; 566} 567 568void bdput(struct block_device *bdev) 569{ 570 iput(bdev->bd_inode); 571} 572 573EXPORT_SYMBOL(bdput); 574 575static struct block_device *bd_acquire(struct inode *inode) 576{ 577 struct block_device *bdev; 578 579 spin_lock(&bdev_lock); 580 bdev = inode->i_bdev; 581 if (bdev) { 582 atomic_inc(&bdev->bd_inode->i_count); 583 spin_unlock(&bdev_lock); 584 return bdev; 585 } 586 spin_unlock(&bdev_lock); 587 588 bdev = bdget(inode->i_rdev); 589 if (bdev) { 590 spin_lock(&bdev_lock); 591 if (!inode->i_bdev) { 592 /* 593 * We take an additional bd_inode->i_count for inode, 594 * and it's released in clear_inode() of inode. 595 * So, we can access it via ->i_mapping always 596 * without igrab(). 597 */ 598 atomic_inc(&bdev->bd_inode->i_count); 599 inode->i_bdev = bdev; 600 inode->i_mapping = bdev->bd_inode->i_mapping; 601 list_add(&inode->i_devices, &bdev->bd_inodes); 602 } 603 spin_unlock(&bdev_lock); 604 } 605 return bdev; 606} 607 608/* Call when you free inode */ 609 610void bd_forget(struct inode *inode) 611{ 612 struct block_device *bdev = NULL; 613 614 spin_lock(&bdev_lock); 615 if (inode->i_bdev) { 616 if (!sb_is_blkdev_sb(inode->i_sb)) 617 bdev = inode->i_bdev; 618 __bd_forget(inode); 619 } 620 spin_unlock(&bdev_lock); 621 622 if (bdev) 623 iput(bdev->bd_inode); 624} 625 626/** 627 * bd_may_claim - test whether a block device can be claimed 628 * @bdev: block device of interest 629 * @whole: whole block device containing @bdev, may equal @bdev 630 * @holder: holder trying to claim @bdev 631 * 632 * Test whther @bdev can be claimed by @holder. 633 * 634 * CONTEXT: 635 * spin_lock(&bdev_lock). 636 * 637 * RETURNS: 638 * %true if @bdev can be claimed, %false otherwise. 639 */ 640static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 641 void *holder) 642{ 643 if (bdev->bd_holder == holder) 644 return true; /* already a holder */ 645 else if (bdev->bd_holder != NULL) 646 return false; /* held by someone else */ 647 else if (bdev->bd_contains == bdev) 648 return true; /* is a whole device which isn't held */ 649 650 else if (whole->bd_holder == bd_claim) 651 return true; /* is a partition of a device that is being partitioned */ 652 else if (whole->bd_holder != NULL) 653 return false; /* is a partition of a held device */ 654 else 655 return true; /* is a partition of an un-held device */ 656} 657 658/** 659 * bd_prepare_to_claim - prepare to claim a block device 660 * @bdev: block device of interest 661 * @whole: the whole device containing @bdev, may equal @bdev 662 * @holder: holder trying to claim @bdev 663 * 664 * Prepare to claim @bdev. This function fails if @bdev is already 665 * claimed by another holder and waits if another claiming is in 666 * progress. This function doesn't actually claim. On successful 667 * return, the caller has ownership of bd_claiming and bd_holder[s]. 668 * 669 * CONTEXT: 670 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 671 * it multiple times. 672 * 673 * RETURNS: 674 * 0 if @bdev can be claimed, -EBUSY otherwise. 675 */ 676static int bd_prepare_to_claim(struct block_device *bdev, 677 struct block_device *whole, void *holder) 678{ 679retry: 680 /* if someone else claimed, fail */ 681 if (!bd_may_claim(bdev, whole, holder)) 682 return -EBUSY; 683 684 /* if someone else is claiming, wait for it to finish */ 685 if (whole->bd_claiming && whole->bd_claiming != holder) { 686 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 687 DEFINE_WAIT(wait); 688 689 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 690 spin_unlock(&bdev_lock); 691 schedule(); 692 finish_wait(wq, &wait); 693 spin_lock(&bdev_lock); 694 goto retry; 695 } 696 697 /* yay, all mine */ 698 return 0; 699} 700 701/** 702 * bd_start_claiming - start claiming a block device 703 * @bdev: block device of interest 704 * @holder: holder trying to claim @bdev 705 * 706 * @bdev is about to be opened exclusively. Check @bdev can be opened 707 * exclusively and mark that an exclusive open is in progress. Each 708 * successful call to this function must be matched with a call to 709 * either bd_finish_claiming() or bd_abort_claiming() (which do not 710 * fail). 711 * 712 * This function is used to gain exclusive access to the block device 713 * without actually causing other exclusive open attempts to fail. It 714 * should be used when the open sequence itself requires exclusive 715 * access but may subsequently fail. 716 * 717 * CONTEXT: 718 * Might sleep. 719 * 720 * RETURNS: 721 * Pointer to the block device containing @bdev on success, ERR_PTR() 722 * value on failure. 723 */ 724static struct block_device *bd_start_claiming(struct block_device *bdev, 725 void *holder) 726{ 727 struct gendisk *disk; 728 struct block_device *whole; 729 int partno, err; 730 731 might_sleep(); 732 733 /* 734 * @bdev might not have been initialized properly yet, look up 735 * and grab the outer block device the hard way. 736 */ 737 disk = get_gendisk(bdev->bd_dev, &partno); 738 if (!disk) 739 return ERR_PTR(-ENXIO); 740 741 whole = bdget_disk(disk, 0); 742 module_put(disk->fops->owner); 743 put_disk(disk); 744 if (!whole) 745 return ERR_PTR(-ENOMEM); 746 747 /* prepare to claim, if successful, mark claiming in progress */ 748 spin_lock(&bdev_lock); 749 750 err = bd_prepare_to_claim(bdev, whole, holder); 751 if (err == 0) { 752 whole->bd_claiming = holder; 753 spin_unlock(&bdev_lock); 754 return whole; 755 } else { 756 spin_unlock(&bdev_lock); 757 bdput(whole); 758 return ERR_PTR(err); 759 } 760} 761 762/* releases bdev_lock */ 763static void __bd_abort_claiming(struct block_device *whole, void *holder) 764{ 765 BUG_ON(whole->bd_claiming != holder); 766 whole->bd_claiming = NULL; 767 wake_up_bit(&whole->bd_claiming, 0); 768 769 spin_unlock(&bdev_lock); 770 bdput(whole); 771} 772 773/** 774 * bd_abort_claiming - abort claiming a block device 775 * @whole: whole block device returned by bd_start_claiming() 776 * @holder: holder trying to claim @bdev 777 * 778 * Abort a claiming block started by bd_start_claiming(). Note that 779 * @whole is not the block device to be claimed but the whole device 780 * returned by bd_start_claiming(). 781 * 782 * CONTEXT: 783 * Grabs and releases bdev_lock. 784 */ 785static void bd_abort_claiming(struct block_device *whole, void *holder) 786{ 787 spin_lock(&bdev_lock); 788 __bd_abort_claiming(whole, holder); /* releases bdev_lock */ 789} 790 791/* increment holders when we have a legitimate claim. requires bdev_lock */ 792static void __bd_claim(struct block_device *bdev, struct block_device *whole, 793 void *holder) 794{ 795 /* note that for a whole device bd_holders 796 * will be incremented twice, and bd_holder will 797 * be set to bd_claim before being set to holder 798 */ 799 whole->bd_holders++; 800 whole->bd_holder = bd_claim; 801 bdev->bd_holders++; 802 bdev->bd_holder = holder; 803} 804 805/** 806 * bd_finish_claiming - finish claiming a block device 807 * @bdev: block device of interest (passed to bd_start_claiming()) 808 * @whole: whole block device returned by bd_start_claiming() 809 * @holder: holder trying to claim @bdev 810 * 811 * Finish a claiming block started by bd_start_claiming(). 812 * 813 * CONTEXT: 814 * Grabs and releases bdev_lock. 815 */ 816static void bd_finish_claiming(struct block_device *bdev, 817 struct block_device *whole, void *holder) 818{ 819 spin_lock(&bdev_lock); 820 BUG_ON(!bd_may_claim(bdev, whole, holder)); 821 __bd_claim(bdev, whole, holder); 822 __bd_abort_claiming(whole, holder); /* not actually an abort */ 823} 824 825/** 826 * bd_claim - claim a block device 827 * @bdev: block device to claim 828 * @holder: holder trying to claim @bdev 829 * 830 * Try to claim @bdev which must have been opened successfully. 831 * 832 * CONTEXT: 833 * Might sleep. 834 * 835 * RETURNS: 836 * 0 if successful, -EBUSY if @bdev is already claimed. 837 */ 838int bd_claim(struct block_device *bdev, void *holder) 839{ 840 struct block_device *whole = bdev->bd_contains; 841 int res; 842 843 might_sleep(); 844 845 spin_lock(&bdev_lock); 846 res = bd_prepare_to_claim(bdev, whole, holder); 847 if (res == 0) 848 __bd_claim(bdev, whole, holder); 849 spin_unlock(&bdev_lock); 850 851 return res; 852} 853EXPORT_SYMBOL(bd_claim); 854 855void bd_release(struct block_device *bdev) 856{ 857 spin_lock(&bdev_lock); 858 if (!--bdev->bd_contains->bd_holders) 859 bdev->bd_contains->bd_holder = NULL; 860 if (!--bdev->bd_holders) 861 bdev->bd_holder = NULL; 862 spin_unlock(&bdev_lock); 863} 864 865EXPORT_SYMBOL(bd_release); 866 867#ifdef CONFIG_SYSFS 868/* 869 * Functions for bd_claim_by_kobject / bd_release_from_kobject 870 * 871 * If a kobject is passed to bd_claim_by_kobject() 872 * and the kobject has a parent directory, 873 * following symlinks are created: 874 * o from the kobject to the claimed bdev 875 * o from "holders" directory of the bdev to the parent of the kobject 876 * bd_release_from_kobject() removes these symlinks. 877 * 878 * Example: 879 * If /dev/dm-0 maps to /dev/sda, kobject corresponding to 880 * /sys/block/dm-0/slaves is passed to bd_claim_by_kobject(), then: 881 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 882 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 883 */ 884 885static int add_symlink(struct kobject *from, struct kobject *to) 886{ 887 if (!from || !to) 888 return 0; 889 return sysfs_create_link(from, to, kobject_name(to)); 890} 891 892static void del_symlink(struct kobject *from, struct kobject *to) 893{ 894 if (!from || !to) 895 return; 896 sysfs_remove_link(from, kobject_name(to)); 897} 898 899/* 900 * 'struct bd_holder' contains pointers to kobjects symlinked by 901 * bd_claim_by_kobject. 902 * It's connected to bd_holder_list which is protected by bdev->bd_sem. 903 */ 904struct bd_holder { 905 struct list_head list; /* chain of holders of the bdev */ 906 int count; /* references from the holder */ 907 struct kobject *sdir; /* holder object, e.g. "/block/dm-0/slaves" */ 908 struct kobject *hdev; /* e.g. "/block/dm-0" */ 909 struct kobject *hdir; /* e.g. "/block/sda/holders" */ 910 struct kobject *sdev; /* e.g. "/block/sda" */ 911}; 912 913/* 914 * Get references of related kobjects at once. 915 * Returns 1 on success. 0 on failure. 916 * 917 * Should call bd_holder_release_dirs() after successful use. 918 */ 919static int bd_holder_grab_dirs(struct block_device *bdev, 920 struct bd_holder *bo) 921{ 922 if (!bdev || !bo) 923 return 0; 924 925 bo->sdir = kobject_get(bo->sdir); 926 if (!bo->sdir) 927 return 0; 928 929 bo->hdev = kobject_get(bo->sdir->parent); 930 if (!bo->hdev) 931 goto fail_put_sdir; 932 933 bo->sdev = kobject_get(&part_to_dev(bdev->bd_part)->kobj); 934 if (!bo->sdev) 935 goto fail_put_hdev; 936 937 bo->hdir = kobject_get(bdev->bd_part->holder_dir); 938 if (!bo->hdir) 939 goto fail_put_sdev; 940 941 return 1; 942 943fail_put_sdev: 944 kobject_put(bo->sdev); 945fail_put_hdev: 946 kobject_put(bo->hdev); 947fail_put_sdir: 948 kobject_put(bo->sdir); 949 950 return 0; 951} 952 953/* Put references of related kobjects at once. */ 954static void bd_holder_release_dirs(struct bd_holder *bo) 955{ 956 kobject_put(bo->hdir); 957 kobject_put(bo->sdev); 958 kobject_put(bo->hdev); 959 kobject_put(bo->sdir); 960} 961 962static struct bd_holder *alloc_bd_holder(struct kobject *kobj) 963{ 964 struct bd_holder *bo; 965 966 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 967 if (!bo) 968 return NULL; 969 970 bo->count = 1; 971 bo->sdir = kobj; 972 973 return bo; 974} 975 976static void free_bd_holder(struct bd_holder *bo) 977{ 978 kfree(bo); 979} 980 981/** 982 * find_bd_holder - find matching struct bd_holder from the block device 983 * 984 * @bdev: struct block device to be searched 985 * @bo: target struct bd_holder 986 * 987 * Returns matching entry with @bo in @bdev->bd_holder_list. 988 * If found, increment the reference count and return the pointer. 989 * If not found, returns NULL. 990 */ 991static struct bd_holder *find_bd_holder(struct block_device *bdev, 992 struct bd_holder *bo) 993{ 994 struct bd_holder *tmp; 995 996 list_for_each_entry(tmp, &bdev->bd_holder_list, list) 997 if (tmp->sdir == bo->sdir) { 998 tmp->count++; 999 return tmp; 1000 } 1001 1002 return NULL; 1003} 1004 1005/** 1006 * add_bd_holder - create sysfs symlinks for bd_claim() relationship 1007 * 1008 * @bdev: block device to be bd_claimed 1009 * @bo: preallocated and initialized by alloc_bd_holder() 1010 * 1011 * Add @bo to @bdev->bd_holder_list, create symlinks. 1012 * 1013 * Returns 0 if symlinks are created. 1014 * Returns -ve if something fails. 1015 */ 1016static int add_bd_holder(struct block_device *bdev, struct bd_holder *bo) 1017{ 1018 int err; 1019 1020 if (!bo) 1021 return -EINVAL; 1022 1023 if (!bd_holder_grab_dirs(bdev, bo)) 1024 return -EBUSY; 1025 1026 err = add_symlink(bo->sdir, bo->sdev); 1027 if (err) 1028 return err; 1029 1030 err = add_symlink(bo->hdir, bo->hdev); 1031 if (err) { 1032 del_symlink(bo->sdir, bo->sdev); 1033 return err; 1034 } 1035 1036 list_add_tail(&bo->list, &bdev->bd_holder_list); 1037 return 0; 1038} 1039 1040/** 1041 * del_bd_holder - delete sysfs symlinks for bd_claim() relationship 1042 * 1043 * @bdev: block device to be bd_claimed 1044 * @kobj: holder's kobject 1045 * 1046 * If there is matching entry with @kobj in @bdev->bd_holder_list 1047 * and no other bd_claim() from the same kobject, 1048 * remove the struct bd_holder from the list, delete symlinks for it. 1049 * 1050 * Returns a pointer to the struct bd_holder when it's removed from the list 1051 * and ready to be freed. 1052 * Returns NULL if matching claim isn't found or there is other bd_claim() 1053 * by the same kobject. 1054 */ 1055static struct bd_holder *del_bd_holder(struct block_device *bdev, 1056 struct kobject *kobj) 1057{ 1058 struct bd_holder *bo; 1059 1060 list_for_each_entry(bo, &bdev->bd_holder_list, list) { 1061 if (bo->sdir == kobj) { 1062 bo->count--; 1063 BUG_ON(bo->count < 0); 1064 if (!bo->count) { 1065 list_del(&bo->list); 1066 del_symlink(bo->sdir, bo->sdev); 1067 del_symlink(bo->hdir, bo->hdev); 1068 bd_holder_release_dirs(bo); 1069 return bo; 1070 } 1071 break; 1072 } 1073 } 1074 1075 return NULL; 1076} 1077 1078/** 1079 * bd_claim_by_kobject - bd_claim() with additional kobject signature 1080 * 1081 * @bdev: block device to be claimed 1082 * @holder: holder's signature 1083 * @kobj: holder's kobject 1084 * 1085 * Do bd_claim() and if it succeeds, create sysfs symlinks between 1086 * the bdev and the holder's kobject. 1087 * Use bd_release_from_kobject() when relesing the claimed bdev. 1088 * 1089 * Returns 0 on success. (same as bd_claim()) 1090 * Returns errno on failure. 1091 */ 1092static int bd_claim_by_kobject(struct block_device *bdev, void *holder, 1093 struct kobject *kobj) 1094{ 1095 int err; 1096 struct bd_holder *bo, *found; 1097 1098 if (!kobj) 1099 return -EINVAL; 1100 1101 bo = alloc_bd_holder(kobj); 1102 if (!bo) 1103 return -ENOMEM; 1104 1105 mutex_lock(&bdev->bd_mutex); 1106 1107 err = bd_claim(bdev, holder); 1108 if (err) 1109 goto fail; 1110 1111 found = find_bd_holder(bdev, bo); 1112 if (found) 1113 goto fail; 1114 1115 err = add_bd_holder(bdev, bo); 1116 if (err) 1117 bd_release(bdev); 1118 else 1119 bo = NULL; 1120fail: 1121 mutex_unlock(&bdev->bd_mutex); 1122 free_bd_holder(bo); 1123 return err; 1124} 1125 1126/** 1127 * bd_release_from_kobject - bd_release() with additional kobject signature 1128 * 1129 * @bdev: block device to be released 1130 * @kobj: holder's kobject 1131 * 1132 * Do bd_release() and remove sysfs symlinks created by bd_claim_by_kobject(). 1133 */ 1134static void bd_release_from_kobject(struct block_device *bdev, 1135 struct kobject *kobj) 1136{ 1137 if (!kobj) 1138 return; 1139 1140 mutex_lock(&bdev->bd_mutex); 1141 bd_release(bdev); 1142 free_bd_holder(del_bd_holder(bdev, kobj)); 1143 mutex_unlock(&bdev->bd_mutex); 1144} 1145 1146/** 1147 * bd_claim_by_disk - wrapper function for bd_claim_by_kobject() 1148 * 1149 * @bdev: block device to be claimed 1150 * @holder: holder's signature 1151 * @disk: holder's gendisk 1152 * 1153 * Call bd_claim_by_kobject() with getting @disk->slave_dir. 1154 */ 1155int bd_claim_by_disk(struct block_device *bdev, void *holder, 1156 struct gendisk *disk) 1157{ 1158 return bd_claim_by_kobject(bdev, holder, kobject_get(disk->slave_dir)); 1159} 1160EXPORT_SYMBOL_GPL(bd_claim_by_disk); 1161 1162/** 1163 * bd_release_from_disk - wrapper function for bd_release_from_kobject() 1164 * 1165 * @bdev: block device to be claimed 1166 * @disk: holder's gendisk 1167 * 1168 * Call bd_release_from_kobject() and put @disk->slave_dir. 1169 */ 1170void bd_release_from_disk(struct block_device *bdev, struct gendisk *disk) 1171{ 1172 bd_release_from_kobject(bdev, disk->slave_dir); 1173 kobject_put(disk->slave_dir); 1174} 1175EXPORT_SYMBOL_GPL(bd_release_from_disk); 1176#endif 1177 1178/* 1179 * Tries to open block device by device number. Use it ONLY if you 1180 * really do not have anything better - i.e. when you are behind a 1181 * truly sucky interface and all you are given is a device number. _Never_ 1182 * to be used for internal purposes. If you ever need it - reconsider 1183 * your API. 1184 */ 1185struct block_device *open_by_devnum(dev_t dev, fmode_t mode) 1186{ 1187 struct block_device *bdev = bdget(dev); 1188 int err = -ENOMEM; 1189 if (bdev) 1190 err = blkdev_get(bdev, mode); 1191 return err ? ERR_PTR(err) : bdev; 1192} 1193 1194EXPORT_SYMBOL(open_by_devnum); 1195 1196/** 1197 * flush_disk - invalidates all buffer-cache entries on a disk 1198 * 1199 * @bdev: struct block device to be flushed 1200 * 1201 * Invalidates all buffer-cache entries on a disk. It should be called 1202 * when a disk has been changed -- either by a media change or online 1203 * resize. 1204 */ 1205static void flush_disk(struct block_device *bdev) 1206{ 1207 if (__invalidate_device(bdev)) { 1208 char name[BDEVNAME_SIZE] = ""; 1209 1210 if (bdev->bd_disk) 1211 disk_name(bdev->bd_disk, 0, name); 1212 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1213 "resized disk %s\n", name); 1214 } 1215 1216 if (!bdev->bd_disk) 1217 return; 1218 if (disk_partitionable(bdev->bd_disk)) 1219 bdev->bd_invalidated = 1; 1220} 1221 1222/** 1223 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1224 * @disk: struct gendisk to check 1225 * @bdev: struct bdev to adjust. 1226 * 1227 * This routine checks to see if the bdev size does not match the disk size 1228 * and adjusts it if it differs. 1229 */ 1230void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1231{ 1232 loff_t disk_size, bdev_size; 1233 1234 disk_size = (loff_t)get_capacity(disk) << 9; 1235 bdev_size = i_size_read(bdev->bd_inode); 1236 if (disk_size != bdev_size) { 1237 char name[BDEVNAME_SIZE]; 1238 1239 disk_name(disk, 0, name); 1240 printk(KERN_INFO 1241 "%s: detected capacity change from %lld to %lld\n", 1242 name, bdev_size, disk_size); 1243 i_size_write(bdev->bd_inode, disk_size); 1244 flush_disk(bdev); 1245 } 1246} 1247EXPORT_SYMBOL(check_disk_size_change); 1248 1249/** 1250 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1251 * @disk: struct gendisk to be revalidated 1252 * 1253 * This routine is a wrapper for lower-level driver's revalidate_disk 1254 * call-backs. It is used to do common pre and post operations needed 1255 * for all revalidate_disk operations. 1256 */ 1257int revalidate_disk(struct gendisk *disk) 1258{ 1259 struct block_device *bdev; 1260 int ret = 0; 1261 1262 if (disk->fops->revalidate_disk) 1263 ret = disk->fops->revalidate_disk(disk); 1264 1265 bdev = bdget_disk(disk, 0); 1266 if (!bdev) 1267 return ret; 1268 1269 mutex_lock(&bdev->bd_mutex); 1270 check_disk_size_change(disk, bdev); 1271 mutex_unlock(&bdev->bd_mutex); 1272 bdput(bdev); 1273 return ret; 1274} 1275EXPORT_SYMBOL(revalidate_disk); 1276 1277/* 1278 * This routine checks whether a removable media has been changed, 1279 * and invalidates all buffer-cache-entries in that case. This 1280 * is a relatively slow routine, so we have to try to minimize using 1281 * it. Thus it is called only upon a 'mount' or 'open'. This 1282 * is the best way of combining speed and utility, I think. 1283 * People changing diskettes in the middle of an operation deserve 1284 * to lose :-) 1285 */ 1286int check_disk_change(struct block_device *bdev) 1287{ 1288 struct gendisk *disk = bdev->bd_disk; 1289 const struct block_device_operations *bdops = disk->fops; 1290 1291 if (!bdops->media_changed) 1292 return 0; 1293 if (!bdops->media_changed(bdev->bd_disk)) 1294 return 0; 1295 1296 flush_disk(bdev); 1297 if (bdops->revalidate_disk) 1298 bdops->revalidate_disk(bdev->bd_disk); 1299 return 1; 1300} 1301 1302EXPORT_SYMBOL(check_disk_change); 1303 1304void bd_set_size(struct block_device *bdev, loff_t size) 1305{ 1306 unsigned bsize = bdev_logical_block_size(bdev); 1307 1308 bdev->bd_inode->i_size = size; 1309 while (bsize < PAGE_CACHE_SIZE) { 1310 if (size & bsize) 1311 break; 1312 bsize <<= 1; 1313 } 1314 bdev->bd_block_size = bsize; 1315 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1316} 1317EXPORT_SYMBOL(bd_set_size); 1318 1319static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1320 1321/* 1322 * bd_mutex locking: 1323 * 1324 * mutex_lock(part->bd_mutex) 1325 * mutex_lock_nested(whole->bd_mutex, 1) 1326 */ 1327 1328static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1329{ 1330 struct gendisk *disk; 1331 int ret; 1332 int partno; 1333 int perm = 0; 1334 1335 if (mode & FMODE_READ) 1336 perm |= MAY_READ; 1337 if (mode & FMODE_WRITE) 1338 perm |= MAY_WRITE; 1339 /* 1340 * hooks: /n/, see "layering violations". 1341 */ 1342 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1343 if (ret != 0) { 1344 bdput(bdev); 1345 return ret; 1346 } 1347 1348 lock_kernel(); 1349 restart: 1350 1351 ret = -ENXIO; 1352 disk = get_gendisk(bdev->bd_dev, &partno); 1353 if (!disk) 1354 goto out_unlock_kernel; 1355 1356 mutex_lock_nested(&bdev->bd_mutex, for_part); 1357 if (!bdev->bd_openers) { 1358 bdev->bd_disk = disk; 1359 bdev->bd_contains = bdev; 1360 if (!partno) { 1361 struct backing_dev_info *bdi; 1362 1363 ret = -ENXIO; 1364 bdev->bd_part = disk_get_part(disk, partno); 1365 if (!bdev->bd_part) 1366 goto out_clear; 1367 1368 if (disk->fops->open) { 1369 ret = disk->fops->open(bdev, mode); 1370 if (ret == -ERESTARTSYS) { 1371 /* Lost a race with 'disk' being 1372 * deleted, try again. 1373 * See md.c 1374 */ 1375 disk_put_part(bdev->bd_part); 1376 bdev->bd_part = NULL; 1377 module_put(disk->fops->owner); 1378 put_disk(disk); 1379 bdev->bd_disk = NULL; 1380 mutex_unlock(&bdev->bd_mutex); 1381 goto restart; 1382 } 1383 if (ret) 1384 goto out_clear; 1385 } 1386 if (!bdev->bd_openers) { 1387 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1388 bdi = blk_get_backing_dev_info(bdev); 1389 if (bdi == NULL) 1390 bdi = &default_backing_dev_info; 1391 bdev->bd_inode->i_data.backing_dev_info = bdi; 1392 } 1393 if (bdev->bd_invalidated) 1394 rescan_partitions(disk, bdev); 1395 } else { 1396 struct block_device *whole; 1397 whole = bdget_disk(disk, 0); 1398 ret = -ENOMEM; 1399 if (!whole) 1400 goto out_clear; 1401 BUG_ON(for_part); 1402 ret = __blkdev_get(whole, mode, 1); 1403 if (ret) 1404 goto out_clear; 1405 bdev->bd_contains = whole; 1406 bdev->bd_inode->i_data.backing_dev_info = 1407 whole->bd_inode->i_data.backing_dev_info; 1408 bdev->bd_part = disk_get_part(disk, partno); 1409 if (!(disk->flags & GENHD_FL_UP) || 1410 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1411 ret = -ENXIO; 1412 goto out_clear; 1413 } 1414 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1415 } 1416 } else { 1417 module_put(disk->fops->owner); 1418 put_disk(disk); 1419 disk = NULL; 1420 if (bdev->bd_contains == bdev) { 1421 if (bdev->bd_disk->fops->open) { 1422 ret = bdev->bd_disk->fops->open(bdev, mode); 1423 if (ret) 1424 goto out_unlock_bdev; 1425 } 1426 if (bdev->bd_invalidated) 1427 rescan_partitions(bdev->bd_disk, bdev); 1428 } 1429 } 1430 bdev->bd_openers++; 1431 if (for_part) 1432 bdev->bd_part_count++; 1433 mutex_unlock(&bdev->bd_mutex); 1434 unlock_kernel(); 1435 return 0; 1436 1437 out_clear: 1438 disk_put_part(bdev->bd_part); 1439 bdev->bd_disk = NULL; 1440 bdev->bd_part = NULL; 1441 bdev->bd_inode->i_data.backing_dev_info = &default_backing_dev_info; 1442 if (bdev != bdev->bd_contains) 1443 __blkdev_put(bdev->bd_contains, mode, 1); 1444 bdev->bd_contains = NULL; 1445 out_unlock_bdev: 1446 mutex_unlock(&bdev->bd_mutex); 1447 out_unlock_kernel: 1448 unlock_kernel(); 1449 1450 if (disk) 1451 module_put(disk->fops->owner); 1452 put_disk(disk); 1453 bdput(bdev); 1454 1455 return ret; 1456} 1457 1458int blkdev_get(struct block_device *bdev, fmode_t mode) 1459{ 1460 return __blkdev_get(bdev, mode, 0); 1461} 1462EXPORT_SYMBOL(blkdev_get); 1463 1464static int blkdev_open(struct inode * inode, struct file * filp) 1465{ 1466 struct block_device *whole = NULL; 1467 struct block_device *bdev; 1468 int res; 1469 1470 /* 1471 * Preserve backwards compatibility and allow large file access 1472 * even if userspace doesn't ask for it explicitly. Some mkfs 1473 * binary needs it. We might want to drop this workaround 1474 * during an unstable branch. 1475 */ 1476 filp->f_flags |= O_LARGEFILE; 1477 1478 if (filp->f_flags & O_NDELAY) 1479 filp->f_mode |= FMODE_NDELAY; 1480 if (filp->f_flags & O_EXCL) 1481 filp->f_mode |= FMODE_EXCL; 1482 if ((filp->f_flags & O_ACCMODE) == 3) 1483 filp->f_mode |= FMODE_WRITE_IOCTL; 1484 1485 bdev = bd_acquire(inode); 1486 if (bdev == NULL) 1487 return -ENOMEM; 1488 1489 if (filp->f_mode & FMODE_EXCL) { 1490 whole = bd_start_claiming(bdev, filp); 1491 if (IS_ERR(whole)) { 1492 bdput(bdev); 1493 return PTR_ERR(whole); 1494 } 1495 } 1496 1497 filp->f_mapping = bdev->bd_inode->i_mapping; 1498 1499 res = blkdev_get(bdev, filp->f_mode); 1500 1501 if (whole) { 1502 if (res == 0) 1503 bd_finish_claiming(bdev, whole, filp); 1504 else 1505 bd_abort_claiming(whole, filp); 1506 } 1507 1508 return res; 1509} 1510 1511static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1512{ 1513 int ret = 0; 1514 struct gendisk *disk = bdev->bd_disk; 1515 struct block_device *victim = NULL; 1516 1517 mutex_lock_nested(&bdev->bd_mutex, for_part); 1518 lock_kernel(); 1519 if (for_part) 1520 bdev->bd_part_count--; 1521 1522 if (!--bdev->bd_openers) { 1523 sync_blockdev(bdev); 1524 kill_bdev(bdev); 1525 } 1526 if (bdev->bd_contains == bdev) { 1527 if (disk->fops->release) 1528 ret = disk->fops->release(disk, mode); 1529 } 1530 if (!bdev->bd_openers) { 1531 struct module *owner = disk->fops->owner; 1532 1533 put_disk(disk); 1534 module_put(owner); 1535 disk_put_part(bdev->bd_part); 1536 bdev->bd_part = NULL; 1537 bdev->bd_disk = NULL; 1538 bdev->bd_inode->i_data.backing_dev_info = &default_backing_dev_info; 1539 if (bdev != bdev->bd_contains) 1540 victim = bdev->bd_contains; 1541 bdev->bd_contains = NULL; 1542 } 1543 unlock_kernel(); 1544 mutex_unlock(&bdev->bd_mutex); 1545 bdput(bdev); 1546 if (victim) 1547 __blkdev_put(victim, mode, 1); 1548 return ret; 1549} 1550 1551int blkdev_put(struct block_device *bdev, fmode_t mode) 1552{ 1553 return __blkdev_put(bdev, mode, 0); 1554} 1555EXPORT_SYMBOL(blkdev_put); 1556 1557static int blkdev_close(struct inode * inode, struct file * filp) 1558{ 1559 struct block_device *bdev = I_BDEV(filp->f_mapping->host); 1560 if (bdev->bd_holder == filp) 1561 bd_release(bdev); 1562 return blkdev_put(bdev, filp->f_mode); 1563} 1564 1565static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1566{ 1567 struct block_device *bdev = I_BDEV(file->f_mapping->host); 1568 fmode_t mode = file->f_mode; 1569 1570 /* 1571 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1572 * to updated it before every ioctl. 1573 */ 1574 if (file->f_flags & O_NDELAY) 1575 mode |= FMODE_NDELAY; 1576 else 1577 mode &= ~FMODE_NDELAY; 1578 1579 return blkdev_ioctl(bdev, mode, cmd, arg); 1580} 1581 1582/* 1583 * Write data to the block device. Only intended for the block device itself 1584 * and the raw driver which basically is a fake block device. 1585 * 1586 * Does not take i_mutex for the write and thus is not for general purpose 1587 * use. 1588 */ 1589ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov, 1590 unsigned long nr_segs, loff_t pos) 1591{ 1592 struct file *file = iocb->ki_filp; 1593 ssize_t ret; 1594 1595 BUG_ON(iocb->ki_pos != pos); 1596 1597 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 1598 if (ret > 0 || ret == -EIOCBQUEUED) { 1599 ssize_t err; 1600 1601 err = generic_write_sync(file, pos, ret); 1602 if (err < 0 && ret > 0) 1603 ret = err; 1604 } 1605 return ret; 1606} 1607EXPORT_SYMBOL_GPL(blkdev_aio_write); 1608 1609/* 1610 * Try to release a page associated with block device when the system 1611 * is under memory pressure. 1612 */ 1613static int blkdev_releasepage(struct page *page, gfp_t wait) 1614{ 1615 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1616 1617 if (super && super->s_op->bdev_try_to_free_page) 1618 return super->s_op->bdev_try_to_free_page(super, page, wait); 1619 1620 return try_to_free_buffers(page); 1621} 1622 1623static const struct address_space_operations def_blk_aops = { 1624 .readpage = blkdev_readpage, 1625 .writepage = blkdev_writepage, 1626 .sync_page = block_sync_page, 1627 .write_begin = blkdev_write_begin, 1628 .write_end = blkdev_write_end, 1629 .writepages = generic_writepages, 1630 .releasepage = blkdev_releasepage, 1631 .direct_IO = blkdev_direct_IO, 1632}; 1633 1634const struct file_operations def_blk_fops = { 1635 .open = blkdev_open, 1636 .release = blkdev_close, 1637 .llseek = block_llseek, 1638 .read = do_sync_read, 1639 .write = do_sync_write, 1640 .aio_read = generic_file_aio_read, 1641 .aio_write = blkdev_aio_write, 1642 .mmap = generic_file_mmap, 1643 .fsync = blkdev_fsync, 1644 .unlocked_ioctl = block_ioctl, 1645#ifdef CONFIG_COMPAT 1646 .compat_ioctl = compat_blkdev_ioctl, 1647#endif 1648 .splice_read = generic_file_splice_read, 1649 .splice_write = generic_file_splice_write, 1650}; 1651 1652int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 1653{ 1654 int res; 1655 mm_segment_t old_fs = get_fs(); 1656 set_fs(KERNEL_DS); 1657 res = blkdev_ioctl(bdev, 0, cmd, arg); 1658 set_fs(old_fs); 1659 return res; 1660} 1661 1662EXPORT_SYMBOL(ioctl_by_bdev); 1663 1664/** 1665 * lookup_bdev - lookup a struct block_device by name 1666 * @pathname: special file representing the block device 1667 * 1668 * Get a reference to the blockdevice at @pathname in the current 1669 * namespace if possible and return it. Return ERR_PTR(error) 1670 * otherwise. 1671 */ 1672struct block_device *lookup_bdev(const char *pathname) 1673{ 1674 struct block_device *bdev; 1675 struct inode *inode; 1676 struct path path; 1677 int error; 1678 1679 if (!pathname || !*pathname) 1680 return ERR_PTR(-EINVAL); 1681 1682 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 1683 if (error) 1684 return ERR_PTR(error); 1685 1686 inode = path.dentry->d_inode; 1687 error = -ENOTBLK; 1688 if (!S_ISBLK(inode->i_mode)) 1689 goto fail; 1690 error = -EACCES; 1691 if (path.mnt->mnt_flags & MNT_NODEV) 1692 goto fail; 1693 error = -ENOMEM; 1694 bdev = bd_acquire(inode); 1695 if (!bdev) 1696 goto fail; 1697out: 1698 path_put(&path); 1699 return bdev; 1700fail: 1701 bdev = ERR_PTR(error); 1702 goto out; 1703} 1704EXPORT_SYMBOL(lookup_bdev); 1705 1706/** 1707 * open_bdev_exclusive - open a block device by name and set it up for use 1708 * 1709 * @path: special file representing the block device 1710 * @mode: FMODE_... combination to pass be used 1711 * @holder: owner for exclusion 1712 * 1713 * Open the blockdevice described by the special file at @path, claim it 1714 * for the @holder. 1715 */ 1716struct block_device *open_bdev_exclusive(const char *path, fmode_t mode, void *holder) 1717{ 1718 struct block_device *bdev, *whole; 1719 int error; 1720 1721 bdev = lookup_bdev(path); 1722 if (IS_ERR(bdev)) 1723 return bdev; 1724 1725 whole = bd_start_claiming(bdev, holder); 1726 if (IS_ERR(whole)) { 1727 bdput(bdev); 1728 return whole; 1729 } 1730 1731 error = blkdev_get(bdev, mode); 1732 if (error) 1733 goto out_abort_claiming; 1734 1735 error = -EACCES; 1736 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) 1737 goto out_blkdev_put; 1738 1739 bd_finish_claiming(bdev, whole, holder); 1740 return bdev; 1741 1742out_blkdev_put: 1743 blkdev_put(bdev, mode); 1744out_abort_claiming: 1745 bd_abort_claiming(whole, holder); 1746 return ERR_PTR(error); 1747} 1748 1749EXPORT_SYMBOL(open_bdev_exclusive); 1750 1751/** 1752 * close_bdev_exclusive - close a blockdevice opened by open_bdev_exclusive() 1753 * 1754 * @bdev: blockdevice to close 1755 * @mode: mode, must match that used to open. 1756 * 1757 * This is the counterpart to open_bdev_exclusive(). 1758 */ 1759void close_bdev_exclusive(struct block_device *bdev, fmode_t mode) 1760{ 1761 bd_release(bdev); 1762 blkdev_put(bdev, mode); 1763} 1764 1765EXPORT_SYMBOL(close_bdev_exclusive); 1766 1767int __invalidate_device(struct block_device *bdev) 1768{ 1769 struct super_block *sb = get_super(bdev); 1770 int res = 0; 1771 1772 if (sb) { 1773 /* 1774 * no need to lock the super, get_super holds the 1775 * read mutex so the filesystem cannot go away 1776 * under us (->put_super runs with the write lock 1777 * hold). 1778 */ 1779 shrink_dcache_sb(sb); 1780 res = invalidate_inodes(sb); 1781 drop_super(sb); 1782 } 1783 invalidate_bdev(bdev); 1784 return res; 1785} 1786EXPORT_SYMBOL(__invalidate_device);